- Arnold 86
- Arnold, V I. : I metodi matematici della
meccanica classica, Editori Riuniti, 1986.
- Butcher 87
- Butcher, J. C. : The numerical
analysis of ordinary differential equations. Runge-Kutta and
general linear methods, J. Wiley & Sons, 1987.
- Goldstein 1950
- Goldstein, H. : Meccanica
classica, Zanichelli 1971.
- Greene 79
- J.M. Greene : A method for
determining a stochastic transition, Journal of Mathematical
Physics, vol. 20, 1183-1201, 1979.
- Guckenheimer-Holmes 97
- Guckenheimer, J. e Holmes,P. :
Nonlinear oscillations, dynamical systems, and bifurcations
of vector fields, Springer, quinta edizione, 1997.
- Hartmann 64
- Hartmann, P. : Ordinary
Differential Equations, J. Whiley and Sons, 1964.
- Hirsch-Smale 74
- Hirsch, M. W. e Smale, S. :
Differential Equations, Dynamical Systems, and Linear
Algebra, Academic Press, 1974.
- Landau 75
- Landau, L. e Lifchitz, E. : Meccanica, Editori Riuniti, 1975.
- Milani-Nobili 92
- Milani, A. e Nobili, A.M. : An
example of stable chaos in the solar system, Nature, vol. 357,
569-571, 1992.
- Percival-Richards 82
- Percival, I. e Richards, D. :
Introduction to Dynamics, Cambridge University Press, 1982.
- Poincaré 1899
- Poincaré, H.:
Les méthodes nouvelles de la mécanique céleste, Volume III,
Gauthier-Villars, 1899; ristampa Blanchard, Paris 1987.
- Siegel-Moser 71
- Siegel, C.L. e Moser, J.K. :
Lecture on Celestial Mechanics, Springer, 1971.
- Smale 67
- Smale, S. : Differentiable dynamical
systems, Bulletin of the American Mathematical Society, col. 73,
747-817, 1967.
- Yoshida 93
- Yoshida, H. : Recent progress in
the theory and applications of symplectic integrators, Celestial
Mechanics, vol. 56, 27-43, 1993.
Andrea Milani
2009-06-01