
A timewise kinematic method for satellite gradiometry:

GOCE simulations

Andrea Milani
Dept. Mathematics, Pisa University, Largo Pontecorvo 5, 56127 Pisa, Italy

e-mail: milani@dm.unipi.it

Alessandro Rossi
ISTI-CNR, Via Moruzzi 1, 56124 Pisa, Italy

e-mail: Alessandro.Rossi@isti.cnr.it

Daniela Villani
Hyperborea S.c., Via Giuntini 13, 56023 Cascina, Italy

e-mail: d.villani@hyperborea.com

Submitted, April 13, 2005

Abstract. We have defined new algorithms for the data processing of a satellite
geodesy mission with gradiometer (such as the next European mission GOCE) to
extract the information on the gravity field coefficients with a realistic estimate of
their accuracy. The large scale data processing can be managed by a multistage
decomposition. First the spacecraft position is determined, i.e., a kinematic method
is normally used. Second we use a new method to perform the necessary digital
calibration of the gradiometer. Third we use a multiarc approach to separately solve
for the global gravity field parameters. Fourth we use an approximate resonant
decomposition, that is we partition in a new way the harmonic coefficients of the
gravity field. Thus the normal system is reduced to blocks of manageable size with-
out neglecting significant correlations. Still the normal system is badly conditioned
because of the polar gaps in the spatial distribution of the data. We have shown that
the principal components of the uncertainty correspond to harmonic anomalies with
very small signal in the region where GOCE is flying; these uncertainties cannot be
removed by any data processing method. This allows a complete simulation of the
GOCE mission with affordable computer resources. We show that it is possible to
solve for the harmonic coefficients up to degree 200 ÷ 220 with error to signal ratio
≥ 1, taking into account systematic measurement errors. Errors in the spacecraft
orbit, as expected from state of the art satellite navigation, do not degrade the
solution. Gradiometer calibration is the main problem. By including a systematic
error model, we have shown that the results are sensitive to spurious gradiometer
signals at frequencies close to the lower limit of the measurement band. If these
spurious effects grow as the inverse of the frequency, then the actual error is larger
than the formal error only by a factor ' 2, that is the results are not compromised.
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1. Introduction

Gravity field and steady-state Ocean Circulation Explorer (GOCE) is an
European Space Agency (ESA) mission soon to be launched, with the
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2 A. Milani et al.

purpose of determining the gravity field of the Earth to unprecedented
accuracy and resolution, by using the data from two main instruments.
A gradiometer measures the second derivatives of the gravitational po-
tential. A GPS receiver measures the spacecraft position by low-high
satellite-to-satellite tracking (ESA, 1999).

To extract the scientifically important results from a mission like
GOCE is a large data processing task. The challenge is not just the
amount of computations, but to find algorithms fully exploiting the
observational information without introducing instabilities and unjus-
tified constraints. Several different methods have been proposed to
decompose the problem into feasible computational steps. The full least
square fit would have a huge normal matrix: we need to find a block
decomposition of the normal matrix with dominant diagonal blocks.
Then the normal matrix can be approximately inverted by ignoring
the off-diagonal blocks. This provides the corrections to the parameters
and also an incomplete estimate of the overall covariance matrix. The
procedure can be iterated to account for the neglected terms.

The selection of this decomposition requires understanding of the
structure of the data and of the physics of the dynamical and measure-
ment processes. This paper discusses both aspects. We have found an
algorithm, based upon a sequence of decompositions, allowing to solve
for the geopotential harmonic coefficients up to a very high degree
and order with modest computational resources. We have tested such
an algorithm in a full scale simulation of the GOCE data processing,
including a data simulation step and a correction step. Our choices are
justified both by mathematical arguments, showing the correlations
and approximate symmetries which need to be controlled, and by the
results of the numerical tests.

1.1. Kinematic solution

The first decomposition of the problem can be obtained from the fol-
lowing considerations. The GPS receivers provide phase measurements
which can be processed to provide the spacecraft positions. To obtain
the best results in this Precision Orbit Determination (POD) stage,
the processing is usually performed with a reduced dynamical method
(e.g., Visser and van den IJssel, 2000): the orbit of the spacecraft is
determined only over a short arc, under a dynamical model including
empirical accelerations to be solved simultaneously. The empirical ac-
celerations absorb both the non gravitational perturbations and the
inaccuracies in the knowledge of the gravitational accelerations. This
process has been shown to be accurate to a few cm in all directions in
the spacecraft position over the entire mission.
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Satellite gradiometry 3

This has two important implications: first, the data from the on
board accelerometers (components of the gradiometer) do not need
to be used in the POD; second, the GPS data do not provide useful
information on the gravity field, because the empirical acceleration mix
together the gravitational signal with the non gravitational one1. It fol-
lows that the normal matrix of the GOCE solution can be approximated
by a matrix with two diagonal blocks: the normal matrix of the POD
and the normal matrix for all the parameters to be solved by fitting
the gradiometer data, including the geopotential coefficients g and the
gradiometer calibrations `. Thus it is possible to solve the full problem
in two steps, the POD and the kinematic solution using the GPS orbit
without corrections. This first step of the problem decomposition has
been adopted by all the authors. We will discuss and test the quality
of the approximation done in neglecting the dependency of the gravity
field solution upon the spacecraft position errors.

1.2. Timewise solution

A second basic choice is the organization of the GOCE observations
in one of three possible ways. In a spacewise solution the data points
are considered by their position in space, in a reference frame rotating
with the solid body of the Earth; in this way the data are a sampling
of the gravity field over a geocentric sphere (more exactly a thin shell:
the orbit is almost circular). This choice has the advantage that most
of the gravitational signal to be determined is also organized spatially,
although there are time dependent signals due to tides and other de-
formations. In a timewise solution the data points are considered as
a discretized time series. This is a less natural way of looking at the
static part of the gravitational signal: indeed, each spherical harmonic
appears as a sum of signals with different frequencies (Kaula, 1966).
The advantage of the timewise methods is in the treatment of the
gradiometer calibrations. In a frequencywise solution the time series of
the gradiometer data are Fourier transformed into the frequency do-
main. Since the effect of each spherical harmonic can be represented by
a Fourier polynomial with good approximation, the fit can be directly
performed in the frequencies space. This method is the most convenient
in the mission design phase, because it allows to convert requirements
in the error spectrum of the gradiometer into error spectrum of the
recovered gravity coefficients.

1 There are other methods of data processing to extract gravity field information
from the GPS data, as used with CHAMP (Reigber et al., 2002), but they cannot
be pushed to the GOCE level of accuracy and resolution.
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These three approaches are equivalent for a perfect distribution of
data. With a spatial distribution uniform on a sphere and a time distri-
bution uniform over an unlimited time span there is a well conditioned
one-to-one correspondence between spherical harmonics, a linear sub-
space of the signal as function of time, and its discrete spectra. However,
such uniformities are impossible in real satellite geodesy missions. The
distinction of the spacewise approach has been well understood since
the early phases of GOCE (Rummel et al., 1993), but the implications
of the difference between the timewise and the frequencywise methods
have been underestimated.

