
CORRELATION OF SPACE DEBRIS OBSERVATIONS BY THE VIRTUAL DEBRIS
ALGORITHM

G. Tommei1, A. Milani1, D. Farnocchia1, and A. Rossi2

1 Department of Mathematics, University of Pisa, Largo Pontercorvo 5, Pisa, Italy
2ISTI-CNR, Via Moruzzi 1, Pisa, Italy

ABSTRACT

The main problem in the orbit determination of the space
debris population is the correlation of independently ob-
served tracklets, that are sets of observations over a short
time. The information contained in such data are not suf-
ficient for a complete determination of an orbit, thus we
need to find two or more tracklets belonging to the same
physical object and an orbit fitting all the observations.
In this paper we will show how to use the admissible re-
gion tool to generate a set of virtual objects (Virtual De-
bris) which can be used as alternate preliminary orbits
and as starting points for a recursive procedure of corre-
lation. We shall focus on optical observations of GEO
showing some preliminary results testing the 2007 data
by the ESA Optical Ground Station (OGS) at Teide Ob-
servatory (Canary Islands), after an astrometric reduction
performed by University of Bern.
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1. INTRODUCTION

A tracklet is a set of observations over a short time, as-
sembled because they are nearby and aligned, thus be-
lieved to belong to the same satellite/debris. The main
problem is the correlation of independently observed
tracklets, because one tracklet is generally not enough to
determine an orbit. The same problem is called identifi-
cation in the context of asteroid surveys, and has recently
been solved as part of the preparatory work for the next
generation astronomical surveys Pan-STARRS and LSST
[4]. The same technique can be applied, with appropri-
ate modifications, to the space debris correlation problem
[5].

From a tracklet we fit anattributable, a 4-dimensional
vector synthesizing the information from the observa-
tions (Section 2). Then we compute theadmissible region
for the undetermined quantities range and range-rate cor-
responding to orbits which could be possible for Earth
orbiting objects (as opposed to both interplanetary orbits

and ballistic ones) (Section 3). This region is sampled by
an optimal Delaunay triangulation generating a swarm of
Virtual debris (VD), that is a set of possible, but by no
means determined, set of six quantities assigning an orbit
(Section 4). Each virtual debris is then propagated to the
epochs for which other tracklets are available, and they
are all tested for attribution to the orbit. If this correlation
satisfies a suitable statistical quality control, a differen-
tial correction procedure is started to fit all the observa-
tions from both tracklets (Section 5). Given a successful
2-tracklet orbit, it is used to test possible attributions of
other tracklets, and so on recursively (Section 6).

The software developed for the space debris case has
been validated using data obtained by the ESA Optical
Ground Station (OGS) at Teide Observatory (Canary Is-
lands) in the year 2007. In Section 7 we shall analyze the
results of the application of our method.

2. TRACKLETS AND ATTRIBUTABLES

A tracklet is a set of astrometric observations belonging
to the same object (they fit to some smooth curve, typi-
cally a low degree polynomial):

ti, αi, δi, hi i = 1, m m ≥ 2

whereαi, δi are angles (usually right ascension and dec-
lination) andti are times, withti < ti+1; the quantities
hi are the values of the apparent magnitude. Data from
one tracklet are not generally sufficient for the determina-
tion of an orbit with classical methods, but it is possible
to synthesize the information contained in the tracklet by
an attributable. An attributable is a vector

A = (α, δ, α̇, δ̇) ∈ [−π, π) × (−π/2, π/2)× R
2 ,

representing the angular position and velocity of the body
at a timet̄ = Mean (ti) in the selected reference frame.

Given the observed values(ti, αi, δi) for i = 1, m with
m ≥ 2, we can compute an attributable with its uncer-
tainty fitting both angular coordinates with linear func-
tions of time. More precisely, let the fit solution at
time t̄ be (α, α̇, δ, δ̇): this solution is obtained with the



regression line formulas, together with the two2 × 2
normal matricesC(α,α̇), C(δ,δ̇) and covariance matrices
Γ(α,α̇), Γ(δ,δ̇). The normal matrixCA of A is composed
just by joining the two normal matrices, and is not singu-
lar provided the observations refer to≥ 2 distinct times;
its inverseΓA is also composed by joining the two2 × 2
covariance matrices.

