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Abstract We propose two algorithms to provide a full preliminary orbit of an Earth-

orbiting object with a number of observations lower than the classical methods, such

as those by Laplace and Gauss. The first one is the Virtual debris algorithm, based

upon the admissible region, that is the set of the unknown quantities corresponding to

possible orbits for objects in Earth orbit (as opposed to both interplanetary orbits and

ballistic ones). A similar method has already been successfully used in recent years for

the asteroidal case. The second algorithm uses the integrals of the geocentric 2-body

motion, which must have the same values at the times of the different observations for

a common orbit to exist. We also discuss how to account for the perturbations of the

2-body motion, e.g., the J2 effect.

Keywords Space debris · Orbit determination · Admissible region · Keplerian

integrals

1 Introduction

The near-Earth space, filled by more than 300000 artificial debris particles with diam-

eter larger than 1 cm, can be divided into three main regions: the Low Earth Orbit

(LEO), below about 2000 km, the Medium Earth Orbit (MEO), above 2000 km and

below 36000 km, and the Geosynchronous Earth Orbit (GEO) at about 36000 km of

altitude. Currently the orbits of more than 12000 objects larger than about 10 cm are

listed in the so called Two Line Elements (TLE) catalogue. To produce and maintain
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such a catalogue a large number of optical and radar observations are routinely per-

formed by the United States Space Surveillance Network. Nowadays also Europe has

launched its Space Situational Awareness (SSA) initiative aimed to increase the knowl-

edge of the circumterrestrial environment. In this context the availability of efficient

methods and algorithms for accurate orbit determination is extremely important.

Given two or more sets of observations, the main problem is how to identify which

separate sets of data belong to the same physical object (the so-called correlation

problem). Thus the orbit determination problem needs to be solved in two stages: first

different sets of observations need to be correlated, then an orbit can be determined;

this combined procedure is called linkage in the literature [Milani 1999].

In this paper we describe two different linkage methods, for both optical and radar

data. By using the attributable vector (Sec. 2) we summarize the information contained

in either optical or radar data. In Sec. 3 we describe the admissible region and the Vir-

tual debris algorithm [Tommei et al. 2007] and we propose a general scheme to classify

observed objects. Sec. 4 deals with the Keplerian integrals method, first introduced by

[Gronchi et al. 2009] for the problem of asteroid orbit determination. Furthermore, the

inclusion of the effect due to the non-spherical shape of the Earth is discussed. Finally,

in Sec. 5, a sketch of the general procedure for the full process of correlation of different

observations is outlined.

2 Observations and attributables

Objects in LEO are mostly observed by radar while for MEOs and GEOs optical sensors

are used. In both cases, the batches of observations which can be immediately assigned

to a single object give us a set of data that can be summarized in an attributable, that

is a 4-dimensional vector. To compute a full orbit, formed by 6 parameters, we need to

know 2 further quantities.

Thus the question is the identification problem, also called correlation in the debris

context: given 2 attributables at different times, can they belong to the same orbiting

object? And if this is the case, can we find an orbit fitting both data sets?

Let (ρ, α, δ) ∈ R
+×[0, 2π)×(−π/2, π/2) be spherical coordinates for the topocentric

position of an Earth satellite. The angular coordinates (α, δ) are defined by a topocen-

tric reference system that can be arbitrarily selected. Usually, in the applications, α is

the right ascension and δ the declination with respect to an equatorial reference system

(e.g., J2000). The values of range ρ and range rate ρ̇ are not measured.

We shall call optical attributable a vector

Aopt = (α, δ, α̇, δ̇) ∈ [0, 2π) × (π/2, π/2) × R
2 ,

representing the angular position and velocity of the body at a time t in the selected

reference frame.

Active artificial satellites and space debris can also be observed by radar: because

of the 1/ρ4 dependence of the signal to noise for radar observations, range and range-

rate are currently measured only for debris in LEO. When a return signal is acquired,

the antenna pointing angles are also available. Given the capability of modern radars

to scan very rapidly the entire visible sky, radar can be used to discover all the debris

above a minimum size while they are visible from an antenna, or a system of antennas.

When a radar observation is performed we assume that the measured quantities (all

with their own uncertainty) are the range, the range rate, and also the antenna pointing
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direction, that is the debris apparent position on the celestial sphere, expressed by two

angular coordinates such as right ascension α and declination δ. The time derivatives

of these angular coordinates, α̇ and δ̇, are not measured.

We define radar attributable a vector

Arad = (α, δ, ρ, ρ̇) ∈ [−π, π) × (−π/2, π/2) × R
+ × R ,

containing the information from a radar observation, at the receive time t.