A fundamental problem of all the satellite geodesy missions with
on board accelerometers of whatever type is that all such instruments
provide relative measurements2. Thus it is necessary to add a posteriori
calibration parameters to the list of parameters to be determined. The
instrumental calibrations are organized timewise: the accelerometer bi-
ases can be assumed to change smoothly with time, while if they were
organized spatially they would appear almost random.

The calibrations of the individual accelerometer channels can be
combined into calibrations for the gradiometer and calibrations for the
common mode measurements. The latter are obviously strongly corre-
lated with the empirical accelerations solved in the reduced dynamics
POD. The gradiometer calibrations can be determined neither from the
orbit nor from the common mode calibrations.

Several methods have been proposed to remove the effect of the
gradiometer errors, including calibration errors, from the data. In a
frequencywise method digital filters can be used; however, as pointed
out in Albertella et al. (2001), the frequency domains of the calibrations
and of the gravitational signal have some overlap, thus the procedure
has to be much more than a simple linear filtering. Moreover, the
frequencywise methods are very sensitive to data gaps (in time). In
a spacewise method, the calibration error can be partially removed
by averaging/smoothing techniques, but there is no guarantee that
systematic errors would be fully removed. It is clear that solving for
the calibration error is by far simpler within a timewise method.

Our method can be described as timewise kinematic, in that the
orbit is assumed (from the POD) and the predicted gradients are
computed as a time series and directly compared with the individual
observations. The least squares fit is linear; nevertheless it may require
iterations because the normal system of equations is too large to be

2 Absolute a priori calibration of an accelerometer is possible only at moderate
levels of accuracy (such as in inertial guidance systems). In flight calibration is
possible with dedicated devices, but to achieve the level of accuracy envisaged for
the GOCE measurements would be very difficult.
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solved at once, as discussed in Section 4.3, but the number of necessary
iterations is small.

The separation of the calibrations from the gravity signal is the
second step of the problem decomposition. It is obtained by fitting
the calibrations to a linear combination of slowly varying base func-
tions, separately on each time interval: it is described in Section 2.
This allows the separation of the calibrations as local parameters from
the global ones describing the gravity field, as discussed in Section 3.
A third decomposition step is necessary to allow the full solution to
be computed with limited computing resources. With a method called
resonant decomposition we reorder the normal matrix of the g variables
in such a way that it also has a dominant block diagonal structure: this
is described in Section 4.

A timewise method is insensitive to data gaps organized by time
(e.g., instrument shutdown/communication failures), but all methods
are sensitive to data gaps organized spatially. We show in Section 5 that
the polar gaps resulting from the non polar orbit of GOCE introduce
an exact symmetry in the functional space of spherical harmonics. This
exact symmetry is broken in a finite spherical harmonics expansion,
but still holds as an approximate symmetry. Thus all data processing
methods have to be sensitive to the indetermination resulting from the
polar gaps. We validate the results of our numerical experiments in Sec-
tion 6 by showing that the main indetermination is the one unavoidably
resulting from the polar gaps.

2. Gradiometer Calibration

The observations include two independent components of the grav-
ity gradient. E.g., if they are sampled every 10 s for a measurement
time span of about 8 months3, the observations form a vector A with
' 4 × 106 components. We have performed a fit to the gradiometer
observations vector A solving for two parameter vectors: the gravity
harmonic coefficients g (e.g., 2012 coefficients if the field is determined
up to degree and order 200) and the gradiometer calibration parameters
`. The main issue is the dimension of `. E.g., let us suppose a set of 2 cal-
ibration parameters had to be solved for each interval of ' 200 s, since
fm = 1/200 Hz is the lower frequency limit of the measurement band,
where the gradiometer data are most accurate (ESA, 1999, Section 8.1):
this would imply ' 2 × 105 calibration parameters. This large number

3 This sampling is meant to be the result of a preprocessing stage, in which
digital filtering is used to remove the noise at frequencies higher than the upper
limit fs ' 1/10 Hz of the measurement band.
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would be a problem, not only for the computational load (especially
memory size), but also for the bad conditioning of the normal matrix.
Thus we need to discuss in depth the calibration requirements.

2.1. Need for a posteriori calibration

The measurement error of a space borne gradiometer is not dominated
by noise, but by systematic signals, mostly from two sources.

Thermal signals arise from the basic physical property of accelerome-
ter devices: they are anyway also thermometers. The GOCE accelerom-
eter units have a thermal response of ' 10−5 cm/s2/K−1. If the changes
in temperature had a noise behavior, the spurious signal introduced in
the accelerometer readings by the thermal effects would appear as a
noise, to be described in terms of power spectrum. However, thermal
signals are by no means random, they occur with well defined frequen-
cies depending upon the external sources of heat and the control cycles
of the thermal stabilization system4.

The second main source of gradiometer measurement error is the
attitude control system. A gradiometer cannot measure the gravity
gradient independently from the gradient of the apparent forces due to
the spacecraft rotation (ESA, 1999, Sect. 7.2, Bouman and Radboud,
2003). The centrifugal term can be deduced from the sum of the three
diagonal terms in the gravity gradient matrix, this is the reason why
only two diagonal components can be independently measured with full
precision. However, there are error terms induced by the inaccuracy of
the attitude control and knowledge, and by the inaccurate knowledge of
the location of the accelerometers with respect to the spacecraft center
of mass. The attitude control system operates with a characteristic,
highly colored, frequency spectrum.

Thus both the main sources of error introduce a very systematic
time dependent bias. One important component of the gradiometer
error cannot be modeled as a noise with a continuum spectrum, but
rather as a superposition of oscillations with well defined periods, such
as the orbital period and its submultiples, the day, the year and its
submultiples (Pail and Plank, 2002). From this we draw two conclu-
sions. First, a model for these systematic biases needs to be included
in the data simulation, otherwise the results would show an illusory
accuracy. Second, this bias, at least for the low frequency components,
needs to be digitally removed by solving for calibration parameters in
the correction step.

4 Thermal stabilization systems cannot control the absolute temperature, they
cannot avoid long term drifts in the temperature, because an absolute thermometer
is as challenging as an absolute accelerometer.
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2.2. Simulation of systematic calibration errors

Although the measurement errors of the gradiometer contain also noise,
we are mostly interested in evaluating the effects of the systematic bias
components5. Thus we have used, in the data simulations, an error
model with a systematic component as well as a random one. For the
random component we have used uncorrelated Gaussian noise with
RMS 0.004 E (Eötvös units, 10−9 s−2). This noise term is used to
define the formal covariance, that is the gravity gradient residuals are
weighed dividing by 0.004 E.

