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Rubble Pile Asteroids

• Most asteroids are thought to be “rubble piles”
–Consisting of a size distribution of dust, pebbles and boulders
–Spin periods ranging down to ~2 hours for bodies > 500 m
–Spin periods going much shorter for bodies < 500 m
–Holding themselves together with gravity, and perhaps van der Waals forces!

• This talk focuses on “small asteroids” of size less than ~ 10 km
– Susceptible to the YORP effect:

• Sunlight causes them to spin up and/or down
• Can undergo extreme variations in their spin rate over their lifetime

– What happens when their spin rates get large

• Fundamental Question:
How does celestial mechanics influence rubble pile evolution?

• Answer: Extremely significant at all points of their lives! 
2
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Spin Deformation Limit



Formation model proposed in 
Fujiwara et al., Science 2006,
consistent with Itokawa

How do Rubble Piles Form?
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What Do Rubble Piles Look Like?

•  Itokawa remains the “poster child” of rubble pile asteroids.
• Clearly comprised of a collection of boulders and grains:

– Maximum size on the order of 10’s of meters
– Minimum size on the order of of microns (from the Hayabusa Sample)
– Measured boulder size distribution ~ 1/d3 (Michikami et al. 2008), and 

confirmed by more recent analysis
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Implications for Evolution of 
Small Asteroids
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Evolutionary Pathways of Asteroids

9
A: Scheeres (2007); B: Jacobson & Scheeres (2011a); C: Pravec et al. (2010); D: Fang & Margot (2012); E: 
Scheeres et al. (2007); F: Jacobson et al. (2014); G: Scheeres et al. (2010); H: Jacobson & Scheeres (2011b)
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Fission Mechanics

10



D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

What happens to a rubble pile 
subject to YORP spin-up?

• Angular Momentum of these bodies change over time
– Best modeled as a collection of rigid bodies resting on each other
– The celestial mechanics and geophysics of such collections are poorly 

understood, and can exhibit complex behavior  

• Reorientations can occur as spin rate increases
– Transitions occur at discrete energy levels
– Can cause global “landslides” as material seeks out its minimum energy state 

• Continued spin-up can lead to rotational fission of the asteroid
– The stability of these proto-binaries controls subsequent evolution

• Failed orbital binaries 
– Disrupted -> Asteroid pairs 
– Re-impacted -> Contact binaries

• Stable binaries
– ... subject to continued evolutionary effects
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Rotational Fission

• Fission occurs when two portions of a composite body 
attain orbital rates relative to each other

• The fission spin rate is a strong function of “shape”

12

Simple examples of 
“fission”

Fission occurs at half the spin rate for the equal mass distribution

~ 4.7 hour rotation period ~ 2.3 hour rotation period
For a density of 𝜌 = 2 g/cm3
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Rotational Fission

• Fission can be a smooth transition for a rubble pile
• Energy and AM are ideally conserved, but are 

decomposed:
– Kinetic Energy

– Potential Energy

– The mutual potential energy is “liberated” and serves as a conduit 
to transfer rotational and translational KE 
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Rotational Fission
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Rotational Fission
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Orbital Evolution
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Possible “Fission Pairs”
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Fission Conditions

• For fission of an arbitrary rubble pile split into two 
collections I and J the general condition becomes:

– Applying a weak form of Euler’s Theorem of Homogenous 
functions this reduces to

– which is equivalent to 
• “the two components with the largest separation between their 

centers of mass will fission first at the lowest spin rate”

• D.J. Scheeres. 2009. “Minimum energy asteroid reconfigurations and catastrophic 
disruptions,” Planetary and Space Science 57: 154-164. 
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Itokawa

18

BODY
HEAD

ω ∗
∗

Head and Body will orbit at a ~ 6 hour period
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1999 KW4

• Contact binary with Alpha and Beta resting on each other 
will fission at a spin rate > 4 hours

