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OPEN POSITIONS

 University of Durham (Department of Mathematics and
Statistics): Marie Curie fellowship position on the Imprecise
Probabilities applied to large scale dynamic decision
processes. Closing date: end of September.

 University of Strathclyde (Department of Mechanical &
Aerospace Engineering): PhD position in Artificial Intelligence
for Space Mission Design. Closing date: end of September.

 University of Strathclyde: Global Talent and Chancellor’s
fellowship schemes.

 Faculty positions at different levels from Lecturer to Professor. Closing
date: 24th of September.
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What is UQ?
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WHAT IS UQ? – DIRECT PROBLEM
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WHAT IS UQ? – INVERSE PROBLEM
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WHAT IS UQ? – MODEL UNCERTAINTY

System Model
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WHAT IS UQ IN ORBITAL MECHANICS?  

 In Orbital Mechanics we are concerned with the following 
problem:

 Where p,q and n are uncertain parameter vectors, h and g are 
uncertain functions and s0 is an uncertain initial condition 
vector.
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WHAT IS UQ? 

 Direct UQ problem
 Given a quantification of the uncertainty in q,p, n, h and g

find:
 the spatial distribution of s at a future time

 the probability associated to a quantity of interest or an 
event dependent on s

 Inverse UQ problem
 Given the spatial distribution of s and the probability 

associated to an event dependent on s find:
 q,p, n, h and g
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UQ – BASIC INGREDIENTS

 The overall UQ process is made of three fundamental
elements:

 An uncertainty model

 A propagation method

 An inference process
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Types of Uncertainty
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EPISTEMIC VS. ALEATORY: WHAT IS THE

DIFFERENCE?

 Aleatory uncertainties are non-reducible uncertainties that
depend on the very nature of the phenomenon under
investigation. They can generally be captured by well defined
probability distributions as one can apply a frequentist
approach. E.g. measurement errors.

 Epistemic uncertainties are reducible uncertainties and are
due to a lack of knowledge. Generally they cannot be
quantified with a well defined probability distribution and a
more subjectivist approach is required. Two classes:

 a lack of knowledge on the distribution of the stochastic variables
or…

 a lack of knowledge of the model used to represent the phenomenon
under investigation.
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EPISTEMIC VS. ALEATORY: DOES IT MATTER?
 Suppose that one has no knowledge of the distribution of

variable X.

 One might be tempted to use a uniform distribution.

 Let’s compute the probability of X or the expectation of the
indicator of X:

 In 1D and for p(X) uniform over a finite set W, one would get:

( ) ( ( )) ( ) ( )rP X E I X I X p X dXn
W

   

1

X
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EPISTEMIC VS. ALEATORY: DOES IT MATTER?

• Suppose now that p(X) is a family of two parameter beta distributions.

• Consider the upper and lower expectation on the same finite set:

• The gap between upper and lower expectations is our degree of ignorance
on the actual probability of X.

• The uniform distribution actually sits in the middle giving a very precise
quantification.

1

X
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EPISTEMIC VS. ALEATORY: DOES IT MATTER?

• Suppose now we have no information on the possible family
of probability distributions.

• Then all we can say is if X belongs to a subset of W or not:
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GENERAL CLASSIFICATION

• Structural (or model) uncertainty is a form of epistemic
uncertainty on our ability to correctly model natural phenomena,
systems or processes. If we accept that the only exact model of
Nature is Nature itself, we also need to accept that every
mathematical model is incomplete. One can then use an incomplete
(and often much simpler and tractable) model and account for the
missing components through some model uncertainty.

• Experimental uncertainty is aleatory. It is probably the easiest to
understand and model, if enough data are available on the exact
repeatability of measurements.

• Geometric uncertainty is a form of aleatory uncertainty on the
exact repeatability of the manufacturing of parts and systems.

• Parameter uncertainty can be either aleatory or epistemic and
refers to the variability of model parameters and boundary
conditions.
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GENERAL CLASSIFICATION

• Numerical (or algorithmic) uncertainty, also known as
numerical errors, refers to different types of uncertainty
related to each particular numerical scheme, and to the
machine precision (including clock drifts).

• Human uncertainty is difficult to capture as it has both
aleatory and epistemic elements and is dependent on our
conscious and unconscious decisions and reactions. It
includes the possible variability of goals and requirements
due to human decisions.
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 What is the expected value if u is expressed as an opinion
without a distribution function (EPISTEMIC uncertainty)?

