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Pareto Dominance and Efficiency
Pareto Dominance
Consider the vector functions F : Rn → Rm, with
F(x) = [f1(x), f2(x), ..., fi (x), ..., fm(x)]T , g : Rn → Rq , with
g(x) = [g1(x), g2(x), ..., gj (x), ..., gq(x)]T and problem

min
x

F

s.t. (MOP)

g(x) ≤ 0

Given the feasible set X = {x ∈ Rn|g(x) ≤ 0} and two feasible vectors x, x̂ ∈ x, we
say that x is dominated by x̂ if fi (x̂) ≤ fi (x) for all i = 1, ...,m and there exists a
k so that fk (x̂) 6= fk (x). We use the relation x̂ ≺ x that states that x̂ dominates x.

Pareto Efficiency
A vector x∗ ∈ X will be said to be Pareto efficient, or optimal, with respect to
Problem (MOP) if there is no other vector x ∈ X dominating x∗ or:

x ⊀ x∗, ∀x ∈ X

Pareto Set
All non-dominated decision vectors in X form the Pareto set XP and the
corresponding image in criteria space is the Pareto front.

2 / 38



UTOPIAE

Definitions
and
Preliminary
Ideas

Scalarisation
Methods

Necessary
Conditions for
Optimality

Direct Finite
Element
Transcription

Solution with
Memetic
Algorithms

Examples of
Application

Final Remarks

References

Karush-Khun-Tucker Optimality Conditions
[Cha08]

Necessary condition for x∗ to be locally optimal.

Theorem (KKT)

If x∗ ∈ X is an efficient solution to problem MOP, then there
exist vectors η ∈ Rm and λ ∈ Rq such that:

m∑
i

ηi∇fi (x∗) +

q∑
j

λj∇gj(x∗) = 0 (1)

gj(x∗) = 0, j = 1, ..., q (2)

λj ≥ 0, j = 1, ..., q (3)

ηi ≥ 0, i = 1, ...,m (4)

∃ηi > 0 (5)
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Pareto Set and Front

In the unconstrained case KKT optimality conditions reduce to:

m∑
i

ηi∇fi (x∗) = 0 (6)

ηi ≥ 0, i = 1, ...,m (7)

∃ηi > 0 (8)

Condition 6 leads to an interesting result (Hillermeier2001
[Hil01]) that the Pareto set is an m − 1 dimensional manifold.
This also implies that the Pareto set has zero measure in Rn

with m ≤ n.
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Multi-Objective Optimal Control

Consider the following multi-objective optimal control problem (MOCP):

min
u

F

s.t. (MOCP)

ẋ = h(x, u, p, t)

g(x, u, p, t) ≤ 0

ψ(x0, xf , t0, tf ) ≤ 0

t ∈ [t0, tf ]

where F is a vector function of the state variables x : [t0, tf ]→ Rn, control
variables u ∈ L∞, time t and some static parameters p ∈ Rq. Functions x
belong to the Sobolev space W 1,∞, objective functions are
fi : Rn+2n × Rp × [t0, tf ] −→ R, h : Rn × Rp × Rq × [t0, tf ] −→ Rn,
algebraic constraints g : Rn × Rp × Rq × [t0, tf ] −→ Rs , and boundary
conditions R2n+2 −→ Rq. Note that problem (MOCP) is generally
non-smooth and can have many local minima.
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MOCP: How to Solve it?

• Option 1 is to attempt the solution of the problem in
vector form.

• Option 2 is to find a suitable form of scalarisation and
then use the existing machineries to solve single objective
optimal control problems.

• Option 3 is to use a mix of Option 1 and Option 2.

