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ABSTRACT

When the observational data are not enough to compute a meaningful orbit
for an asteroid/comet we can represent the data with an attributable, i.e., two
angles and their time derivatives. The undetermined variables range and range
rate span an admissible region of solar system orbits, which can be sampled by
a set of Virtual Asteroids (VAs) selected by means of an optimal triangulation
[Milani et al. 2004]. The attributable 4 coordinates are the result of a fit and
they have an uncertainty, represented by a covariance matrix. Two short arcs
of observations, represented by two attributables, can be linked by considering
for each VA (in the admissible region of the first arc) the covariance matrix
for the prediction at the time of the second arc, and by comparing it with
the attributable of the second arc with its own covariance. By defining an
identification penalty we can select the VAs allowing to fit together both arcs
and compute a preliminary orbit.

Two attributables may not be enough to compute an orbit with convergent
differential corrections. Thus the preliminary orbit is used in a constrained
differential correction, providing solutions along the Line Of Variation which
can be used as second generation VAs to further predict the observations at
the time of a third arc. In general the identification with a third arc will ensure
a well determined orbit, to which additional sets of observations can be at-
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tributed. To test these algorithms we use a large scale simulation and measure
the completeness, the reliability and the efficiency of the overall procedure to
build up orbits by accumulating identifications. Under the conditions expected
for the next generation asteroid surveys, the methods developed in this and in
the preceding papers are efficient enough to be used as primary identification
methods, with very good results. One important property is that the com-
pleteness in finding the possible identifications is as good for comparatively
rare orbits, such as the ones of Near Earth Objects, as for main belt orbits.

Key Words: Celestial Mechanics; Asteroids, Dynamics; Orbits

1 Introduction

Astrometric observations of asteroids/comets are reported by the observers as
Very Short Arcs, that is sequences of observations closely spaced in time and
assumed to belong to the same physical object. When, as in most cases, the
information contained in such a data set is not enough to compute a full (6 pa-
rameters) set of orbital elements, we refer to them as Too Short Arcs (TSAs).
In such a case, the problem of orbit determination must begin with the task of
linkage, that is identification of two TSAs belonging to the same physical ob-
ject. Such a 2–identification is, in most cases, enough to allow for an orbit, al-
though it will be of very poor accuracy. Next we need to find 3–identifications,
that is to attribute another TSA to the 2-identification orbit, and so on. This
way of thinking of the orbit determination as a procedure inextricably con-
nected to the identification problem is a significant change with respect to the
classical paradigm, going back to [Gauss 1809]. The procedure used by modern
surveys to discover asteroids/comets (and other small bodies) is very differ-
ent from the one of ancient times, thus the classical methods solve a problem
different from the one we are facing today [Milani and Knežević 2005].

The present paper continues research meant to establish a new paradigm of
population orbit determination, suitable to handle the observational data of
the current and next generation surveys. In [Milani et al. 2004], hereafter re-
ferred to as Paper I, we have found the following properties of the TSAs. First,
the essential information contained in most TSAs can be summarized by an at-
tributable: two angles and their time derivatives. Second, for each attributable
we can define an admissible region, a subset of the half plane of the unde-
termined coordinates range and range–rate where the orbits of solar system
objects can be found, thus excluding satellites of the Earth, heliocentric hyper-
bolic orbits and tiny meteoroids. Third, we have found an efficient algorithm
to sample the admissible region by means of a Delaunay triangulation.

This paper is organized as follows. In Section 2 we describe the procedure
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to compute the attributable with its uncertainty and discuss whether the
TSA contains information beside the one expressed by the attributable. In
Section 3 we define the attributable orbital elements with their uncertainties, a
set of values defining the initial conditions of one orbit with the two angles and
the two angular rates of the attributable plus the range and range rate (with
respect to the observer). Then we give a generalized definition of covariance
matrix applicable to an orbit determined by using one TSA and one node of
the Delaunay triangulation. In this way we define a set of Virtual Asteroids
(VAs) sampling the space of orbits compatible with the available observations.

In Section 4 we show how, given a VA with a generalized covariance, to com-
pute a prediction for future/past observations with a formal uncertainty like
the one of a full least squares orbit. In Section 5 we define a criterion, based
on an identification penalty, to assess the likelihood that another attributable,
computed from an independently detected TSA, actually belongs to the same
object. We scan the swarm of VAs associated with the first TSA and select
the ones for which the identification penalty is low enough, if any. We discuss
different possibilities to compute a preliminary orbit which can fit two TSAs.

In Section 6 we show how to apply a constrained differential correction algo-
rithm to find a set of orbits fitting two TSAs, following [Milani et al. 2005a].
A constrained solution is essentially a five parameter solution, with one ad-
ditional parameter taking an arbitrary value. In this way we extract, from
the 2–dimensional swarm of triangulation nodes, a 1–dimensional swarm of
solutions. The procedure can be repeated to attribute to some of these sec-
ond generation VAs a third TSA: in this case it is possible, in most cases,
to compute a full 6–parameter vector of orbital elements according to the
classical least squares principle. To further attribute other TSAs to the 3–
identification orbit we can use methods already established and well tested.
In principle, we have thus defined a new paradigm for orbit determination
[Milani and Knežević 2005].

In Section 7 we test the new algorithms on a simulated next generation sur-
vey. The results are very encouraging, and in Section 8 we conclude that our
method is suitable as primary orbit determination method, entirely replacing
the classical paradigm for the processing of the data of the present and future
surveys. We also outline the work needed to apply these methods to realistic
full-scale simulations of future surveys and to real data, when available.

2 Attributables

A celestial body is at the heliocentric position P and is observed from the he-
liocentric position P⊕ on the Earth. Let (r, α, δ) ∈ R

+× [−π, π)× (−π/2, π/2)
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be spherical coordinates for the topocentric position P − P⊕. The angular
coordinates (α, δ) are defined by a reference system selected in an arbitrary
way. In practice we use for α the right ascension and for δ the declination with
respect to an equatorial reference system (J2000).

We shall call attributable a vector A = (α, δ, α̇, δ̇) ∈ [−π, π)×(−π/2, π/2)×R
2,

representing the angular position and velocity of the body at a time t̄0. The
geocentric distance r and its rate ṙ (that is, range and range–rate) are left
completely undetermined by the attributable.

2.1 Very Short Arcs

A sequence of observations is a set of astrometric observations belonging to the
same object: ti, αi, δi, hi , i = 1, m m ≥ 2 where αi, δi are angles (RA, DEC),
ti times with ti < ti+1. Moreover, hi are (optional) apparent magnitudes. Note
that m = 1 is not really used in modern astrometry: how does the observer
know a moving object has been detected? 1 If the detection is based on a trail,
then both ends should be measured and reported with beginning and end of
exposure as times, provided it is possible to decide the sense of motion (if not,
there are two possible attributables).

A sequence of observations is a Very Short Arc if the observations are assumed
to belong to the same object not because an orbit has already been fit to all
of them, but just because they can be unambiguously fit by some smoothing
curve, typically a low degree polynomial. In other words, the observations are
joined together by the observer, not by the orbit computer. A Very Short Arc
is a unique entity, it cannot be split and should be reported at once. Then it
should have a unique name (see Section 7.4).

The arc time span is ∆t = tm − t1. The central time t̄0 is the average of
the observation times. If the observations have equal weights, t̄0 is just the
arithmetic mean; if there are unequal weights wi, t̄0 should be computed by
a weighed mean where weights wi take into account the RMS of both α and
δ. Usually the observations from the same station at the same date have the
same weight, thus t̄0 is a simple arithmetic mean in most cases.

1 At the times of Piazzi, Olbers and Gauss, asteroids were detected by comparison
of the observations with a star catalog. Thus individual observations of an asteroid
were indeed possible and required an amount of work such that multiple observations
in the same night were rare.
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2.2 Computation of Attributables

Given a Very Short Arc, if m ≥ 3, the method to compute the corresponding
attributable is as follows. The first step is the fit of δi to a quadratic function of
ti − t̄0; then the angle δ of the attributable is the constant term, δ̇ is the linear
coefficient. An acceleration δ̈ is also estimated. This fit takes into account the
weights assigned to each individual observation, if they are unequal; it provides
a full 3× 3 covariance matrix Γδ for the variables δ, δ̇, δ̈. The second step is to
project onto the tangent plane to the sphere at the point (α, δ), that is we use
the coordinates βi = αi cos δ. The data βi are fitted to a quadratic function
of ti − t̄0; then β = α cos δ is the constant term, β̇ = α̇ cos δ is the linear
coefficient. The acceleration β̈ = α̈ cos δ is also estimated, and the covariance
of the variables α, α̇, α̈ is represented by the 3 × 3 matrix Γα. With only two
observations a linear fit must be used.

The observations of the sequence are assumed to belong to the same object
even before it is possible to perform an orbital fit, that is, the quadratic fit used
to compute the attributables should have small residuals. If the arc time span
is too long there could be significant terms cubic in time; then the attempt
to compress the information of the Very Short Arc into a single attributable
cannot succeed. On the other hand, if the arc is long and the higher derivatives
are significant the data should be suitable for classical orbit determination,
with Gauss’s or Laplace’s preliminary orbit: new algorithms are not necessary.
If m > 3 it is possible that one of the observations does not fit: it could be
discarded as an outlier and the quadratic fit repeated. However, if such a misfit
occurs we may suspect that either the observations do not belong to the same
object, or the overall data quality is poor. If m = 2 the attributable can be
computed by a straight line, the second derivatives are estimated at zero (with
infinite uncertainty); no quality control can be applied, but the attributable
can be used if the data are known to be good.

In conclusion, the output of the polynomial fits are: the attributable 4 coor-
dinates (α, δ, α̇, δ̇); the central time t̄0; the estimated second derivatives (α̈, δ̈)
and the 3×3 covariance matrices Γα, Γδ. Optionally, an estimate for the mean
apparent magnitude is the average h̄ of the measured apparent magnitudes hi.

2.3 Covariance matrix

As a result of the least square fits to compute it, an attributable A has an
uncertainty formally represented by a 4 × 4 covariance matrix ΓA, obtained
from the two covariance matrices Γα and Γδ as follows:
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ΓA = [γik]i,k=1,4

γ1,1 = γα,α γ2,2 = γδ,δ γ3,3 = γα̇,α̇ γ4,4 = γδ̇,δ̇

γ1,3 = γ3,1 = γα,α̇ γ2,4 = γ4,2 = γδ,δ̇

with all the other components zero 2 . The matrix ΓA defined in this way is
positive definite 3 . We are using the 2 × 2 sub-matrices of Γδ, Γα, that is the
marginal uncertainty of the attributable whatever the value of the accelera-
tions α̈, δ̈. If there are only two observations with equal weight the correlations
Corr(α, α̇), Corr(δ, δ̇) are zero and ΓA is diagonal.

Of course the formal covariance matrix ΓA has a probabilistic interpretation
in terms of multivariate Gaussian probability distribution if (and only if) the
error model for the astrometric measurements of α, δ is also Gaussian. More-
over, we have assumed in the above description of the method to compute the
attributable that the observation errors are uncorrelated, and this is not the
case in the most advanced error models [Carpino et al., 2003]. The algorithms
described above could be suitably modified to take this into account.

2.4 Curvature

Even for a Very Short Arc, for which the classical orbit determination algo-
rithm fails, it cannot be assumed a priori that all the information from the
available astrometry can be compressed into the attributable. This hypothesis
needs to be tested on the real data available, by measuring the curvature of
the best fitting curve on the celestial sphere.

Curvature is actually a vector, whose components can be computed from α̈, δ̈
(also dependent upon the components of the 4-vector A). The subject of cur-
vature will be discussed in detail in the next paper in this series, we only
anticipate here that there is a rigorous test to be applied to the data to decide
whether there is significant curvature information. Of course, if there is curva-
ture information, it should be used in the orbit determination. What follows
in this paper applies only to the case in which the curvature information is
either not significant (with respect to the assumed astrometric error model),
or it is too poor to provide useful constraints on the variables r, ṙ which are
left undetermined by the attributable. In such a case the Very Short Arc is
indeed a Too Short Arc, as discussed in Section 1.