Epistemic Uncertainty and Imprecision

20

System Model
d,u ?

u

pdf
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 Sets (e.g. focal elements) instead of crisp numbers: 

 No a priori distribution function:

 Propositions in the form: 

 Hence a multivalued mapping:

 Aggregation rules for conflicting and incomplete information 

Imprecision and Multivalued Mapping

21
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 Given the statement (in set form):

Simple Example with Evidence Quantification

22

f
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f>n

f<n

U
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m(u1)=0.2 m(u2)=0.5 m(u3)=0.3

Sup points
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 The Belief Bel in the proposition f<n represents the lower bound on
the expectation that f<n is true given the current information.

 The Plausibility Pl in the proposition f<n represents the upper
bound on the expectation that f<n is true given the current
information.

Simple Example with Evidence Quantification

23

Bel(f<n) = m(u2) = 0.5

Pl(f<n) = m(u1) + m(u2) + m(u3) = 1
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 Both epistemic and aleatory uncertainty are treated in the same way and 
the output is the cumulative belief and plausibility given by all the pieces 
of evidence that support the statement:

f < n

Evidence-Based Quantification

24
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• 25

Certainty

Area
Impossible

Area

Exact Quantification

of System Margin

Evidence-Based Quantification

25

Upper Expectation

Lower Expectation
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Some UQ Methods 
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INTRUSIVE VS. NON-INTRUSIVE – WHAT DOES IT MEAN?

 Common terminology in the UQ community that
fundamentally indicates two classes of algorithms/methods.

 Intrusive methods – the system/process model is not a black
box and can be accessed to, for example, modify the algebra
or compute derivatives, etc.

 Non-intrusive methods – the system/process model is a black
box that cannot be accessed and can be interrogate only
through sampling (oracle model).
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NON-EXHAUSTIVE LIST TO NON-INTRUSIVE METHODS

• Monte Carlo Sampling - The most common and widely known.

• Unscented Transformation – A non-intrusive method in disguise related to
orthogonal sampling methods.

• Polynomial Chaos Expansions and Stochastic Collocation– Popular alternatives
to MCS, based on the Karhunen–Loève theorem.

• Gaussian Mixture Representation – Related to Kernel based approaches it
represents complex distributions with a sum of basic Kernels

• High Dimensional Model Representation – Decomposition approach to reduce
the dimensionality of the problem

• Chebyshev Interpolation – Example of interpolation approach
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NON-EXHAUSTIVE LIST OF INTRUSIVE METHODS

• Taylor expansion of the quantity of interest – simple expansion of the quantity of
interest through automatic differentiation or analytical derivatives.

• State Transition Matrix – first order method related to Taylor expansions of the
quantity of interest to the first order.

• State Transition Tensor– higher order method related to Taylor expansions of the
quantity of interest to the higher orders.

• Intrusive PCEs – embedding of the Polynomial Chaos Expansion in the system model
and propagation through operations among polynomials.

• Taylor Algebra – similar to intrusive PCEs with real algebra replaced by operations
among Taylor polynomials.

• Generalised Algebra - similar to intrusive PCEs with real algebra replaced by
operations among general polynomials.
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LINEAR VS. NON-LINEAR – WHAT DOES IT MEAN?

 We distinguish between linear approximation of the
equations of motion and linear approximation of the
distribution

 Linear approximation of the equations of motion – the
equations of motion are expanded in Taylor series and only
the first order terms are retained.

 Linear approximation of the distribution – only mean and
covariance are of interest.

( , )x J x t x 
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LINEAR VS. NON-LINEAR – WHAT DOES IT MEAN?

 It was demonstrated, in the second half of the ’90 and more
recently, that a change of formulation from Cartesian to
orbital elements can recover the quasi-linearity of the
motion.

 Junkins, J. L., Akella, M. R., and Alfriend, K. T. “Non-Gaussian Error Propagation in Orbital Mechanics.” Journal of

Astronautical Sciences, Vol. 44, No. 4, pp. 541–563, OctoberDecember 1996

 J. M. Aristoff, J. T. Horwood, N. Singh, and A. B. Poore, “Nonlinear uncertainty propagation in orbital elements and
transformation to Cartesian space without loss of realism,” in Proceedings of the 2014 AAS/AIAA Astrodynamics Specialist
Conference, San Diego, CA, August 2014 (Paper AIAA-2014-4167)

 These methods require a reparameterisation of the
equations of motion, typically in the form of orbital elements,
and then uses a linear distribution model.
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PROBABILITY DISTRIBUTION OR SPATIAL DISTRIBUTION?