To define an orbit given the attributable A we need to find the values of two

unknowns quantities (e.g., ρ and ρ̇ in the optical case, α̇ and δ̇ in the radar case), that,

together with the attributable, give us a set of attributable orbital elements:

X = [α, δ, α̇, δ̇, ρ, ρ̇]

at a time t̄, computed from t taking into account the light-time correction: t̄ = t− ρ/c.

The Cartesian geocentric position and velocity (r, ṙ) can be obtained, given the observer

geocentric position q at time t, by using the unit vector ρ̂ = (cos α cos δ, sin α cos δ, sin δ)

in the direction of the observation:

r = q + ρρ̂ , ṙ = q̇ + ρ̇ρ̂ + ρ
dρ̂

dt
,

dρ̂

dt
= α̇ρ̂α + δ̇ρ̂δ ,

ρ̂α = (− sin α cos δ, cos α cos δ, 0) , ρ̂δ = (− cos α sin δ,− sin α sin δ, cos δ) .

3 Admissible region theory

Starting from an attributable, we would like to extract sufficient information from it

in order to compute preliminary orbits: we shall use the admissible region tool, as

described in [Tommei et al. 2007]. For easy of reading we recall here the basic steps of

the theory.

The admissible region replaces the conventional confidence region as defined in the

classical orbit determination procedure. The main requirement is that the geocentric

energy of the object is negative, that is the object is a satellite of the Earth.

3.1 Optical admissible region

Given the geocentric position r of the debris, the geocentric position q of the observer,

and the topocentric position ρ of the debris we have r = ρ + q. The energy (per unit

of mass) is given by

E(ρ, ρ̇) =
1

2
||ṙ(ρ, ρ̇)||2 − µ

||r(ρ)|| ,

where µ is the Earth gravitational parameter. Then a definition of admissible region

such that only satellites of the Earth are allowed includes the condition

E(ρ, ρ̇) ≤ 0 (1)

that could be rewritten as

2E(ρ, ρ̇) = ρ̇2 + c1ρ̇ + T (ρ) − 2µ
p

S(ρ)
≤ 0 ,
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T (ρ) = c2ρ2 + c3ρ + c4 , S(ρ) = ρ2 + c5ρ + c0

and coefficients ci depending on the attributable [Tommei et al. 2007]:

c0 = ||q||2 , c1 = 2 q̇ · ρ̂ , c2 = α̇2 cos2 δ + δ̇2 = η2 ,

c3 = 2 (α̇ q̇ · ρ̂α + δ̇ q̇ · ρ̂δ) , c4 = ||q̇||2 , c5 = 2q · ρ̂ ,

where η is the proper motion. In order to obtain real solutions for ρ̇ the discriminant

of 2E (polynomial of degree 2 in ρ̇) must be non-negative:

∆ =
c21
4

− T (ρ) +
2µ

p

S(ρ)
≥ 0 .

This observation results in the following condition on ρ:

2µ
p

S(ρ)
≥ Q(ρ) = c2ρ2 + c3ρ + γ , γ = c4 − c21

4
. (2)

Condition (2) can be seen as an inequality involving a polynomial V (ρ) of degree 6:

V (ρ) = Q2(ρ)S(ρ) ≤ 4µ2 .

Studying the polynomial V (ρ) and its roots, as done by [Milani et al. 2004], the con-

clusion is that the region of (ρ, ρ̇) such that condition (1) is satisfied can admit more

than one connected component, but it has at most two. In any case, in a large number

of numerical experiments with objects in Earth orbit, we have not found examples with

two connected components.

The admissible region needs to be compact in order to have the possibility to

sample it with a finite number of points, thus a condition defining an inner boundary

needs to be added. The choice for the inner boundary depends upon the specific orbit

determination task: a simple method is to add constraints ρmin ≤ ρ ≤ ρmax allowing,

e.g., to focus the search of identifications to one of the three classes LEO, MEO and

GEO. Another natural choice for the inner boundary is to take ρ ≥ hatm where hatm

is the thickness of a portion of the Earth atmosphere in which a satellite cannot remain

in orbit for a significant time span. As an alternative, it is possible to constrain the

semimajor axis to be larger than R⊕ + hatm = rmin, and this leads to the inequality

E(ρ, ρ̇) ≥ − µ

2rmin
= Emin , (3)

which defines another degree six inequality with the same coefficients but for a different

constant term. The qualitative structure of the admissible region is shown in Fig. 1.