In the following we will introduce some suitable scalarisation
techniques and we will then show how to combine Option 1
and Option 2 into a single method with some desirable
theoretical and computational properties.
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Pascoletti-Serafini Scalarisation[Eic08]
The scalarisation of Pascoletti-Serafini is based on the idea of descent
cones K . An optimal (K-minimal) solution to problem MOP is solution to
the following constrained single objective optimisation problem:

mint t
s.t.
at − F(x) + r ∈ K
g(x) ≤ 0

(9)

or, in a more computationally friendly, form:

mins s
s.t.
wj(fj(x)− zj) ≤ s ∀j = 1, ...,m
g(x) ≤ 0

(PS)

A point is K-minimal when:

(F̄− K) ∩ F(X ) = {F̄}

From this definition one can understand that
a K-minimal point is Pareto efficient.

K

K

f1

f2 F=[f1,f2]

F(X)

r+at

F(X)

K

f1

f2

F=[f1,f2]
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Chebyshev Scalarisation[Eic08]
Chebyshev scalarisation is based on the idea of descent directions identified
by the weights w:

minx∈X maxj∈{1,...,m} wj(fj(x)− zj)
s.t.
g(x) ≤ 0

(CS)

Theorem (CS)

A point (s, x) ∈ R× X is a minimal solution
of problem (PS) with z ∈ Rm,
zj < minx∈X fj(u), j = 1, ...,m, and
w ∈ int(Rm

+), if and only if x is a solution of
problem (CS).

From theorem CS one can expect that the
solution of the PS and CS problems are
equivalent. This is an important property
when designing algorithms because, in some
cases, the solution of PS translates into the
solution of CS.

 

f
1
 

f
2
 

F(x) 

Increasing g(F) 

Decreasing g(F) 


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(Scalar) Pontryagin Maximum Principle
Given the following optimal control problem in Mayer’s form:

min f (xf , tf )

s.t

ẋ = h(x, u, t)

g(x, u, t) ≥ 0

ψ(x0, xf , t0, tf ) ≥ 0

t ∈ [t0, tf ]

If u∗ is a locally optimal solution for problem (PSOCP) then there exist a
vector η ∈ Rm, λ ∈ Rn and a vector µ ∈ Rq such that:

u∗ = argmin
u∈U

(λTh(x∗, u, t) + µTg(x∗, u, t))

λT∇xh(x∗, u∗, t) + µT∇xg(x∗, u∗, t) + λ̇ = 0

λ ≥ 0;µ ≥ 0

with transversality conditions:

∇x f + νT∇xψ = λx(tf )

ν ≥ 0
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Pascoletti-Serafini Scalarised MOCP

Consider each objective function to be fj(xf , tf ) and the scalarised
Multi-Objective Optimal Control problem:

minsf sf
s.t.
wj(fj(xf , tf )− zj)− sf ≤ 0 ∀j = 1, ...,m
ẋ = h(x, u, t)
g(x, u, t) ≥ 0
ψ(x0, xf , t0, tf ) ≥ 0
t ∈ [t0, tf ]

(PSOCP)

If s is a slack variable with final condition sf and zero time variation ṡ = 0,
then problem (PSOCP) presents itself in a form similar to Mayer’s
problem. The major difference is the mixed boundary constraint on xf , tf
and sf for every j = 1, ...,m.
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Necessary Conditions for Local Optimality

Theorem (Vasile2017)

Consider the function H = λTh(x, u, t) + µTg(x, u, t). If u∗ is a locally
optimal solution for problem (PSOCP), with associated state vector x∗,
and H is Frechet differentiable at u∗, then there exist a vector η ∈ Rm,
λ ∈ Rn and a vector µ ∈ Rq such that:

u∗ = argmin
u∈U

λTh(x∗, u, t) + µTg(x∗, u, t)

λT∇xh(x∗, u∗, t) + µT∇xg(x∗, u∗, t) + λ̇ = 0

λ̇s = 0

λ ≥ 0;µ ≥ 0

with transversality conditions:

1−
m∑
j

ηj = λs(tf )

ηT∇xF + νT∇xψ = λx(tf )