2 We are assuming the error model for the astrometric observations does not include
correlation between the measured α and δ, otherwise the matrix could be full. Such
a correlation could be large if timing was a significant source of error.
3 Provided the observation times are different; with multiple observations at the
same time some degenerate cases can occur.
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3 Attributable orbital elements

Given a TSA, after computing the attributable (and assuming there is no
significant curvature information) we are left with a totally undetermined
point in the (r, ṙ) plane. Following Paper I, we can assume that this point
belongs to an admissible region of solar system orbits, and we can sample
this compact region by a finite Delaunay triangulation. Each node of this
triangulation defines a Virtual Asteroid (VA), that is a possible, but by no
means determined, set of six quantities 4 :

X = [α, δ, α̇, δ̇, r, ṙ]

A set of six initial conditions uniquely determines the orbit of an asteroid,
thus we can consider it as a set of orbital elements, belonging to a new type
(different from the classical Keplerian, equinoctial, cometary, Cartesian, etc.,
coordinates). We shall call such data a set of attributable orbital elements.

3.1 Distance dependent corrections

Together with a set of orbital elements we need an epoch time t0 (compulsory)
and can have an optional absolute magnitude H (only if there are photometric
measurements with the astrometric ones). The values of these quantities are
not coincident with the observation time t̄0 and the apparent magnitude h̄
computed with the attributable, but require distance dependent corrections.

An observation at time t̄0 of an asteroid needs to be corrected for aberration 5 .
The light spends a significant time δt = r/c, with c the speed of light, to reach
the observer from the asteroid. That is, the asteroid is observed at time t̄0 for
its position at the time t̄0 − δt = t0, the epoch time of the orbital elements.
For different VAs the attributable orbital elements have different epoch times:
t0 = t0(t̄0, r). Two approximations are used in this formula. (1) Second order
aberration terms are neglected; this can be a problem only for the extremely
accurate observations of space-borne astrometry. (2) A single δt is used for all
observations, while the aberration is not exactly the same for each observation:
this approximation may fail if the distance changes significantly during the arc
time span, that is if ṙ ∆t is of the order of r, in practice this can happen only
for very small r.

4 Five of these are measured by real numbers, while α is an angle, defined mod 2π;
this is important whenever we compute a difference of two such vectors, e.g., the
angles α = π − ε and α = −π + ε are close for small ε.
5 Both planetary and stellar aberration, that is the computation must be performed
by using the topocentric position vector of the asteroid.
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The equation describing the apparent magnitude h as a function of the ab-
solute magnitude H has the form: h = H + Z(G, φ, r, r�), with G the op-
position effect coefficient (in principle, a physical property of the asteroid;
in practice, for a recently discovered asteroid, it is assumed at the common
value 0.15), φ the phase angle, r� the distance from the asteroid to the Sun
[Bowell et al. 1989]. Both φ and r� are functions of the coordinates of the
attributable, in particular of r, but not of ṙ. Thus we estimate the absolute
magnitude H corresponding to the attributable orbital elements as follows

H = h̄ − Z(0.15, φ(r), r, r�(r)) .

The main case in which this estimate may be rough is for very small r: if ṙ ∆t
is of the order of r the correction Z should be computed separately for each
observation, thus H − h̄ would not be a function of the orbital elements only.

3.2 Structure of the confidence regions

The problem is how to represent the uncertainty of a set of attributable orbital
elements, assuming that they have been obtained from a given attributable.
This case is quite different from the customary one, in which the uncertainty
of a set of orbital elements is described by a positive-definite 6× 6 covariance
matrix, computed in the differential corrections, by a fit to ≥ 3 observations
well separated in time and in direction. For a TSA this is not available.

Among the attributable orbital elements, the first four coordinates are the
attributable A, computed by a least squares fit, thus with a positive-defined
4 × 4 covariance matrix ΓA. The last two coordinates are the point B on the
(r, ṙ) plane, to be selected in the admissible region. To describe the uncertainty
of the attributable orbital elements X = [A, B] we need to translate into a
mathematical formalism the intuitive statement that the attributable A is
measured, the point B = (r, ṙ) is just conjectured.

The inverse of the covariance matrix ΓA, which is used in the least squares fit
to compute A, is the 4×4 conditional normal matrix CA, appearing, in a prob-
abilistic interpretation, in the Gaussian probability density for the variables A
assuming that B has a given value, that is assuming the selected VA; it can be
formally built with the design matrix, giving the partials of the observations
(αi, δi) with respect to the 4 coordinates of A. Thus also ΓA is the conditional
covariance matrix 6 of the attributable. We can formally define the conditional

6 The conditional covariance matrix is the inverse of the conditional normal matrix.
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covariance matrix for the elements 6-vector X as the 6× 6 symmetric matrix

ΓX =







ΓA 0

0 0







with 0 suitable matrices with null coefficients. This matrix is obviously not
positive-definite, but has the B subspace as kernel (null space). The 2×2 sub-
matrix in the lower right hand corner is ΓB, the fact that it is zero expresses
the fact that the values of B have been assumed at some exact value, no
uncertainty. The companion matrix

CX =







CA 0

0 0







is the conditional normal matrix in 6-space. CX and ΓX are not inverse of each
other, but pseudo-inverse, that is ΓX is indeed the matrix providing the least
squares differential correction for X when B is constrained to a fixed value.

A non positive-definite covariance matrix, such as ΓX , can be used in the same
way (with some caution) as a conventional covariance matrix to compute the
uncertainty of predictions, such as future observations. The covariance ΓX

can be propagated and/or transformed to a covariance matrix in some other
coordinate system, e.g., Cartesian coordinates Y (the heliocentric position is
just P⊕+r R̂, where R̂ is the unit vector pointing in the observation direction,
and similarly for the velocity). Then, given the Jacobian matrix ∂Y/∂X

ΓY =
∂Y

∂X
ΓX

∂Y

∂X

T

(1)

is also not positive-definite, with a 2-dimensional null space, containing the
radial direction in both position and velocity.

In the formulas of this Section we have used so far a rather standard notation;
from now on we will face the following ambiguity. A normal matrix and a
covariance matrix are functions of the values of the variables for which they
are computed. The matrices resulting from the differential correction process
are the ones at convergence, e.g., if the vector A has to be determined, and the
nominal least squares solution is A0, the normal matrix CA must be computed
by using the design matrix (Jacobian matrix of the residuals with respect to
the coordinates of A) computed in A0: then the notation should stress this,
that is, we must always use the notation

CA |A=A0
; ΓA |A=A0
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or at least the abbreviated version CA0
, ΓA0

. A similar problem occurs for
partial derivatives: confusion is possible between the variable, with respect to
which derivation is performed, and the value assumed by the corresponding
argument; we shall use the short notation:

∂A′

∂A

∣

∣

∣

∣

∣

A0

=
∂A′

∂A

∣

∣

∣

∣

∣

A=A0

.

3.3 Quasi-Product Structure

As discussed in Paper I, for each value A of the attributable we can define
a (modified) admissible region D(A) in the plane of B = (r, ṙ), such that for
B ∈ D(A) the attributable orbital elements X = [A, B] belong to a solar sys-
tem significant body: the osculating heliocentric orbit is elliptic, possibly with
limited semimajor axis a, the geocentric orbit is hyperbolic (if it is inside the
sphere of influence of the Earth) and the absolute magnitude H is below some
limit Hmax (we are excluding from consideration small meteoroids). The set
D(A) is compact, in most cases connected (up to two connected components
can occur), and its boundary can be explicitly computed.

If we cannot determine the value of B from the observations (no significant
curvature information), we can nevertheless assume that, if the exact value of
the attributable is A, the value of B is contained in D(A). The existence of
an observable real body with B outside D(A) is not impossible, but is either
very unlikely (observable hyperbolic comets are rare) or outside the scope of
our investigation (artificial satellites of the Earth and meteoroids of course do
exist, but we are not interested in them).

Thus the confidence region describing the uncertainty of the attributable or-
bital elements X = [A, B] is defined by

ZX(σ) =
{

[A, B]
∣

∣

∣(A − A0)
T CA0

(A − A0) ≤ σ2 and B ∈ D(A)
}

(2)

where σ > 0 is a parameter, A0 is the nominal (least squares) value of the
attributable 4 angular coordinates, and CA0

is the corresponding normal ma-
trix. This set is not a Cartesian product, although in many cases it can be
approximated by the Cartesian product of a confidence ellipsoid in the A space
times the admissible region computed with the nominal attributable A0:

Z0
X(σ) =

{

A
∣

∣

∣(A − A0)
T CA0

(A − A0) ≤ σ2
}

×D(A0) . (3)

The quasi-product structure of eq. (2) and its approximation with the product
of eq. (3) will play an important role in the following.
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3.4 Sampling the confidence region

The practical problem is how to sample the confidence region ZX(σ) with
a finite number of VAs. Our approach is to use the VAs corresponding to
the nodes of a Delaunay triangulation of the admissible region D(A0). If the
triangulation nodes are the points {Bi = (ri, ṙi)}i=1,k in D(A0), then the orbits
of the VAs are defined by the attributable orbital elements

{X i = [A0, B
i]} i = 1, k

(with epoch times ti0 = t̄0 − ri/c). The sampling is adequate for prediction if

(1) the sampling of D(A0) by the nodes {Bi} is dense enough;
(2) the uncertainty in the A subspace is not too large, and anyway is appro-

priately accounted for by the covariance matrix ΓA0
;

(3) D(A) is not too different from D(A0) for values of A far from the nominal,
but still inside the confidence ellipsoid for A.

All the above are hypotheses to be verified in concrete cases. Some parameters,
such as the number of points in the Delaunay triangulation, can be adjusted to
meet the requirements of the condition 1. Condition 2 refers to the reliability
of the astrometric measurement error model [Carpino et al., 2003], condition
3 remains to be investigated.

4 Predictions from an Attributable

We would like to discuss how to compute a prediction, starting from a set of
VAs, that is from a set of attributable orbital elements with uncertainty:

X i = [A0, B
i], ti0, H ; ΓXi

obtained as described in the previous Section. The process of prediction con-
sists of two steps: the first is the orbit propagation Φ from X0 at the epoch
time ti0 to the prediction time t̄1; this gives a set of orbital elements with
uncertainty

Y i, t̄1, H ; ΓY i

with the new covariance matrix ΓY i given by the equation analogous to (1). As
already mentioned, the elements Y i can be in a different coordinate system,
e.g., Cartesian coordinates. It follows again from formula (1) that the condi-
tional covariance matrix ΓY i has rank 4, that is, it is not positive-definite with
a 2-dimensional null space and with four linearly independent rows.
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4.1 Projection on the Attributable 4-space

The second step is to compute the observation function F : Y i 7→ Ai with Ai

in some space of dimensionality lower than 6; in this paper we are interested
in the case that this dimension is 4 and Ai is an attributable, predicted at
the new observation epoch t̄1 (the aberration correction needs to be applied
again). The Jacobian matrix of partial derivatives of the prediction function
F is

DF (Y i) =
∂A′

∂Y

∣

∣

∣

∣

∣

Y i

a 4×6 matrix. Generically 7 this Jacobian matrix will have rank 4. A formula
similar to (1) for covariance propagation holds also for mappings between
spaces of different dimensions, provided the rank of the Jacobian matrix is
maximum [Jazwinski, 1970]

ΓAi =
∂A′

∂Y

∣

∣

∣

∣

∣

Y i

ΓY i

[

∂A′

∂Y

∣

∣

∣

∣

∣

Y i

]T

.

