Available online at www.sciencedirect.com

sc.euce@nmecw ICARUS

& A sles
ELSEVIER Icarus 166 (2003) 248—270
www.elsevier.com/locate/icarus
Error statistics of asteroid optical astrometric observations
Mario Carpino®* Andrea Milani? and Steven R. Chesléy
& Osservatorio Astronomico di Brera, via Brera, 28, 20121 Milan, Italy
b Dipartimento di Matematica, Universita di Pisa, Via Buonarroti, 2, 56127 Pisa, Italy
¢ Navigation & Mission Design Section, MS 301-150, Jet Propulsion Laboratory, Pasadena, CA 91109, USA
Received 29 May 2001; revised 25 October 2002

Abstract

Astrometric uncertainty is a crucial component of the asteroid orbit determination process. However, in the absence of rigorous uncer-
tainty information, only very crude weighting schemes are available to the orbit computer. This inevitably leads to a correspondingly crude
characterization of the orbital uncertainty and in many cases to less accurate orbits. In this paper we describe a method for carefully assessi
the statistical performance of the various observatories that have produced asteroid astrometry, with the ultimate goal of using this statistice
characterization to improve asteroid orbit determination. We also include a detailed description of our previously unpublished automatic
outlier rejection algorithm used in the orbit determination, which is an important component of the fitting process.

To start this study we have determined the best fitting orbits for the first 17,349 numbered asteroids and computed the corresponding O—
astrometric residuals for all observations used in the orbit fitting. We group the residuals into roughly homogeneous bins and compute the
root mean square (RMS) error and bias in declination and right ascension for each bin. Results are tabulated for each of the 77 bins containir
more than 3000 observations; this comprises roughly two thirds of the data, but only 2% of the bins. There are several interesting results
including substantial bias from several observatories, and some distinct non-Gaussian characteristics that are difficult to explain. Severe
limitations of our approach and possible future improvements are discussed.

The correlation of errors among observations taken closely together in time is in many cases an important issue that has rarely bee
considered. We have computed the mean correlation between observations with varying time separations and obtained empirical functior
that model the results. This has been done for several observatories with very large data sets (the remainder has been lumped into a sing
mixed batch). These functions could be used for estimating correlation coefficients among different observations of the same observatory
supplying a new observation weighting scheme based upon an empirically tested observational error model.
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1. Introduction abilistic assessment of the initial conditions at some epoch
it is possible to compute an analogous probabilistic assess-
When asteroid orbits are computed by fitting astrometric ment for every prediction based upon the future (and past)
observations the result is not only a singleminal solu- state of the asteroid, such as a predicted observation (Mi-
tion, but aregion of confidencevhere the orbital elements lani, 1999), a close approach (Milani and Valsecchi, 1999;
are compatible with the observations. However, the defini- Milani et al., 2000a), an orbit identification (Milani et al.,
tion of such a confidence region depends upon assumption2000b), or an attribution of observations (Milani et al.,
on the possible errors contained in the observations. Reliable2001). Whenever the predictions have substantial uncer-
information on the statistics of observational errors allows tainty, either because the orbit is weakly determined by too
one to define a statistical model of the result in the space few observations, the prediction is required with extreme
of orbital elements; this model in turn defines not Only the precision, or the prediction is for a time remote from the
confidence boundaries, but also the probabilities of finding gpservations, this probabilistic point of view should always
the orbital elements within each boundary. Prom this prob- replace the simple mention of the nominal prediction. De-
terministic statements are superior to probabilistic ones only
~* Corresponding author. when they are reliable, otherwise they could be a source of
E-mail addresscarpino@brera.mi.astro.it (M. Carpino). confusion and even a waste of resources.
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The statistical model of the observational errors cannot respond to the real behavior of the data, to be used to replace
be decided on the basis of some theoretical argument only:the simplistic assumption of uncorrelated observations. We
an error model needs to be confirmed by empirical evidence.conclude in Section 5 by discussing the internal consistency
The observational errors are found by analyzing the resid- of the statistical model of the observation errors based upon
uals, after removing the sources of error not related to the the RMS, bias and correlations computed in this paper. Fi-
observations (e.g., the orbital errors). We should not force nally we indicate the work which remains to be done to fully
the errors to be what we believe they should be: an a pri- achieve our goal: to firmly base the orbit determination al-
ori model cannot be reliable since a complete physical and gorithm on a more rigorous and reliable statistical model.
statistical model of the observational procedure, including
the astrometric reduction, would be too complicated and is
certainly not available. In particular, the classical assump- 2. Observation residuals
tion (Gauss, 1809) that the observation errorsremenally
distributed,that is distributed according to a Gaussian prob-  We have prepared the residuals (observed minus com-
ability density function, is not an axiom but should be an puted values of right ascension and declination) to be an-
assumption to be tested against empirical evidence. This isalyzed by computing least-square solutions for a large set
even more true since there is no such thing as a uniqueof orbits, applying a differential correction algorithm until
Gaussian model, but there is a multidimensional space ofconvergence. Strictly speaking, the two steps of orbit deter-
Gaussian probability density functions, depending upon pa- mination and statistical analysis of the residuals are inter-
rameters values are not known a priori. dependent, since the statistical analysis is performed on the

