
Relativistic reference frames for radio science

experiments with a Mercury orbiter

1 Introduction

In this document we shall summarize the main issues relevant for very high
accuracy orbit determination in the case of radio science experiments with
a Mercury orbiter, such as for the BepiColombo mission.

BepiColombo is an European Space Agency mission to be launched in
2014, with the goal of an in-depth exploration of the planet Mercury; it has
been identified as one of the most challenging long-term planetary projects.
Only two NASA missions had Mercury as target in the past, the Mariner
10, which flew by three times in 1974-5 and Messenger, which carried out
its flybys on January and October 2008, September 2009 before it starts its
year-long orbiter phase in March 2011.

The BepiColombo mission is composed by two spacecraft to be put in
orbit around Mercury. The Radio Science Experiment is one of the on
board experiments, which would coordinate a gravimetry, a rotation and a
relativity experiment, using a very accurate range and range rate tracking.
These measurements will be performed by a full 5-way link to the Mercury
orbiter; by exploiting the frequency dependence of the refraction index, the
differences between the Doppler measurements (done in Ka and X band)
and the delay give information on the plasma content along the radio wave
path [Iess and Boscagli 2001]. In this way most of the measurements errors
introduced can be reduced by about two orders of magnitude with respect
to the past technologies. The accuracies that can be achieved are 10 cm in
range and 3 × 10−4 cm/s in range rate.

How do we compute these observables? For example, a first approxima-
tion of the range could be given by the formula

r = |r| = |(xsat + xM) − (xEM + xE + xant)| , (1)

which models a very simple geometrical situation (Figure 1). The vector xsat

is the mercurycentric position of the orbiter, the vector xM is the position of
the center of mass of Mercury (M) in a reference system with origin at the
Solar System Barycenter (SSB), the vector xEM is the position of the Earth-
Moon center of mass in the same reference system, xE is the vector from
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the Earth-Moon Barycenter (EMB) to the center of mass of the Earth (E),
the vector xant is the position of the reference point of the ground antenna
with respect to the center of mass of the Earth.
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Figure 1: Geometric sketch of the vectors involved in the computation of the range.
SSB is the Solar System Barycenter, M is the center of Mercury, EMB is the Earth-Moon
Barycenter, E is the center of the Earth.

Using (1) means to model the space as a flat arena (r is an Euclidean
distance) and the time as an absolute parameter. This is obviously not
possible because it is clear that, beyond some threshold of accuracy, space
and time have to be formulated within the framework of Einstein’s theory
of gravity (general relativity theory, GRT). Moreover we have to take into
account the different times at which the events have to be computed: the
transmission of the signal at the transmit time (tt), the signal at the Mercury
orbiter at the time of bounce (tb) and the reception of the signal at the receive
time (tr).

Formula (1) is used as a starting point to construct a correct relativis-
tic formulation; with the word “correct” we do not mean all the possible
relativistic effects, but the effects that can be measured by the experiment.
This document deals with the corrections to apply to this formula to obtain
a consistent relativistic model for the computations of the observables.

In Section 2 we discuss the relativistic four-dimensional reference systems
used, while the transformations adopted to make the sums in (1) consistent
are described in Section 4; according to [Soffel et al. 2003], with “reference
system” we mean a purely mathematical construction, while a “reference
frame” is a some physical realization of a reference system. Section 3 deals
with the appropriate time scale to be used in order to threat the mercurycen-
tric dynamic correctly.

The equations of motion for the planets Mercury and Earth, including
all the relativistic effects (and potential violations of GRT) required to the
accuracy of the BepiColombo Radio Science Experiment have already been
discussed in the Chapter 6.
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2 Space-Time Reference frames

The five vectors involved in formula (1) have to be computed at their own
time, the epoch of different events: e.g., xant, xEM and xE are computed at
both the antenna transmit time tt and receive time tr of the signal. xM and
xsat are computed at the bounce time tb (when the signal has arrived to the
orbiter and is sent back, with correction for the delay of the transponder).
In order to be able to perform the vector sums and differences, these vectors
have to be converted to a common space-time reference system, the only
possible choice being some realization of the BCRS (Barycentric Celestial
Reference System). We adopt for now a realization of the BCRS that we
call SSB (Solar System Barycentric) reference frame and in which the time
is a re-definition of the TDB (Barycentric Dynamic Time), according to the
IAU 2006 Resolution B31; other possible choices, such as TCB (Barycen-
tric Coordinate Time), only can differ by linear scaling. The TDB choice
of the SSB time scale entails also the appropriate linear scaling of space-
coordinates and planetary masses as described for instance in [Klioner 2008]
or [Klioner et al. 2010].

