Integration of $1 / \delta_{h}$

We describe the explicitly computation of the integral of $1 / \delta_{h}$ over

$$
\mathbb{T}^{2}=\left\{\left(\ell^{\prime}, \ell\right):-\pi \leq \ell^{\prime} \leq \pi,-\pi \leq \ell \leq \pi\right\},
$$

assuming that $\left(\ell_{h}^{\prime}, \ell_{h}\right)$ is an internal point of this domain. First, we move the point $\left(\ell_{h}^{\prime}, \ell_{h}\right)$, corresponding to the local minimum value d_{h}, into the origin of the reference system by the variable change

$$
\begin{equation*}
\sigma_{h}: \mathbb{T}^{2} \ni\left(\ell^{\prime}, \ell\right) \mapsto\left(\ell^{\prime}-\ell_{h}^{\prime}, \ell-\ell_{h}\right)=: \kappa=\left(k^{\prime}, k\right) \in \overline{\mathbb{T}}^{2} \tag{1}
\end{equation*}
$$

where we set $\overline{\mathbb{T}}^{2}=\sigma_{h}\left(\mathbb{T}^{2}\right)$. The matrix

$$
\mathcal{T}=\left[\begin{array}{cc}
\frac{1}{\rho_{1}} & -\frac{\rho_{2}}{\rho_{1} \rho_{4}} \tag{2}\\
0 & \frac{1}{\rho_{4}}
\end{array}\right], \quad \text { with } \quad \rho_{1}=\left|\tau^{\prime}\right|, \quad \rho_{2}=-\frac{\left\langle\tau^{\prime}, \tau\right\rangle}{\left|\tau^{\prime}\right|}, \quad \rho_{4}=\frac{\sqrt{\operatorname{det}\left(\mathcal{A}_{\mathrm{h}}\right)}}{\left|\tau^{\prime}\right|}
$$

is such that

$$
\begin{equation*}
\mathcal{T}^{t} \mathcal{A}_{h} \mathcal{T}=\mathcal{I}_{2} \tag{3}
\end{equation*}
$$

Then, the following coordinate change

$$
\mathfrak{R}: \kappa \mapsto \psi=\mathcal{R} \kappa, \quad \text { with } \quad \mathcal{R}=\mathcal{T}^{-1}=\left[\begin{array}{cc}
\rho_{1} & \rho_{2} \tag{4}\\
0 & \rho_{4}
\end{array}\right]
$$

brings $\delta_{h}^{2} \circ \sigma_{h}^{-1}$ into the form

$$
\begin{equation*}
\delta_{h}^{2} \circ \sigma_{h}^{-1} \circ \mathfrak{R}^{-1}(\psi)=y^{\prime 2}+y^{2}+d_{h}^{2}, \quad \psi=\left(y^{\prime}, y\right) \tag{5}
\end{equation*}
$$

and transforms the domain $\overline{\mathbb{T}}^{2}$ into a parallelogram with two sides parallel to the y axis (see Figure 1).
Using the variable changes (1), (4) and the polar coordinates map \mathfrak{P}, with inverse

$$
\mathfrak{P}^{-1}:(r, \theta) \mapsto\left(y_{1}, y_{2}\right)=(r \cos \theta, r \sin \theta)
$$

Figure 1: Description of the transformations of the integration domain \mathbb{T}^{2} with the two coordinate changes (1), (4).

Figure 2: Decomposition of the domain of integration $\mathfrak{R}\left[\overline{\mathbb{T}}^{2}\right]$ to compute the integral of $1 / \delta_{h}$ over \mathbb{T}^{2} using polar coordinate.
we obtain

$$
\begin{equation*}
\int_{\mathbb{T}^{2}} \frac{1}{\delta_{h}} d \ell^{\prime} d \ell=\frac{1}{\sqrt{\operatorname{det}\left(\mathcal{A}_{h}\right)}} \int_{\mathfrak{R}\left[\overline{\mathbb{T}}^{2}\right]} \frac{1}{\sqrt{y^{\prime 2}+y^{2}+d_{h}^{2}}} d y^{\prime} d y=\frac{1}{\sqrt{\operatorname{det}\left(\mathcal{A}_{h}\right)}} \int_{\mathcal{D}_{h}} \frac{r}{\sqrt{r^{2}+d_{h}^{2}}} d r d \theta \tag{6}
\end{equation*}
$$