Thus we have set as our research goals the following residuals generated by orbit determination and orbit determi-
tasks. First, we would like to test the hypothesis that there nation uses the results of the statistical analysis for assigning
is a statistical model of the observational errors in asteroid weights to the observations and for performing outlier rejec-
astrometry, in particular a Gaussian model, which can be em-tion. It is therefore necessary to adopt an iterative approach:
pirically confirmed by analyzing a large and representative as a starting point, we have used a simplistic model with no
set of residuals. Second, we would like to find the values correlations, no bias and all residuals weighted according to
of the parameters defining the most appropriate Gaussiana crude scheme. (We used weights corresponding to an as-
distribution, in particular the standard deviations, biases andsumed RMS of 1 arcsec for modern observations, 2 arcsec
correlations, in such a way that the model best fits the reality before 1950, and 3 arcsec before 1890.) The use of such a
of the observational process. Third, we would like to assesspoor model affects the results in an uncertain way, with im-
the impact of the use of such a nontrivial statistical model on plications discussed in Section 5.
the orbit determination, by comparing the results with those
obtained with a naive error model and by measuring the im- 2.1. Data set
provements, if any, in the reliability of the predictions. This
paper contains the results ob the first two tasks, while the A reliable statistical study of observational error requires
work on the third one is ongoing. a large and homogeneous data set of residuals that can be in-

A motivation for this work is the need to replace the sim- terpreted as observational errors. Astrometric observations
plistic error model that is implicitly assumed when the target of asteroids observed only at a single opposition cannot be
function of the least-square orbit determinations is just the used for this purpose, because in a least-square fit of a short
sum of squares of the residuals (with equal weights for all arc a large fraction of the observation error can be absorbed
the observations) or maybe with weighting based upon crudein the values of the fit parameters (orbital elements) and
assumptions. There are very good reasons to think that dif-therefore does not show up in the residuals. For this rea-
ferent observatories have very different accuracies, that thereson we have used only the data for numbered asteroids,
are systematic as well as random errors, and that the errorspecifically, the data published by the Minor Planet Center
are notindependentbut correlated. The simplistic model waswith the monthly update of 19 September 2000, which con-
previously used mostly for lack of something better, rather tained 2,145,404 optical observations of 17,349 numbered
than because it was credible. We intend to use the error mod-asteroids (we are not counting, for this purpose, the radar
els derived from this paper in a weighting scheme to be usedobservations).
for orbit determination.

This paper is organized as follows: in Section 2 we de- 2.2. Outlier dejection
scribe the preparation of a large set of astrometric residu-
als, which have been used for this statistical analysis; this The algorithm for differential corrections we have used in
includes an algorithm for outlier rejection that we have de- preparing the residuals data set includes an automatic outlier
veloped. In Section 3 we find the most suitable values of the rejection scheme. This is necessary because in fact the data
root mean squares (RMS) and bias to be attached to a pre€ontain some observations with very large errors. These can
sumed Gaussian distribution of the observational errors. Inarise from erroneous identifications, from mistakes in the
Section 4 we find empirical correlation functions which cor- astrometric reduction, from typographical errors and many
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other human and machine failures. Such erroneous obser+residual of what we consider a single astrometric observation
vations can corrupt the orbital solution; thus they must be x has dimension 2 (havingright ascensiorand adeclina-
removed. Having done this, we can assume that the nomi-tion component). For the sake of the following discussion it
nal least-square orbit is the true one, at least to an accuracyis important to notice that in our statistical tests we are not
much better than that given by any single observation. This going to use the residuals— x with respect to the average
implies that the residuals essentially contain only observa- values of the observatiorss(which are of course unknown),
tion errors, but this chain of assumptions needs to be verifiedbut postfit residuals
a posteriori. B

In this section we carefully describe the algorithms we §=x—x

have used to reject the outliers in a fully automated way. The \hich are differences between the observed values of the as-
basic idea is to use the information supplied by the statistical trometric coordinates (including measurement errors) and
analysis of the residuals (see Section 3) and discard as outthe corresponding valugscomputed by numerical integra-
liers all the observations for which the residual is too high. tjgn starting from the adopted set of orbital elemefitsn