By using the covariance propagation formula (1), taking into account the zeros
of the covariance matrix ΓXi, this formula implies

ΓAi =
∂A′

∂X

∣

∣

∣

∣

∣

Xi

ΓXi

[

∂A′

∂X

∣

∣

∣

∣

∣

Xi

]T

=
∂A′

∂A

∣

∣

∣

∣

∣

Xi

ΓA0

[

∂A′

∂A

∣

∣

∣

∣

∣

Xi

]T

(4)

where the derivatives are with respect to the attributable A at time t̄0. What
is the rank of the 4×4 matrix ΓAi? This question cannot be answered with cer-
tainty in all cases, but the following two statements can be rigorously proven.
First, for t̄1 → t̄0, Ai has A0 as limit, the transformation between the two at-
tributables approaches the identity, thus ΓAi → ΓA0

, which has rank 4. Thus
for t̄1 − t̄0 small enough the rank of ΓAi is 4. However, we do not know how
small t̄1 − t̄0 has to be for this to be guaranteed.

Second, generically the rows of ∂Ai/∂X i are linearly independent, and they do
not belong to the null space of ΓXi . Thus generically ΓAi has rank 4. However,
a matrix can be of maximum rank and still be numerically degenerate if its
conditioning number 8 is larger than the inverse of the machine accuracy. In
this case, the matrix has an inverse in exact arithmetic, but the computation
of the inverse is numerically unstable and requires the utmost caution.

7 The precise mathematical definition of a generic property is not simple; we can
describe it by saying that this occurs almost always.
8 For a symmetric positive-definite matrix, one definition of conditioning number
is the ratio of the largest to the smallest eigenvalue.
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Thus we expect, in almost all cases, the matrix ΓAi to be invertible. We can
think of ΓAi as the marginal covariance matrix associated to the subspace A′

of a set of attributable orbital elements X ′ = [A′, B′]. Indeed, the uncertainty
of the attributable A′ is computed without making any assumption on the
non-measured quantities B ′ = (r′, ṙ′). By the rule dual to the one used for the
conditional matrices 9 the marginal normal matrix CAi = ΓAi

−1 generically
exists, but it may be difficult to compute. If the inverse matrix

M =

[

∂A′

∂A

∣

∣

∣

∣

∣

Xi

]−1

(5)

exists, then CAi can be computed by the formula derived from (4)

CAi = MT CA0
M . (6)

Thus it is possible in most (maybe not all) cases, to define a confidence ellipsoid
for the prediction Ai in 4-space of the attributables A′ for time t̄1:

ZAi(σ) =
{

A′
∣

∣

∣(A′ − Ai)T CAi (A′ − Ai) ≤ σ2
}

(7)

where Ai = F (Φ(X i)) is the prediction (corresponding to the assumption Bi).
This is actually the inside of a 3-dimensional ellipsoid in the 4-dimensional
space of the attributables, where the second attributable is predicted to be,
within a confidence level described by the parameter σ. However, this con-
fidence parameter σ cannot be interpreted as a χ, that is, it is not possible
to provide a probabilistic prediction model. This because there is no way to
assign probabilities to the points in the admissible region.

4.2 Triangulated Ephemerides

We can draw the conclusions from the discussion in this Section and give a
definition of the confidence region for the prediction Ai even in the case we
are discussing, that is when the first Very Short Arc is a TSA, with all the
significant information contained in the attributable.

The confidence region for the attributable orbital elements derived from the
attributable A0 is ZX(σ) defined by eq. (2); we assume it can be approximated
by the product Z0

X(σ) defined by eq. (3). The image on the attributables
space at time t̄1 of the admissible region D(A0) is a two dimensional manifold
(compact, with boundary) V = F (Φ (D(A0))). We have no way to explicitly

9 The marginal normal matrix is the inverse of the marginal covariance matrix.
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Fig. 1. For the asteroid 2003 BH84, the observations 12 days after the discovery have
been predicted in the triangulated form by using only the attributable computed
with the observations of the discovery night. The ellipses indicate the projected
uncertainty coming from the fit of the attributable. The ⊕ sign indicates the recovery
attributable, computed with the actually observed data of the later night.

compute this manifold as a function of B = (r, ṙ), because the map X → A1

does not have an analytic expression (A1 is the nominal attributable at second
time). We can compute a triangulation of this manifold by using the image
of the already computed triangulation {Bi}, i = 1, k of D(A0). The nodes of
the triangulation Ai = F (Φ(X i)) in the 4-dimensional observations space at
t̄1 are the predictions from the VAs X i, in turn defined by the nodes Bi.

The idea of triangulated ephemerides was already discussed in Section 6 of
Paper I. Here we are extending the same idea to a 4-dimensional predictions
space, something more difficult to visualize, although some 2-dimensional pro-
jections can be used to have a good perception of the uncertainty of the at-
tributable [Gronchi 2005, Figure 5]. Figures like these can be used to assess
the difficulty of a planned recovery.

In this paper we are going one step further, that is we associate with each node
of the triangulated ephemerides its covariance. Geometrically, we have to think
of each node surrounded by its own confidence ellipsoid Z i

A, defined by eq. (7);
thus the projections, such as in Figures 1 and 2, would be surrounded by a
confidence ellipse. This is an approximation to the tubular neighborhood T (V )
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Fig. 2. The same triangulated ephemerides projected in the proper motion (−α̇, δ̇)
plane. The largest ellipse indicates the projection of the uncertainty in the fit of the
second attributable.

of the two-manifold V which would be obtained by the union of confidence
ellipsoids centered in every point of V .

This tubular neighborhood, so difficult to be computed, plays an essential role
in different kinds of identification: recovery, precovery, and linkage (the latter
is discussed in the next Section). Whenever we would like to obtain another
attributable which could belong to the same object, we can scan either the sky
with a telescope (recovery) or an archive containing the images (precovery).
In both cases, to decide if the objects are the same we need to assess not
only how close is each observation to the predictions(s), but also whether this
discrepancy can be accounted for by the prediction uncertainty.

When planning what area (either in the sky or in the archive images) has to
be scanned, the answer is simply that we need the covered area to include
the projection on the celestial sphere of T (V ). This can be approximated by
the union of the ellipses, projection of each Z i

A on the celestial sphere. It
does not matter how many ellipses overlap, because we are not computing
a probability density. Figure 1 suggests that, with some care to take into
account the lower density of the predicted observations along the “shooting
star limit”(see Paper I, Section 3), this approximation can give a good idea of
the region to be scanned for a certain recovery/precovery.
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5 Linkage of two Attributables

The problem of asteroid identification has been classified into three main cases
in [Milani, 1999]. The case we are going to discuss here is the one in which
the available data, for a given asteroid, consist only of a couple of TSAs, that
is the significant information is contained in two attributables, A0 at time t̄0
and A1 at time t̄1. This implies that for this object there is an orbit available
neither for epoch t̄0 nor for epoch t̄1. However, by using the information from
both A0 and A1 we may be able to estimate an orbit; this kind of identification
is called a linkage.

This problem has not been extensively investigated until quite recently. The
classical algorithm [Väisälä and Oterma 1951] uses just two observations, one
from each TSA, to compute an orbit under the assumption that the object is
discovered at perihelion 10 . In many cases this provides an orbit good enough
to start convergent differential corrections, but for a significant fraction of the
“two nighters” this classical procedure fails. A specific method to handle the
case with four observations divided in two pairs close in time was proposed
by [Kristensen 1995] 11

Another line of investigation was started by [Virtanen et al., 2001] with “sta-
tistical ranging”: this method generates a swarm of many VAs, thus in prin-
ciple there should always be one of them close to the true orbit. The problem
is efficiency, that is to control the number of VAs needed; for recent develop-
ments with this method see [Granvik et al. 2005], [Virtanen et al. 2005]. An
unpublished paper by Tholen and Whiteley proposed a related but differ-
ent method, which has been used by [Chesley 2005] in a case where some
curvature information is available. Another paper related to this problem is
[Goldader and Alcock 2003]. For a review on this topic see [Milani 2005]. In
conclusion, a new algorithm, simultaneously more efficient and more reliable,
would be very useful.

In our case, the attributables A0 and A1 have been computed from two sets of
m0 ≥ 2 and m1 ≥ 2 observations. We assume that the attributables contain all
the significant information, thus each of the two TSAs provides 4 equations in
the 6 orbital elements. If the two data sets can be joined and proven to belong
to the same object, we have at least 8 equations and the problem becomes
overdetermined, thus a least squares solution can exist.

10 For a main belt object and for a survey near opposition this is equivalent to
assume that the discovery occurs when the apparent magnitude is minimum, thus
it is a good approximation for the majority of the discoveries.
11 We have to perform an in depth comparison with our methods, but there is an
obvious analogy.
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The problem would be quite simple, but for two main difficulties. First, the
orbit propagation and prediction function are highly nonlinear, thus we can use
the linearization of the problem, e.g., in the differential correction algorithm,
only after determining a reasonably good first guess for the orbital elements.
Second, the problem is of course not to analyze one couple of TSAs, one taken
during the night of t̄0 and the other during the t̄1 night. In the modern surveys,
many thousands of asteroid detections are reported every night of operation. In
the near future, with the next generation surveys, we can expect this number
to increase to somewhere between 100, 000 and 1 million per night.

Thus the problem can be formulated as follows: we need to find a way to decide
which couples of attributables, one from the first night, another from the
second, can belong to the same object, and we need to obtain some preliminary
orbit for the identified object, roughly satisfying the observations from both
nights 12 . Such preliminary orbits need to be good enough to be used as a
starting point for a differential correction procedure, which can converge and
succeed in fitting in the least squares sense all the observations from the two
TSAs. Last but not least, all this must be done with an algorithm of very
limited computational complexity, to be repeated on millions (today) and
trillions (tomorrow) of couples.

5.1 Identification penalty

The target functions 13 of the separate fits for the attributables A0 and A1,
that is the (normalized) sum of squares of the residuals with respect to the
linear fit to the attributable, can be expressed as

Q0(A) =
1

4
(A − A0) · CA0

(A − A0) (8)

Q1(A
′) =

1

4
(A′ − A1) · CA1

(A′ − A1) (9)

where CA0
and CA1

are the 4 × 4 normal matrices of the attributables, with
central times t̄0 and t̄1, respectively 14 .

12 This description is suitable for a main belt asteroid. For Trans-Neptunians, the
attributables can be formed by a much longer arc, up to one month, and the reference
to the two nights is not correct. For an object discovered near the Earth, the two
arcs may be separated by a few hours, thus they belong to the same night.
13 Also called cost functions.
14 There are no terms of degree higher than 2 because the two fits are linear. There
are also constant terms, but they are small because they are proportional to the
variance of the residuals, and the fit needs to be good, as discussed in Section 2.2;
thus they are neglected in this formula and in the following.
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To test the hypothesis that the object is the same, we need to find a minimum
for the joint target function, obtained from the weighed sum of squares of the
discrepancies A − A0 and A′ − A1

Q =
1

8
(4 Q0(A) + 4 Q1(A

′)) (10)

under the assumption that there is a single orbit giving rise to the exact values
A, A′ at central times t̄0 and t̄1, respectively. To be able to speak of orbits,
however, we have to assume the values of (r(t0), ṙ(t0)), that is, we need to
select a VA X i = [A, Bi] having for B component one of the triangulation
nodes. Then we use the Jacobian matrix of the map X i → Ai to constrain A
in such a way that it can belong to the same modification of the VA giving A′

A′ − Ai =
∂A′

∂X

∣

∣

∣

∣

∣

Xi

(X − X i) + . . .

where the dots stand for higher order terms (this map is nonlinear). We should
not forget that B = Bi is an assumption, not a measurement: we do not have
an appropriate weight matrix to include a ∆B component in the differential
correction. Thus we set ∆B = 0 (not knowing any better) and the above
equation becomes

A′ − Ai =
∂A′

∂A

∣

∣

∣

∣

∣

Xi

(A − A0) + . . . .