Another possible way to find an inner boundary is to exclude trajectories impacting

the Earth in less than one revolution, that is to use an inequality on the perigee rP ,

already proposed in [Maruskin et al. 2009]:

rP = a(1 − e) ≥ rmin. (4)

Note that this condition naturally implies (3) and ρ ≥ hatm. To analytically develop

the inequality (4) we use the 2-body formulae involving the angular momentum:

c(ρ, ρ̇) = r × ṙ = Dρ̇ + Eρ2 + Fρ + G (5)
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Fig. 1 An example of admissible region, optical case, in the (ρ, ρ̇) plane. The region (painted
in grey) is bounded by two level curves of the energy, (E = Emin) and (E = 0), and by the
two conditions on the topocentric distance (ρ = ρmin and ρ = ρmax).

D = q× ρ̂, E = ρ̂ × (α̇ρ̂α + δ̇ρ̂δ),

F = q̂× (α̇ρ̂α + δ̇ρ̂δ) + q̇ × ρ̂, G = q × q̇

and substituting in (4) we obtain:

s

1 +
2E||c||2

µ2
≤ 1 +

2Ermin

µ
. (6)

Since the left hand side is e ≥ 0, we need to impose 1 + 2Ermin/µ ≥ 0: this is again

a ≥ rmin. By squaring (6) we obtain:

||c||2 ≥ 2rmin(µ + Ermin) .

The above condition is an algebraic inequality in the variables (ρ, ρ̇):

(r2
min − ||D||2)ρ̇2 − P (ρ)ρ̇ − U(ρ) + r2

minT (ρ) − 2r2
minµ

p

S(ρ)
≤ 0 , (7)

P (ρ) = 2D · Eρ2 + 2D · Fρ + 2D · G − r2
minc1 ,

U(ρ) = ||E||2ρ4 + 2E · Fρ3 + (2E · G + ||F||2)ρ2 + 2F · Gρ + ||G||2 − 2rminµ .

The coefficient of ρ̇2 is positive, thus to obtain real solutions for ρ̇ the discriminant of

(7) must be non negative:

∆P = P 2(ρ) + 4(r2
min − ||D||2)

 

U(ρ) + r2
minT (ρ) +

2r2
minµ

p

S(ρ)

!

≥ 0 .
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This condition is equivalent to the following:

2µ
p

S(ρ)
≥ W (ρ) = −4(r2

min − ||D||2)(U(ρ) + r2
minT (ρ)) + P 2(ρ)

4r2
min(r2

min − ||D||2)
. (8)

Note that the inequality (8) is similar to (2). However, in this case, the function in

the right hand side is much more complicated, and there is no easy way to use the

condition (4) to explicitly describe the boundary of the admissible region; e.g., we do

not have a rigorous bound on the number of connected components. This condition (4)

will be used only a posteriori as a filter (Sec. 3.3).
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Fig. 2 The same example of Fig. 1, with the two further conditions on the pericenter (rP ≥
rmin) and the apocenter (rA ≤ rmax) distances.

Fig. 2 shows also this inner boundary; note that the boundaries of the regions

defined by (3) and by ρ ≥ hatm are also plotted in the figure, but these constraints

are not necessary. We have also plotted an alternative outer boundary constraining the

apocenter rA at some large value rmax:
8

<

:

E ≤ − µ

2rmax

||c||2 ≥ 2rmax(µ + Ermax)
;

this outer boundary can be used in the same way, as an a posteriori filter.

3.2 Radar admissible region

Given a radar attributable Arad, we define as radar admissible region for a space debris

the set of values of (α̇, δ̇) such that

E(α, δ) = z1α̇2 + z2δ̇2 + z3α̇ + z4δ̇ + z5 ≤ 0 , (9)
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Fig. 3 An example of admissible region, radar case, in the (α̇ cos δ, δ̇) plane. The region
(painted in grey) is the circular annulus bounded by the two level curves of the energy (E =
Emin) and (E = 0).

where zij depend on the attributable [Tommei et al. 2007]:

z1 = ρ2 cos2 δ , z2 = ρ2 , z3 = ρ q̇ · ρ̂α/2 ,

z4 = ρ q̇ · ρ̂δ/2 , z5 = ρ̇2 + c1ρ̇ + c4 − 2µ
p

S(ρ)
.

The boundary of the admissible region is then given by E(α̇, δ̇) = 0 and this equation

represents an ellipse with its axes aligned with the coordinate axes in the (α̇, δ̇) plane.

Actually, in a plane (α̇ cos δ, δ̇), with the axes rescaled according to the metric of the

tangent plane to the celestial sphere, the curves E(α̇, δ̇) = constant are circles.