η > 0; ν ≥ 0
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Example

Consider the very simple one-dimensional controlled dynamical system with
constant control acceleration and two objectives on the terminal states:

min sf

− w1xf < sf

w2vf < sf

ẋ = v ; v̇ = −u; ṡ = 0;

λ̇s = 0; λ̇x = 0; λ̇v = −λx ;

x(t0) = 0; v(t0) = 1;

0 ≤ u ≤ 1

sf ≥ 0

with xf = x(tf ), vf = v(tf ), sf = s(tf ) and terminal conditions:

λs(tf ) = 1− η1 − η2;

λx(tf ) = −η1w1;λv (tf ) = η2w2;

12 / 38



UTOPIAE

Definitions
and
Preliminary
Ideas

Scalarisation
Methods

Necessary
Conditions for
Optimality

Direct Finite
Element
Transcription

Solution with
Memetic
Algorithms

Examples of
Application

Final Remarks

References

Example

The solution of the controlled dynamics is given by:

x =
t2

2
+ t t ∈ [t0, t1]

v = t + 1 t ∈ [t0, t1]

x = vf t + x1 t ∈ [t1, tf ]

v = v1 = vf t ∈ [t1, tf ]

x1 = x(t1); v1 = v(t1)

In this case it is easy to demonstrate that the Pareto front is given by the
following second order algebraic equation:

xf =
1 + 2vf − v 2

f

2

We want to show that all the points along the front satisfy the optimality
conditions and represent a minimum for sf .
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Example
Consider first the extreme values:

minsf

− xf ≤ sf

x =
t2

2
+ t t ∈ [t0, t1]

v = t + 1 t ∈ [t0, t1]

x = vf t + x1 t ∈ [t1, tf ]

v = v1 = vf t ∈ [t1, tf ]

x1 = x(t1); v1 = v(t1)
v

f

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-x
f

-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

By imposing the continuity conditions at t1 we get a simple algebraic
problem:

minsf

x1 = − t2
1

2
+ t1

vf = −t1 + 1

− sf = vf tf + x1

minsf

− sf = 1− t2
1

2

0 ≤ t1 ≤ 1

sf = −1; t1 = 0

sf = −1/2; t1 = 1
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Example

We now need to verify that we can find a suitable set of Lagrange
multipliers that satisfy the necessary conditions:

H = λxv − λvu + µ1(u − 1)− µ2u

∂H

∂u
= −λv + µ1 − µ2

λv = −λx(t − tf ) + λv (tf )

λv (tf ) = 0

λx(tf ) = −η1

λv < 0 ∀t ∈ [t0, tf ]

These equations confirm that there is a single switching point for the
control u∗.
The conditions on the multipliers associated to the slack variable sf are
always satisfied.
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Transcription of the MOCP

We now have a scalarised and a vector from of the MOCP. In
both cases the formulation contains a mix of algebraic and
differential equations (DAE).
The next step is to transcribe the infinite dimensional system of
DAE into a finite dimensional Nonlinear Programming Problem
that can be solved numerically.
The transcription technique proposed here is based on Finite
Elements in time on spectral basis.
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Direct Finite Element Transcription
(Vasile 2000, 2003, 2010, [VF00][VBZ03][Vas10])

t

x,u

gap{

gap{

gap{

}gap

tft0

Transcription of the optimal control problem (PSOCP) into a
finite dimensional Nonlinear Programming Problem. We start
from decomposing the time domain in a finite number of time
elements.
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Bi-discontinuos Integral Form

The differential constraints are recast in weak form and
integrated by parts, leading to:∫ tf

t0

ẇTx + wTh(x,u, t)dt −wT
f xbf + wT

0 xb0 = 0 (10)

where w are generalised weight functions and xb are the
boundary values of the states, that may be either imposed or
free.
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State and Control Transcription
Given the partition of the time domain:

