Bibliografia

Arnold 86
Arnold, V I. : I metodi matematici della meccanica classica, Editori Riuniti, 1986.

Butcher 87
Butcher, J. C. : The numerical analysis of ordinary differential equations. Runge-Kutta and general linear methods, J. Wiley & Sons, 1987.

Goldstein 1950
Goldstein, H. : Meccanica classica, Zanichelli 1971.

Greene 79
J.M. Greene : A method for determining a stochastic transition, Journal of Mathematical Physics, vol. 20, 1183-1201, 1979.

Guckenheimer-Holmes 97
Guckenheimer, J. e Holmes,P. : Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer, quinta edizione, 1997.

Hartmann 64
Hartmann, P. : Ordinary Differential Equations, J. Whiley and Sons, 1964.

Hirsch-Smale 74
Hirsch, M. W. e Smale, S. : Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, 1974.

Landau 75
Landau, L. e Lifchitz, E. : Meccanica, Editori Riuniti, 1975.

Milani-Nobili 92
Milani, A. e Nobili, A.M. : An example of stable chaos in the solar system, Nature, vol. 357, 569-571, 1992.

Percival-Richards 82
Percival, I. e Richards, D. : Introduction to Dynamics, Cambridge University Press, 1982.

Poincaré 1899
Poincaré, H.: Les méthodes nouvelles de la mécanique céleste, Volume III, Gauthier-Villars, 1899; ristampa Blanchard, Paris 1987.

Siegel-Moser 71
Siegel, C.L. e Moser, J.K. : Lecture on Celestial Mechanics, Springer, 1971.

Smale 67
Smale, S. : Differentiable dynamical systems, Bulletin of the American Mathematical Society, col. 73, 747-817, 1967.

Yoshida 93
Yoshida, H. : Recent progress in the theory and applications of symplectic integrators, Celestial Mechanics, vol. 56, 27-43, 1993.



Andrea Milani 2009-06-01