The region defined by negative geocentric energy, the inside of a circle, is a compact

set, and the problem of defining an inner boundary is much less important than in

the optical attributable case. Anyway, it is possible to define an inner boundary by

constraining the semimajor axis a > rmin, that is by eq. (3), resulting in a concentric

inner circle, thus in an admissible region forming a circular annulus (see Fig. 3).

It is also possible to exclude the ballistic trajectories by imposing the condition (4)

in which α̇, δ̇ are to be considered as variables. The angular momentum is given by

c = r× ṙ = Aα̇ + Bδ̇ + C , (10)

A = ρ r× ρ̂α , B = ρ r× ρ̂δ , C = r× q̇ + ρ̇q × ρ̂ .

The condition on the pericenter is expressed by a polynomial inequality of degree 2:

w1α̇2 + w2α̇δ̇ + w3δ̇2 + w4α̇ + w5δ̇ + w6 ≥ 0 ,

w1 = ||A||2 − 2r2
minz1, w3 = ||B||2 − 2r2

min, w5 = 2(B · C − r2
minz4),

w2 = 2A · B, w4 = 2(A · C − r2
minz3), w6 = ||C||2 − 2rmin(rminz5 + µ).
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Fig. 4 An example of admissible region, with the further condition on the pericenter distance
(rP ≥ rmin), bounded by an ellipse.
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Fig. 5 An example of admissible region, with the further condition on the pericenter distance
(rP ≥ rmin), bounded by an hyperbola.

Thus the admissible region can be geometrically described as a region bounded by

three conics: the first two are concentric circles, the third one can be either an ellipse

or an hyperbola (depending on the sign of w1w3 − w2
2/4), with a different center and

different symmetry axes. Fig. 4 and 5 show the possible qualitatively different cases.
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Fig. 6 An example of admissible region, defined by imposing negative geocentric energy,
for an optical attributable, with the Delaunay triangulation. The nodes of the triangulation
corresponding to the ballistic trajectories (on the left of the curve cutting the outer part of
the triangulation) can be discarded.
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attributable, with the cobweb sampling. The nodes of the cobweb corresponding to the ballistic
trajectories (between the two branches of the hyperbola) can be discarded.
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3.3 Virtual debris algorithm

The admissible region can be used to generate a swarm of virtual debris: we sample

it using the Delaunay triangulation [Milani et al. 2004] for the optical case and the

cobweb [Tommei et al. 2007] for the radar case, as shown in Fig. 6 and 7. The condi-

tion on the pericenter is not used at this step, because we could lose some important

geometrical properties: this condition is used as filter, the nodes with a low pericenter

are discarded.

The idea is to generate a swarm of virtual debris Xi, corresponding to the nodes

of the admissible region of one of the two attributables, let us say A1. Then we com-

pute, from each of the Xi, a prediction Ai for the epoch t2, each with its covariance

matrix ΓAi
. Thus for each virtual debris Xi we can compute an attribution penalty

Ki
4 [Milani and Gronchi 2009] and use the values as a criterion to select some of the

virtual debris to proceed to the orbit computation.

Thus the procedure is as follows: we select some maximum value Kmax for the

attribution penalty and if there are some nodes such that Ki
4 ≤ Kmax we proceed to

the correlation confirmation. If this is not the case, we can try with another method,

such as the one described in Sec. 4.

3.4 Universal classification of objects
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Fig. 8 Partitioning of the (ρ, ρ̇) half plane ρ > 0 in regions corresponding to different popula-
tions, for an optical attributable with proper motion η = 10.1980. The labels mean: L Launch,
R Reentry, ES Earth Satellite, A Asteroid, ISC Interstellar Comet, ETA ET Arriving, ETL
ET Leaving, IPR Interplanetary Reentry, IPL Interplanetary Launch. rad/day.
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Fig. 9 Partitioning of the (α̇ cos δ, δ̇) plane in regions corresponding to different populations,
for a radar attributable with ρ = 1 R⊕. The labels mean: L/R Launch or Reentry, ES Earth
Satellite, A Asteroid, ISC Interstellar Comet, ET interstellar launch/reentry, IPL/IPR Inter-
planetary Launch or Reentry.

The method of the admissible region is also useful to provide insight on the re-

lationship between the different populations, in particular how they can mix in the

observations. For a given optical attributable, supposedly computed from a short arc

of optical observations, the Fig. 8 shows the region in the (ρ, ρ̇) half-plane ρ > 0 where

Earth satellites (ES) can be, but also where ballistic trajectories (either launches L or

reentries R) can be, and where an asteroid serendipitously found in the same obser-

vations would be. Other more exotic populations, which are very unlikely, also have

their region in the half plane: e.g., there are regions for direct departure/arrival to the

Earth from interstellar space, which we have labeled as ET trajectories.

