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Abstract

The Radio science experiment of the BepiColombo mission to the
planet Mercury shall allow to solve for the gravity field of the planet
up to degree and order 25, for an improved orbit of Mercury and a
very accurate verification of Einstein’s theory of gravitation, for mea-
suring the rotation state of the planet, for mapping the topography (in
combination with a laser altimeter). To actually obtain all the above
results from the range and range-rate data we will have to solve a
complex orbit determination problem which is not automatically well
posed and numerically stable. The theory of symmetries and rank de-
ficiencies provides the conceptual tools to find the critical steps of the
data processing procedure and to overcome the difficulties, providing
results adequate for the achievement of the mission science goals.

BepiColombo is the next cornerstone mission of planetary exploration of
the European Space Agency [Balogh et al. 2000]. It shall launch two space-
craft in orbit around Mercury; one of these , the Mercury Planetary Orbiter
(MPO), will investigate mostly the solid planet surface and interior. Infor-
mation on the interior structure can be obtained only by a geophysical in-
vestigation based upon gravimetry, magnetometry and measurement of the
planet’s rotation state. Another of the mission goals is to test Einstein’s the-
ory of gravitation by measuring very accurately the orbit of Mercury around
the Sun and the propagation of radio waves in the gravity field of the Sun.
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The main tool to achieve the goals above is the Mercury Orbiter Radio
science Experiment (MORE). The on-board accelerometer (ISA), the high-
est resolution imager and the laser altimeter (BELA) instruments shall also
contribute to the above goals. Thanks to a sophisticated multi-frequency ra-
dio wave link, MORE will provide extreme accuracy range (errors ' 10 cm)
and range-rate (errors ' 1.5 µ/s) between the BepiColombo MPO and 1-2
ground stations.

1 The BepiColombo orbit determination

One passage of Mercury above the horizon of a ground station lasts ' 8 hours
(more in summer, less in winter). Thus the range and range-rate data are
naturally split into arcs, ' 1 per day; the MPO should orbit around Mercury
for at least one year, thus there are hundreds of arcs. For each arc we need
to solve for the local parameters, relevant only for the data of the arc. With
all the data of all arcs we need to solve for the global parameters, including
the science goals, in a least square fit.

Science goals include the harmonic coefficients of Mercury’s gravitational
potential up to degree and order 25, the Post-Newtonian Parameters (PPN)
controlling the relativistic orbit and a set of coefficients defining the rotation

state of the planet. The following is a list of parameters to be solved in
the fit, including the science goals as well as calibration and intermediate
parameters [Milani et al. 2001, Milani et al. 2002]

Local parameters:

• 6 MPO initial conditions for the arc,

• 3 calibration coefficients for the accelerometer,

• 6 corrections to heliocentric Mercury (∗)

for a total of ' 15 · 365 parameters.

Global parameters:

• 262 − 3 harmonics of Mercury’s potential,

• Mercury’s dynamical Love number k2,

• 12 initial conditions for Mercury and Earth (∗),

• γ, β, η and other PPN, mass and J2 of the Sun (∗),

• ≥ 2 par. describing Mercury’s rotation (∗∗)
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for a total of ' 700 parameters. (The stars mark some of the alternative
choices discussed later). Overall there shall be m ' 1, 000, 000 range and
range-rate data points, thus equations, in N ' 6, 000 unknown. The main
problem is not the size of the least square fit, which is quite manageable even
without special computing facilities: state of the art satellite geodesy solution
for the gravity field of the Earth are significantly larger. The problem to
assess the performance of MORE is whether the orbit determination problem
is well posed and numerically stable.

2 Rank deficiency and symmetries

We shall discuss the MPO orbit determination problem in the context of
the classical least squares principle, which can be modified to include the
appropriate weighing of the residuals to take into account the observational
accuracy and also the correlations. If the problem is summarized in the clas-
sical normal equation relating the corrections ∆X of the parameters vector
X to the normalized residuals vector Ξ

BT B ∆X = −BT Ξ

where B = ∂Ξ/∂X, then the normal matrix C = BT B is numerically singu-
lar, the covariance matrix Γ = C−1 cannot be reliably computed and anyway
the confidence ellipsoid (with matrix C) is huge. If the differential correc-
tions are iterated, the procedure diverges. If the iterations are stopped, the
solution obtained is disastrously wrong.

