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Static Equilibrium Tide 
(Jeans prolate homogeneous spheroid)

But .... If 
too close

c
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M(r,,)

 P(r,,)



Actually
a>b>c



Potential in the point P

(so-called fluid Love number)

Remark – It is independent on the 
rotational state of the body



Tidal decomposition of U (Fourier)



Semi-diurnal harmonics 
(2φ* – 2l – 2w)  

when W ≠ n

Semi-diurnal frequency 
n = (2W – 2n)  



Main frequencies

N.B. (a)    freq. #1 = - freq. #2 
(b)   Radial = Zonal (i.e. longitude independent)X

#      frequency



In addition, it is conservative

Tidal Evolution      (action on M) 



Darwin (1880) 

=

ANELASTIC TIDE

Darwin dynamic equilibrium tide
(introduces ad hoc tidal lags)



Vertex of the

anelastic tide

Elastic and anelastic tides

Vertex of the

elastic tide



Tidal forces acting on a mass M* @ P

Tidal forces acting on M 

Drop  all  *  AFTER
the gradient is taken



lags

The coefficients are formed 
by several different lags



Torque and Angular Momentum

The conservation of the angular momentum 
allows us to obtain an equation for the variation 
of the rotation speed.



We can continue without imposing a law for 
the lags

(as done by Kaula, FM etal, etc)

Averaged result:

The coefficients are formed 
by several different lags

...
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Usual choices for e:
(a.k.a. Rheologies)

1. Lags proportional to frequencies (Darwin) 
• a.k.a. CTL (constant time lag) theories

• used in many theories: Mignard, Hut, Eggleton, 
Mardling & Lin, &c.

No.   frequency



2. All semi-diurnal harmonics have equal lags.
• implicit in some theories. Ex: Earth-Moon
• a.k.a. CPL (constant phase lag) theories

4. MacDonald
• Unphysical geometric lag. 

Does not define a rheology

3. Inverse power law (Efroimsky & Lainey) 

• stiff bodies
εk ~  cte . {frequencyk}
 ~ 0.4

 



Low-order Darwin theory is friendly.

Easily adapted to different models
(ex: core/mantle bodies, 

effects due to response attenuation etc.)

High-order Darwin theory is feasible.

However, given our ignorance of the actual
rheology of celestial bodies, the accuracy of
expansions to higher-orders may be illusory.



Stationary
Solution

Synchronization (Darwin’s CTL rheology)

•ε0 ~  0 (<< ε2)   
•ε2 = -ε1     (>0)

• ≠ 0



Synchronous Solutions
CANNOT EXIST WITHOUT 

AN EXTRA COUNTERACTING

TORQUE 

Two possibilities

(1) Supersynchronous stationary

rotation

(2) Spin-Orbit resonance forced by

counteracting torque

(Ex: Axial Asymmetry)

FREQUENT SOURCE OF ERROR!



VARIATION OF THE ELEMENTS
(Lagrange variational equations)

(or the equivalent Gauss equations)

*
l* = l

N.B. c

a

m

b
M(r,,)

 P(r,,)





Newton’s Third Law

g=−fm

Relative equation of motion  (refered to m) 
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+ ...

+ ...

Hence

and

The continuation depends on the chosen rheology



Peale’s formulas

Example

with Darwin lags 51 54; 19  22

fast rotating A + synchronous B
equal lags (independent of frequencies)

A           B



tides in close-in exoplanets
(generally   W<<n)

annual            (<0)     (2W-n) 
semi-annual    (<0)     (2W-2n)
tierce-annual   (<0)     (2W-3n)
annual (radial) (>0)        (n)

e2
e0
e1
e5



When WA << n
(small planet around slow rotating star –
only the tides on the planet are considered)

For exoplanets it is recommended to use the
general formulas with explicit WA.
See S.F.-M. et al. 2008.

fRAgIL



Application

Hot super-Earth
mass = 5 m_Earth 
semi-axis = 0.04 AU 
Period ~ 3 days

t~30Myr



MIGNARD’s theory

The Moon and the Planets, 30, 301 (1979)

Reproduces Darwin (1880) 
• constant time lag
• checked to 3rd. order in e,i !!!
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M(r,,)

 P(r,,)



X (r,,)

X (r*,*,*)

-



̶̶



Or, after identification of r and r*:

TWO hot exoplanets
with masses 5 m_Earth & 1 m_Jupiter
semi-axes 0.04 and 0.1 AU resp.

Application:



x100 

x100

Price to pay:
SCALING !

(to be handled 
with care)

Evolution of the
Semi-major axes



Evolution of the
Eccentricities

x 100

x 100

(Mardling´s
1st. stationary
eccentricity



Evolution of the
periods

x 100

zoom
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Recent theories (of the anelastic tide):

Efroimsky, Lainey, Williams (2007-2017)

Remus et al. (2012)

Ogilvie & Lin (2004)

S.Ferraz-Mello (2012-2017)

Correa, Boué et al (2014-16)

All• of them depart in a larger or lesser extent from

Darwin’s theory.