The same “universal” figure can be generated from a given radar attributable

(Fig 9). In this case the regions corresponding to different populations partition the

plane (α̇ cos δ, δ̇). The curve Esun = 0, for the heliocentric energy, has been computed

with formulas very similar to the ones for the geocentric energy.

4 Keplerian integrals method

We shall describe a method proposed for the asteroid case in [Gronchi et al. 2009]

and based on the two-body integrals, to produce preliminary orbits starting from two

attributables A1, A2 of the same object at two epochs t1, t2. We assume that the orbit

between t1 and t2 is well approximated by a Keplerian 2-body orbit, with constant

energy E and angular momentum vector c:
(

E(t1) − E(t2) = 0

c(t1) − c(t2) = 0
. (11)
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4.1 Optical case

Using (5) and by scalar product between with the first equation of (11) and D1 × D2

we obtain the scalar equation of degree 2:

(D1 ×D2) · (c1 − c2) = q(ρ1, ρ2) = 0 .

Geometrically, this equation defines a conic section in the (ρ1, ρ2) plane. By the formu-

lae giving ρ̇1, ρ̇2 as a function of ρ1, ρ2 derived from the angular momentum equations:

ρ̇1 =
(E2ρ2

2 + F2ρ2 + G2 − E1ρ2
1 − F1ρ1 − G1) × D2

||D1 ×D2||2
;

ρ̇2 =
D1 × (E1ρ2

1 + F1ρ1 + G1 −E2ρ2
2 −F2ρ2 − G2)

||D1 ×D2||2

the energies E1, E2 can be considered as functions of ρ1, ρ2 only. Thus we obtain:

(

E1(ρ1, ρ2) − E2(ρ1, ρ2) = 0

q(ρ1, ρ2) = 0
,

a system of 2 equations in 2 unknowns, already present in [Taff and Hall 1977]: they

proposed a Newton-Raphson method to solve the system, but this results into a loss of

control on the number of alternate solutions. In [Gronchi et al. 2009] the authors have

applied the same equations to the asteroid problem, and proposed a different approach

to the solution of the system.

The energy equation is algebraic, but not polynomial, because there are denomi-

nators containing square roots. By squaring twice it is possible to obtain a polynomial

equation p(ρ1, ρ2) = 0: the degree of this equation is 24. Thus the system

(

p(ρ1, ρ2) = 0

q(ρ1, ρ2) = 0

has exactly 48 solutions in the complex domain, counting them with multiplicity. Of

course we are interested only in solutions with ρ1, ρ2 real and positive, moreover the

squaring of the equations introduces spurious solutions. Nevertheless, we have found

examples with up to 11 non spurious solutions.

We need a global solution of the algebraic system of overall degree 48, providing at

once all the possible couples (ρ1, ρ2). This is a classical problem of algebraic geometry,

which can be solved with the resultant method: we can build an auxiliary Sylvester

matrix, in this case 22 × 22, with coefficients polynomials in ρ2, and its determinant,

the resultant, is a polynomial of degree 48 in ρ2 only. The values of ρ2 appearing in

the solutions of the polynomial system are the roots of the resultant [Cox et al. 1996].

The computation of the resultant is numerically unstable, because the coefficients

have a wide range of orders of magnitude: we have to use quadruple precision. Once

the resultant is available, there are methods to solve the univariate polynomial equa-

tions, providing at once all the complex roots with rigorous error bounds [Bini 1996].

Given all the roots which could be real, we solve for the other variable ρ1, select the

positive couples (ρ1, ρ2) and remove the spurious ones due to squaring. If the number

of remaining solutions is 0, the attributables cannot be correlated with this method.
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4.2 Radar case

The formulae for geocentric energy and angular momentum are given by (9) and (10),

polynomials of degree 2 and 1 in the unknowns (α̇, δ̇), respectively. The system (11)

has overall algebraic degree 2: such a system can be solved by elementary algebra.

The angular momentum equations are

A1α̇1 + B1δ̇1 + C1 = A2α̇2 + B2δ̇2 + C2 (12)

that is a system of 3 linear equations in 4 unknowns (α̇1, δ̇1, α̇2, δ2) and can be solved

for three unknowns as a function of one of the four. For example, by scalar product

between (12) and B1 × A2 we have

α̇1 =
A2 · (B1 ×B2)δ̇2 − (C1 −C2) · (A2 × B1)

B1 · (A1 × A2)

and in a similar way we obtain

δ̇1 =
B2 · (A1 × A2)δ̇2 − (C1 − C2) · (A1 × A2)

B1 · (A1 × A2)
,

α̇2 =
A1 · (B1 ×B2)δ̇2 − (C1 −C2) · (A1 ×B1)

B1 · (A1 × A2)
.