This disaster is due to a well known, although not fully understood, phe-
nomenon called rank deficiency. Rank deficiency is exact if C is singular,
approximate if C is very badly conditioned (ratio of largest to smallest eigen-
value comparable to the inverse of machine accuracy).

Would this imply the total failure of 3 BepiColombo experiments (MORE,
ISA, BELA)? No, the experts in orbit determination know recipes to remove
rank deficiency, but this is kraftmanship, not science. Thus we have set as a
goal for our BepiColombo related research to build a rigorous theory of rank
deficiency and of the ways to cope with it. The first result of such a theory
is not new, although it is not found in textbooks:

Theorem: If there is an effective one-parameter group of transformations
which are exact symmetries of all the observations then the N × N normal
matrix C has rank N − 1. If there is an effective dimension d Lie group of
exact symmetries then C has rank N − d.

Effective means that only the unit element of the group acts as the iden-
tity transformation. Exact symmetry means that after applying the trans-
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formation the residuals are exactly the same. Approximate symmetry means
that a value ε of the symmetry parameter changes the residuals by O(ε2).
The converse of the above theorem is not always true: if the rank of C is
N − d there could be approximate symmetries only (unless some other hy-
pothesis is applicable); if the rank of C is everywhere N − 1 there is a local
one-parameter of exact symmetries.

There are classical examples of symmetries and rank deficiency in the
n-body problem, that is in the orbit determinations for the planets of our
Solar System: if the observations are only range and/or range-rate between
planets (e.g., radar), the 3-dimensional group SO(3) of rotations is an exact
and effective group of symmetries. If the observations are angles only, the
changes of scale by λ in length and µ in mass are exact symmetries for λ3 = µ.

A similar case of symmetry applies to the BepiColombo case. The initial
conditions for the Earth, for Mercury and the mass of the Sun cannot be
adjusted at once, by using only range/range-rate data between the Earth
and the Mercury system. If there were only Earth and Mercury there would
be an exact symmetry. Due to the weak coupling with the other planets,
there is an approximate symmetry and the normal matrix C is very badly
conditioned. As we have shown in [Milani et al. 2002], 4 constraints, which
essentially reduce the 13 parameters listed above to only 9, are needed to
stabilize the problem, which can then be solved in stable and accurate way.
The PPN can be solved simultaneously, and the resulting accuracy shall allow
to improve very significantly our knowledge of the theory of gravitation.

The above example shows the method we use: we first find an exact
symmetry, by analyzing geometrically a simplified problem, then identify
the approximate symmetry resulting from adding more realistic details and
use it to understand an approximate rank deficiency. Once a rank deficiency
is identified, it can be remove it by either some constraints imposed upon the
parameters of the problem or by descoping, that is removing some parameters
from the list of those to be solved.

One exact symmetry is well known in the limit case for distance → +∞,
which occurs in the now fashionable problem of orbit determination for ex-
trasolar planets. If the orbit of a satellite is rotated around the fixed direction
from the Earth to the central body (assumed to be spherical), the residuals
in range and range-rate are exactly the same.

For extrasolar planets (or dim companion stars), observed by their range-
rate perturbations on the central star, since the distance is practically infinite
and the direction of observations hardly changes, this symmetry is exact. The
best solution, in this case, is descoping: the longitude of the node Ω, using
as reference plane the sky plane orthogonal to the direction to the Earth, is
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removed from the parameters to be fit and remains unknown1.
In the Mercury orbiter case the symmetry is approximate, since the di-

rection from the Earth to Mercury changes, but over time scales much longer
than the period of the mercury-centric orbit [Bonanno and Milani 2002]. In
this case descoping is not appropriate, we use constraints to the orbit aris-
ing from long arc solutions, for which the symmetry is broken. However,
long arc solutions are less accurate because of the difficulty of modeling non-
gravitational perturbations (the accelerometer needs to be calibrated, and
this is very difficult during the time span between two observed arcs). E.g.,
in a simulation we have assumed an a priori knowledge of the MPO orbit
within 3 meters in position, the final results is a thin confidence ellipse for
the spacecraft position with a long axis of ' 3 m and shorter axes of a few
cm [Milani et al. 2001].