The vectors xM, xE, and xEM are already in SSB as provided by nu-
merical integration and external ephemerides; thus the vectors xant and xsat

have to be converted to SSB from the geocentric and mercurycentric sys-
tems, respectively. Of course the conversion of reference system implies also
the conversion of the time coordinate. There are three different time coor-
dinates to be considered. The currently published planetary ephemerides
are provided in TDB. The observations are based on averages of clock and
frequency measurements on the Earth surface: this defines another time co-
ordinate called TT (Terrestrial Time). Thus for each observation the times
of transmission tt and reception tr need to be converted from TT to TDB
to find the corresponding positions of the planets, e.g., the Earth and the
Moon, by combining information from the pre-computed ephemerides and
the output of the numerical integration for Mercury and for the Earth-Moon
barycenter. This time conversion step is necessary for the accurate process-
ing of each set of interplanetary tracking data; the main term in the differ-
ence TT-TDB is periodic, with period 1 year and amplitude ≃ 1.6× 10−3 s,
while there is essentially no linear trend, as a result of a suitable definition
of the TDB.

The equation of motion of a mercurycentric orbiter can be approximated,
to the required level of accuracy, by a Newtonian equation provided the inde-
pendent variable is the proper time of Mercury. Thus, for the BepiColombo
Radio Science Experiment, it is necessary to define a new time coordinate
TDM (Mercury Dynamic Time), as described in Section 3, containing terms
of 1-PN order depending mostly upon the distance from the Sun and velocity

1See the Resolution at http://www.iau.org/administration/resolutions/ga2006/
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of Mercury.
From now on, in accordance with [Klioner et al. 2010], we shall call the

quantities related to the SSB frame “TDB-compatible”, the quantities re-
lated to the geocentric frame “TT-compatible”, the quantities related to the
mercurycentric frame “TDM-compatible” and label them TB, TT and TM,
respectively.

The differential equation giving the local time T as a function of the SSB
time t , which we are currently assuming to be TDB, is the following:

dT

dt
= 1 −

1

c2

[

U +
v2

2
− L

]

, (2)

where U is the gravitational potential (the list of contributing bodies de-
pends upon the accuracy required: in our implementation we use Sun, Mer-
cury to Neptune, Moon) at the planet center and v is the SSB velocity of
the same planet. The constant term L is used to perform the conventional
rescaling motivated by removal of secular terms, e.g., for the Earth we use
LC [Soffel et al. 2003].

3 Dynamic Mercury Time

The mercury-centric orbit of the spacecraft is coupled to the orbit of the
planet, mostly through the difference between the acceleration from the Sun
on the probe and the one on the planet (the Sun tidal term). This coupling
is weak because the Sun tide is just 10−7 of the monopole acceleration from
Mercury. The relativistic perturbations containing the mass of Mercury
are small to the point that they are not measurable, being easily absorbed
by the much larger non-gravitational perturbations, measured with finite
accuracy by the on board accelerometer. Should we conclude that general
relativity does not matter in the computation of the mercury-centric orbit?
The answer is negative, but the main relativistic effect does not appear in
the equation of motion.

There are three different time coordinates to be considered. The dynam-
ics of the planets, as described by the Lagrangian, is the solution of differen-
tial equations having a time belonging to a space-time reference frame with
origin in the SSB as independent variable. There can be different realizations
of such a time coordinate: the currently published planetary ephemerides
are provided in a time called TDB (Barycentric Dynamic Time). The ob-
servations are based on averages of clocks and frequency scales located on
the Earth surface: this corresponds to another time coordinate called TT
(Terrestrial Time). Thus for each observation the times of transmission
and receiving (tt, tr) need to be converted from TT to TDB to find the
corresponding positions of the planets, e.g., the Earth and the Moon, by
combining information from the precomputed ephemerides and the output
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of the numerical integration for Mercury and the Earth-Moon barycenter.
This time conversion step is necessary for the accurate processing of each set
of interplanetary tracking data; the main term in the difference TT-TDB is
periodic, with period 1 year and amplitude ≃ 1.6 × 10−3 s, while there is
essentially no linear trend, as a result of a suitable definition of the TDB.