The systematic component has been modeled by a finite number of
harmonics, with an amplitude inversely proportional to the frequency,
up to a period of one day. This includes a daily term (with amplitude
of 1.73 E), a once per rev (with amplitude of 0.1 E) and a twice per rev
terms (with amplitude of 0.055 E), supposedly accounting for thermal
changes. For the very long term drift (supposedly due to seasonal ther-
mal effects) we have assumed a period of one year and an amplitude
of 18.6 E, decreased, with respect to the f−1 law, by a factor 0.03
(supposedly an a priori calibration by means of a temperature mea-
surement accurate to ' 2 milli Kelvin). We have also added a term
with period 1, 000 s and amplitude of 0.02 E, 5 times the RMS of
the noise component, with the purpose of investigating the systematic
errors introduced in the solution for the harmonic coefficients as a result
of spurious signals due to other causes, such as the attitude control.

2.3. Fit of calibration parameters

The time dependent gradiometer bias, for each of the two independent
components, can be represented as a linear combination

b(t) =
N

∑

i=1

di ci(t) (1)

of suitable base functions ci of the time. This representation is appli-
cable only to a limited time span, which we will call an arc. The need
to decompose the fit into arcs arises from two considerations. First, the
number N of base functions solved at once cannot be too large to avoid
computational complexity and instability. Second, we do not want to
impose one specific functional representation of the bias over the entire
mission duration, because real information on the long term behavior
of the accelerometer is not available. Of course in the data simulation

5 This also because the effects of noise have already been discussed by other
authors, e.g., (Pail and Plank, 2002)
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we introduce biases with a specific functional form, e.g., a finite sum of
harmonics as discussed in the previous subsection, but this information
must not be used in the correction step.

On the other hand the time span ∆t over which the representation of
Eq. 1 is applicable cannot be too short. The bias to be removed in this
way has to be the low frequency component, with frequencies below a
calibration band upper limit fc well separated from the measurement
band lower limit fm ' 1/200 Hz. As an example, the tests of this
paper have used a calibration band with frequencies below fc = 1/2000
Hz. Thus the combination of values of ∆t and N , and the set of base
functions ci, have to be selected to model a bias with arbitrary signal in
the calibration band. Note that the spurious signals in the intermediate
band with frequency between fc and fm are not removed.

The choice for the base functions needs to take into account three
requirements. First, the total number of parameters needs to be con-
trolled, with an appropriate choice of the parameters ∆t andN . Second,
the normal system for all the calibration parameters ` needs to be well
conditioned. Third, we need to stress once again that the calibration
model should not constrain the shape of the calibration as a function
of time, and should not use information on this shape illegitimately
transfered from the simulation step.

A natural choice would be to use a Fourier polynomial representation
of the calibrations over the arc time span, with a combination of a
constant and sine and cosine terms with periods ∆t/k for k = 1, . . . ,K;
then N = 2K+1. To limit the removal of signal to the calibration band,
K = ∆t · fc. E.g., ∆t = 10, 000 s, K = 5 are acceptable choices. The
second requirement is met because the Fourier terms are orthogonal:

∫ t0+∆t

t0

cos(kt) · cos(jt) dt = 0

for k 6= j, and similarly for the sine terms. The normal matrix of the
coefficients ci, i = 1, . . . , 2K+1 contains finite sums approximating the
above integrals, thus it is diagonal dominant. However, this selection of
base functions does not satisfy the third requirement, because all the
base function are periodic of period ∆t and thus have the same value at
the two extremes of the arc interval. If a calibration with a long term
trend was fitted in this way, the post fit residuals would show com-
paratively large “jumps” at the arc boundaries. To mitigate this effect
we have added a linear function of time to the base functions. Thus
the number of coefficients per arc is increased to 2K + 2, the normal
matrix is not anymore diagonal dominant but the conditioning remains
acceptable, and the “jumps” are significantly reduced, although they
are still present.
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It would be possible to reduce the arc boundary “jumps” to levels
below the noise, by fitting a calibration model with margins beyond the
arc boundaries, that is with Fourier components of periods ∆t · (1 +
2h)/k over the arc t0 − h∆t ≤ t ≤ t0 + (1 + h)∆t. Then the calibration
model would be used only on t0 ≤ t ≤ t0 + ∆t, removing the spurious
boundary effects. This strategy for digital calibration would produce
residuals of the final fit without the few comparatively high values due
to the jumps, but no substantial changes would result on the solution
for the gravity coefficients (see Section 6.1).

Another possibility would be to use Chebychev polynomials as base
functions, and indeed this would result in much lower “boundary jumps”,
but we have found that the results would be somewhat worse in terms
of solution for the gravity coefficients.

In conclusion, the best strategy to fit the calibration would be to use
Fourier polynomials, augmented with a linear function, with margins
beyond the arc boundaries. However this would make the multi arc
solution, discussed in Section 3.1, more complicated. For this reason
we have performed most simulations without margins beyond the arc
boundaries, but we have tested the sensitivity of the results to this
problem (see Section 6.1).

The total number of calibration parameters ` for a simulation over
a total time span of 2 × 107 s is therefore

2 × (2K + 2) ×Narc = 2 × 12 × 2 × 107/104 = 48, 000 (2)

where Narc is the number of arcs.

3. Multi arc solution

The multi arc approach is a form of the least squares method, in which
the list of parameters is split in accordance to the partition of the orbit
into arcs (Reigber, 1989; Milani and Melchioni, 1989; Milani et al.,
1995). We briefly recall the necessary formulae in the next subsection.

3.1. Local-global decomposition

We use the notation [a; b] to indicate the stacking of the two column
vectors a and b to form a longer vector. The vector of all parameters
z = [g; `] is split into a vector g of global solve-for parameters, in
this case the harmonic coefficients of the gravity field, and a vector
` of local solve-for parameters, in this case the gradiometer calibration
parameters. ` is further split into vectors `j, one for each arc, formed
by the gravity gradient measurements over a given span of time; also
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the residuals ξ are split in the ξj, where j = 1, . . . , N is the arc index.
The residuals from one arc do not depend upon the local parameters
of another arc:

B(j)
g =

∂ξj
∂g

; B
(j)
`i

=
∂ξj
∂`i

= 0 for i 6= j (3)

where the residuals are already normalized. As a result the contribu-
tions of each arc to the overall normal system are as follows:

C`i`j
= (B

(j)
`j

)TB
(i)
`i

= CT
`j`i

6= 0 only for i = j

Cg`i
= (B(i)

g )TB
(i)
`i

= CT
`ig

; Cgg =
N

∑

i=1

(B(i)
g )TB(i)

g = CT
gg

giving to the normal system matrix C an arrow-like structure (Colombo,
1989). The right hand side of the normal system can be computed by

Dg = −
N

∑

i=1

(B(i)
g )T ξi ; D` = [D`1 ; . . . ;D`N

] ; D`i
= −(B

(i)
`i

)T ξi

Then the normal system can be written as a system of two equations:
{

Cgg∆g + Cg`∆` = Dg

C`g∆g + C``∆` = D`

To solve exactly the normal system above without losing the advantage
of the separation between local and global parameters, we solve the
second equation with respect to the differential correction ∆` of the
local parameters, then substitute into the first one:

{

∆` = C−1
`` [D` −C`g∆g]

[Cgg − Cg`C
−1
`` C`g]∆g = Dg − Cg`C

−1
`` D`

As a result, the solution for the differential correction ∆g of the global
parameters is obtained by means of the variance-covariance matrix Γgg:

Γgg =[Cgg − Cg`C
−1
`` C`g]

−1 ; ∆g = Γgg[Dg − Cg`C
−1
`` D`] . (4)

The corrections ∆g and the covariance Γgg are not the same as
it would be obtained from a separate global-only correction (that is,
Γgg 6= C−1

gg ). This because of the correlation between the local and the
global parameters, which is not zero and can be computed by:

Γ`ig = −C−1
`i`i
C`igΓgg .