19
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1999 KW4 Fission
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1999 KW4 Fission
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Tr(Ī1) + Tr(Ī2)�
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Can develop explicit results for when 
the system is Energetically stable, 
Hill stable and Stable Against Impact
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Relative Orbital Equilibrium
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Relative Orbital Equilibrium
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Unstable Equilibrium

Minimum 
Energy Fission

Stable Equilibrium

Zero-Velocity Curves and limits on motion
𝜈 > 0.17
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Scaled Orbit Stability Results

• Scaling the systems produces generic stability curves
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Scaled Orbit Stability Results

• Scaling the systems produces generic stability curves

27

Sphere-Sphere

Itokawa

1999 KW4

Other shapes

Zero Free Energy Curves

Energy > 0

Energy < 0



D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Free Energy

• The “free energy” of the system controls disruption:

– If disruption occurs, the mutual potential goes to 0:  
– If EFree > 0, system can “catastrophically disrupt”

– If EFree < 0, system cannot “catastrophically disrupt”
– If 0 < EFree << 1 escape leads to a slowly rotating primary 
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Itokawa Post-Fission Dynamics

29

• Total system energy is negative but near zero, disruption impossible
• Re-impact is possible if initial Energy is larger than fission energy
• Relative speeds on the order of cm/s only, allows non-catastrophic re-impacts

Minimum Energy Fission Configuration

Movie courtesy of S. Jacobson
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Itokawa Post-Fission Dynamics

29

• Total system energy is negative but near zero, disruption impossible
• Re-impact is possible if initial Energy is larger than fission energy
• Relative speeds on the order of cm/s only, allows non-catastrophic re-impacts

Minimum Energy Configuration 
at same Angular Momentum

Movie courtesy of S. Jacobson
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Itokawa Post-Fission Dynamics
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Itokawa Post-Fission Dynamics
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• Total system energy is negative but near zero, disruption impossible
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Implications

• All contact binaries spun to fission are initially unstable
– Result holds across all shapes and mass ratios
– Initial dynamics after fission are strongly chaotic and explore the 

possible phase space
– Non-classical tidal dissipation during early evolutionary phases

30
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Implications

• All contact binaries spun to fission are initially unstable
– Result holds across all shapes and mass ratios
– Initial dynamics after fission are strongly chaotic

• Contact binaries with a small (large) enough mass 
fraction can mutually escape when spun to fission
– Mass fraction limits are   𝜈 < 0.17  or 𝜈 > 0.83
– Mass ratio limits are < 0.2 or > 0.8
– Mean radius ratios < 0.59
– Applies to all “a-synchronous binaries”, creating difficulties for 

simple spin-fission “birth” of binary asteroids
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Formation of Asteroid 
Binaries and Pairs

32
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As spin rate increases, internal 
stresses increase to the point where 
failure criteria are violated, leading to 
reshaping and, in some cases, fission 
of the body.
Movie by P. Sanchez
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Discrete element method dynamical 
computations agree with continuum 
mechanics models.

Can control relative size of 
components with initial distributions

Sanchez & Scheeres, Icarus 2012
comparisons with

Holsapple, Icarus 2007

Movie by P. Sanchez
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Fission: Mass Ratio > 0.2

• Mass Ratio > 0.2
– Insufficient energy to mutually escape from each other
– Insufficient energy to undergo relative circulation / 2nd spin fission

• Tides will cause synchronization of both bodies
– Following full or partial synchronization will evolve via BYORP

• BYORP effect for each body adds and evolves them...
– Mutually outwards: More rapid evolution (25%)

• High Mass Ratio Asteroid Pairs / Susceptible to tidal disruption

– Mutually inwards: More rapid collapse -> Contact Binaries (25%)
• Castalia, 1996 HW1, Toutatis, etc...
• Inability to circulate when spun to fission may lock them into this state

– Opposite & Competing: Stable relative equilibria possible
• Hermes?