When the equations for, say, (α̇1, α̇2, δ̇1) as a function of δ̇2 are substituted in

the equation for the energies E1(α̇1, δ̇1) = E2(α̇2, δ̇2) we obtain a quadratic equation

in δ̇2, which can be solved by elementary algebra, giving at most two real solutions.

Geometrically, equation (12) can be described by a straight line in a plane, e.g., in

(α̇2, δ̇2), where the energy equation defines a conic section.

4.3 Singularities

There are some cases in which the Keplerian integrals method can not be applied.

In the optical case we have to avoid the condition D1×D2 = (q1×ρ̂1)×(q2×ρ̂2) =

0. This can happen when:

– q1 is parallel to ρ̂1, i.e. the observation at time t1 is done at the observer zenith;

– q2 is parallel to ρ̂2, i.e., the observation at time t2 is done at the observer zenith;

– q1, q2, ρ̂1 and ρ̂2 are coplanar. This case arises whenever a geostationary object

is observed from the same station at the same hour of distinct nights.

As it is normal, the mathematical singularity is surrounded by a neighborhood in which

the method is possible for zero error (both zero observational error and zero rounding off

in the computation), but is not applicable in practice. E.g., for nearly geosynchronous

orbits, even if they are not geostationary, and for hours of observations in different

nights different by few minutes, this method fails.

In the radar case the procedure fails only if the four vectors A1, A2, B1 and B2

do not generate a linear space of dimension 3, i.e., when:

(

Ai · (B1 × B2) = 0

Bi · (A1 × A2) = 0
i = 1, 2.
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For i = 1 we obtain

(

ρ2
1ρ2[ρ̂δ2 · (r1 × r2)][r1 · (ρ̂α1 × ρ̂δ1)] = 0

ρ2
1ρ2[ρ̂α2 · (r1 × r2)][r1 · (ρ̂δ1 × ρ̂α1)] = 0

and for i = 2 the formulae are analogous. Thus there is singularity when:

– r1 is parallel to r2;

– ri · (ρ̂δi × ρ̂αi) = cos δi(qi · ρ̂i + ρi) = 0, but this can never happen, apart from

coordinate singularities, because qi · ρ̂i ≥ 0;

– r1 · (ρ̂δ1 × ρ̂αi) = 0 and r1 · (ρ̂δ1 × ρ̂δi) = 0, i.e., ρ̂αi and ρ̂δi for i = 1, 2 belong to

the orbital plane.

4.4 Preliminary orbits

Once a solution of (11) is computed the values of attributable elements can be obtained

for the epochs t̄1 and t̄2, and they can be converted into the usual Keplerian elements:

(aj , ej , Ij , Ωj , ωj , ℓj) , j = 1, 2 ,

where ℓj are the mean anomalies. The first four Keplerian elements (aj , ej , Ij , Ωj) are

functions of the 2-body energy and angular momentum vectors Ej , cj , and are the

same for j = 1, 2. Thus the result can be assembled in the 8-dimensional vector:

H = (V, Φ1, Φ2) , V = (a, e, I, Ω) , Φ1 = (ω1, ℓ1) , Φ2 = (ω2, ℓ2) . (13)

There are compatibility conditions between Φ1 and Φ2 to be satisfied if the two at-

tributables belong to the same object:

ω1 = ω2 , ℓ1 = ℓ2 + n(t̄1 − t̄2) , (14)

where n = n(a) is the mean motion. We cannot demand the exact equality in the

formulae above, because of various error sources, including the uncertainty of the at-

tributable, and the changes on the Keplerian integrals due to the perturbations with

respect to the 2-body model. Thus we need a metric to measure in an objective way

the residuals in the compatibility conditions.

4.5 Covariance propagation

The two attributables A1,A2 used to compute the coefficients of equations (11) have

been computed from the observations by using a least squares fit to the individual

observations, thus 4 × 4 covariance matrices ΓA1
and ΓA2

are available; they can be

used to form the block diagonal 8 × 8 covariance matrix for both attributables ΓA.

The Keplerian integral method allows to compute explicitly the vector H of (13) and,

by means of the implicit function theorem, its partial derivatives, thus it is possible

by the standard covariance propagation formula [Milani and Gronchi 2009][Sec. 5.5] to

compute also ΓH , the covariance of H . With another transformation we can compute

the average elements Φ0 = (Φ1 + Φ2)/2 (as the best value for the angular elements at
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time t̄0 = (t̄1 + t̄2)/2) and the discrepancy ∆Φ in the compatibility conditions (14),

and to propagate the covariance also to this 8-dimensional vector:

ΓA =⇒ ΓH =⇒ ΓV,Φ0,∆Φ .