The corrections ∆` are found by the first of the two normal equations:
they are not the same as in a local-only correction.
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If the ` parameters satisfy Eq. (3), then the matrix C`` is block
diagonal and can be inverted block by block. If there are some residuals
from one arc depending upon the calibration parameters of a neighbor-
ing arc, as it is indeed the case when the calibration model is fitted
with margins beyond the arc boundaries, then the matrix C`` is block
tridiagonal and the procedure to invert it becomes more demanding.

3.2. Relevance of the local-global correlation

It would be convenient to split the solution into two independent steps,
first to determine the calibration parameters `, then to solve for the
gravity parameters g. This, however, ignores the portion C`g of the
normal matrix, forcing Γ`g = 0, and changes the solution ∆g.

The replacement of Γgg with C−1
gg is the most dangerous approxima-

tion, because it is potentially misleading. Eq. (4) shows that the true
Γ−1

gg is Cgg minus a symmetric positive definite matrix. Geometrically,
the confidence ellipsoid surrounding the nominal solution g∗ is

Z(χ) =
{

g | (g − g∗)T Γ−1
gg (g − g∗) < χ2

}

for a given confidence level χ. If C−1
gg was used instead of Γgg, then

the confidence ellipsoid would be believed to be the ellipsoid defined
by the matrix Cgg instead of Γ−1

gg , which is a proper subset of the
ellipsoid Z(χ). Then the solution would be deemed to belong to the
smaller ellipsoid, while it actually belongs to the larger one. To avoid
results with a claimed illusory precision, we need to either perform
the computation at once for ` and g, or to test the difference between
the full computation and the simplified one and show it is irrelevant.
The experience with other satellite geodesy missions has shown that to
forget this check could be disastrous (Milani et al., 2001).

The results of one such test is shown in Figure 1. We have computed
a full solution, including local-global correlations, and we plot in the
Figure, as a function of the degree l, both the formal variance and the
actual error (that is the difference between the solution of the differ-
ential corrections and the “true” value used in the data simulation).
Then we have computed a solution by zeroing the sub-matrix C`g,
equivalent to two separate solutions for ` and for g: the formal variance
is significantly smaller than the one from the complete computation,
especially for l = 2, 3, 6, 7, 8. The difference becomes not significant
for l ≥ 25. The local-global correlations (from the matrix Γ`g) are
' 0.2 for the Fourier component of the bias with k = 4, that is with
frequency 1/2500 Hz and the l = 2,m = 0 harmonic. As a result of the
correlations, the RMS uncertainty of the (2, 0) harmonic is increased by
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Figure 1. Comparison of different results for the spherical harmonic gravity coeffi-
cients, as a function of the degree l. Starting from the top at the left end of the plot:
the formal RMS from the covariance matrix computed including the local-global
correlations; the actual error of the computed solution; the formal RMS from the
covariance matrix computed without the local-global correlations. The formal RMS
of the computation with local-global limited to l > 24 appears at the lower right.

an order of magnitude. The actual error is consistent with the higher
formal uncertainty, statistically incompatible with the lower estimate.

The conclusion of this test is that the local-global correlations are
not negligible at all, at least for the low degrees. These results have
also an interpretation in terms of signal frequencies (see Figure 4 in
Albertella et al., 2001). The spherical harmonics up to degree ' 25
generate gradiometer signals with frequencies lower than those of the
measurement band. In particular, the harmonics of degree 2 generate
signals in the calibration band (frequencies lower than fc = 1/2000 Hz)
which can be absorbed in the estimated calibrations.

Thus GOCE should not be used to solve for the gravity coefficients
of low degrees. Several methods can be used to avoid the problems
resulting from the local-global correlation. The simplest method is to
solve only for coefficients of degree l > 24: then the effect of the local-
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global correlations is not significant (negligible in the variance, less
than 10% in the actual error). The result of this l > 24 solution is the
curve in the lowest right corner of Figure 1: the variance is somewhat
underestimated, due to the correlations between the harmonics with
l > 24 and the ones with 2 ≤ l ≤ 24; this effect becomes negligible
for harmonics with l > 75. Thus, for the purpose of these simulations,
with the main goal of computing a reliable estimate of the error for
high degrees, this approximation is sufficient.

In the processing of the real data it would be better to use the col-
location method, e.g., by adding a priori observations of the harmonics
with 2 ≤ l ≤ 24 weighed with the inverse of their known covariance
matrix, as resulting from the analysis of other missions. The analysis
of the CHAMP and GRACE data should provide more than enough a
priori information before the launch of GOCE.

We can conclude that, if the arc length ∆t, the number of calibration
parameters per arc 2K+2, and the minimum degree l are chosen prop-
erly, then it is possible to solve separately for the calibration parameters
` and then to solve for the harmonic coefficients g only.

4. Resonant Decomposition

As a result of the discussion in the previous Section, it is always possible
to compute the covariance matrix of the scientifically interesting results,
that is Γgg, in a separate step, either simply as C−1

gg or by using Eq. (4).
If the goal is to determine coefficients up to a large degree, e.g., l = 200
or even l = 250, the matrix to be inverted is still very large.

This results into two types of problems. First, practical problems
of computational resources. It is cumbersome to invert a matrix which
cannot fit in the RAM of the computer, and to store a matrix such as
Cgg for degree up to l = 250 requires more than 15 G Bytes. Also the
computing time for such a global solution (with a single CPU) would
introduce problems of reliability. This makes difficult to perform this
computation without using very expensive hardware. Second, problems
of numerical stability. The larger the matrix, the higher the risk that the
conditioning number is horrendous, and the results, even with a state
of the art supercomputer, would be degraded. For reasons discussed in
the next Section, we do know that Cgg is badly conditioned.

Thus it is necessary to decompose the problem into smaller ones: we
need to approximate the solution of the normal system

Γ−1
gg ∆g = Dg (5)
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Figure 2. Formal standard deviation of the spherical harmonic gravity coefficients
as a function of the degree l, for 25 ≤ l ≤ 250, including in the estimate only the
diagonal terms of the normal matrix Cgg. The coefficients included in this test are
only the ones for the remainder class r = 0 (see Section 4), including the zonals.

with a sequence of independent differential corrections for suitably
chosen subsets of the g parameters.