where $\mathfrak{R}^{-1}\left[\mathfrak{P}^{-1}\left(\mathcal{D}_{h}\right)\right]=\overline{\mathbb{T}}^{2}$. Then, we decompose the domain \mathcal{D} into four parts

$$
\mathfrak{T}=\bigcup_{j=1}^{4}\left\{(r, \theta) \in \mathbb{R}^{2}: \theta_{j} \leq \theta \leq \theta_{j+1} \text { and } 0 \leq r \leq r_{j}(\theta)\right\}
$$

where $r_{j}(\theta)$, with $j=1 \ldots 4$, represent the lines r_{j} delimiting $\mathfrak{R}\left[\overline{\mathbb{T}}^{2}\right]$ (see Figure 2) and in polar coordinates are given by

$$
\begin{array}{ll}
r_{1}(\theta)=\frac{\rho_{1} \rho_{4}\left(\pi-\ell_{h}^{\prime}\right)}{\rho_{4} \cos \theta-\rho_{2} \sin \theta}, & r_{2}(\theta)=\frac{\rho_{4}\left(\pi-\ell_{h}\right)}{\sin \theta} \\
r_{3}(\theta)=\frac{-\rho_{1} \rho_{4}\left(\pi+\ell_{h}^{\prime}\right)}{\rho_{4} \cos \theta-\rho_{2} \sin \theta}, & r_{4}(\theta)=\frac{-\rho_{4}\left(\pi+\ell_{h}\right)}{\sin \theta}
\end{array}
$$

While $\theta_{1}=\theta_{5}-2 \pi$ and θ_{j+1} are the counter-clockwise angles between the y^{\prime}-axis and the vertexes v_{l} seen from the origin of the axes (see Figure 2):

$$
0<\theta_{2}<\theta_{3}<\pi<\theta_{4}<\theta_{5}<2 \pi
$$

Moreover, the following relations hold for these angles:

$$
\begin{aligned}
& \tan \theta_{2}=\frac{\rho_{4}\left(\pi-\ell_{h}\right)}{\rho_{1}\left(\pi-\ell_{h}^{\prime}\right)+\rho_{2}\left(\pi-\ell_{h}\right)}, \quad \tan \theta_{3}=\frac{-\rho_{4}\left(\pi-\ell_{h}\right)}{\rho_{1}\left(\pi+\ell_{h}^{\prime}\right)-\rho_{2}\left(\pi-\ell_{h}\right)}, \\
& \tan \theta_{4}=\frac{\rho_{4}\left(\pi+\ell_{h}\right)}{\rho_{1}\left(\pi+\ell_{h}^{\prime}\right)+\rho_{2}\left(\pi+\ell_{h}\right)}, \quad \tan \theta_{5}=\frac{-\rho_{4}\left(\pi+\ell_{h}\right)}{\rho_{1}\left(\pi-\ell_{h}^{\prime}\right)-\rho_{2}\left(\pi+\ell_{h}\right)} .
\end{aligned}
$$

Integrating in the r variable we obtain

$$
\begin{equation*}
\int_{\mathbb{T}^{2}} \frac{1}{\delta_{h}} d \ell^{\prime} d \ell=\frac{1}{\sqrt{\operatorname{det}\left(\mathcal{A}_{h}\right)}} \cdot\left\{\sum_{j=1}^{4} \int_{\theta_{j}}^{\theta_{j+1}} \sqrt{d_{h}^{2}+r_{j}^{2}(\theta)} d \theta-2 \pi d_{h}\right\} \tag{7}
\end{equation*}
$$

Note that the integrals in the right hand side of (7) are differentiable functions of the orbital elements.