 There is a difference between the spatial distribution of the
quantity of interest and the distribution of the probability
mass.

 For example, the spatial distribution of particles in the
configuration space can be derived deterministically by
propagation of the initial conditions but does not say what
the probability is that a given particle is at a given location.

Impact probability on the 

Moon for LPO disposal 

(Vetrisano and Vasile 

2013)
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METHODS BASED ON GLOBAL QUANTITIES

 One could borrow from statistical mechanics using for example
Boltzmann equation.

 Nazarenko in 1992 proposed to study the evolution of the density
of particles assuming a continuous distribution:

 In later work, in 1997, he introduced the dependency on the
orbital elements and associated probability distribution functions.

 The probability of an event is simply the integral over a given
control volume.

 In recent times other authors followed a similar approach, see
Colombo et al. 2015 for example.
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MONTE CARLO SIMULATIONS (MC)
(NOT AN UNCERTAINTY PROPAGATION METHOD)

 Build a significant statistics by collecting a sufficient number of outcomes of the 
simulations. Commonly used to solve multidimensional integrals.

 By the central limit theorem, the expectation E of a random variable X belongs
with probability e to:

 with

 This does not say a) how the distribution converges and b) if the distribution is
unimodal

 The mean value might not ‘exist’!
 The hypothesis on the generation of the samples is very important!!!!
 Yields the spatial distribution and the probability distribution.
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UNSCENTED TRANSFORMATION

 Data fusion and state estimation.
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UNSCENTED TRANSFORMATION AND UQ

 Builds the covariance matrix of state and measurements 
assuming a known covariance of process Q and measurement  
R noise (linear Bayesian model hypothesis) .
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UNSCENTED TRANSFORMATION AND UQ

 Cross correlation of states and measurements and builds the 
posterior estimation based on the new measurement  y.

 State estimation:

 Posterior distribution (UNCERTAINTY):

 Max estimated uncertainty on the covariance

( 
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 Response function representation on the quantity of interest:

 Basis functions chosen to represent the input distribution:

 The coefficients can be recovered with a least square approach or exploiting 
the orthogonality of the basis functions:

 Analytical expressions of statistical moments:
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 Different ways to reduce the number of samples required to calculate the 
coefficients.

 Smolyak sparse grids to approximate integrals:

 Compressive Sampling is another option to reduce the number of samples 
(Jons et all 2015).

POLYNOMIAL CHAOS EXPANSION

1

( ) ( ) ( ) ( )
ngrid

j i j i i

i

R d R w    
W



   ξ



utopiae_network http://utopiae.eu

 Trajectory from L2 of the Earth-Sun system to the Moon
in a full ephemerides model

 Monte Carlo Simulation with 1e6 samples vs. PCE degree
6 with 26,000 samples.

EXAMPLE: DISPOSAL TRAJECTORY FROM L2 TO THE MOON
Vetrisano and Vasile, ASR 2016 Analysis of Spacecraft Disposal Solutions from LPO to the Moon with High Order Polynomial Expansions
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GAUSSIAN MIXTURE

 Introduced by Garmier et al. and by Terejanu et al. in 2008 for
uncertainty propagation was then developed further by Giza
et al. and De Mars et al. with specific application to space
debris.

 The idea is to represent the distribution of the quantity of
interest with a weighted sum of Gaussians:

 The covariance and mean value are recovered from the
updating step of an Unscented Kalman Filter.
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FROM GAUSSIAN MIXTURE TO KRIGING MODELS

 One can use a weighted sum of Kernels to build a surrogate of
the PDF of the quantity of interest using a Kriging type of
approach.

 The hyper-parameters of the Kriging model are then derived
from the solution of a maximum likelihood problem:
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 HDMR allows for a direct cheap reconstruction of the quantity of interest
and for analyses similar to an ANOVA (Analysis Of Variance) decomposition.

 HDMR decomposes the function response, f(x), in a sum of the contributions
given by each variable and each one of their interactions through the model.