The equation of motion of a mercury-centric satellite can be approxi-
mated, to the required level of accuracy, by a Newtonian equation provided
the independent variable is the proper time of Mercury. Thus, for the Bepi-
Colombo radioscience experiment, it is necessary to define a new time co-
ordinate TDM (Mercury Dynamic Time) containing terms of 1-PN order
depending mostly upon the distance from the Sun r10 and velocity v1 of
Mercury. The relationship with the TDB scale, truncated to 1-PN order
(we drop the O(c−4) terms on the right hand side, that are in principle
known, but certainly not needed for our purposes), is given by a differential
equation

dtTDM

dtTDB

= 1 −
v2
1

2 c2
−
∑

k 6=1

G mk

c2 r1k

,

which can be solved by a quadrature formula once the orbits of Mercury,
the Sun and the other planets are known. Figure 2 plots the output of
such a computation, showing a drift due to the non-zero average of the
post-Newtonian term.
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Figure 2: Left: TDM as function of TDB shows a drift due to the non-zero
average of the 1-PN term. Right: the oscillatory term, with the period of
Mercury’s orbit, is almost an order of magnitude larger than TT-TDB.

The oscillatory term, having the one of Mercury orbit as main period,
has an amplitude ≃ 0.012 s. In 0.01 s the spacecraft velocity can change by
3 cm/s, ≃ 10, 000 times more than the range-rate measurement accuracy,
the position by 30 m, ≃ 300 times the range measurement accuracy. Thus
this effect has to be accurately taken into account for our experiment2.

2The time scale TDB will be replaced in the planetary ephemerides by the new TCB;
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4 Space-time transformations

The space-time transformations to perform involve essentially the position
of the antenna and the position of the orbiter. The geocentric coordinates of
the antenna should be transformed into TDB-compatible coordinates; the
transformation is expressed by the formula

x
TB
ant = x

TT
ant

(

1 −
U

c2
− LC

)

−
1

2

(

v
TB
E

· xTT
ant

c2

)

v
TB
E ,

where U is the gravitational potential at the geocenter (excluding the Earth
mass), LC = 1.48082686741 × 10−8 is a scaling factor given as definition,
supposed to be a good approximation for removing secular terms from the
transformation and v

TB
E

is the barycentric velocity of the Earth. The next
formula contains the effect on the velocities of the time coordinate change,
which should be consistently used together with the coordinate change:

v
TB
ant =

[

v
TT
ant

(

1 −
U

c2
− LC

)

−
1

2

(

v
TB
E

· vTT
ant

c2

)

v
TB
E

]

[

dT

dt

]

.

Note that the previous formula contains the factor dT/dt (expressed by (2))
that deals with a time transformation: T is the local time for Earth, that is
TT, and t is the corresponding TDB time.

The mercurycentric coordinates of the orbiter have to be transformed
into TDB-compatible coordinates through the formula

x
TB
sat = x

TM
sat

(

1 −
U

c2
− LCM

)

−
1

2

(

v
TB
M

· xTM
sat

c2

)

v
TB
M ,

where U is the gravitational potential at the center of mass of Mercury (ex-
cluding the Mercury mass) and LCM could be used to remove the secular
term in the time transformation (thus defining a TM scale, implying a rescal-
ing of the mass of Mercury). We believe this is not necessary: the secular
drift of TDM with respect to other time scales is significant, but a simple it-
erative scheme is very efficient in providing the inverse time transformation.
Thus we set LCM = 0, assuming the reference frame is TDM-compatible.
As for the antenna we have a formula expressing the velocity transforma-
tion that contains the derivative of time T for Mercury, that is TDM, with
respect to time t, that is TDB:

v
TB
sat =

[

v
TM
sat

(

1 −
U

c2
− LCM

)

−
1

2

(

v
TB
M

· vTM
sat

c2

)

v
TB
M

]

[

dT

dt

]

.

when this will happen, we will use a suitably defined Mercury Coordinate Time (TCM),
such that the differential equation giving the TCB to TCM conversion will be exactly the
same as for TDB to TDM.
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Figure 3: The difference in the observables range and range rate for one pass of Mercury
above the horizon for a ground station, by using an hybrid model in which the position
and velocity of the orbiter have not transformed to TDB-compatible quantities and a
correct model in which all quantities are TDB-compatible. Interruptions of the signal
are due to spacecraft passage behind Mercury as seen for the Earth station. Top: for an
hybrid model with the satellite position and velocity not transformed to TDB-compatible.
Bottom: for an hybrid model with the position and velocity of the antenna not transformed
to TDB-compatible.

For these coordinate changes, in every formula we neglected the terms of the
SSB acceleration of the planet center [Damour et al. 1994], because they
contain beside 1/c2 the additional small parameter (distance from planet
center)/(planet distance to the Sun), which is of the order of 10−4 even for
a Mercury orbiter.

To assess the relevance of the relativistic corrections of this section to
the accuracy of the BepiColombo Radio Science Experiment, we computed
the observables range and range rate with and without these corrections.
As shown in Figure 3, the differences are significant, at a signal-to-noise
ratio S/N ≃ 1 for range, much more for range rate, with an especially
strong signature from the orbital velocity of the mercurycentric orbit (with
S/N > 50).
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