Generically ∂A′/∂A is an invertible 4× 4 matrix, thus we can use the inverse
M defined in eq. (5) and write A − A0 = M (A′ − Ai) + . . .. This can be
substituted into equations (8); neglecting the nonlinear terms

Q0(A) =
1

4
(A′ − Ai) · MT CA0

M (A′ − Ai) =
1

4
(A′ − Ai) · CAi (A′ − Ai)

where we have used the equation (6) for the propagation of the marginal
normal matrix. Then we substitute in equation (10):

2 Q = (A′ − A1) · CA1
(A′ − A1) + (A′ − Ai) · CAi (A′ − Ai)

If the two attributables A and A′ could be chosen independently, we could
select A = A0 and A′ = Ai and get a target function Q = 0. Thus the
minimum value of Q we obtain under the assumption that the two are related
(and that B = Bi) is the penalty, measuring the increase in the target function
which results from the identification. Neglecting the higher order terms, Q is
the sum of two quadratic forms, generically positive-definite.
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At this point we can use the explicit formula for the solution of the linearized
identification problem from [Milani et al. 2000], with the only difference that
we are working in a 4-dimensional space (rather than in a 6-dimensional one):

2Q(A′)' (A′ − A1) · CA1
(A′ − A1) + (A′ − Ai) · CAi (A′ − Ai) =

= A′ · (CA1
+ CAi) A′ − 2A′ · (CA1

A1 + CAi Ai) +

+A1 · CA1
A1 + Ai · CAi Ai .

The minimum of the penalty Q can be found by minimizing the non homo-
geneous quadratic form above. By expanding around the new joint minimum
Ai

1

2 Q ' (A′ − Ai
1) · C

i
0 (A′ − Ai

1) + Ki

and by comparing the last two formulae we find:

Ci
0 = CA1

+ CAi ; Ci
0 Ai

1 = CA1
A1 + CAi Ai

Ki = A1 · CA1
A1 + Ai · CAi Ai − Ai

1 · C
i
0 Ai

1

If the matrix C i
0, which is the sum of the two separate normal matrices CA1

and CAi , is positive-definite, then it is invertible and we can solve for the new
minimum point:

Ai
1 =

[

Ci
0

]−1
(CA1

A1 + CAi Ai) .

The minimum identification penalty K i = 2 Q(Ai
1) can be expressed as a

quadratic form [Milani et al. 2000]

Ki = ∆Ai · C ∆Ai .

where ∆Ai = Ai−A1 is the correction to be applied to the nominal attributable
observed at time t̄1 and the matrix C is computed by one of the two alternative
formulae

C = CAi − CAi

[

Ci
0

]−1
CAi = CA1

− CA1

[

Ci
0

]−1
CA1

.

The above equations are true in exact arithmetic, but the two alternate expres-
sions might not be equal as output of numerical computations if the matrix
Ci

0 is badly conditioned. We can summarize the conclusions by the formula

2 Q(A′) =
[

∆Ai
]T

C ∆Ai + (A′ − Ai
1)

T Ci
0 (A′ − Ai

1)

giving the minimum identification penalty Q(Ai
1) = Ki/2 and also allowing

to assess the uncertainty of the identified solution for the attributable A′, by
defining a confidence ellipsoid with matrix C i

0.
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The identification penalties K i for all the nodes of the triangulation are
the analytical counterpart to the geometric representation as triangulated
ephemerides, discussed in Section 4.2: e.g., the ellipses of Figures 1 and 2
are the projections of level surfaces of the penalties.

5.2 Scanning the Triangulation

It is important to realize that the identification penalty K i, computed for a
given node Bi of the triangulation of D(A0), does not need at all to be small.
First, we cannot know a priori whether the two asteroids observed at times t̄0
and t̄1 are indeed the same. Second, even if they are the same, the value of B i

could be totally wrong with respect to the true values of the distance and its
rate at time t̄0. In both cases the two attributables cannot fit, and this will be
revealed by a large value of K i.

As was shown in [Milani et al. 2000],[Milani et al. 2001], an identification pro-
cedure needs to be organized as a sequence of filters, each one selecting the
couples candidate for identification with more and more strict conditions, and
by using more and more computationally intensive algorithms. The new filter
we propose is based on the values of the penalties K i: these have to be com-
puted for each attributable from the TSA of the second night, and for each
node of the triangulation of the given TSA of the first night.

Given the attributable A0 and the triangulation {Bi}, i = 1, k of D(A0), we
scan the list of attributables of the second “night” t̄1. For each attributable
A1 we first compute the identification penalties K i, i = 1, k. If all of them are
large, say K i > Kmax, then we discard the couple (A0, A1). If there are some
nodes Bi, for some indexes i ∈ I, such that K i ≤ Kmax, then we proceed
to the next step, the computation of a preliminary orbit for each i ∈ I. If
the computation of the preliminary orbit is successful we apply the following
filtering stages, described in the next Section.

The value of the control Kmax to be used is difficult to establish a priori,
based only on an analytical theory. We cannot use the χ2 tables for dimension
8, even assuming that the astrometric measurement error model is purely
Gaussian and reliable (an already optimistic assumption). We are sampling
the confidence region with a finite number of points Bi, thus we cannot assume
that the minimum among the K i is the absolute minimum we could get by
trying all values of B ∈ D(A0), that is

Mini=1,kK
i ≥ MinB∈D(A0)K(B)

and we cannot compute analytically the safety margin to be left to take into
account this difference. We conclude that the value of Kmax to be used in large
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scale production of linkages can only be dictated by the analysis of the results
of large scale tests, such as the one of Section 7.

As an example, we are considering the discovery and follow-up of the asteroid
2003 BH84 already used in Paper I, because it is an interesting case: a Near
Earth Asteroid discovered very far from the Earth (almost 2 AU) during an
experiment on the possibility of discovering very faint objects with a 2.2 meter
telescope [Boattini et al., 2004]. Figure 3 shows the triangulation of the ad-
missible region for the attributable computed by using only the 4 observations
from the night of January 25. Then we attempted the identification with an-
other attributable, computed with the 3 observations of the night of January
30, which are known a posteriori to belong to the same object. The nodes
with Ki ≤ (0.6)2 are joined by solid segments; the other sides of the triangles
are dotted. Of course this example only shows that, when the identification is
true, the values of some K i (by no means all) can be small. The problem of
the efficiency of this filter, that is the relative number of false positives, must
be addressed by another, much larger test.
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Fig. 3. Attributable from the discovery night of 2003 BH84 identified with the at-
tributable of 5 days later. The solid lines join the nodes with identification penalty
Ki < 0.62, which have been used to compute preliminary orbits: from each of them
we have started a constrained differential correction procedure (see Section 6.1)
and a LOV point has been determined if the solution converged. The LOV has been
approximated by a straight line best fitting all the LOV points obtained in this way.
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5.3 Selection of the Preliminary Orbits

The procedure described above provides us with a number of best fitting cor-
rected attributables Ai

1, for i ∈ I, where I is a subset of 1 ≤ i ≤ k. Each
Ai

1 comes with its penalty value K i, which is not too large, that is, an orbit
with Bi as distance and its rate at time t0, and giving the attributable Ai

1 as
observation at time t̄1, can fit both A0 and A1 with not too large residuals; the
fit is performed in the 8-dimensional space of the residuals of both attributa-
bles. We do not claim that this is the best fit, because we have used only the
discrete set of points Bi rather than all the points B ∈ D(A0).

To start a differential correction process we need to compute a set of orbital
elements to be used as first guess, with a consistent set of six coordinates at
the same epoch. We have a number of options, the simpler ones being

(1) just use X i = [A0, B
i], epoch time ti0.

(2) the attributable Ai
1 and the value B′ = (r′, ṙ′) as computed for time t̄1

(from the orbit X i = [A0, B
i] at ti0). The epoch is t̄1 − r′/c.

(3) the attributable back-propagated (linearly) to time t̄0, starting from Ai
1

Ai
0 = A0 + M (Ai

1 − Ai) ,

where M is defined in eq. (5), and the value Bi of the node, epoch ti0.

Option 3 is the linear inverse image of the “best compromise” attributable Ai
1,

which is at time t̄1, on the space of attributables at time t̄0. However, it can
be shown that it is also the “best compromise” attributable in the space of
attributables at time t̄0, in the linear approximation. That is, by converting
the target function Q1(A

′) to a quadratic form in the space of A (by means
of the linearized map), we could use the same algorithm, although with some
additional complications, to find a minimum directly there. This minimum
would coincide with Ai

0. This does not imply that option 3 is the same as
option 2: even apart from the nonlinearity of the attributable transformation,
the values of (r, ṙ) used in the two options correspond to different orbits.

The option 1 gives a preliminary orbit likely to be more inaccurate, thus we
are using option 2. If the next step fails with the option 2 preliminary orbit,
we try again with the option 3 preliminary orbit.

More complicated options may involve the use of additional propagations be-
tween the times t̄0 and t̄1, maybe even back and forth, in an iterative loop.
According to the tests discussed in Section 7, such additional complications
do not appear necessary.
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6 Multiple Solutions from two Attributables

The next step should be to compute, starting from the preliminary orbits of
the previous Section, least squares solutions. However, the observational data
available are still very limited, amounting to only two TSAs (just enough to
compute two attributables). This implies that the nominal orbit, according
to the least squares principle, may not exist, may be impossible to find with
the classical differential corrections procedure, and anyway will typically be
very poorly determined. Indeed, the orbit determination procedure cannot be
considered complete until at least a third attributable can be identified with
the other two. Thus the least squares solutions at this stage are themselves
only intermediate orbits, to be used to allow additional identifications.

A suitable algorithm to handle these cases, very effective with “two nighters”,
has been presented in [Milani et al. 2005a]. Here we will only recall the com-
putational procedure, the details can be found in that paper.

6.1 Constrained solutions

Given a set of M observations, and some first guess value X for the orbital
elements, we can compute the corresponding observation residuals Ξ (an m =
2M dimensional vector) with their weight matrix W (an m × m symmetric
matrix) and the normal matrix C at X:

B(X) =
∂Ξ

∂X
(X) ; C(X) = B(X)T W B(X) .

Let λj(X), j = 1, . . . , 6 be the eigenvalues of C(X), with λ1(X) the smallest
one; let V1(X) be an eigenvector with eigenvalue λ1(X), that is

C(X∗) V1(X) = λ1(X) V1(X) ;

let H(X) be the 5-dimensional hyperplane orthogonal to V1(X)

H(X) = {Y |(Y − X) · V1(X) = 0} .

One step of constrained differential correction is the linearized correction to
X to approach the minimum of the target function Q = ΞT W Ξ/m restricted
to the hyperplane H(X). After the correction X ′ = X + ∆X, with ∆X ∈
H(X), has been applied, the observation residuals are recomputed and the
new normal matrix C(X ′) is computed. Then the new hyperplane H(X ′) is
used as new constraint and the correction is repeated, until convergence (the
constrained correction becomes negligible) to the point X. The point X has
the property of having the gradient of the target function Q parallel to the
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eigenvector V1(X), that is it belongs to the Line Of Variation (LOV) of the
least squares problem.

The LOV definition depends upon the coordinates used for the initial condi-
tions X; for asteroids with few observations spanning a small arc on the celes-
tial sphere, the use of Cartesian coordinates is recommended: the attributable
elements give equivalent results. For a detailed discussion of the dependence
upon coordinates and metric see [Milani et al. 2005a].

6.2 Line Of Variation from the identification

In the previous Section we have shown how to compute a set of preliminary
orbits X i starting from a subset of the triangulation nodes, satisfying the
condition of moderate identification penalty K i. From each initial guess X i

we can start a constrained differential correction process, which will converge
(in some cases) to a LOV point X i.