D =
N⋃
j=1

Dj(tj−1, tj) (11)

one can parametrise, over each Dj , the states, controls and weight
functions as

x(t) =
N

f
j=1

Xj =
N

f
j=1

l∑
s=0

φsj(t)xsj (12)

u(t) =
N

f
j=1

Uj =
N

f
j=1

m∑
s=0

γsj(t)usj (13)

w(t) =
N

f
j=1

Wj =
N

f
j=1

l+1∑
s=0

θsj(t)wsj (14)

where
N

f
j=1

denotes the juxtaposition of the polynomials defined over each

sub-interval, φsj(t), γsj(t) and θsj(t) indicate the s-th polynomial over
element j and are chosen among the space of polynomials of degree l , m
and l + 1 respectively, while xsj , usj and wsj denote the nodal values of the
states, control and test functions.
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State and Control Transcription (2)

It is practical to define each Dj over the normalised interval
[−1, 1] through the transformation

τ = 2
t − tj−tj−1

2

tj − tj−1
(15)

This way it’s easy to express the polynomials φsj(t), γsj(t) and
θsj(t) as the Lagrange interpolation on the Gauss nodes in the
normalised interval:

φsj(t) = φ̃sj(τ) =
l∏

k=0,k 6=s

τ − τk
τs − τk

(16)

where τ∗ indicates a Gauss node, and similarly can be done for
γsj and θsj . Different Gauss nodes will lead to schemes with
slightly different characteristics.
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Transcribed Problem
(Vasile 2000, 2003, 2010, [VF00][VBZ03][Vas10])

f̃i =αi fi

(
Xb

0,X
b
f ,U

b
0,U

b
f , t0, tf

)
+

βi

N∑
j=1

l+1∑
k=1

σkLi (Xj(τk),Uj(τk), τk)
∆tj

2

(17)

and for the variational constraints leads for each element j to
the system

cj =
l+1∑
k=1

σk

[
Ẇj(τk)TXj(τk) + Wj(τk)Thj(τk)

∆tj
2

]
−WT

p+1,jX
b
j + WT

1,jX
b
j−1 = 0

(18)
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DFET Transcribed PSOCP
Vasile and Ricciardi 2016[VR16]

Once the differential equations have been transcribed into a set
of nonlinear algebraic equations, the original optimal control
problem can be casted in the Pascoletti-Serafini form and
solved with a standard NLP solver:

minsf sf
s.t.
wj(fj(Y, t)− zj)− sf ≤ 0 ∀j = 1, ...,m
c(Y, t) ≥ 0
t ∈ [t0, tf ]

(PSDFET)

where Y = [X,U,Xb
0,X

b
f , t0, tf ] is the decision vector of the

NLP problem and boundary conditions ψ(Xb
0,X

b
f , t0, tf ) ≥ 0

are included in the constraint vector c.
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Necessary Optimality Conditions of the Transcribed
Problem

Theorem
If Y ∗ is a locally optimal solution for problem (PSDFET), then there exist
a vector η ∈ Rm, λ ∈ Rn such that:

λT∇Y c(Y, t) + ηT∇Y wTF(Y, t) = 0

1−
∑

ηj = 0

λ ≥ 0; η > 0

From the definition of Pascoletti-Serafini scalarisation we know that a
K-efficient solution of problem (PSDFET) is locally optimal and satisfies
the above theorem.
To be noted that this theorem is equivalent to the KTT conditions
previously defined. In the following we will distinguish between the
optimisable parameters p = [U,Xb

0 ,X
b
f , t0, tf ]T and the state parameters

x = X.
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Solving the Transcribed MOCP

The transcribed PSOCP suggests that a standard NLP solver
can be used to find a Pareto efficient solution.
A direct application of this technique will provide a single point
on the Pareto front unless a strategy is implemented to change
the weight vector w (see for example the Normal Boundary
Intersection strategy).
Alternatively we can use a method devised to solve vector
MOO problems and generate a population of solutions each
associated to a different w.
We can then use the PSOCP to locally converge to a Pareto
efficient point from each solution in the population.
In the following we will explain how.
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Multi-Agent Collaborative Search (1)
[Vas][VZ11][ZV13][RV15]