A trivial decomposition would be to solve for the harmonic coeffi-
cients one by one, that is, to approximate the Cgg normal matrix with
its main diagonal. Since the spherical harmonics are orthogonal on a
sphere and the GOCE measurements are roughly at constant altitude,
it might be expected that the terms outside the main diagonal are
small. However, this would be true if the GOCE measurements were
taken over a complete sphere (and with uniform spatial density). As a
result of the uneven spatial distribution of the measurements some off
diagonal terms are as large as the diagonal ones, the matrix is not at
all diagonal dominant, and the computation of the coefficients one by
one is a very poor approximation.

In Figure 2 we show the result of such a simplified computation,
compared with the signal assumed in the simulation (taken from the
EGM96 geopotential model, Lemoine et al., 1998) and Kaula’s rule. The
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curve show the formal RMS in the diagonal approximation, that is the
inverse square root of the diagonal term in Cgg, for a subset of gravity
coefficients including the zonal (m = 0) harmonics for 25 ≤ l ≤ 250. A
comparable plot showing the results of a full computation is Figure 4,
and it is clear that the two formal estimates are different by two orders
of magnitude for intermediate degrees. We conclude that to solve the
coefficients one by one would lead to claims of illusory precision.

Thus it is necessary to identify the subsets of the harmonic coef-
ficients which are significantly correlated. If the vector g is reordered
by using these correlated subsets, an almost block diagonal structure
appears, that is, the elements of the matrix outside the diagonal blocks
are not zero but much smaller than the corresponding elements in the
blocks. Then the matrix with the diagonal blocks and zeros outside the
blocks is a good approximation of Cgg. This Section presents one very
effective method to find this correlated subset decomposition, based on
(Milani et al., 1998).

4.1. Frequency analysis of the spherical harmonics

The Earth gravity potential U can be developed in the spherical har-
monic terms Ulm of degree l (l ≥ 0) and order m (m = 0, ..., l; “real rep-
resentation”). When transformed in the orbital elements of the satellite
the contribution of a particular harmonic (l,m) reads (Kaula, 1966)

Ulm =
GMe

R⊕

l
∑

p=0

∞
∑

q=−∞

(

R⊕

a

)l+1

F̄lmp(I)Glpq(e)Alm cos (vlmpq − ψlm)

(6)
where Me is the Earth mass, R⊕ its radius, a the semimajor axis of
the satellite orbit, e the eccentricity and I the inclination. F̄ and G are
the normalized inclination and eccentricity functions. The amplitudes
Alm and phases ψlm are obtained from the normalized geopotential
coefficients C̄lm and S̄lm (the global parameters g) by

Alm exp (iψlm) = C̄lm + iS̄lm ,

and the argument vlmpq is given by

vlmpq = (l − 2p)ω + (l − 2p+ q)M +m(Ω − ϑe) −
π

2
mod(l +m, 2)

where (Ω, ω,M) are the longitude of the node, the argument or perigee
and the mean anomaly; ϑe is the Greenwich sidereal time. Thus the
time series of the geopotential along the orbit contains the frequencies

d

dt
(vlmpq − ψlm) = (l − 2p+ q)n−mϑ̇e +

[

(l − 2p)ω̇ +mΩ̇
]

= νlmpq
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16 A. Milani et al.

where the dot stands for time derivative.
In the 2-body approximation, that is assuming that the mean motion

n is constant and the portion of the above formula between square
brackets is zero, the geopotential is a finite sum of periodic terms with
the frequencies

νlmpq = (l − 2p+ q)n−mϑ̇e .

The eccentricity functions Glpq(e) are of order |q| in the eccentricity.
Thus, for a nearly circular orbit such as the one of GOCE, the terms
with q 6= 0 are less important. In a better approximation, the mean
motion and the precession rates ω̇ and Ω̇ have to be computed taking
into account the secular perturbations due to the C 20 term; this changes
the structure of the frequency spectrum for the l = 0 zonal harmonics.

4.2. Exact resonance

Let us suppose the orbit of the satellite is exactly resonant with the
rotation of the Earth, that is there are two integers h, k such that

n+ ω̇

h
=
ϑ̇e − Ω̇

k
= µ . (7)

In the precessing ellipse approximation, this implies that the orbital
period of the satellite is exactly h/k sidereal days: the subsatellite track
returns on the same curve with a repeat cycle of h days. Neglecting the
q 6= 0 frequencies, the frequencies appearing in the time series are then
multiples of the basic frequency µ

νlmp0 = [(l − 2p)h−mk] µ .

Thus the signal from all harmonics is periodic of period 2π/µ and can
be described as a Fourier series with arguments j µ t, with j an integer.

The signal from the harmonics with the samem and with an l having
the same parity share the same frequencies, with different amplitudes.
In a frequencywise approach, after having computed the lumped coeffi-
cients represented by the amplitudes of the signal for each frequency, it
is possible to solve for the individual geopotential coefficients, using a
block diagonal structure with the harmonics with the samem belonging
to the same block. In this algorithm, the blocks contain significant off-
diagonal terms (Sneeuw and van Gelderen, 1997, Figure 4.1). Even
within a timewise approach, the normal matrix could be decomposed
by the value of the order m, as proposed in (Colombo, 1989).

Since the individual Fourier terms cos(j µ t) and sin(j µ t) are orthog-
onal (the integral over one period of their product is zero), spherical
harmonics generating signals with disjoint sets of frequencies are also
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orthogonal. In particular, two spherical harmonics with degree and
order (l,m) and (l′,m′) are orthogonal in the time series if and only if

k m′ = ±k m (mod h) . (8)

A decomposition of the normal matrix by blocks corresponding to
a remainder class is therefore exactly block diagonal, even taking into
account the correlations between signals with different frequencies, ne-
glected in a pure frequencywise approach. Because of the finite measure-
ment time span, and especially of the data gaps, the observed signals
with different frequencies are correlated, thus the off diagonal blocks
with different m in the same remainder class are not zero.

The above results refer to the geopotential, but in fact apply to
whatever harmonic function expanded in spherical harmonics. If the
geopotential is harmonic, then all its partial derivatives are also har-
monic, including the gravity field and the gravity gradient. Moreover,
the derivatives of a spherical harmonic with order m has the same order
m (this is not true for the degree l).

Thus the first order perturbations on the spacecraft position (e.g.,
the GPS observables), being integrals of the time series of some grav-
ity field component, follow the same orthogonality rule (Milani et al.,
1998). The GOCE observables, being components of the gravity gradi-
ent, are also orthogonal in the time series unless the orders m and m′

fulfill Eq. (8).
Thus in the exact resonance case (and with negligible eccentricity)

the coefficients in g can be reordered by remainder class of the order
m; that is, Cr

gg, the diagonal block number r, refers to the harmonic
coefficients of degree and order (l,m) such that k m = ±r (mod h).
With this resonant decomposition the normal matrix Cgg is exactly
block diagonal. The advantage of this method with respect to the
decomposition by order m is that the number of blocks is smaller,
allowing for a limited number of independent computations, and the
correlations are not neglected.