The above argument is a generalization of the one in [Gronchi et al. 2009], where ex-

plicit computations are given for the optical attributables case.

In the 8×8 covariance matrix ΓV,Φ0,∆Φ, the lower right 2×2 block is the marginal

covariance matrix of ∆Φ, from which we can compute the normal matrix and the χ2:

C∆Φ = Γ−1

∆Φ , χ2
∆Φ = ∆Φ · C∆Φ ∆Φ ,

which can be used as control, that is the discrepancy in the compatibility conditions is

consistent with the observation error and the correlation between the two attributables

is considered possible only if χ2
∆Φ ≤ χ2

max.

The upper left 6× 6 block is the covariance matrix of the preliminary orbit, that is

of the orbital elements set (V, Φ0) (at epoch t̄0). Although this preliminary orbit is just

a 2-body solution, it has an uncertainty estimate, arising from the (supposedly known)

statistical properties of the observational errors. This estimate neglects the influence of

perturbations, such as the spherical harmonics of the Earth gravity field, the lunisolar

differential attraction and the non-gravitational perturbations; nevertheless, if the time

span t̄2 − t̄1 is short, the covariance obtained above can be a useful approximation.

4.6 Precession model

We can generalize the method, including the effect due to the non-spherical shape of

the Earth. The averaged equation for Delaunay’s variables ℓ, g = ω, z = Ω, L =
√

µa,

G = L
√

1 − e2 and Z = G cos I are [Roy 2005][Sec. 10.4]:
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>

>

>

>

>

>

:

¯̇ℓ = n − 3

4
n

„

R⊕

a

«2
J2(1 − 3 cos2 I)

(1 − e2)3/2

¯̇g =
3

4
n

„

R⊕

a

«2
J2(4 − 5 sin2 I)

(1 − e2)2

¯̇z = −3

2
n

„

R⊕

a

«2
J2 cos I

(1 − e2)2

¯̇L = ¯̇G = ¯̇Z = 0

, (15)

where J2 is the coefficient of the second zonal spherical harmonic of the Earth gravity

field. To apply in this case the Keplerian integrals method, we can not use the equations

assuming conservation of the angular momentum. From (15) we can replace (11) with:

8

>

>

>

>

<

>

>

>

>

:

E1 = E2

c1 · ẑ = c2 · ẑ
||c1||2 = ||c2||2

cos(z2) = cos(z1) cos(¯̇z(t̄2 − t̄1)) − sin(z1) sin(¯̇z(t̄2 − t̄1))

. (16)

In the optical case the first equation is algebraic and by squaring twice is possible to

obtain a polynomial equation; in the radar case this relation is already polynomial. The
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second and the third equations are always polynomial, while the last equation needs

to be linearized in the parameter ¯̇z(t̄2 − t̄1):

cos z2 = cos z1 − ¯̇z(t̄2 − t̄1) sin z1 . (17)

The following relationships hold:

cos zi =
ẑ× ci

||ẑ × ci||
· x̂ , sin zi =

ẑ × ci

||ẑ × ci||
· ŷ , a(1 − e2) =

||c1||2
µ

,

cos I =
c1 · ẑ
||c1||

, n =

s

−8E3
1

µ2
, ¯̇z(t2 − t1) =

ξ
q

−8E3
1

(c1 · ẑ)
||c1||5

where ξ = −3µJ2R2
⊕(t̄2 − t̄1)/2. Substituting in (17) we obtain

ẑ× c2

||ẑ × c2||
· x̂ =

ẑ × c1

||ẑ × c1||
· x̂ −

ξ
q

−8E3
1

(c1 · ẑ)

||c1||5
ẑ× c1

||ẑ × c1||
· ŷ .

Since ||ẑ × c|| = ||c|| sin I is constant we have:

||c1||5[ẑ× (c2 − c1)] · x̂ = −ξ
q

−8E3
1

(c1 · ẑ)(ẑ× c1) · ŷ ,

that is an algebraic equation. Furthermore, by squaring twice in the optical case and

only once in the radar case it is possible to obtain a polynomial equation.

Finally the new compatibility conditions, in place of (14) need to take into account

the precession of the perigee and the secular perturbation in mean anomaly:

g1 = g2 + ¯̇g(t̄1 − t̄2) , ℓ1 = ℓ2 + ¯̇ℓ(t̄1 − t̄2) .

The overall degree of system (16) is summarized in Table 1. We conclude that this

method is unpractical for optical attributables, could be used for radar attributables,

with computational difficulties comparable with the optical case without precession.