This procedure depends upon the coordinate system used. As an example, in
Figure 3 we show the case of the attributable computed from the discovery
night of 2003 BH84 identified with the attributable formed with the observa-
tions of a night 5 days later. The diagonal line represents the LOV, on which
the points X i are marked with the triangulation index i. The nodes number 13,
14, 47 and 55 of the triangulation belong to the admissible region and there-
fore correspond to elliptic orbits, but provide (with the procedure described
above) LOV points well outside the Solar System boundary. That is, when
the Cartesian coordinates used in the constrained differential corrections are
converted to Keplerian elements, the eccentricities are > 1. If the constrained
differential corrections had been performed in elements singular for e = 1,
such as Keplerian or equinoctial, the number of LOV points obtained would
have been smaller.

In this case a nominal least squares solution exists and can be obtained with
unconstrained differential corrections starting from some of the LOV points; it
is marked “best” in the Figure, and it is close to the LOV solution with index
32. However, the true solution (known a posteriori, that is by using also the
data from a third night of observations) is marked by a crossed square sign,
and is much closer to the LOV solution with index 37. This is a good example
of the fact that the nominal solution, even if it exists, does not need to be an
approximation of the true solution better than the other LOV solutions.

In Figure 4 we show, for the same asteroid, the identification of the discovery
night attributable with the attributable based on the observations of a single
night 12 days later. This case is slightly more difficult because of the longer
time elapsed: indeed the number of triangulation nodes with moderate identi-
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fication penalty K i is reduced to 5. All these 5 have provided, by convergent
constrained differential corrections, LOV solutions; a nominal solution could
also be computed. But the true solution is again closer to the LOV point ob-
tained from the triangulation node number 37: indeed, the values of (r, ṙ) of
the node B37 were the closest ones to the real values for the asteroid at the
discovery time.
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Fig. 4. Attributable from the discovery night of 2003 BH84 identified with the one
formed with the observations performed 12 days later. The difference with respect
to Figure 3 is that less LOV points have been obtained, but the true solution (known
a posteriori) is very close to one of them, the one marked with the index 37.

The above are of course artificial examples, obtained by splitting into TSAs
the observations already known to belong to the same asteroid. The interesting
point is that 12 days is already a long interval for asteroid discovery surveys.
Let us suppose that the data of the second night, 5 days after the discovery,
were not available, or maybe were available but had not been identified with
the discovery attributable. Then it would have been possible to recover the
same object by conducting a scan of the region shown in Figure 1. It would also
have been possible, if the data of 12 days after the discovery had been found
by a survey without any knowledge that they belonged to the same object,
to identify them. If this example is representative, a survey scanning large
portions of the dark sky with repeat cycle as long as a week (and even longer)
could successfully identify the Near Earth Asteroids detected. Of course this
tentative conclusion needs to be confirmed by a statistically significant set of
examples.
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Fig. 5. Attributable from the November 25 precovery of 1998 XB identified with the
one from the official discovery night, December 1. The solid lines join the 5 nodes
with identification penalty K i < 1.52; also the isolated node 34 fulfills this condition.
The parallel straight lines indicate a linear fit to the LOV and its uncertainty.

As a second example, we are using the asteroid 1998 XB (now numbered
96590). This object has been a challenge for orbit determination because it
has been discovered at an elongation of 90◦. This resulted in multiple solu-
tions for Gauss’ preliminary orbit, in multiple minima for the least squares fit
[Milani et al. 2005a] and in very strong nonlinearity in all the orbit and ob-
servations predictions. We use the attributable computed with the data of the
first night of observations, November 25, 1998 15 . We have triangulated the
admissible region for the first night, and then tried to perform an identification
with a second night of observations on December 1. Figure 5 shows that a well
defined LOV has been computed, with many constrained solutions; however,
in this case the control value Kmax for the penalty was 1.52. The nominal
solution (“best”) is very close to the true solution (crossed square).

The presence of three parallel lines indicating the LOV in Figure 5 can be
explained as follows. We do not know all the points on the LOV, but just the

15 These observations were not credited as a discovery of 1998 XB, because they
remained unidentified. The same object was rediscovered (from Beijing Observatory)
on December 1, then followed up by the same observatory on December 2. Thus the
designation and discovery were credited to Beijing Observatory.
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ones marked (∗) and labeled with the triangulation node index. The central
line is obtained by linear regression: we assume that the projection of the LOV
on the (r, ṙ) plane is a straight line. The two side lines indicate the uncertainty
of the fit; in this case there is a visible, although small, curvature. In the two
previous figures there was no visible curvature, and indeed the three lines were
superimposed. In attributable elements the LOV is often well approximated by
a straight line in (r, ṙ); this is an indication that for short arcs these elements
suffer less from nonlinearity effects than other types of elements.

We have pushed the test much further, by attempting to identify the at-
tributable from the night of November 25 with another attributable, based
only upon the data of December 26. That is, we assume that either no other
observations were available, or none of them was identified with the same ob-
ject, for a time span of one month. In this case we had to significantly increase
the penalty control value Kmax to 52. We were able to compute 5 LOV points;
in this case a nominal solution was not found 16 .
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Fig. 6. (31824) 1999 UG5 4 discovery observations; identification with ONS 1 year
earlier. The continuous lines join the nodes with identification penalty K i < 52:
none of them belong to the first connected component of the admisisble region,
the one closer to the Earth. The nominal least squares solution, marked “best”, is
hyperbolic: it is not close to the true solution, which is near the node number 10.

16 It may well exist, but be too far from the LOV solutions we have used as starting
point for the unconstrained differential correction.
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The third example is based on the discovery observations for the Centaur
(31824) Elatus. The object was discovered on October 29, 1999 by the Catalina
Survey, and the designation 1999 UG5 was granted after follow up observa-
tions. Later a number of precovery observations were discovered in the archives
of One Night Stands (ONS), maintained, but at that time not yet published,
by the Minor Planet Center (MPC). We have selected the four discovery ob-
servations from Catalina, spanning just ' 50 minutes of time on October 29,
1999 and computed the attributable, the admissible region and its Delaunay
triangulation, shown in Figure 6. The admissible region has in this case two
connected components, one corresponding to Centaur type orbits, the other to
much closer orbits. Then we have selected one of the precoveries, the one by the
LONEOS survey on October 17, 1998, formed the corresponding attributable
and computed the identification penalties. We had to use a rather high value
Kmax = 52, but we were able to obtain 4 LOV solutions (the one with index 7
was hyperbolic). The best solution could be found, by using Cartesian coordi-
nates, but it also corresponds to a hyperbolic orbit. In this case, by combining
the information from the observations with a priori knowledge of the popu-
lation densities, we can conclude that the initial conditions near the nominal
solution are very unlikely. Note also that the values of the penalty are never
small (actually, they are huge) for all the nodes belonging to the connected
component of the admissible region closer to the Earth: the precovery data
cannot have anything to do with 1999 UG5 unless it is a Centaur.

The last two examples were built with the a posteriori knowledge that the
observations belong to the same object: as genuine identifications they would
be paradoxically difficult. To detect a fast moving object and to ignore it for
one month would be an example of observational malpractice. To scan the
archives, going back one year, for a precovery of an object suspected to be a
Centaur and observed for a single night may appear a waste of time. Neverthe-
less, we can find constrained solutions even in these extreme cases. To actually
select such extreme identifications from a large data set of observations would
be difficult, but the difficulty is the amount of computations required and the
need to adapt the control parameters (such as Kmax) to this case.

6.3 Attributions of a third Very Short Arc

The next step is to find a third attributable belonging to the same object of the
the two already identified. The attribution of a set of observations, for which
a set of orbital elements is not available, to another discovery for which there
are enough observations to compute a nominal least squares orbit has been
discussed in [Milani et al. 2001]. In our case the least squares orbit is replaced
by multiple solutions along the LOV, as in [Milani et al. 2005a]. We do not
repeat here the formulas, which result in the computation of an attribution
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penalty K i
A for the third attributable identified with the orbit from the LOV

point of index i obtained from the first two attributables. K i
A has essentially

the same purpose as the K i computed to identify the first two, that is, it is
used to filter out the less likely identifications; if the value is below a control
value Kmax

A the triple identification is tested by differential corrections. If the
full least squares fit with all the data succeeds, with low RMS of the residuals,
the triple identification is confirmed and a comparatively well determined orbit
is available. As a first test, we use the same three cases of the previous Section.

For 2003 BH84, after linking the data of the discovery night with the ones
taken 5 days later, we have tested the attribution of the data from the third
night, 12 days after the discovery. We obtain a 3–nights identification, with
convergent full differential corrections and very small residuals, using as first
guess the constrained orbits obtained from nodes 34, 36, 37, 45. Differential
corrections are divergent when starting from the nominal orbit, and also from
the constrained orbit from node 32, which is very close to the nominal one (see
Figure 3). This is a comparatively easy case, in which the triple identification
could have been obtained also by other well known methods; however, it is
not a trivial case, since the identification cannot be obtained from the nominal
solution obtained from the first two TSAs. We have checked that by changing
the order of the three attributables does not change the result, e.g, it is possible
to identify the first night with the third, then with the second.

For 1998 XB, we have first identified the precovery data of November 25
with the ones of the official discovery night (December 1), as in Figure 5,
then attempted the triple identification with the December 26 attributable.
We have convergent full differential correction starting from the constrained
solutions obtained from nodes 26, 34, 45 and also from the nominal solution.

For 1999 UG5 we have first formed the identification of the discovery at-
tributable with the 1998 precovery, as in Figure 6. Then we have attempted
the triple identification with another precovery attributable of September 14,
1999. This case proved to be very difficult: with the option 2 preliminary orbits
the identification was not found. It was found with the option 3 preliminary
orbits and by using triangulation with more nodes. Thus this case can be han-
dled only by a special effort, both in terms of the computational cost and of
the human effort required to test different options. It is likely that extreme
cases such as this one cannot be handled by routine, automatic processing but
only as special efforts to follow up some particularly interesting discoveries.

The problem we cannot address with the “hindsight tests” like the three above
is the number of spurious identifications which would be proposed by a massive
use of our procedure, as well as the number of real identifications hidden in
the data and not detected with these methods. This large scale test is the
subject of the next Section.

29



7 Large scale test

After careful consideration, we have decided to use a large scale simulation to
test the performance of our identification algorithms. Using real data, that is
real TSA so far not identified, would have the following disadvantages:

(1) The non identified very short arcs are not entirely public. 17 Even if they
were all available to us, the numbers would be representative of the state
of the art in asteroid surveys rather than of the future needs.

(2) The identifications which can be found with well known algorithms have
already resulted in removal of the corresponding very short arcs. Thus
we could only measure marginal improvements, with respect to the iden-
tification procedures already applied to the data, rather than the overall
performance of our new algorithms.

(3) The real asteroid astrometric data are of very uneven quality. This can be
somewhat compensated by the use of a complex error model as the one
described in [Carpino et al., 2003], but a fraction of the data is “bad”,
to be discarded, even by the standards of the observing site. Moreover,
the file of non identified observations (the so-called One Night Stands file
of the MPC) contains data which have been submitted to less rigorous
quality control, and indeed some of them are contradictory, even bizarre.

(4) With real data, we have no way to assess the completeness of the obtained
list of identifications. We can only say we have found identifications ad-
ditional to the ones found by others before us, we have no way to guess
how many real identifications remain hidden in the data.

On the contrary, the use of a simulation has the corresponding advantages:

(1) The next generation surveys are expected to generate astrometric data
at a rate two orders of magnitude larger than the current ones. Thus
only a large simulation of a future survey can test the algorithms under
conditions similar to the ones in which they will soon be used. This is
especially important because of the presence of effects growing quadrat-
ically in the number of bodies observed: e.g., false identifications grow
with the square of the number density on the sky.