4.3. Approximate resonance and iterative procedure

For a realistic satellite orbit, a resonance condition such as Eq. (7) is
not exactly fulfilled, and anyway the mean motion undergoes changes
as the semimajor axis of the orbit changes (as a result of the drag
and of the drag-controlling propulsion). Thus the problem is to find an
approximate resonance, to assess the relative size of the off-diagonal
blocks and to find an algorithm to take into account their contribution
to the solution ∆g (and to the covariance matrix Γgg).
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As an example, for a semimajor axis of 6621.62 km the values of the
mean frequencies (taking into account the secular perturbations due to
the C20 term) are (in rad/s)

n = 1.1726 × 10−3 ; ω̇ = 8.27 × 10−7 ; Ω̇ = −1.99 × 10−7

thus the ratio
n+ ω̇

ϑ̇e − Ω̇
= 16.05

is close enough to h/k = 16/1. However, the exact value of the semima-
jor axis for GOCE is not yet known, and it is expected that different
phases of the mission will have a different mean semimajor axis (ESA,
1999, Section 6.2.4). Thus we have used the resonant decomposition
corresponding to a resonance not too close to the nominal one, that is
h = 31, k = 2, to test the robustness of the method.

An assessment of the relative size of the off-diagonal blocks was
performed in the case of the GPS observables: the off-diagonal block
correlations were found to be less than 1% in the most critical cases
involving the r = 0 block, less than 0.4% in the other cases (Milani
et al., 1998, Figure 3.12). Although the gradiometer observables are
somewhat different, they are not affected by the small divisor problems
in the r = 0 block, thus we expect similar results.

The simplified inversion of the Cgg matrix by ignoring the off-diagonal
blocks can be considered as a first approximation of an iterative pro-
cedure: let us rewrite the normal system of Eq. (5) as

(M −N) ∆g = Dg (9)

where M is the block diagonal approximation, whose inverse M−1 can
be computed block by block. Then the standard iterative procedure
to solve the linear system (9) is to transform to a fixed point problem
(Bini, 1988, Section 5.2)

M ∆g = N ∆g +Dg ⇔ ∆g = M−1N ∆g +M−1Dg = P ∆g +Q

which can be solved by iteration

∆(1)g = P ∆(0)g +Q ; ∆(2)g = P ∆(1)g +Q . . .

starting from an arbitrary initial guess ∆(0)g; if ||P || < 1 the sequence
∆(k)g converges to some ∆∗g fulfilling the fixed point equation and the
complete normal system. If the initial guess is ∆(0)g = 0, then

∆(1)g = Q = M−1Dg

is the solution obtained with the approximate inversion. Thus the
simplified computation can be justified as a first step of a convergent
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Figure 3. For the remainder class r = 1, we plot as a function of the degree l, for
25 ≤ l ≤ 200: the gravity field signal (EGM96), the approximating Kaula’s rule,
the formal uncertainty and the actual error (estimate minus “true” value used in
the data simulation) of the first and the second iteration. The last two curves are
almost superimposed.

iteration. Figure 3 shows an example of the computation of the solution
for the gravity coefficient, and their covariance, for the remainder class
r = 1, which includes the harmonics with m = 15, 16, . . ..

The norm of P is small because the off-diagonal correlations are
small, but we do not have a quantitative estimate of this norm, thus
we are unable to compute analytically how many iterations would be
necessary for satisfactory convergence. To fill this gap in our knowledge,
we perform a numerical test consisting of a computation of the second
iteration ∆(2)g, which is possible by applying the correction of the first
iteration g → g+∆(1)g (for all remainder classes). This is possible only
after a complete first iteration, 16 separate differential corrections with
r = 0, 1, . . . , 15), by repeating the computation of the residuals and
performing a second iteration for some remainder class.

Figure 3 shows both the result of the first and the second iteration,
and the two curves are so close that most points are superimposed in the
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plot. We can conclude that, even by using h/k = 31/2, not the most
appropriate resonance for the value of n of GOCE, the off-diagonal
terms can be neglected and a full second iteration is not necessary6.

5. Consequences of polar gaps

In a solution for the geopotential coefficients up to a large degree and
order lmax, even after controlling the local-global correlations (with
an appropriate choice of the minimum degree lmin, as discussed in
Section 3.2), and after decomposing the normal matrix of the global
parameters Cgg as discussed in the previous Section, some diagonal
blocks Cr

gg are still very badly conditioned. As an example, the results
for the remainder class r = 0 in a solution for l ≤ lmax = 200 are
shown in Figure 4. The “belly” appearing both in the formal RMS and
in the actual error is due to correlation among the zonal harmonics.
The situation is such that the error to signal ratio reaches ' 1 around
degree 100. The analogous figure for lmax = 90 would show a much
lower belly, which does not result in an error to signal ≥ 1.

It can be checked that the large RMS (and also actual errors) occur
in this remainder class only for the zonals m = 0; the other harmonics,
with m = 31, 62, . . ., are determined with error/signal ratio well below
1 for all l. The correlations are significant only among the zonals, e.g.,
the l = 150, m = 0 harmonic has correlations with all the other even
zonals, l = 2−2p, m = 0, with correlation 0.9999 with the l = 148 and
the l = 152 one; there is also some correlation, although less extreme,
with the odd l zonals.

This is easy to understand by using the frequency analysis of Sec-
tion 4.1: for m = 0, low e (thus the main terms have q = 0):

νl0p0 = (l − 2p) (n+ ω̇)

and the highly correlated harmonics share the same frequencies: con-
secutive even (or odd) zonals have only one frequency not in common.

Similar results are obtained for low m: e.g., for r = 2, that is for
m = 1, 29, 33, . . . the error to signal ratio reaches 1 around l = 90. For
m ≥ 7 the formal and actual errors curves still show the “belly” at the
intermediate degrees, but the error to signal ratio is below 1. These
difficulties in solving for the low m coefficients with GOCE are known
(Aguirre-Martinez and Sneeuw, 2003, Figure 4) and some explanation
can be found in the literature (e.g., Sneeuw and van Gelderen, 1997).

6 When processing the real data a second iteration may be necessary for other
reasons, e.g., the correction to the gravity coefficients may be large.
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Figure 4. For the r = 0 class, including the zonals, in a solution for l ≤ 200, the
formal and actual error are compared with the signal. The large bulge is such that
both the formal and the actual error exceed the signal for degree l > 100.

The problem is due to the polar gaps, that is to the fact that the non-
polar orbit of GOCE results in subsatellite tracks never crossing the
two polar caps (with latitude above ' 83◦.5 and below −83◦.5). This
is related to the non-orthogonality of the spherical harmonics over a
latitude band (Albertella et al., 1999; Pail et al., 2001).