Seed agents

(Latin Hypercube)

J1

J2

Associate social

agents to a weight

vector

J1

J2

Update archive

with non dominated

solutions

J1

J2

Update archive

with non dominated

solutions

J1

J2

Perform social 

actions (DE with

agents or archive)

J1

J2

Repeat until 

feval < max

Perform individual

actions (inertia, 

pattern search, DE)

J1

J2
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Multi-Agent Collaborative Search (2)

During the exploration phase no gradient information is used
and the agents converge, in parallel, towards the Pareto set
using a series of sampling heuristics. From Theorem 2 we know
that the solution of problem (PS) is also solution of problem
(CS). Therefore, when agents do not implement any
gradient-based local search approach, they solve the following
problem:

min
p∈X

max
j

wj(fj − zj) (19)

The assumption is that the control vector p is in the feasible
set, or, in other words, that all constraints are satisfied.
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Bi-level Formulation
Vasile and Ricciardi 2016 - [RVM16][RVTM16][VR16]

In order to maintain feasibility, problem (19) is solved with the
following bi-level formulation:

minpc∈X maxj wj(fj(x∗,p∗)− zj)
s.t.
(x∗,p∗) = argminp{(p− pc)T (p− pc)|c(x,p) ≥ 0}

fj(x∗,p∗) =

{
fj(x∗,p∗) if c(x∗,p∗) ≥ 0

L + knf otherwise

(20)

Once an agent decides to trigger a local search with a gradient
method an NLP solver is invoked and directly applied to
problem (PSDFET).
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Goddard Rocket - (Ricciardi and Vasile 2016)

Physical model and
constraints

• Constant gravity acceleration g

• Constant thrust acceleration a

• Control parameters: thrust
angle u

• At final time, altitude must be
h

• At final time, vertical velocity
must be 0

Numerical settings

• 10000 fun evals, 10 agents

• 10 solutions in the archive

• 160 variables

g

a

u

x

y

h

Objectives

• Minimise mission time

• Maximise horizontal velocity
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Goddard Rocket
Ricciardi and Vasile 2016 - [RVM16]

min
tf ,u

[f1, f2]T = [tf ,−vx(tf )]T (21)


ẋ =vx

v̇x =a cos u

ẏ =vy

v̇y =− g + a sin u


x(0) = 0; vx(0) = 0

y(0) = 0; vy (0) = 0

y(tf ) = h; vy (tf ) = 0

x[LU]
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Pareto front
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Goddard Rocket - (Ricciardi and Vasile 2016)
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Optimal Descent - (Ricciardi and Vasile 2017)
Multi-objective version of a problem proposed in [BK02].

min[−θ(tf ), qU ]T

s.t.

ḣ = v sin γ

φ̇ =
v

r
cos γ sinψ/ cos θ

θ̇ =
v

r
cos γ cosψ

v̇ = −D

m
− g sin γ

γ̇ =
L

mv
cosβ + cos γ

(v
r
− g

v

)
ψ̇ =

1

mv cos γ
L sinβ +

v

r cos θ
cos γ sinψ sin θ

q ≤ qU
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Optimal Descent - (Ricciardi and Vasile 2017)

The extreme values correspond to the single objective solutions
in [BK02].
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Optimal Descent - (Ricciardi and Vasile 2017)
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Final Remarks I

• A multi-objective optimal control problem can be
reformulated with an appropriate scalarisation approach
into a constrained single objective problem.

• Necessary conditions for optimality were derived for the
scalarised MOCP.

• The scalarisation technique called Pascoletti-Serafini is
equivalent to a weighted Chebyshev scalerisation.

• The transcribed PSOCP can be solved with a memetic
algorithm providing globally efficient solutions.
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