(2) We would like to assess the performance of our algorithms in case they
were used as the primary methods for identification and orbit determi-
nation for one or more surveys, thus we want to try the processing of the
data without any prior identification.

(3) In simulated data, we can assume that the error model (for both astrome-
try and photometry) is well known, and indeed the errors are added in by

17 This is the usual discussion on open data policy versus proprietary rights. See res-
olution B.1 of the 25th General Assembly of the IAU, Sidney 2003, IAU Information
Bullettin 94, January 2004.
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using random numbers with known probability densities. This assump-
tion is of course optimistic: it allows us to separate the problem of quality
control from the problem of identification, although in a real survey the
two problems will have to be solved simultaneously.

(4) The most important advantage of a simulation is that we know the
“ground truth”, that is, we have the list of objects which have been
included in the simulation with their assumed orbits. The identification
algorithms cannot use this a priori “secret” information, but after the list
of identification has been generated we can compare it with the ground
truth and find how many have been missed and how many are wrong.

It is our goal to apply our new algorithms to real data, but we want first to
be convinced that they are reliable and computationally efficient, to the point
that using them as the primary orbit determination method is justified.

Thus we have asked the team of one of the next generation surveys, Pan-
STARRS 18 , to provide us with a simulation of the moving objects data which
could be obtained in one month of regular operation. Robert Jedicke of the
Pan-STARRS project has suitably reformatted one of their simulations, in-
cluding ' 1, 000, 000 objects observed in 4 separate nights, with a 4 days
interval between consecutive ones, and has made available both the set of
simulated observations and the list of assumed objects. Note that the pur-
pose of the exercise is to assess the performance of our algorithms, not the
performance of Pan-STARRS. The expected performance of a survey depends
upon many assumptions, the most important being the detection model and
the observations scheduling: the very preliminary simulation we are using was
based upon a simplified detection model and did not even try to select an
optimal scheduling.

What matters at this stage is that the simulation has a number of observations
of the right order of magnitude and they are obtained from a population model
of Main Belt Asteroids (MBA) and Near Earth Asteroids (NEA). Trojans,
Centaurs, Trans-Neptunians and comets were not included, thus an efficient
identification of objects belonging to these populations will require further
optimization of the orbit determination procedure.

7.1 How to measure success

The properties of our identification and orbit determination procedure we want
to measure are completeness, reliability and efficiency. Completeness is mea-
sured by the ratio between the true identifications found and the ones hidden
in the data (known by means of the “ground truth”). Reliability is measured

18 http://pan-starrs.ifa.hawaii.edu/public/
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by the fraction of false identifications among those proposed. Efficiency can
be measured in different ways, here we just measure the CPU time needed for
the task at hand (with a given hardware).

We assume the simulation consists of a finite number K of observing nights,
in our case K = 4. We also assume that identifications are searched only for
the nearest observing nights 19 , going both forward and backward in time;
that is, starting from a given observing night, we search for identifications
in the next and in the previous observing night. Let the simulated data set
contain mtot TSAs, belonging to ntot objects, out of which n(k) objects ob-
served for exactly k consecutive nights (k–nighters), and Nid(k) ground truth
identifications joining the TSAs of k consecutive nights.

Having found id(k) k–identifications, joining k TSAs in consecutive nights,
by using the “ground truth” of the simulation we know we have found idT (k)
true and idF (k) false identifications. The ratio idT (k)/Nid(k) measures the
completeness and the ratio idF (k)/id(k) measures the (lack of) reliability for
the identifications at the level k (for k = 2, . . . , K). However, these ratios
do not measure the completeness and reliability of the overall procedure. For
k < K, each (k + 1)–nighter can provide 2 identifications with k consecu-
tive nights, and so on. For h–nighters, with h > k, we do not really need
to find all possible k–identifications: it may be enough to find one of them
to have the possibility to find a (k + 1)–identification for that object, and
so on up to the h–identification. Indeed, by achieving a high degree of com-
pleteness of the identifications at level k we may introduce duplications in
finding h–identifications with h > k and this redundancy may decrease the
computational efficiency. Monitoring the completeness and reliability of the
identifications at each level k is important only in terms of efficiency: other
metrics are needed to measure the completeness and reliability of the final
outcome.

The overall completeness of the procedure depends upon the number of simu-
lated objects for which a more or less good orbit has been computed. This can
be measured by the number Id(k, k) of true k–identifications of k-nighters, af-
ter removal of all the duplications and contradictions contained in the merged
list with id(2) + . . . + id(K) identifications. Reliability is measured by the
total number Wr(k) of false k–identification we have not been able to remove
by comparing with the others. Moreover, we need to take into account the
number of true but incomplete identifications Id(k, h), that is the number of
k–nighters for which we have found only h–identifications, with 1 < h < k.
Id(k, 1) is the number of total failures, that is the number of k–nighters for
which we have found no identification at all. Thus our results will be expressed

19 This restriction can be removed later; see Section 8.2.
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by means of these ratios: the completeness relative to k–nighters is

Compl(k) = Id(k, k)/n(k) ,

the reliability is the fraction of lost objects

Lost(k) = Id(k, 1)/n(k) ,

the fraction with an orbit based on less nights than the observed ones is

Inc(k, h) = Id(k, h)/n(k) for 1 < h < k .

To illustrate these definitions with a simple example, let us suppose there are 6
TSAs in 4 observing nights: A and E in night 1, B and F in night 2, C in night
3 and D in night 4; let the ground truth list of objects include A=B=C=D
and E=F. Then n(4) = 1 and Nid(4) = 1 (the only 4–identification possible
is A=B=C=D), n(3) = 0 and Nid(3) = 2 (A=B=C and B=C=D), n(2) = 1
and Nid(2) = 4 (A=B, B=C, C=D, E=F). We indicate an identification by
listing all the TSAs in order of time, with an equal sign as separator; however,
the identifications may be found in a sequence not respecting the order of
time, e.g., A=B=C can be found both from A=B going forward and from
B=C going backward in time. This possible duplication may contribute to
completeness but can also result in a decrease of efficiency.

Let us suppose the output of the identification procedure for the above example
is A=B, F=C and E=F at level 2, A=B=C, E=F=C at level 3, A=B=C=D
at level 4. Such results do not appear very good at level 2 and 3, actually the
performance of the overall procedure has been completely successful, both in
completeness and in reliability. To understand the last statement let us use
this example to illustrate the final stage of the procedure, the normalization
of the identification database. The purpose is to remove all duplications and
contradictions accumulated in the identification process at stages 2, 3 and 4.
We first sort all the id(2) + id(3) + id(4) identifications found by “quality”,
that is, an identification is superior if either it contains more nights or has
the same number of nights and lower normalized RMS of residuals. In our
example let us suppose the sorted list is

A = B = C = D

A = B = C

E = F = C

A = B

F = C

E = F .
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Then we scan this sorted list from the top to reduce it to a normalized list
of identifications. The first one, A=B=C=D is kept in the normalized list.
The second one is removed because it is compatible with the first. E=F=C is
removed because it is discordant with A=B=C=D and with less nights. A=B
is removed because it is compatible with the first. F=C is removed because
discordant with A=B=C=D and with less nights. E=F is kept because it is
independent from the first. The identifications left in the normalized list are
only A=B=C=D, E=F, thus Id(4, 4) = Nid(4) = 1 and Id(2, 2) = Nid(2) = 1;
Wr(k) = 0 for all k.

The normalization procedure is thus univocally defined by the binary rela-
tions among identifications: compatible (all the TSAs belonging to the first
are among the TSAs of the second), independent (none of the TSAs belonging
to the first are among the TSAs of the second) and discordant (neither com-
patible nor independent). Discordant identifications appear as contradictions,
unless they are removed by an identification containing all the TSAs of both:
e.g., A=B=C and B=C=D are discordant unless A=B=C=D is in the list.

The discordant identifications with the same number of nights are both re-
moved from the normalized list at the end of the procedure. This is justified
because a wrong identification results in “permanent” damage: once they are
accepted (in the normalized list) the corresponding TSAs are removed from
the list to be identified, thus making impossible to find later the true iden-
tifications for them. Thus it is better to remove a true identification, to be
recovered later, than to keep either a wrong one or an incomplete one.

The question is at which stage of the procedure we should remove the TSAs
belonging to identifications from the TSA database. The outcome, that is the
normalized identification list, does depend upon the order of the operations.
Let us consider this example: we find the identifications C=D=E, A=B=C=D,
E=F=G, in this order while executing the identification procedure. If the TSAs
belonging to an identification were removed immediately after the identifica-
tion has been found, the TSAs C, D, and E would not be used to look for other
identifications after the first one, thus neither A=B=C=D nor E=F=G would
be found. We search for all identification without removing the observations,
then normalization is applied as described above: in this example, the identi-
fication C=D=E is removed because discordant and inferior to A=B=C=D,
while E=F=G is not removed, being independent: this is a better result.

We conclude that identifications need to be done in batch, working on all the
observations of several observing nights, not one by one, not even night by
night. After having completed the search for all possible identifications, we
can normalize the identifications list and then remove the TSAs belonging to
normalized identifications. The results reported in the following show that this
procedure is essential to achieve good completeness and reliability.
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7.2 Strategies for optimization

To be able to test our algorithms on rather large simulations, and also to
claim that they are efficient, we need to optimize our procedure. The relevance
of this work is shown by the fact that, between our first attempt and the
current version of the code implementing the algorithms of this paper, we
have decreased the CPU times by a factor > 100. Optimization is to a large
extent based on many tricks, by themselves not worth reporting. To make our
work reproducible, we only outline the three basic principles we have followed.

(1) Remove the quadratic loops: when the total number of TSAs is mtot '
3.5 × 106 a nanosecond consumed for each couple results in almost 2
hours of CPU time. Thus the loops on the couples need to be replaced
by methods of computational complexity O(mtot log(mtot)). There are
well known algorithms such as heap sorting and binary search with this
property [Knuth 1973].

(2) Use filter stages of increasing computational cost: for attribution,
at each of the steps (2-, 3- and 4–identifications) we use in sequence three
filtering stages [Milani et al. 2001]. Much care needs to be taken to avoid
that the number of couples passing the first and second filtering stage
has a significant quadratic component.

(3) Use iterations separated by normalization: currently we run the
algorithms twice, the first time with a very small number of VAs (either
1 or 2) sampling the admissible region of each TSA, the second time with
' 50 VAs per TSA. Between the two we perform the normalization of
the identifications list and remove the TSAs belonging to the normalized
identifications. In this way the more intensive computations are applied
only to a reduced subset with much less than mtot TSAs.

The computational efficiency of the identification procedure could be described
by a CPU time model, that is by measuring the computation time c(m) (for
a given hardware) as a function of the number m of TSAs. The algorithms
include computations done for each TSA, computations done for each cou-
ple of them, and binary searches in lists of TSAs. However, there is also a
startup time for all the different programs involved. By using the CPU times
of four tests with 1/10, 2/10, 3/10 and 10/10 of the simulated objects (with
2 iterations, see Sections 7.5 and 7.6, and including also the programs used to
compare with the ground truth, see Section 7.4), we have found a reasonable
fit with the CPU time model c(m) = 3, 500 + 0.013 m + 1.8 × 10−8 m2/2
in seconds 20 . That is, our code still contains a quadratic component with 18
nanoseconds consumed for each couple of TSAs.

20 Xeon 3GHz, Linux Suse 9.1, Intel Fortran compiler 8.1.
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7.3 The simulated observations

The simulated observations were obtained by using as survey window a strip
between −10◦ and +10◦ in ecliptic latitude and with an elongation from the
Sun above 60◦. This area of ' 4, 800 square degrees is currently estimated to
be the maximum area which Pan-STARRS can scan twice per night; a strip
around the ecliptic should provide the highest possible number of detections
of moving objects. This window was scanned twice per night (at 1/2 hour in-
terval) over 4 distinct nights, with a 4 day interval between observing nights.
Given a population model developed by the Pan-STARRS team containing
Main Belt asteroids [Grav and Jedicke 2005] and NEA [Bottke et al., 2002],
all the objects which were in the survey window resulted in observations pro-
vided the magnitude was ≤ 24. Such a simplified detection model is an ac-
ceptable approximation because a margin of about 0.5 magnitudes was left
with respect to the theoretical limiting magnitude.