 If one considers the contribution of each variable as a variation with respect
to an anchored value fc (anchored-HDMR) then the decomposition becomes:

 Important point:

As for PCE the decomposition allows for the identification of the
interdependency among variables and the order of the dependency of the
quantity of interest on the uncertain parameters

HDMR
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 Embed the Polynomial Chaos Expansion in the differential equations: 

 After embedding the expansion in the differential equations one gets:

 We multiply times         and exploit the orthogonality of the basis with the 
probability distribution. The result is n differential equations to be 
integrated:

INTRUSIVE POLYNOMIAL CHAOS EXPANSIONS

Yields the spatial distribution and the probability distribution
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STATE TRANSITION TENSOR
• The local dynamics described by applying a Taylor series expansion

• Φ solution flow flow from t0 to t.

• State transition tensors STT are the higher-order partials of the solution

• Set of non-linear dynamics equations for STT (order 3)

 Analytical expressions for mean m and covariance matrix P for Gaussian distribution
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POLYNOMIAL ALGEBRA

 1982 (Epstein) Ultra Arithmetic

 1986 (Berz) Taylor Differential Algebra

 1997 (Berz) Taylor Models

 2003 (Berz) Taylor Models and Other Validated Functional Inclusion 
Methods

 2004 (Debusschere et al.) Intrusive PCE and Taylor expansions

 2005-2015 (Armellin, DiLizia) application of Taylor algebra to orbital 
mechanics

 2010 (Joldes) Formal comparison between Taylor, Chebyshev, 
Newton Models

 2014 (Jai Rajyaguru et al.) Chebyshev models for ODEs

 2015 (Riccardi et al.) Chebyshev polynomial expansion for orbital 
mechanics
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POLYNOMIAL ALGEBRA
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POLYNOMIAL ALGEBRA
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GENERALISED POLYNOMIAL ALGEBRA
(RICCARDI, TARDIOLI, VASILE 2015)

Consider the wider class of problems, typical in Viability 
Theory, where a level set  is propagated through a model 
function F (equations of motion).

For any n dimensional manifold that can be represented with a 
polynomial expansion, one can obtain its image through F

 F
F()

Yields the spatial distribution
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COMPUTATIONAL COMPLEXITY

 The computational complexity of an algebra compared to a 
non-intrusive method can be theoretically derived regardless 
of the implementation (Ortega, Vasile, Riccardi, Tardioli 2016).
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EXAMPLE: RE-ENTRY OF GOCE AND HAMR FRAGMENTS
(ORTEGA, VASILE, RICCARDI, SERRA 2016)

 De-orbiting of GOCE

 Single integration with the algebra vs. full MC simulation

• Evolution of a cloud of 

HAMR fragments
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Model Uncertainty
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BACKGROUND AND MOTIVATION

 There is an underlying process u that is dependant
on the state s and on some unknown parameters b:

 The uncertainty component u can be expressed as a
polynomial expansion of the states and of b:

Dynamics with Unknown  Components
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UNCERTAINTY FUNCTION AND DISTANCE

 Sparse data points are available

 The problem needs to be reformulated assuming c are
stochastic and s belongs to a confidence interval:

Matching Predictions
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SOME EXAMPLES

 Let’s assume that the true dynamics are:

 But the expected dynamics does not contain drag terms

 The observations however do not match the predicted state

Orbital Dynamics with Unknown Drag Component
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SOME EXAMPLES

 If the orbit has low eccentricity, a Taylor expansion of the drag 
terms up to the first order is telling us that the solution should 
be in the form:

 We can then expand the uncertainty function as:

Orbital Dynamics with Unknown Drag Component
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SOME EXAMPLES

 Assume 2 sets of measurements at t=[T, T/2], for a total of 8 constraints
and 14 unknowns

 We use the distance metric

 The initial conditions are also uncertain with uniform distribution within a
confidence interval

Orbital Dynamics with Unknown Drag Component
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 This estimation allows us to extrapolate the prediction over a time span
that is 2 times the one over which the measurements are available

Orbital Dynamics with Unknown Drag Component
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SOME EXAMPLES

 This estimation allows us to extrapolate the prediction over a time span
that is 2 times the one over which the measurements are available

Orbital Dynamics with Unknown Drag Component
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