A set of observations giving an attributable is not enough
to compute an orbit, unless some restrictive hypothesis is
used. In fact with these data we have a 2-dimensional
manifold of possible orbits that give exactly the same
attributable at a given time. Thus to complete an orbit
we need either to assume 2 coordinates, or to set 2 con-
straints, e.g., assuming acircular orbit, that is a good ap-
proximation for geostationary objects but not for geosyn-
chronous ones, which may have a significant eccentricity.
In the next sections we shall explain how to use the infor-
mation contained in the attributable in order to compute
orbits.

3. ADMISSIBLE REGION FOR EARTH SATEL-
LITES

Starting from an attributable, we would like to extract
sufficient information from it in order to compute pre-
liminary orbits: we shall use the admissible region tool,
as described in [5].

The admissible region replaces the conventional confi-
dence region as defined in the classical orbit determina-
tion procedure. The main requirement is that the geocen-
tric energy of the object is negative, that is the object is a
satellite of the Earth.

Given the geocentric positionr of the debris, the geocen-
tric positionq of the observer, and the topocentric posi-
tion ρ of the debris we haver = ρ + q and the energy
(per unit of mass) is given by

E⊕(ρ, ρ̇) =
1

2
‖ṙ(ρ, ρ̇)‖

2
−

µ⊕

r(ρ)
, (1)

whereµ⊕ is the Earth gravitational parameter. Then a
definition of admissible region such that only satellites of
the Earth are allowed includes the condition

E⊕(ρ, ρ̇) ≤ 0 (2)

that could be rewritten as

2E⊕(ρ, ρ̇) = ρ̇2 + c1ρ̇ + T (ρ) −
2µ⊕

√

S(ρ)
≤ 0 , (3)

where

S(ρ) = ρ2 + c5 ρ + c0 ,

T (ρ) = c2 ρ2 + c3 ρ + c4

and coefficientsci depending on the attributable. In or-
der to obtain real solutions foṙρ the discriminant of2 E⊕

(polynomial of degree 2 iṅρ) must be non-negative:

∆⊕ =
w2

1

4
− T (ρ) +

2 µ⊕
√

S(ρ)
≥ 0 .

This observation results in the following condition onρ:

2µ⊕
√

S(ρ)
≥ Q(ρ) , (4)

where
Q(ρ) = w2 ρ2 + w3 ρ + γ ,

with

γ = w4 −
w2

1

4
.

Condition (4) can be seen as an inequality involving a
polynomialV (ρ) of degree 6:

V (ρ) := Q2(ρ)S(ρ) ≤ 4 µ2
⊕ . (5)

Studying the polynomialV (ρ) and its roots, as done by
[3], the conclusion is that the regionC1, defined by condi-
tion (2), can admit more than one connected components,
but it has at most two. The qualitative structure of the
confidence region is shown in Figure 1.

The admissible region needs to be compact in order to
have the possibility to sample it with a finite number
of points, thus a condition defining an inner boundary
needs to be added. The choice for the inner boundary de-
pends upon the specific orbit determination task: a sim-
ple method is to add constraintsρmin ≤ ρ ≤ ρmax al-
lowing, e.g., to focus the search of identifications to one
of the three classes LEO, MEO and GEO. Another nat-
ural choice for the inner boundary is to takeρ ≥ hatm

wherehatm is the thickness of a portion of the Earth at-
mosphere in which a satellite cannot remain in orbit for a
significant time span. As an alternative, it is possible to
constrain the semimajor axis of the satellite to be larger
thatR⊕ + hatm = R̄, and this leads to an equation

E⊕(ρ, ρ̇) ≥ −
µ⊕

2 R̄
(6)

which defines another degree six inequality with the same
coefficients but for a different constant term.

Another possible way to find an inner boundary is to ex-
clude trajectories impacting the Earth in less than one rev-
olution, that is to use an inequality on the perigeeq [1]

q = a(1 − e) ≥ R̄ . (7)

By substituting into the 2-body formulae involving the
angular momentumc = c(ρ, ρ̇) we obtain

√

1 +
2E⊕||c||2

G2 m2
⊕

≤ 1 +
2E⊕R̄

µ⊕

. (8)

Since the left hand side ise ≥ 0, we need to impose the
condition

1 +
2E⊕R̄

µ⊕

≥ 0



Figure 1. Admissible region in the(ρ, ρ̇) plane: the grey part con-
tains the “good” orbits, that are geocentric orbits satisfying condition
on pericenter and apocenter distance.