New theory

Aim:

• Substitution of plugged 

ad hoc lags by one physical law

Anelastic
Tide



.... Actual Surface  of the body
r.....  Surface of instantaneous equilibrium (VIRTUAL)

ANSATZ 

Newtonian 
CREEP



Ref: Happel and Brener, Low Reynolds number

Hydrodynamics, Kluwer, 1973 + Darwin, 1879

(see Folonier & FM, CMDA, in press, 2017)



Relaxation factor

(critical

frequency)

Approx. Solution of the 

Navier-Stokes  equation





O.D.E. for z(t)

Simplifications (here!):  

homogeneous bodies.

equator = orbit plane; q* = p/2



solution

 Superposition of tidal bulges 

Prolateness: 

Cayley 

functions

phase of the forced terms



c

a

m

b
M(r,,)

 P(r,,)



X (r*,*,*)

X (r,,)

Finally,

where



Torque

Where n is the semi-diurnal frequency =

and

FIRST-order non-linear o.d.e. 



Map      y(x)      y(x+2p/g)-y(x)

g >> n      (ex: stars, hot Jupiters)

The intersections

with the axis y’=0 

are attractors

N.B.  

These attractors are 

supersynchronous

W = n + 6ne2



g~n

Ref: SFM, DDA 2014 & CMDA (2015)

Correia et al. A&A 2013



g= n/10  (ex: distant satellites, Mercury) 

New attractors at  n=n,2n,3n,.... 



g<<n      (ex: Moon, Titan)

attractors at n = -n, 0, n, 2n, 3n,.... 

W = n/2, n, 3n/2, 2n, 5n/2, etc.



SYNCHRONIZATION

Simulations

near n=0

(normalized variables)

Parameter



Approximated solution

n/n = B0 + B1 cos (gx + phase)

Limits: Darwin    g >> n   W = n(1+6e2+..)

Efroimsky-Lainey g << n   W = n



STARS

(high g)

Examples: 

CoRoT 15b    BD (m=63.3 Jup)   around a F7V star
Orbital period: 3.06 d
Star rotation: 2.9 – 3.1 d

KELT 1b        BD (=27.4 Jup)   around a F5 star
Orbital period: 1.217  d
Star rotation: 1.348 ± 0.4 sin I



But, solar-type stars are affected by wind braking 

where

and 0 < fP < 1. THEN

curves: n/g = 10-6 to 10-3            [brown: f=0;   blue: f=1]

subsynchronous

atractors



g=25.5s-1

e=0.228

Observed 

value



CoRoT 2: A young star

mpl=3.3 jup
g=20-100 s-1

Result:
Age < 200 Myr

SFM et al. Astrophys. J. (2015)



CoRoT 33: A paradigm

mcomp=62 jup
g = 55 s-1

SFM et al. Astrophys. J. (2015)



VARIATION OF THE ELEMENTS
(Lagrange variational equations)

(or the equivalent Gauss equations)



𝑑𝑎

𝑑𝑡
=
2𝑛𝑅2

5𝑎

AVERAGING < 𝑓 > =
1

2𝜋
0׬
2𝜋

𝑓. dl

<
𝑑𝑎

𝑑𝑡
>=

𝑛𝑅2

5𝑎

BUT...
is not a constant

problematic when k=0 and n~0



Simulations near n=0

(normalized variables)

y = n/g

x = l /g
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In the saddle: e’/e=-2x10-8 yr-1

Damped to 10% in 108 yr

Titan’s da/dt and de/dt



DISSIPATION

Dissipation = “Loss” of orbital energy + 
“Loss” of rotational energy

Neglect small variations associated with the
moment of inertia and the shape of the body



Averaging (when n≠0)
(leading terms)

sin 2σ0 =
2νγ

ν2+ γ2

Hence, always,

i.e. mechanical energy is lost

< 0



Comparison

In Darwin’s theory:

Comparing both results:

= −
2𝑘

𝑑
𝐺𝑀𝑚(Ω−𝑛)𝑅2ερ

5𝑎3
ε0

Q ≅
1

|ε0|
=
2𝑘𝑑 𝜈2+ 𝛾2

3|ν|γ



Q ≅
1

|ε0|
=

2𝑘
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ν
|

n=2(W-n)

= dissipation law
of a Maxwell body

1
/Q
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N.B. approximation not valid
when n tends to 0
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Ex: Titan’s
Dissipation law

Compare to
previous figure

Averaging (when n~0)

Darwin 
Regime
 freq

Efroimsky-

Layney

regime

1 freq



putting ELASTIC and ANELASTIC tides together

Ex: EARTH (lunar tide)   a-b=134 cm
actual value=  26 cm   (20% only)



putting ELASTIC and ANELASTIC tides together

Circular + equatorial approximation.
 = angle between one point at the equator and M.

l = height of the elastic tide bulge w.r.t. max. height
of the Jeans ellipsoid



The shape is defined by the

composition of the creep tide

with a purely elastic tide (without lag)



Geodetic lag (case e=0)





Setting of the a theory including elastic and anelastic tide.

Anelastic tide (creep eqn.) 

Elastic tide:

Introduce new variable:  

The new equation is: 

Which is the of a Maxwell model



It may be compred to the Maxwell model introduced by

Correia, Boué et al. (A&A 2014) whose basic equation is

Which is virtually equivalent to the equation resulting from

the creep theory:

but not identical. The two theories give the same results. 



THE END
Darwin theory

S.F.-M., A.Rodriguez & H.Hussmann
(astro-ph 0712-1156)
Cel.Mech.Dyn.Ast.101,171,2008

Creep tide theory
S.F.-M. 
(astro-ph 1204.3957 and 1505.05384)
Cel.Mech.Dyn.Ast.116,109,2013; 122,359,2015  
S.F.-M., H.A.Folonier, E. Andrade-Ines
(astro-ph 1707-09229)