5.1. Principal components analysis

Given the covariance matrix for the global parameters Γgg, or at least
one of the blocks used in the resonant decomposition approximation
Γr

gg = [Cr
gg]

−1, we can perform a principal components analysis. That
is, let λ1 > λ2 > . . . > λs be the square roots of the eigenvalues of Γr

gg.

It turns out that for the r = 0 block the values are 2.2 × 10−8, 1.7 ×
10−8, 3.3×10−9, 2.5×10−9, 7×10−10, . . ., that is the first two eigenvalues
are similar and significantly larger than the following ones.

The corresponding unit eigenvectors Vj , j = 1, . . . , s can be geomet-
rically interpreted as the directions of the semiaxes of the confidence
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Figure 5. The gravity anomalies corresponding to the two principal axes of the
confidence ellipsoid (for χ = 1) represented as geoid anomalies, as a function of
latitude. The vertical lines bound the latitude band covered by GOCE, the horizontal
line is at 1 cm.

ellipsoid; the vectors λj Vj are the semiaxes of the ellipsoid Z(1). Each
vector λj Vj contains harmonic coefficients and represents an harmonic
function. The components of the eigenvectors V1, V2 corresponding to
harmonics withm 6= 0 are very small (< 10−4), thus the harmonic func-
tions with coefficients λ1 V1 and λ2 V2 are essentially zonal harmonics
and they can be represented as a function of latitude. In Figure 5 we
represent the two longest semiaxes of the confidence ellipsoid as geoid
anomalies. The anomalies are concentrated on the two polar caps, with
λ1 V1 more pronounced on the S pole, λ2 V2 on the N pole. The size of
the anomalies is huge, up to ' 20 m on the poles.

To understand why the GOCE results leave undetermined the geoid
near the poles, we have represented in Figure 6 one of the GOCE ob-
servables, the radial component of the gravity gradient of the anomalies
λ1 V1 and λ2 V2. Although the undetermined anomalies are not exclu-
sively appearing on the polar caps, the signal for latitudes between
−83◦.5 and +83◦.5 is well below the noise of the GOCE measurements.
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Figure 6. The gravity anomalies corresponding to the two principal axes of the
confidence ellipsoid (for χ = 1) represented as gravity gradient anomalies, as a
function of latitude. The horizontal line is at 0.004 E, the noise level for GOCE.

For the r = 2 block the square roots of the eigenvalues are 2.95 ×
10−8, 2.94 × 10−8, 2.22 × 10−8, 2.21 × 10−8, 3.2 × 10−9, . . ., that is the
first four eigenvalues are of comparable value, two by two almost equal.
Indeed, the harmonic functions defined by λ2 V2 is obtained, with a
good approximation, by a rotation of 90◦ in longitude from λ1 V1, and
the same for λ4 V4 from λ3 V3. Thus in Figure 7 we have represented
the first and the third principal axes. The value for a given longitude is
the RMS of the anomaly over the corresponding parallel. Also in this
case the values near the poles are large, ' 10 m.

5.2. Symmetry and degeneration

What we would like to explain is why the undetermined anomalies are
as large as shown in the Figures 5 and 7, and why the situation becomes
worse as the solution is pushed to higher l.

Typically, the origin of an approximate degeneracy (that is, a poorly
conditioned normal matrix) is due to a “nearby” complete degeneracy
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Figure 7. For the r = 2 class, that is essentially for m = 1, the geoid anomalies
corresponding to the first and the third principal axes of the confidence ellipsoid.
For each latitude we plot the RMS over the parallel. The curves for the second and
the fourth principal axes would be the same.

(normal matrix with zero eigenvalues). That is, there must be an exact
symmetry group S of transformation in the parameter space g, such
that s(g), with s ∈ S, gives exactly the same observations as g, with the
given measurement method and spatial/temporal distribution (Milani
and Melchioni, 1989; Bonanno and Milani, 2002). The exact symmetry
results in a complete degeneracy of the normal matrix, with the number
of zero eigenvalues corresponding to the dimensions of the symmetry
group. When this symmetry is broken it remains as an approximate
symmetry, and the zero eigenvalues are replaced by very small ones.

The case of GOCE is somewhat more complicated, because the sym-
metry group is an infinite dimensional space of harmonic functions. Its
existence can be proven by selecting, on the sphere of radius R⊕ + h
(h being the mean altitude of the satellite), an arbitrary function Φ
with support in the polar caps (that is, the function is exactly zero for
latitudes between −83◦.5 and 83◦.5). By the Dirichlet theorem (Heiska-
nen and Moritz, 1967, Section 1-16) there is a function harmonic for
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geocenter distance ≥ R⊕ + h and coinciding with Φ on the sphere of
radius R⊕ + h. Note that such function may not exist on the sphere of
radius R⊕ because the downward continuation may well be divergent:
that is, it does not need to be a “realistic” gravity anomaly.

If we take the approximation that GOCE flies at an exactly con-
stant altitude, then the gradiometer is measuring the second derivatives
where Φ is zero. Thus the derivatives along the horizontal directions
are zero, and because ∆Φ = 0, the radial gravity gradient is zero too.

This exact symmetry is broken for two reasons: first, GOCE does
not fly exactly at a constant altitude, although the eccentricity is small
(e < 0.0045); moreover, the inclination is not exactly constant, thus
the avoided caps are not exactly bounded by a parallel. Second, the
harmonic function we are trying to fit to the GOCE data is the sum of
only a finite number of harmonics, with limited degree l ≤ lmax.

The cap function Φ cannot have a finite spherical harmonics ex-
pansion, because it is not an analytic function on the sphere. If a cap
function is expanded in a finite sum of spherical harmonics, that is its
representation as spherical harmonics series is truncated to degree lmax,
the remainder of the series has a small RMS σ(lmax) on the latitude
band where Φ is zero, with σ(lmax) → 0 for lmax → +∞. This is what is
shown in the Figures 5 and 7, and the corresponding observable signal
for GOCE is not zero but very small, as in Figure 6.

Thus it is obvious that the “belly” must become more and more
pronounced as lmax increases; at the limit for lmax → +∞ the geoid
anomaly on the sphere of radius R⊕ may well diverge.

6. Error sources

The results for all the remainder classes, that is for all the gravity
harmonics of degrees 25 ≤ l ≤ 200, are summarized in Figure 8. The
formal error is of course larger than the one of the naive estimate of
Figure 2, but only because of the polar gaps. Indeed, for the classes
not including low values of m the figures look like the one for r = 1
(Figure 3). That is, our formal error is as good as it can be, taking
properly into account the polar gaps.

It would be possible to control the “belly” either by using Kaula’s
rule collocation, or by constraining the behavior on the unobserved
polar caps (Sneeuw and van Gelderen, 1997). However, this would give
illusory formal errors for the individual coefficients, and anyway the
values of the anomalies on the polar caps would be an artefact.