on the right hand side: this is againa ≥ R̄. By squaring
(8) we obtain

||c||2 ≥ 2 R̄ (µ⊕ + E⊕R̄) . (9)

The above condition is an algebraic inequality in the vari-
ables(ρ, ρ̇); by another squaring it is possible to convert
it into a polynomial equation of degree 10 inρ and degree
4 in ρ̇. Fig. 1 shows also this inner boundary, as well as
an alternative outer boundary constraining the apocenter
Q at some large value (the equations are analogous). The
main limitation of this approach is that we do not have a
rigorous proof that the number of components of a region
defined by eqs. (7) and (2) has at most two connected
components.

4. ATTRIBUTABLE ELEMENTS

The admissible region can be used to generate a swarm
of virtual debris: we sample it starting from its bound-
ary. We would like to select points that are equispaced on
the boundary, that is, if the boundary is parameterized by
its arc lengths, then the distance of each couple of con-
secutive points corresponds to a fixed increment ofs. To
avoid the computation of the arc length parameter we use
the following idea: we choose a large number of points,
equispaced in one of the two coordinates, and then we use
an elimination rule to be iterated until we are left with the
desired number of points. It can be shown [3] that the
remaining points are close to the ideal distribution, equi-
spaced in arc length. Identified the polygonal domainD̃
defined by connecting with edges the sample of bound-
ary points of the admissible regionD we triangulate it.
Among all possible triangulations of̃D domain we chose
theconstrained Delaunay triangulationwhich has some
optimum properties (see Fig. 2).
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Figure 2. Triangulated admissible region for an attributable com-
puted by a tracklet of the OGS data. The green curve is the curve of
zero energy, the blue points are the nodes of the triangulation, the red
curve is the curve of minimal energy and the black curve is thecurve of
minimal pericenter.

Each node of the triangulation defines a virtual debris,
that is a possible, but by no means determined, set of six
quantities

X i = (α, δ, α̇, δ̇, ρi, ρ̇i) = (A, Bi)

composed by the attributable and the values of range
and range rate. A set of six initial conditions uniquely
determines the orbit of a debris, thus it is a set of or-
bital elements, belonging to a new type (different from
the classical coordinates, such as Keplerian, equinoctial,
cometary, Cartesian, etc.). We shall call such data a set of
attributable orbital elements.

5. CORRELATION ALGORITHM

We assume that for a given debris object the only observa-
tional information available is contained in two attributa-
bles,A1 at time t̄1 andA2 at time t̄2. Neither from the
first nor from the second we can compute an orbit, thus
we have acorrelationproblem.

The idea is to generate a swarm of virtual debrisX i, sam-
pling as described in the previous section the confidence
region of one of the two attributables, let us sayA1. Then
we compute, from each of theX i, a predictionAi for the
epocht̄2, each with its covariance matrixΓAi . Gener-
ically these covariance matrices will be invertible, and
the corresponding normal matricesCAi can be computed.
We also know the normal matrixC2 of the attributable
A2. Thus for each virtual debrisX i we can compute an
attribution penaltyKi

4 (see [2]) and use the values as a
criterion to select some of the virtual asteroids to pro-
ceed to the orbit computation. Note that the identification
penaltyKi

4, computed for a given nodeBi
1 of the triangu-

lation of A1, does not need to be small. First, we cannot
know a priori whether the two objects observed at times
t̄1 andt̄2 are indeed the same. Second, even if they were
the same, the value ofBi

1 could be totally wrong with re-
spect to the true values of the distance and its derivative



at time t̄1. In both cases the two attributables cannot fit,
and this will be revealed by a large value ofKi

4.

Thus the procedure might be as follows. If for all nodesi
the value of the penalty is large, sayKi

4 greater than some
maximumKmax, then we discard the couple(A1, A2) as
not likely to belong to the same body. If there are some
nodesBi

1 such thatKi
4 ≤ Kmax, then we proceed to the

next step.

The value of the controlKmax to be used is difficult to
establish a priori, because we lack an analytical theory.
We cannot useχ2–tables for dimension 8, because we
are sampling the confidence region with a finite number
of pointsBi

1, thus we cannot assume that the minimum
among theKi

4 is the absolute minimum we could get by
trying all values ofB1 ∈ D(A1), that is

Mini=1,kKi
4 ≥ MinB1∈D(A1)K4(A1, B1) (10)

and we cannot compute analytically the safety margin to
be left to take into account this difference. We conclude
that the value ofKmax to be used in large scale produc-
tion of correlations can only be dictated by the analysis
of the results of large scale tests.