36
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Hermes/Itokawa Simulations

37

Mass ratio ~ 1

Mass ratio ~ 0.2
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Hermes/Itokawa Simulations
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Mass ratio ~ 1

Mass ratio ~ 0.2
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Fission: Mass Ratio < 0.2

• Mass Ratio < 0.2
– Sufficient energy to escape -> Asteroid Pairs
– Sufficient energy to undergo secondary spin fission

• A path to binary stabilization
• A path to reshaping the primary

• Abrupt / rapid escape:
– Fissioned bodies with mass ratio < 0.2 have total positive energy 
– Energy to escape is drawn from the primary spin rate – the larger 

the mass ratio the slower the primary spin after escape
– Matches very well with observed properties of asteroid pairs
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Pravec et al., Nature 2010

Observation:
The mass ratios and primary 
spin periods of Main Belt 
asteroid pairs match with our 
Asteroid Fission Theory

Prediction:
The mass ratio between asteroid 
pairs formed by direct fission 
should be < 0.2
The primary spin period should 
grow long near the cut-off

Pr
im

ar
y 

Sp
in

 P
er

io
d

Asteroid Pair Primary Spin vs Mass Ratio

Comment:
The theory matches two 
independent outcomes, mass 
ratio cut-off and primary spin 
period lengthening
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• Secondary Fission: 
– Prior to escape the secondary is often spun to spin rates beyond 

the fission rate and can split again

• Can send the inner component towards the primary and 
stabilize the outer component
– Impacting components can add angular momentum to the primary 

and cause reshaping through “relatively slow” impacts
– Outer components are “impulsively” transferred to an orbit with a 

higher periapsis = less interaction
– Repeated fission can cause the system to stabilize, providing the 

necessary time for tides to synchronize the secondary

• Can eject the outer component creating an asteroid pair
– Perhaps stabilize the inner component?

42

Fission: Mass Ratio < 0.2
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Secondary Fission Model: Re-impact

43
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Secondary Fission Model: Re-impact
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Secondary Fission Model: Escape
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Secondary Fission Model: Escape
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• Singly Synchronous Binaries
– BYORP becomes active as soon as libration commences – prior to 

full secondary relaxation
– BYORP effect either expands or contracts (50/50)

• Expansive BYORP
– Adiabatic invariance causes librations to grow as orbit expands 

(McMahon & Scheeres, 2011)
– System can either expand and escape or loose synchronicity and 

become a wide-asynchronous binary
– Other resonance effects may occur to break lock (Cuk and Nesvorny, 

2010)

• Contractive BYORP
– Stable equilibrium is formed balancing BYORP contraction and tidal 

expansion (Jacobson & Scheeres, ApJL 2011)
– Resulting systems can persist for arbitrary lengths of time

45

Secondary Fission: Mass Ratio < 0.2
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• Singly Synchronous Binaries
– BYORP becomes active as soon as libration commences – prior to 

full secondary relaxation
– BYORP effect either expands or contracts (50/50)

• Expansive BYORP
– Adiabatic invariance causes librations to grow as orbit expands 

(McMahon & Scheeres, 2011)
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become a wide-asynchronous binary
– Other resonance effects may occur to break lock (Cuk and Nesvorny, 

2010)
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expansion (Jacobson & Scheeres, ApJL 2011)
– Resulting systems can persist for arbitrary lengths of time
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Secondary Fission: Mass Ratio < 0.2
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Contractive BYORP

Expansive Tides

•  All such systems evolve 
in semi-major axis to a 
stable equilibrium 

 
•  Tides still dominate 

eccentricity evolution, so 
e damps 
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Stable Singly-Synchronous Binaries

• Semi-major axis of equilibrium a function of BYORP 
parameter and Q/k
– Means that modeling/measurement of the BYORP parameter 

provides insight into the internal geophysics of the system
– Exogenous angular momentum from BYORP acts to slow the 

primary spin rate – competes with YORP
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Tidal Process
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Evolutionary Pathways of Asteroids

50
A: Scheeres (2007); B: Jacobson & Scheeres (2011a); C: Pravec et al. (2010); D: Fang & Margot (2012); E: 
Scheeres et al. (2007); F: Jacobson et al. (2014); G: Scheeres et al. (2010); H: Jacobson & Scheeres (2011b)
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Do Rubble Piles Have 
Strength?
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Spin / Size Relation

• The increase in asteroid spin rates with decreasing size has 
been well established since Pravec and Harris 2000.