The actual error follows the trend of the formal error as a function
of l, but it is somewhat higher, by a factor ' 2. This should include
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Figure 8. For all the remainder classes together, in a solution for l ≤ 200, the formal
and actual error are compared with the signal.

the effect of all the systematic error sources, including the systematic
components of our measurement error model, the orbital error and the
spurious signal either unfiltered or introduced by our calibration fit. In
this Section we try to establish which of these is dominant, that is what
is the fundamental limitation of the GOCE experiment.

6.1. Gradiometer calibration

To assess the origin of the actual errors exceeding the formal ones,
it is important to analyze the specific harmonics where the largest
actual/formal error ratio takes place. As an example, for the remainder
class r = 7 the actual error grows significantly for l > 160, to the
point of reaching an error/signal ratio of 1 (see Figure 9). Among the
harmonics in this remainder class, the ones with m = 167 show a
particularly high actual/formal error ratio.

We have investigated the possibility that the “boundary jumps”
introduced by our fit to the calibration model were responsible. Figure 9
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Figure 9. For the r = 7 remainder class the formal and actual error are compared
with the signal in the case with and without extended arc boundaries. The two
curves of the actual errors are almost superimposed.

also shows the r = 7 solution with margins beyond the arc boundary;
the effect on the actual error is negligible.

Thus the only interpretation is that the spurious signal with fre-
quency 1/1000 Hz we have introduced in the gradiometer biases is
responsible. Such signal, as discussed in Sec. 2.3, is not removed by the
calibration fit because it has a frequency above the calibration band
limit fc = 1/2000 Hz. Looking for gravity field signals with similar
frequencies, we find, e.g., that for l − 2p = −5,m = 167 the frequency
νlmp0 corresponds to a period of 990 s; for l − 2p = −19,m = 167 the
frequency is negative, with a period of 957 s. It can be argued that the
spurious signal results in an aliasing between the gradiometer bias and
the gradiometer signal for some harmonics with nearby frequencies. The
value 1000 s for the period in our systematic error model is arbitrary,
but any other period would generate aliasing with some harmonics.
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6.2. Orbit error

Because of the separation of the POD from the fit for the ` and g
parameters, we are not including an orbit error model in our covariance
matrices. Thus we have to ask if the orbit error which has to be expected
can result in significant systematic errors in the gravity coefficients.
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Figure 10. For the r = 7 remainder class the formal and actual error are compared
with the signal in the case where only the orbit error is included but no gradiometer
bias. To be compared with Figure 9.

In our data simulations we have always included an error in the
satellite position coordinates with a random component (Gaussian un-
correlated, RMS= 2 cm) and systematic components with periods one
year, one day, once per rev and twice per rev, all with amplitude 3 cm.
To test the relevance of this orbit error on the solution for the gravity
coefficients we have performed a simulation without the gradiometer
bias, with the orbit errors as the only systematic error source: as shown
in Figure 10, the actual error in the coefficients becomes statistically
consistent with the formal error. Thus the actual errors in excess with
respect to the formal ones (shown in Figure 9) have to be attributed
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to the effect of the systematic calibration bias not removed by our
calibration procedure, while the orbit error does not matter.

6.3. Expansion to higher degrees

Another potentially important source of error in the solution for the
gravity coefficient is the omission error. Whatever we choose for the
maximum degree lmax of the harmonics included in the simulation, the
harmonics with l > lmax will appear in the gradiometer signal and
will not be solved as such, but may alias with the signal from lower
harmonics, leading to systematic errors.
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Figure 11. For the r = 1 remainder class, in a solution for l ≤ 250, the formal and
actual error become larger than the signal for large l.

This effect can be tested by performing a data simulation with a
gravity field extending to degree > lmax, then solving only up to lmax. A
test was done with the data generated by the EGM96 field up to l = 250
and the solution with lmax = 200. The results clearly showed that the
effect on the actual error is not significant. Thus it is not necessary to
take into account the influence of the higher degree coefficients by some
formalism such as consider covariance.

gocesim2.tex; 13/04/2005; 9:23; p.29



30 A. Milani et al.

Another related question is the following. For the remainder classes
not affected by the polar gap the error to signal ratio is still ' 1/3 at
degree l = 200: would it be possible to extend the solution to higher
degrees? The results of a solution for 25 ≤ l ≤ 250 are plotted in
Figure 11, showing that it is possible to solve for the harmonics of
degree up to l = 220 with error to signal ratio ≤ 1. Note that even the
formal error becomes larger than the signal for l > 230, thus there is a
limitation to the maximum degree of a significant solution even in the
“perfect experiment” assumption of no systematic errors. As a general
rule, the formal covariance result is a lower bound for the uncertainty,
the actual results can only be worse.

7. Conclusions

We have defined an algorithm for the processing of the GOCE data,
based on a multistage decomposition of the problem. As a result we
have been able to perform a full simulation, including data simula-
tion and differential corrections, with PC class computer resources. We
have improved the theory explaining the remaining uncertainties in the
solution for the gravity coefficients, resulting from the polar gaps.

We have reached the following conclusions. The harmonic coeffi-
cients can be solved for degree l ranging between ' 25 and 200 ÷ 220,
with larger uncertainties for the low order (m) harmonics, due to the
polar gaps. These uncertainties for low m do not affect the capability
to solve accurately for the geoid outside of the polar caps.

We have found that the fundamental limitation of GOCE is in the
difficulty of calibrating the gradiometer at the required level of accu-
racy. This is not a surprise: the calibration of accelerometers is one
of the main problems of the new generation satellite geodesy missions
(Bruinsma et al., 2003). The interesting result is that we have reduced
the impact of the calibration problems to a factor ' 2 in the ratio
actual/formal error. Even our result, however, uses some hypothesis
on the behavior of the gradiometer errors not only in the measure-
ment band, but also in a “safety band” between the calibration band
(frequencies below fc = 1/2000 Hz) and the measurement band (with
frequencies above fm = 1/200 Hz). We have assumed that there can
be spurious signals in this band, but with amplitude growing only with
the inverse of the frequency. Still these spurious signals are responsible
for most of the increase of the actual with respect to the formal error.

Of course the choice of fc is somewhat arbitrary, and indeed we
could have increased this frequency, e.g., by a factor 2 by increasing
the total number of local calibration parameters to be solved, either
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by decreasing ∆t or by increasing K in Eq. (2). The point is not to
remove a spurious signal of known shape we have introduced in the data
simulation according to a very simple model, but what should be done
with the real signal, when the information on the shape of the signal
will not be available. In any case some safety band is required, and the
real quality of the result (as opposed to the formal one) will depend
upon the level of control on the spurious, systematic signals in that
band. As an example, the increase of the systematic effects from the
attitude control resulting from giving up the electric propulsion attitude
actuators (Catastini et al., 2004) especially affects the safety band. How
to control the situation of the spurious signals in the frequency domain
immediately below fm is going to be the main challenge of the GOCE
operations and data processing.
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