Table 1 Degrees of the equations in system (16)

Optical case Radar case

E1 = E2 16 2
c1 · ẑ = c2 · ẑ 2 1
||c1||2 = ||c2||2 4 2
cos z2 = cos z1 − ¯̇z(t̄2 − t̄1) sin z1 54 12
Total 6912 48

To solve the problem (even in the optical case) we begin by considering the para-

metric problem ¯̇z = K, where K is constant. Thus we replace (11) with:

(

E1 − E2 = 0

R c1 − RT c2 = 0

where R is the rotation by ∆Ω/2 = K(t̄2− t̄1)/2 around ẑ. This means that for a fixed

value of K the problem has the same algebraic structure of the unperturbed one. The
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only thing needed is to substitute D1, E1, F1 and G1 with RD1, RE1, RF1 and RG1

in the optical case and A1, B1 and C1 with RA1, RB1 and RC1 in the radar case;

similarly the vectors with index 2 are multiplied by RT .

The compatibility conditions contain the precession of the perigee and the secular

perturbation in mean anomaly, related to the one of the node by linear equations

g1 = g2 + KCg (t̄1 − t̄2) , ℓ1 = ℓ2 + (n + KCℓ)(t̄1 − t̄2) ,

where the coefficients Cg, Cℓ can be easily deduced from (15). Thus we can compute

the χ2
∆Φ(K) and set up a simple procedure to minimize this by changing K, then the

control on the acceptability of the preliminary orbit is

min
K

χ2
∆Φ(K) ≤ χ2

max .

5 Correlation confirmation

The multiple orbits obtained from the solutions of the algebraic problem are just pre-

liminary orbits, solution of a 2-body approximation (as in the classical methods of

Laplace and Gauss), or possibly of a J2-only problem. They have to be replaced by

least squares orbits, with a dynamical model including all the relevant perturbations.

Even after confirmation by least squares fit, it might still be the case that some

linkages with just two attributables can be false, that is the two attributables might

belong to different objects. This is confirmed by the tests with real data reported in

[Tommei et al. 2009] for the Virtual debris method and in [Milani et al. 2009] for the

Keplerian integrals method. [Gronchi et al. 2009] have found the same phenomenon in

a simulation of the application of the same algorithm to the asteroid case. Thus every

linkage of two attributables needs to be confirmed by correlating a third attributable.

The process of looking for a third attributable which can also be correlated to

the other two is called attribution [Milani 1999,Milani et al. 2001]. From the available

2-attributable orbit with covariance we predict the attributable AP at the time t3 of

the third attributable, and compare with A3 computed from the third set of obser-

vations. Both AP and A3 come with a covariance matrix, we can compute the χ2 of

the difference and use it as a test. For the attributions passing this test we proceed

to the differential corrections. The procedure is recursive, that is we can use the 3-

attributable orbit to search for attribution of a fourth attributable, and so on. This

generates a very large number of many-attributable orbits, but there are many dupli-

cations, corresponding to adding them in a different order.

By correlation management we mean a procedure to remove duplicates (e.g., A =

B = C and A = C = B) and inferior correlations (e.g., A = B = C is superior to both

A = B and to C = D, thus both are removed). The output catalog after this process

is called normalized. In the process, we may try to merge two correlations with some

attributables in common, by computing a common orbit [Milani et al. 2005].

6 Conclusions

We have described two algorithms to solve the linkage problem, that is to compute

an orbit for an Earth-orbiting object observed in two well separated arcs. The first

method exploits the geometric structure of the admissible region of negative geocentric
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energy orbits, which is sampled to generate virtual orbits. The latter are propagated

in time to find other observations which could belong to the same object. The second

method exploits the integrals of the 2-body problem, which are constant even over a

significant time span and thus should apply to both observed arcs of the same object.

This top level description is enough to understand that the Virtual debris algo-

rithm should be applied to short time intervals between observed arcs, less than one

orbital period or at most a few orbital periods. The Keplerian integrals method can

be used for longer time spans, spanning several orbital periods; it is near to a sin-

gularity for very short time spans and in some other near-resonance conditions, such

as observations of a geosynchronous orbits at the same hour in different nights. We

conclude that each method should be used in the cases in which it is most suitable.

Both algorithms have been tested for the optical case with real data from the ESA Op-

tical Ground Station [Tommei et al. 2009,Milani et al. 2009] with good results. The

analogous algorithms have been tested for asteroids in simulations of next generation

surveys [Milani et al. 2005,Gronchi et al. 2009]. Future work should include the tests

of the radar case and the solution of other related problem, like orbit identification

between two objects for which an orbit is already available.
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