• The spin limit for larger bodies is consistent with the spin 
deformation limit for spheres of density ~2-3 g/cm3.
– A simple interpretation is that the maximum block size from which 

asteroids are built is ~100+ meters and that asteroids spun beyond 
this limit “disassemble” into smaller pieces.

52
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Spin Deformation Limit
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Spin / Size Relation

• The increase in asteroid spin rates with decreasing size has 
been well established since Pravec and Harris 2000.

• The spin limit for larger bodies is consistent with the spin 
deformation limit for spheres of density ~2-3 g/cm3.
• A simple interpretation is that the maximum block size from which 

asteroids are built is ~100+ meters and that asteroids spun beyond 
this limit “disassemble” into smaller pieces.

• The real picture seems a bit more complicated, however...
– Direct Observations of asteroid Itokawa and radar shapes
– The existence of tumbling fast rotators in the small size population
– The computed mechanics of asteroid fission
– The predicted physics of rubble pile asteroid cohesive strength...
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Spin Deformation Limit

56

• The Drucker-Prager Plastic Failure theory predicts that 
once a body starts to deform, it will in general change its 
shape and spin at a slower rate! 
– Theoretical predictions by Holsapple (Icarus, 2007)
– Simulation verification by Sánchez and Scheeres (Icarus, 2012)

• The deformation spin limit is:

– where 𝜙 is the internal friction angle and 𝜌 is the density

• For a limiting spin rate of 0.043 °/sec (2.3 hours):

ω = 4π
3
Gρ 2sinφ

1+ sinφ

Friction Angle (deg) Limiting Density (g/cm3)
90° 2.06

45° 2.49

30° 3.09



D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Spin Deformation Limit
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Spin Deformation Limit
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Spin Deformation Limit
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Spin Deformation Limit
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What is a Rubble Pile?

• A size distribution of boulders and grains.
– Extends from ~ microns to a few 100 meters across
– Measurements of Itokawa suggest:

•  1/d3 from ~ centimeters to decameters
• 1/d3 from ~ microns to 100 microns

• For these, and shallower distributions, fines “dominate” in number and 
surface area over larger grains 
– Implies that larger boulders are emplaced or covered in a matrix of finer grains

• What are the consequences of this?
– These finer grain distributions can serve as a “matrix” that touch all larger blocks.
– Applying basic properties of cohesive grains measured on Earth and the Moon 

provide predictions for cohesive strength of a rubble pile.
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Physics of Micro-Gravity Bodies
• Where does cohesive strength arise?
• Chemical bonds:

– Are very strong and can sustain extremely high spin rates
– Are not relevant for cohesion between gravels/rocks

• van der Waals forces:
– In microgravity, can van der Waals forces supply enough cohesion? 

(Asphaug, LPSC 2009; Scheeres et al., Icarus 2010) 
– For asteroid sizes less than a few kilometers in size, van der Waals 

attraction between gravel-sized grains can become as significant as 
their weight

– The amount of cohesion needed to keep a fast-spinning rubble pile 
together is very small (Holsapple, Icarus 2007)
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How does this work?
• Cohesive van der Waals forces between smaller grains can hold 

larger boulders in place
• Validated with detailed granular mechanics simulations

– 1-meter boulders with interstitial regolith with van der Waals forces
– Equal pull forces applied to each... very different outcomes