3 Symmetries and degeneracy for a planetary

orbiter

The case of a planetary orbiter is somewhat more complicated than the ones
described in the classical literature on orbit determination, thus some com-
paratively simple symmetries have never been discussed in published papers.

The ranging symmetry

If the corrections to Mercury’s orbit are considered as local parameters (later
fit in an orbit determination for the planets), then the translations in position
and in velocity along the plane orthogonal to the Earth-Mercury direction
are approximate symmetries. Thus already in the solution for the local pa-
rameters the 15 × 15 normal matrix is very badly conditioned.

This can be solved by descoping. If the arc is short, ranging to the
MPO only provides an estimated correction to the range to Mercury’s center

of mass (CoM). The range-rate to MPO allows to correct the range-rate
to Mercury CoM. Thus the maximum number of local parameters is 11,
not 15. However, this is a quick solution, adopted in [Milani et al. 2001] to
perform a simulation of the MORE experiment with a shorter development
time for the software. A more rigorous, and presumably somewhat more
accurate solution would be obtained by removing the corrections to the orbit
of Mercury from the local parameters, solving simultaneously for the initial

1Another symmetry of this case does not allow to solve independently for the mass
ratio and for the inclination of the orbit with respect sky plane.
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conditions of the planetary orbits and for the PPN as global parameters in
a single least squares fit. This choice requires a more complicated software,
with the advantage of a simpler theory and more numerically stable results,
thus it is more appropriate if time and resources allow it, as it will be the
case before the real data are available.

The photogravitational symmetry

This is a symmetry involving parameters of a different nature, thus it is
not easy to find, although given the basic idea the equations end up being
simple. The three accelerometer axes are orthogonal and oriented radially
(to Mercury’s CoM), in the orbit plane and out of plane. Let there be a
constant miscalibration f along the out of plane axis; or, let there be a
constant radiation pressure acceleration in the out of plane direction and no
accelerometer, which gives the same.

If the spacecraft has a circular orbit of radius r lying on a plane displaced,
with respect to the CoM of the planet, by a distance h in the direction
opposite to the one to the Sun, then the three vectors of the gravitational
monopole attraction ~G, of the radiation pressure acceleration ~F and of the
centrifugal acceleration ω2 ~R can have a zero sum if the following equations
are satisfied

MPO

3000 km + 6e−4 cm

ω2 |R||R|=3000 km

|H|=6 m

MERCURY

|G|=300 cm/s^2

|F|=6e−4 cm/s^2

Figure 1: The photogravitational symmetry for a simplified version of the MPO orbit
determination.

~0 = ω2 ~R + ~G + ~F
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~G = −
GM (~R + ~H)

(r2 + h2)3/2
; ω2 r =

GM r

(r2 + h2)3/2

f =
GM h

(r2 + h2)3/2
=⇒

h

r
=

f

ω2 r

M ′

M
=

(

1 +
h2

r2

)

−3/2

=⇒ M ′ = M (1 − 6 × 10−12)

The last equation shows that the symmetry can be exact if the parameters
f, h, M are changed simultaneously in a way satisfying the equations above:
that is, the position of the CoM of Mercury, the accelerometer calibration (or
radiation pressure coefficient) and the mass of Mercury cannot be estimated
at once. If the mass of the planet is estimated otherwise, an approximate
symmetry remains because the change in the estimated mass M is very small,
for the order of magnitude values of the other parameters corresponding to
the MPO case shown in Figure 1. If the miscalibration f is ignored, the
position of Mercury CoM is estimated incorrectly, by several meters, which
is relevant for the relativity experiment.
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Figure 2: Results of the solution for the gravity field of Mercury. The two upper lines
show the (simulated) signal as a function of the harmonic degree, the four below describe
the accuracy of the results as discussed in the text.
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The results of the simulations (gravimetry)

If the accelerometer miscalibrations are too large, by some form of photograv-
itational symmetry (which has not yet been analyzed in detail) the gravity
field of Mercury is too much in error, as shown by the line corresponding
to 100% accelerometer calibration error; also the orbit of the MPO is too
poorly determined (e.g., to allow for estimating topography with BELA). If
the accelerometer is calibrated a priori (by thermal measurement/control)
at the 1% level, the results meet the scientific requirements of MORE. Note
that anyway the true error is larger than the formal accuracy (bottom line).