The above choices are not meant to be totally realistic, but they are the
simplest which can give a number density of observations of the right order: the
average number density was 200 per square degree. Since the detection model
is deterministic, each object was observed twice per night and in each of the
four nights, unless it either went out of the survey window or become fainter
than magnitude 24. Thus most of the objects were observed 8 times; this is
realistic if we assume that the observations very close to the limiting magnitude
are not considered. The data set of the Pan-STARRS simulation contained
mobs = 7, 053, 082 observations, from which mtot = 3, 525, 714 attributables
have been computed 21 . The number of objects observed over k consecutive
observing nights (at 4 days interval) is given in Table 1.

Table 1
Simulated observations: number of objects observed over k nights.

k 4 3 2 1 total

n(k) 799909 58275 52118 46794 957096

for NEA only 1166 215 187 198 1766

The observations were provided without errors, thus we have added a Gaussian
noise with RMS 0.1 arcsec in both α and δ, and a Gaussian noise with RMS 0.2
magnitudes to the photometry. This is believed to be the best Pan-STARRS
can do, somewhat optimistic for observations close to the limiting magnitude.

21 The discrepancy mobs − 2mtot was due to quality control, in which simulated
couples of observations which would result on the same pixel were removed.
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In the apparent magnitude we have not simulated lightcurve effects which
would degrade the fit for absolute magnitude: the change of apparent magni-
tude from one TSA to another due to the asteroid rotation is often more than
0.2 magnitudes, especially for the asteroids as small as the ones detectable
near apparent magnitude 24 (A.W. Harris, private communication).

7.4 The identification simulation

The identification and orbit determination procedure, which we want to simu-
late here, is a segment of an asteroid survey data processing. It begins from the
astrometrically (and photometrically) reduced observations of moving objects
and results in the catalog of orbits for the identified objects and the leftover
database of unidentified observations. This can be described as a sequence of
six steps (if there are 4 observing nights):

(1) Assignment of a unique name to each TSA, computation of the attributa-
bles and of the corresponding admissible regions, generation of VAs for
each attributable; insertion of these data in a TSA database.

(2) Linkages, that is attribution of attributables to the VA generated in step
1, thus obtaining a database of 2–identifications;

(3) Attribution of attributables to the 2–identification orbits of step 2, thus
obtaining a database of 3–identifications.

(4) Attribution of attributables to the 3–identification orbits of step 3, thus
obtaining a database of 4–identifications.

(5) Merging the databases of 4– and 3–identifications (optionally also the one
of 2–identifications) into a single database.

(6) Identification management, including normalization of the merged iden-
tifications database; removal of the TSA belonging to the normalized
identifications from the data set and output of the leftover TSA database.

This sequence of operations implements the scheme discussed in Section 8
of [Milani and Knežević 2005] (but the step numbering is different); it is de-
picted in the block diagram of Figure 7. The main difficulty is not the software
complexity: the problem is that each one of the separate steps has a number
of control parameters 22 , and the overall performance of the procedure in prin-
ciple depends upon each one of these.

As an example, we have already mentioned in Section 5.2 that for the optimal
value of the identification penalty control Kmax (for 2–identifications) we do
not have an analytical estimate. The same is true for the analogous control for
the 3– and 4–identifications. If we use two iterations, there are six values to be
found empirically! In each of the steps 2–4 we use three successive filters, of

22 In the current version there are more than 60 option parameters for each iteration.
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Fig. 7. Block diagram of the identification/orbit determination procedure. The data
flow begins from the top left, with the input of the observations in a program com-
puting attributables and triangulations. The VAs computed with the triangulations
are used as input only for the program computing 2–identifications. The 2–nights or-
bits are used to attribute a third TSA and generate a 3–identifications database; the
triangulations are not used as input for this step. Then the orbits from the 3–iden-
tifications database are used to generate a 4–identifications database; the computer
code for the recursive steps 3 and 4 is the same. The identifications databases are
merged and input to identification management, which outputs normalized iden-
tifications and the database of non identified TSA. This simplified block diagram
does not show the separate programs used to check the levels of completeness and
reliability at each step, and to measure the performance of each software component.

which the one based on the identification penalty is the second. The first one is
based on the angular distance between the prediction and the available obser-
vations: the couples passing the first filter are the ones with angular distance
less than some dmax (see Section 7.5). For this control value we can find rea-
sonable values based upon the number density of moving objects observed: for
the Pan-STARRS simulations we use dmax = 0.◦3 corresponding to ' 50 ”false
positive”, i.e., proposed identifications passing the first filter, per TSA. The
third filter is the constrained differential corrections of Section 6.2: the con-
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trols include maximum values of the RMS for the astrometric and photometric
weighed residuals, but also other controls discussed in [Milani et al. 2001] to
reject attributions resulting in systematic signatures in the residuals. These
controls have to be kept quite low to have few false identifications, e.g., nor-
malized RMS < 1.5 for astrometry, corresponding to a RMS < 0.15 arcsec
given the assumed accuracy of Pan-STARRS.

In this large space of parameters we need to identify the comparatively small
region providing satisfactory performance, measured in terms of completeness,
reliability and efficiency. Note that it would be easy to find values of the option
parameters fulfilling the requirements for either one or two of these criteria,
the difficulty is to simultaneously fulfill tight requirements on all three. If
the control parameters are loose, the true identifications will be easily found,
but they will be swamped by a large number of false identifications. If the
control parameters are too tight, in particular in the third filter, the false
identifications will be discarded, but some true ones will be discarded as well.
If a first screening is done with a loose control (in the two first filtering stages),
followed by a more rigorous one in the third filter, then too many proposed
identifications will undergo a differential correction (the most computationally
intensive step) and the total computing time will be unacceptable.

The above problems have in the past been solved with choices based upon
practical experience accumulated over a long period of time. However, this em-
pirical method requires excessive time and manpower resources. Our method
to tackle this problem has been to develop an efficient software to compute
completeness and reliability achieved in a run with given control parameters.
This needs to be done with some care: e.g., to compare a list of proposed
identifications with the “ground truth” is a quadratic loop, thus we have im-
plemented for this a method 23 of computational complexity O(mtot log(mtot)).
Using also open source operating system tools to detect the efficiency bottle-
necks, such as the undetected quadratic loops, we were able to get reports on
the performance of each run in a fully automated way.

This was used on two test cases: one containing only Main Belt asteroids (with
a population reduced by 1/10 with respect to the model) and one with NEA
only. We loosened the control parameters, and made other choices increasing
the computational load, in the NEA simulation until we got to the target
level of completeness (above 99%). We tightened the control parameters, and
made other choices meant to decrease the computational load, in the MB 1/10
simulation until we got a satisfactory ratio (' 1/12) between the leftover,
unidentified TSA and the input ones together with an acceptable CPU time
(corresponding, by the CPU time model, to a total time of 1-2 days for a full
run). Then we used the options of the MB 1/10 run for the first iteration (see

23 Sorting of the unique names in lexicographic order and binary search.
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Section 7.5) and the NEA options in the second iteration (see Section 7.6).
The potential problem in this approach is reliability: the false identifications
are quadratic in the number density of observations per unit area on the sky,
thus a fraction of 0.44% of false 2-identifications in the 1/10 run was expected
to increase in the full run by a factor ' 100 in number, ' 10 in percentage:
indeed, the value found in the full run was 4.1%. However, our identification
normalization algorithm of Section 7.1 was very successful, removing 99.99%
of the false identifications. This result is “too good to be realistic”, as discussed
in Section 8.2, that is it could be difficult to achieve such an almost perfect
reliability if the random character of marginal detections was included in the
simulation.

7.5 Simulation Results: first iteration

The purpose of the first iteration is to remove as many attributables as possible
from those to be identified, by solving the “easy” cases with a computationally
cheap algorithm. Thus the average number of VAs per attributable needs to
be close to 1. We have used in Step 1 a method based on our theory of the
admissible region: for each attributable we have computed, in the (r, ṙ) plane,
the point with largest r among those resulting in a semimajor axis of 2.5
AU 24 . Only if the region with a < 2.5 AU had two connected components we
have also added another VA located in the component farther from Earth 25 .

The logic behind this choice is to force our VAs to be in the main belt,
whenever the admissible region contains some main belt type orbits. This
should give some advantage with respect to the classical Väisälä method
[Väisälä and Oterma 1951], which assumes the asteroid is at perihelion when
it is observed. Väisälä’s assumption can be shown to be optimal if the object is
indeed a main belt asteroid and it is observed near the opposition, our method
should be less dependent upon the observing strategy. Anyway, the details of
the method used to obtain VAs in the first iteration do not matter much, pro-
vided it achieves the goal of allowing the identification of most attributables.
The assumptions made in selecting the VAs (both with Väisälä’s and with our
method) are creating a “computational bias” against identifying Near Earth
Objects (NEO), but this does not matter in the first iteration.

The number of TSA couples to be compared is huge, thus it is necessary
to reduce the number of candidate couples with a very simple test. As first

filtering stage we use the distance d =
√

(∆δ)2 + (cos δ ∆α)2 between the
predicted observations at some standard hour for each observing night and

24 We have used for r the first positive root of the equation associated with the level
curve E� = −k2/(2 amax) for amax = 2.5 AU, and ṙ = −c1/2 (see Paper I).
25 Taking for r the average of the second and third positive root, and ṙ = −c1/2.
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the value of α, δ obtained by linear extrapolation for each attributable of
the same night [Milani et al. 2001]. Thus the orbit propagation is not in a
quadratic loop, just in a linear one. However, even the computation of the
distance d is too long if it is executed for each couple! This quadratic loop
is replaced by one with computational complexity O (mtot log(mtot)). We sort
the TSAs first by central time t, then for each night by the value of the right
ascension at the reference hour; we use a binary search to find the TSA with the
α nearest to the prediction and compare it only to the ones with neigboring α.
This algorithm is simpler and less efficient than the multidimensional sorting
of [Granvik et al. 2005], but it is efficient enough for a simulation of this size.

Because in the first iteration computational efficiency has priority with respect
to completeness (but not with respect to reliability) we have used in Steps 2,
3 and 4 comparatively tight controls, e.g., Kmax ≤ 162 in Step 2 and ≤ 202

in Steps 3 and 4. To avoid too many duplications from identifications found
in different order, in steps 2 and 3 we search for attributions only forward in
time. To minimize the number of false and incomplete identifications (both
would result in removal from the list of attributables, thus the second iteration
could not recover the corresponding true and complete identifications) we have
excluded the 2–identifications from Steps 5 and 6.

An additional control to avoid false identifications is based on the comparison
of the mean apparent magnitude h̄ with the predicted one. However, we have
used a loose control: the RMS of the photometry must be ≤ 0.7 magnitudes.
This could appear inconsistent with the error model (RMS = 0.2 magnitudes),
but the lightcurve effects were not included. Thus we do not wish to obtain
illusory reliability results by using a tight control on photometry, which would
produce many false negatives in a more realistic simulation.

The results of the first iteration are summarized in Table 2. The level of
completeness is already good for 3–identifications, it is extremely good for 4–
identifications. The total CPU time of the first iteration was 37.2 hours, thus
we have achieved the goal of making our algorithms efficient enough to be
used as primary orbit determination method. However, in the first iteration
we have not fully exploited the new algorithm described in this paper, because
we are not using the triangulation of the admissible region.