61Cohesionless regolith Cohesive regolith
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How Strong is it?
• Predicts a cohesive strength model for asteroids dependent on 

fundamental physical properties and mean grain size
– Model is consistent with measured cohesive strength properties of the 

upper lunar regolith:  30 – 60 Pa for particle size ~ 5-10 microns
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Spin Rates of Rubble Piles 
with Cohesion
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Cohesive Strength: Drucker-Prager Yield Criterion
Strong Lunar Cohesion: 3 kPa
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Cohesive Strength: Drucker-Prager Yield Criterion
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Observations of Rubble Pile 
Cohesive Strength
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Recent Observations of Specific 
Asteroids

• Recent observations of active asteroids and specific fast-
spinning asteroids show that cohesion must be an 
important aspect of asteroid geophysics

• Specific examples are:

1950 DA
2013 P/R3
2008 TC3

67



Consistent with 1950 DA

Rotation period = 2.12 hours, Impact probability 250 / 1 000 000 in Year 2880
Probable strength ~ 60 Pascals (Rozitis et al. Nature)



“Stress and Failure Analysis of Rapidly Rotating Asteroid (29075) 1950 DA,”
Hirabayashi & Scheeres, ApJL 2015
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The original shape remains.

1950 DA structurally fails.
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Fig. 2.— Lowest cohesion that prevents 1950 DA from failing structurally for three different

bulk density cases: 1.0 g/cm3, 1.7 g/cm3, and 2.4 g/cm3. The shadow region describes that

the original shape can remain, while the white region indicates that it must fail structurally.

Table 1: Physical properties of 1950 DA (the retrograde model)

Property Value Reference

Volume [km3] 1.145 Busch et al. (2007)

Spin period [hr] 2.1216 Busch et al. (2007)

Bulk density [g/cm3] 1.0− 1.7 Rozitis et al. (2014)

Friction Angle 35 Lambe & Whitman (1969)

Young’s modulus [Pa] 1.0× 107 -

Poisson’s ratio 0.25 -
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Consistent with P/2013 R3

71

• Observed by Jewitt et al. (ApJL 2014) to 
be an “active asteroid” whose formation is 
consistent with rotational fission

• Hirabayashi et al. (ApJL 2014) show the 
published measurements indicate:
– Parent body strength of 40 — 210 Pa
– Jewitt et al. (AJ 2017) to 50 — 100 Pa

• Constraints found by:
– Mapping observed pairs back to parent:

• Assume either an ellipsoid or spherical parent

– Assuming C-Type bulk density 
– Evaluating necessary cohesion with a                 

Drucker-Prager strength model 
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2008 TC3
• 2008 TC3 = Almahatta Sitta Meteorite
• Pre-entry observations (Scheirich et al., MAPS 2010):

– Tumbling, fast spinning body… but only requires ~ 25 Pa of cohesion to remain 
a stable collection of rocks, easily provided by having the larger components 
embedded within a matrix of fines ~ < 10 microns

• Entry observations:
– Significant macro-porosity (Kohout et al., Icarus 2011)
– High break-up altitude, indicating a “weak” body (Popova et al., MAPS 2011)
– Substantial loss of 1-10 micron material in upper atmosphere (Borovicka & 

Charvat, A&A 2009)

• Ground-fall observations (Jenniskens et al., Nature 2009):
– Was composed of mineralogically diverse components consistent with the parent 

body being an aggregate

• CAVEAT (Borovicka, IAU 2015):
– Break-up altitude occurred at a dynamic pressure of 50 kPa — much stronger 

than proposed strength… however the breakup of rubble piles in the atmosphere 
is not understood
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A Fork in the Road

YORP Spin-up Fission

R > ~ 250 m

R < ~ 250 m

System forms an 
initially bound binary 
Complex evolution!