The procedure described above provides us also with a
number of best fitting corrected attributablesAi

2.

EachAi
2 comes with its penalty valueKi

4, which is not
too large, that is, an orbit withBi

1 as distance and radial
velocity at timeti1 and giving the attributableAi

2 as ob-
servation at timēt2, can fit bothA1 andA2 with not too
large residuals; the fit is performed in the 8-dimensional
space of the residuals of both attributables.

To start differential corrections we need a preliminary or-
bit that is a set of orbital elements to be used as first guess.
There is no requirement that such an orbit is accurate: it
is only hoped that it belongs to the convergence domain
of the differential corrections. To achieve this, we have
a number of options, the simpler one is to use attibutable
orbit elements (Section 4) composed by the attributable
Ai

2 and the valueBi
2 = (ρi

2, ρ̇
i
2) as computed from the

orbit X i = [A1, B
i
1] at ti1. The epoch of this set of initial

conditions is̄t2 − ρi
2/c.

We have validated this algorithm by running it on the
3172 tracklets provided to us from the 2007 OGS obser-
vations: we correlated 267 tracklets obtaining 109 orbits
(see Sec.6).

Since the astrometric prediction function is nonlinear,
and there is no guarantee that if the timet̄2 is very far
from t̄1, this algorithm works properly we have limited
the time interval to less than one day, that is less than one
orbital period.

The accepted preliminary orbits are used as starting guess
for differential corrections; if they are convergent, we ac-
cept the 2-tracklet correlation with the orbit from the least
squares fit.

6. CORRELATION CONFIRMATION

Correlation confirmation is best obtained by looking for
a third tracklet which can also be correlated to the other
2; this process is calledattribution. From the available 2-
tracklets orbit with covariance we predict the attributable
AP at the time t̄3 of the third tracklet, and compare
with the attributableA3 computed from the third tracklet.
Since bothAp andA3 come with a covariance matrix, we
can compute theχ2 of the difference and use it as a test,
then proceed to differential corrections [4].

The procedure isrecursive, that is we can use the 3-
tracklet orbit to search for attribution of a fourth tracklet,
and so on. This generates a very large number of many-
tracklets orbits, but there are many duplications, corre-
sponding to adding the tracklets in a different order.

By correlation management we mean a procedure to re-
move duplicates (e.g.,A = B = C andA = C = B)
and inferior correlations (e.g.,A = B = C is superior to
bothA = B and toC = D, thus both are removed). The
output catalog after this process is called normalized.

The output of our test with the 2007 OGS data, after cor-
relation management, included 109 correlations.

T 2 3 4 Total
C 69 31 9 109

Table 1.C is the number of correlations found with T tracklets

The 2007 observations were not scheduled to allow for
orbit determination and in particular there are few objects
having at least two tracklets in a single night; thus a lot of
tracklets remain uncorrelated.

Of course we have no way to know how many should
have been correlated, that is how many physically dis-
tinct objects are there: in particular, objects re-observed
at intervals longer than 10 days have escaped correlation.

7. DATA ANALYSIS

In this section we shall examine the results obtained ap-
plying our algorithm to real data. The data we have
used have been obtained by the ESA Optical Ground
Station (OGS) at Teide Observatory (Canary Islands) in
the year 2007. They were collected in a survey tar-
geted at the geosynchronous belt, although of corse ob-
jects in different orbits were incidentally imaged; the
region being suveyed was a belt above and below the
geosynchronous line, where exactly circular, equatorial
and geosynchronous orbits could be seen from the OGS
location. Fig. 3 shows a global view of this data set in a
body-fixed reference frame.
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Figure 3. Validation dataset: 2007 tracklets from ESA OGS, pre-
processed by University of Bern. Angles are in a body-fixed altazimutal
reference. Angular velocity is represented by the motion in1/4 hour.
The blue line is the geostationary line (where GEO withe = I = 0 are
found).

The population which is observed by surveying around
the geostationary line contains geostationary objects,
with low values ofe andI and geosynchronous (or al-
most) objects which could have a significante and I,
including some very high values which could occur for
large Area/Mass (A/M) as a result of radiation pressure
[6].