4 The rotation experiment and the missing

symmetry

According to science historians, Isaac Newton refused to publish his solution
of the 2-body problem until when he had the proof that a spherically sym-
metric body generates, outside the body, the same gravity field as a point
mass placed in the CoM. Unfortunately, this also proves that the inverse

gravimetry problem is ill-posed, even a perfect knowledge of the gravity field
outside a body does not allow to solve for the internal mass distribution.

A question often arising in discussions on the science goals of planetary
exploration missions is the following. Can a planetary mission constrain the

internal structure without landing on the planet? Newton’s classical result,
and its modern versions, show that even a perfect knowledge of the gravity
field outside the surface of the planet does not constrain the concentration
of the mass towards the center, thus does not allow to constrain the size and
density of the core. E.g., the 6 coefficients of the moment of inertia tensor
are linearly related to the 5 harmonic coefficients of degree 2: if the latter
are measured with remote gravimetry, one free parameter remains2.

A solution of the problem could be to directly observe the rotation state of
the planet, e.g., by using the high resolution camera (as it has been proposed
for BepiColombo at Mercury), or by using the radar images of the surface
(as proposed for Cassini at Titan). From a suitably defined obliquity of the
rotation axis it is possible to estimate the absolute value of the principal
moment of inertia, thus scaling correctly the moment of inertia tensor. It is
also possible to measure the libration in longitude resulting from the coupling
of the permanent equatorial ellipticity of Mercury with the Sun’s tidal pull,

2That is, there is a rank deficiency of 1 corresponding to a symmetry moving all the
mass of the planet closer to the CoM.
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and from this to detect the presence of a decoupling (liquid layer) between
core and mantle (see Peale, these proceedings).

However, this rotation experiment proposed for BepiColombo imposes
very tough constraints on the thermo-mechanical design of the MPO, be-
cause of the need to measure spacecraft to surface directions in an absolute
reference frame. Thus it would be desirable to measure the rotation from
the gravity field above the surface. In principle, the time-dependent gravity
field generated by a rotating planet, measured in an inertial frame, depends
upon the rotation state. Thus by tracking for long enough and accurately
enough a satellite it could be possible to measure the planet rotation without
looking at the planet! We have tested this hypothesis by a numerical experi-
ment of MPO orbit determination, adding to the best case shown in Figure 2
(1% accelerometer calibration) just two parameters (obliquity, amplitude of
libration in longitude).
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Figure 3: Results of the simultaneous solution for the gravity field and the rotation of
Mercury. The error is larger than the signal for the harmonic coefficients of degree ≥ 20.

The results of this combined gravimetry-rotation experiment have been
disastrous (see Figure 3). Just by adding two rotation parameters to be
solved the error in the gravity field increases by a factor ' 100 with respect
to the comparable case of Figure 2. The rotation parameters are essentially
undetermined: the iterative correction procedure is divergent, with changes
in the rotation parameters as large as the expected value in each iteration.
Note that the formal uncertainty of the libration in longitude is very small
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(1/6000 of the expected value) and totally meaningless as prediction of the
actual accuracy: this should be a strong warning against presenting such
formal results as assessment of mission performance.

What we may call Newton’s principle: “no mass distribution from gravime-
try alone”, is preserved in the hypothetical BepiColombo gravimetry-rotation
experiment by some hidden symmetry ! An unknown combination of changes
in initial conditions, in harmonic coefficients, in calibrations and in Mercury’s
CoM reproduces a different rotation of Mercury. Thus we plan to go ahead
with a separate rotation experiment using direct observations by imaging of
the rotation of the planet surface.

The open problem is to identify such symmetry: does it involve only the
harmonic coefficients and the parameters appearing in the rotation model?
In this case it would be a straightforward generalization of Newton’s prin-
ciple to the time dependent, rotating planet case. Or does it result from
a combination of local parameters (including initial conditions, accelerome-
ter calibrations, corrections to Mercury’s position and velocity) with global
ones, thus it is a symmetry involving parameters of a very different physical
nature, like the photogravitational symmetry? Is there a way to cope with
this rank deficiency, either by constraints or by descoping? Could a future
mission with an even more advanced technology, e.g., with a much better a
priori accelerometer calibration, prevail on Newton’s principle and measure
the properties of some planetary core with the Radio Science data only? We
hope that these questions will be answered in the future.
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