Failure spin rate >  
Escape spin rate 
Immediate escape 
Bodies will tumble!
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Fission Leads to  
Fast Rotating Tumblers
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Fission Leads to  
Fast Rotating Tumblers

76

⌦

H

Uniform Rotator

⌦ ⌦

H1
H2

H = H1 + H2

Complex Rotators
A tumbling body will likely be less 
affected by YORP… how fast does it 
relax wrt YORP timescales? ⌧R/⌧Y ⇠ 1⇥ 10�5 ! 0.3

Scheirich et al. (2015)

Margot et al. 2000



D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder 77

Fast Tumbling Asteroids

When a rapidly rotating rubble pile does fission, 
its components immediately start to tumble
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Fast Tumbling Asteroids
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Fast Tumbling Asteroids

When a rapidly rotating rubble pile does fission, 
its components immediately start to tumble

Observed small and rapidly rotating tumblers are 
consistent with a 25-100 Pa cohesive strength
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Transition Pathway
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Lifetime Once Abrupt Fission Begins
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What is the Lifetime of a Small 
Rubble Pile Asteroid?

• For 100 Pa of strength, bodies ~ 500 m or less enter an 
end-of-life phase that continues till the body is 
disaggregated into its component pieces

• In the absence of unrealized sinks, lifetime is finite:
– At 1 AU as short as 0.4 MY for a 500 m body
– For 1998 TC3 (at ~ 5 m in size) from 4,000 ->  350,000 years
– In the main belt a factor of 10 times longer

• Caveats / Future Work:
– How does tidal dissipation work for a small, cohesive rubble pile?
– For how long can a rubble pile be trapped at a zero spin rate?
– What role does size distribution play?
– What are realistic values of the normalized YORP coefficient?
– Which observations can verify this?
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Small Rubble Pile Summary
• Rubble pile asteroids can be strengthened by cohesive forces 

between the smallest grains in their size distributions
• Simulation and theoretical predictions are consistent with the 

measured strength of the upper lunar regolith
– Fitting strength to the observed population assuming a Drucker-Prager 

Yield criterion predicts ~ 25-100 Pa
• Based on:  Overall spin/size curve, binary small size cut-off, small tumbling asteroids

– Consistent with a mean grain size of ~ 2-8 microns for a lunar-type 
regolith, agrees with Itokawa measurements

• Recent observations are consistent with these limits
– 1950 DA found to need > 60 Pa cohesion to hold together
– P/2013 R3 found to be consistent with a strength of 40-210 Pa
– 2008 TC3 requires a strength at least > 25 Pa to hold together
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When & How Can we Test?

• In addition to Earth observations, the sample return 
space missions of Hayabusa2 and OSIRIS-REx will 
provide specific observations and opportunities to 
determine the level of strength within rubble pile bodies

• Sample return enables the detailed properties of 
“unprocessed” asteroid material to be determined

• Hayabusa2
– Impact experiment will enable direct measurement of regolith 

strength

• OSIRIS-REx
– Accurate tracking of the spacecraft will enable internal density 

inhomogeneities to be mapped, testing theories of morphology
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Hayabusa2 Tests

• Direct measurement of the crater size from the H2 
impactor will correlate with regolith strength

83
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OSIRIS-REx Tests

• The internal distribution of strength strongly controls 
how a rubble pile asteroid will fail, and will leave 
signatures in its mass distribution
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Strong Core = Surface Shedding Uniform Strength
 = Internal Failure
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Summary / Conclusions

• The Celestial Mechanics of rubble pile asteroids — 
rotating collections of rigid bodies resting on each other 
— can explain and predict many phenomenon observed 
in the asteroid population

• These problems also pose interesting and open questions 
about how systems with coupled orbital and rotational 
motion dynamically evolve

• The size of the smallest grains seem to matter! Provide 
an intersection between classical and quantum physics. 
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Evolutionary Pathways of Asteroids
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A: Scheeres (2007); B: Jacobson & Scheeres (2011a); C: Pravec et al. (2010); D: Fang & Margot (2012); E: 
Scheeres et al. (2007); F: Jacobson et al. (2014); G: Scheeres et al. (2010); H: Jacobson & Scheeres (2011b)
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