The problem is that the small fraction of Lost(4) = 1.71% includes 54.2% of
the NEO. The situation is even worse for 3–nighters, with 67% of the NEO
among the lost. This is the motivation for the use of two iterations: the fast
method essentially does not work for NEO, but allows to reduce the data
set, thus making feasible a much more computationally intensive search for
identifications in the second iteration. After the first iteration, the number of
attributables left after removal of the observations of the (normalized) 3– and
4–identifications was 213, 606, that is only 6.1% of the original data set.
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Table 2
Results of the first iteration: for the symbols, see Section 7.1.

k 4 3

Compl(k) 98.26 % 93.92 %

for NEA only 45.5 % 33.0 %

Inc(k, k − 1) 0.02 %

for NEA only 0.3 %

Lost(k) 1.71 % 6.07 %

for NEA only 54.2 % 67.0 %

Wr(k) 0.0001 % 0.01 %

for NEA only 0 % 0 %

7.6 Simulation results: second iteration

The second iteration is performed on the reduced list of “leftover” attributa-
bles selected by Step 6 of the first iteration. There are also six steps correspond-
ing to the ones of the first iteration, with the following specific differences:

(1) On average 50 VAs are generated for each attributable by the Delaunay
triangulation of the admissible region, by using the metric defined by the
log(r) function to enhance the number of VA in the NEA region (see
Paper I, section 5.3).

(2–4) Some controls are much looser, especially Kmax = 1002; in step 3 we look
for attributions also going backward in time.

(5–6) Identification management includes normalization of the list of 2–, 3– and
4–identifications.

The results after the second iteration, that is by joining all the identifications
found in the first and in the second iteration, are summarized in Table 3.
The fraction of objects lost among the 4–nighters becomes very small for both
main belt and NEO. 3–nighters also have a very good level of completeness,
even for 2–nighters the results are good. The fraction of wrong identifications
is minute. The higher fraction of identifications for NEO is unexplained, but
may be just the effect of small number statistics: indeed, there are only 10 lost
NEO (6 being 2–nighters), plus 3 incomplete NEO identifications.
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Table 3
Results after the second iteration.

k 4 3 2

Compl(k) 99.84 % 98.27 % 93.69 %

for NEA only 99.5 % 99.5 % 96.3 %

Inc(k, k − 1) 0.03 % 0.14 %

for NEA only 0.3 % 0 %

Inc(k, k − 2) 0.04 %

for NEA only 0 %

Lost(k) 0.06 % 1.58 % 5.93 %

for NEA only 0.3 % 0.5 % 3.2 %

Wr(k) 0.0001 % 0.01 % 0.01 %

for NEA only 0 % 0 % 0 %

Actually the number of “failures” is so small that we might be tempted to
look at them one by one and try to fix them: e.g., there are only 13 false
identifications (none for NEO). However, to further reduce these numbers by
ad hoc changes to the control parameters would give an illusory result. Addi-
tional tuning of the control parameters needs to be done on a more realistic
simulation and/or on real data.

The CPU time of the second iteration was 7.4 hours: more intensive computa-
tions were applied to much less numerous attributables to be identified, with
an overall computational cost significantly less than that of the first iteration.
This implies that, if in some future simulation the final results were not com-
plete enough, we would have to further increase the computational intensity
of the second iteration rather than of the first. Anyway the total CPU time
of less than 2 days (with standard hardware) implies that the efficiency of the
algorithm has exceeded the requirements for practical use as primary orbit
determination method.

We are not claiming that it is impossible to find a method both fast and com-
plete, to be used in a single iteration. E.g., it is clear that we could use a
“smart triangulation” algorithm selecting the number of nodes in the triangu-
lation depending upon some parameters of the attributable (the most obvious
being the proper motion and the elongation), and even retrying with a larger
number of nodes if no identification has been found: this would essentially be
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the same as our sequence of two iterations done at once. For the purpose of
this paper, to keep the two iterations separate allows to better understand the
main problem, which is the following.

For a computationally fast method we have to use few VAs per attributable:
if we want the fraction of objects identified by this method to be large, we
have to select these VAs in the portion of the admissible region where the
most numerous population can be found, in practice to select main belt like
VAs. In this way we selectively loose identifications for all the objects with
unusual orbits, which are the most interesting! The second iteration needs to
be totally unbiased, allowing for orbits known to be rare and even for ones
never discovered before. This is obtained by using a triangulation of the entire
admissible region.

8 Conclusions and future work

The goal of this research program was to solve the problem of orbit determi-
nation starting from a set of TSAs, each one by itself containing insufficient
information for the classical orbit determination methods. The most difficult
step was to obtain an orbit from a couple of TSAs obtained at different times.
This required to define two algorithms, one for computation of a prelimi-
nary orbit, and another one to allow for differential corrections starting from
the preliminary orbit, even for the cases in which the conventional algorithm
(pseudo-Newton method) fails.

A less challenging, but still far from trivial, problem was to identify a TSA
with one of more orbits computed from 2 other TSAs. As the number of TSAs
already identified increases the problem becomes easier, until the algorithms
already known, e.g., [Milani et al. 2001] become adequate.

The difficulty of the task arises from the fact that we have to assume that
the number of TSAs obtained from each night of observation is large, thus
we need to use an algorithm computationally efficient, to scan all the possible
couples of TSAs, and at the same time very accurate, to be able to discard false
identifications when a rigorous least square fit leaves unacceptable residuals.
Although the classical algorithms could in principle be used, they would not
be efficient enough to cope with the data volume expected from the next gen-
eration surveys. For a discussion on this, see also [Milani and Knežević 2005].

In one of our already published papers we had solved the problem of at-
tributing a TSA to a LOV orbit [Milani et al. 2005a], and this method can be
applied to the case in which we search for a TSA to be attributed to 2 TSAs
already identified (Section 6.3). We had also solved in Paper I the problem of
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selecting Virtual Asteroids for an object about which we only have a single
TSA. In [Milani and Knežević 2005] we gave an outline of the overall orbit
determination procedure, with several critical details to be filled in. With this
paper we conclude the next main step.

8.1 Results

In this paper we have solved the problem of selecting a (small) subset of TSA
couples for which an identification is worth trying, by using the minimum
identification penalty (Section 5.1). For the selected couples, the algorithm
also provides a preliminary orbit which could fit the two attributables of the
two TSAs with not too large residuals (Section 5.3). From each preliminary
orbit we can compute a constrained solution, along the LOV (line of weakness)
of the least squares fit with the observation of both TSAs (Section 6.2). From
each LOV solution we can search for a third TSA to be attributed. This follows
a similar scheme, with the minimum identification penalty acting as a filter
control to select the possible triples of TSAs (Section 6.3). This procedure can
be seen as one step in a recursive procedure to add more and more TSAs to
an orbit becoming increasingly well determined.

To the above theoretical results we have added the results of a large scale
simulation, with ' 3.5× 106 TSAs. With such a challenging test, of the same
order of complexity as the orbit determination problems of the next generation
surveys, we have been able to show that our algorithms can be implemented
in a very efficient software. The computational resources required to use our
algorithms as primary orbit determination method, applied to all observations,
are modest (a couple of days of CPU with a standard workstation).

We have obtained a level of completeness above 99% for 4–nighters, both main
belt and NEO, above 98% for 3–nighters and above 93% for 2–nighters. The
leftover “One Night Stands” file after removal of the TSAs belonging to the
identifications of the second iteration contains only 50, 257 TSAs, out of which
most belong to 1–nighters: only 3, 493 (0.1% of the original data set) belong
to objects observed in more than 1 night, thus could have been identified. The
number of wrong identifications is 13, negligibly small.

8.2 Open problems

One obvious problem is that it is not possible to find identifications with
objects which have not been observed. To estimate the completeness of the
simulated survey we should use the ratio between the total number of complete
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orbits in the final catalog and the total number of objects observed:

ComplS =
K

∑

k=2

n(k) Compl(k)/
K
∑

k=1

n(k)

which turns out to be, for the simulation we have completed, 94.5%. This
apparently satisfactory result depends upon the fact that, among the data
of the observation simulation we started from, most observations belonged
to 4–nighters (see Table 1). If there was a large proportion of 1–nighters,
there is nothing our identification algorithm could do to avoid a much lower
ComplS. Moreover, if there was a large proportion of 2–nighters, we would be
left with many very poor orbits, and also with a much larger number of false
2–identifications (see below).

Unfortunately, with a more realistic detection model the proportion of ob-
jects successfully observed over all the nights would decrease. Besides photon
statistics, for which the margin of 0.5 magnitudes below the limiting magni-
tude should be enough, lightcurve effects and variable seeing also contribute to
give to the same asteroid a different signal to noise ratio in different nights 26 .
Thus, there is a significant range in apparent magnitudes over which the ac-
tual detection of a TSA becomes a random event. Even if the margin was
enough to guarantee that the observations included in the simulation are ac-
tually detected, in a more realistic simulation there would be many additional
1– and 2–nighters with marginal signal to noise: they would result in many
TSAs either not identified or with only dubious 2–identifications.

In the simulation of this paper we have limited the search for identifications to
consecutive observing nights, that is the propagation time span was limited to
4 days. This limitation could be removed: the algorithms should perform well
also over a propagation time span of either 8 or 12 days, as the example of
Figure 4, with a propagation time of 12 days, indicates. This would improve the
situation if a large fraction of objects was observed, e.g., the first and the third
night. However, the procedure would become somewhat more complicated.

In the simulation we have used there were no Trojans, no Trans-Neptunians,
no comets, no Centaurs, no natural satellites, no exotic objects belonging
to so far undiscovered dynamical classes. An important next stage in the
simulations would be to add all of those, to make sure that our procedure
is not introducing a “computational bias” against the identification, thus the
orbit determination, of such objects. Indeed we may find that different control

26 The apparent magnitude may change even over the 1/2 hour between the two
observations of the same TSA, because a large fraction of the small asteroids which
will be observed by the next generation surveys have a rotation period < 3 hours
(A.W. Harris, private communication).
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parameters, and even a different sequence of iterations, might be required to
achieve a high completeness for these classes of objects.

An open problem is how to use the 2–identification orbits. One possibility is to
identify them with k–identification orbits obtained in other months. When the
survey has operated for a time longer than the synodic periods of the Main Belt
asteroids, then most of the objects have multiple orbits in the catalog and orbit
identifications can be found with known algorithms [Milani et al. 2000]. The
problem of identifying even the constrained solutions of the 2–identification
orbits has already been solved [Milani et al. 2005a]. Another possibility is to
propagate the 2–identification orbits to seek for TSAs to be attributed in
observing nights not too far in time, possibly even looking for detections with
marginal signal to noise. With all this, we still think that the 2–nighters are
not a real discovery, just a proposed discovery: their orbits are often so poorly
determined that it is not even possible to decide if they are NEO, and some
of them may even correspond to false identifications. As an example, in the
simulation of this paper the fraction of wrong identifications at level 2 was
4.1%. The normalization procedure was able to remove almost all of them,
because they were discordant with either 3– or 4–identifications: if these better
identifications were not available, we would not be able to get rid of them.
We conclude that an asteroid/comet survey should have as a design goal to
minimize the number of 2–nighters, as well as the number of 1–nighters.

Last but not least, such a huge orbit determination would result in a large
catalog of orbits, some of which would be compatible, within the uncertainties,
with collisions with our planet. We have developed methods to solve this im-
pact monitoring problem [Milani et al. 2005b]. However, the next generation
surveys might generate such a large population of Virtual Impactors that the
current algorithms might not be efficient enough. This problem is connected
to the one of 2–nighters: they have such poor orbits, that a surprisingly large
proportion of them would turn out to be compatible with impacts, although
the probabilities of such impacts would be very small.
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De Sanctis, G., Morbidelli, R., Cellino, A., Tedesco, E., 2005. Linking Very Large
Telescope asteroid observations. In Knežević, Z., Milani, A. (Eds.), Dynamics of
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