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
2007 OGS data, 3172 tracklets

E
C

C
E

N
T

R
IC

IT
Y

SEMIMAJOR AXIS (KM)

Figure 4. Orbits determined with our method projected on the(a, e)
plane: the green lines indicate apocenter (on the left) and pericenter
(on the right) at the geostationary altitude.

Some of the observed tracklets give origin to orbits with
semimajor axis very different from the GEO, orbits prob-
ably belonging to drifting objects.

The orbits in the(a, e) (Fig. 4) plane show a concentra-
tion of GEO orbits, including some with high eccentric-
ity.

Fig. 5 shows that there are two groups of orbits with
e ≃ 0.32 ande ≃ 0.41, and they also correspond to a
quite large inclination:I ≃ 17◦.5 andI ≃ 10◦. These
value could be reached in few years by originally geo-
stationary debris provided they have A/M of the order of
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Figure 5. Orbits from our method projected on the(I, e) plane: the
red dots are nearly geosynchronous orbits, witha within 700 km from
the geosynchronous value. The few GEO orbits with highe andI should
have high area/mass ratio.

20 m2/kg [6]. The two groups of orbits actually corre-
spond to just two objects, because the correlation was not
achieved. For the values of A/M cited above, the radia-
tion pressure perturbation is much larger than the ones
due to Earth’s spherical harmonics, the Moon and the
Sun. Thus a least squares fit over a time span of many
days must necessarily fail, unless we have a radiation
pressure model. For now we have only order of magni-
tude guesses for the radiation pressure model parameters,
including A/M (but not only, since the shapes are cer-
tainly not spherical). If we had a much larger data set of
observations of these objects, we could estimate the val-
ues of these parameters and presumably correlate all the
observations of these two objects.

Fig. 5 shows an apparent lack of really geostationary or-
bits, with low e andI: actually there is only one orbit
with e < 0.01 and I < 2◦. This is due to the fact
that the survey conducted by the OGS in 2007 had the
purpose of discovering new objects, and the geostation-
ary objects are mostly active satellites, whose orbits and
ephemerides are known. Thus the fields of view were on
purpose avoiding the geostationary line of Fig. 3.

Fig. 6 and 7 show the distribution of eccentric-
ity/inclination versus intrinsic luminosity of the objects,
the latter described in the absolute magnitude scale. Un-
fortunately it is not easy to convert an absolute magni-
tude into a size, because of the wide range of albedo val-
ues and also because of irregular shapes. However, if we
could assume albedo0.1 and a spherical shape, we would
get a diameter ranging between10 m and≃ 30 cm for the
correlated objects. Thus the largest objects should be full
satellites (at lowe) and rocket stages, the smallest are
certainly debris.

The existence of objects with highe and alsoI was al-
ready well known, what is interesting is that some of
these have a quite large cross section. To understand the
dynamics of such objects is a challenge, which requires
advanced models and a good data set of both astrometry
and photometry.
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Figure 7.Orbits determined with our method projected on the(I, H)
plane. There is a geosynchronous population with moderately high in-
clination, and a wide range of sizes.

8. CONCLUSIONS AND FUTURE WORK

1. We have developed and validated with one year of
OGS data an orbit determination method, already
theoretically described in [5]; this method requires
two tracklets per night and computes full orbits, with
6 elements. For a method requiring 1 tracklet per
night, see the paper by Milani et al. in these pro-
ceedings.

2. We find a certain number of correlations, even in a
dataset which was taken without following a strat-
egy optimized for orbit determination and in partic-
ular for this method (few objects with at least two
tracklets per night). The resulting orbits make sense,
thus most of them should be right, although a few
may be wrong (especially the ones not confirmed by
correlating a third tracklet).

3. The resulting catalog of orbits is not yet in a 1-1 cor-
respondence with real objects, because objects ob-
served too far apart in time cannot be fit to a purely
gravitational orbit. This phenomenon is especially
relevant for large area/mass objects (withA/M ≃ 1
m2/kg, the radiation pressure is as important as the
J2 perturbation, see [6], Fig. 1).

4. This method also applies with radar data, pro-
vided the radar measures(ρ, ρ̇, α, δ) gives us a 4-
dimensional radar attributable [2, 1]. In this case the
admissible region has a simple shape, a conic [5].
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