This approach entails forming a>22 residual covariance  our case the orbital elemengisare not known a priori, but

for each right ascension and declination pair. The covarianceare computed through a least-square fit to the observations
of the residual differs from the measurement covariance be- ;. Therefore they are functions of the stochastic variable
cause some component of the residuals can be attributed tynd are to be considered as stochastic variables themselves.
orbital error. By combining the measurement and orbital co- |f we adopt the convention of usingtide () for indicat-
variances one can determine if a particular residual violatesing quantities which are estimated from (function of) the
some threshold of acceptability. From that, one can deter- gpservations:, we can make this fact explicit by denoting
mine not only if an observation should be rejected, but also the orbital elements with the symbgl As a consequence,

if a previously rejected observation should be recovered into the covariance matrix of the residudls is not equal to the

the fit. _ o _ covariance matrix of observation errars, but can be com-

~ The following description of the automated outlier re- pyted from it with the approach we describe in the following.
jection method is important because it describes a critical |y order to compute the expressionfaf, we need first to

part of the process by which we have obtained the residu-recall the basics of the algorithm of the least-square fit. We
als that form the basis of our statistical analysis. However, || use the following notation:

a detailed understanding of this method is not particularly

relevant when considering the main results of this paper, y- total number of observations used in the least-
namely a comprehensive analysis of the statistics of asteroid square fit;
astrometric errors. We also recognize that such details mayy, : time of observation§ =1,2,..., N):
not be of interest to many readers and so we have structured,; &: astrometric observation and residual at a given
the paper such that skipping to Section 2.5 or to Section 3 instant of times; (2-dimensional stochastic vari-
will not substantially detract from the presentation. ables);

X, E: 2N-dimensional vectors of all observations and
2.3. Theory of outlier rejection residuals at times, 1o, ..., ty

x1 §1

The termy? can be considered the generalization of the
concept ofnormalized squared residudibr vectorial sto- X =
chastic variables € 9" and is defined as

x2 _ &2

2 ny - XN &N
x°=x —x) Wi(x —x), ,
solved-for parameters (orbital elements: usually a

where = €[x] is thestochastic expectation value or sto- 6-dimensional stochastic variable);
chastic averagghere indicated by the operatéi-]) of the A model matrix(2N x 6) of the least-square fit, equal
stochastic variable andW, is then x n weight matrix ofx, to the partial derivatives of the value of the ob-
equal to the inverse of its covariance matfix served quantities with respect to the parameters
w,=r 1 dF (11)/0p
. o ' . aF (t2)/0

The covariance matriXy, is defined as the stochastic expec- A= 0X ( _2) /9P ; (1)
tation value of the: x n matrix (x — X)(x —x)": B :
r_e . ., F (tn)/0p

e =6l =D = D] where (8, 1) is the function mapping the orbital

In the case of a one-dimensional stochastic variable elements into the astrometric coordinates (right

x € R, I, is simply thevarianceo? and x? reduces to the ascension and declination) at timgin practice,

normalized squared residuat — ¥)?/a2. In our case the F (B, t) is computed by numerical integration;
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yi, w;: 2 x 2 covariance and weight matrices of single ob-
servationss; (with w; =y, %);
', W:. 2N x 2N covariance and weight matrices of the ob-

servation vectoX , with W = 1.

If we assume, as is the case in the simplified error model,

that we are using as a starting point that observations made af =

different times are uncorrelate@|[g;&,] = 0 if i £ k), these
matrices have a simple block-diagonal structure

I =diagyi, 2, ..., VnN);
W =diagw;, wa, ..., wy);

however, this assumption is not used in the following devel-
opment, which remains valid in the more general case.

The least-square solution can be computed by integrat-

ing numerically the orbit starting from values of the orbital
elementspgy chosen ageference value$ thus generating
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goes back to the work of C.F. Gauss; for more modern ac-
counts of it see for instance Danby (1988, Section 7.5) and
Cappellari et al. (1976).

The covariance matrix of the residuas can be com-
puted directly from their expression of Eq. (5) as

=€[EE|=[I- A(A’WA)_lA’W]S[AXAX’]

x [I —AA'WA A W]
=[1-AAWATAW|WH T - WAA WA)TA]
=wloAaAawa A =r- ATGA.

If we indicate with the notatior; the 2x 6 matrix obtained
by selecting from matriXA only the two lines related to the

observation at timg, we can express the covariance matrix
of a single residuaj; as

)/gi =VYi — Al'F~A;.

; (6)

a corresponding set of reference (predicted) values of theln @ similar way it is possible to compute the covariance ma-

observationsXg = X (Bp); in a linear approximation, cor-
rections to the orbital elementsg = 8 — Bo are related to
corrections to the observatiodsX = X — X through the

relationship

AX = AAB )

and the correctiona 8 = 8 — fg satisfying the least-square
criterion
E'WE = minimum

are given by the expression

AB=A'WAAWAX, (3)

whereAX = X — Xg are the residuals of the observations
with respect to the reference orbit. As is well known, the
covariance matrix of the least-square soluttbis given by
r= E[ABAB']
= (AWA) TAWEAXAX TWAA' WAL
=AWATAWW WAL WAL
=@Awa 4)
and the residual§ with respect to the least-square orbit are
(in the linear approximation)
E=X-X=AX-AX=AX—AAB
=AX — AAWA)TAWAX
=[1 - A watA'w]ax, (5)

wherel is the unit matrix of dimension/2 x 2N . The proce-
dure outlined up to this pointis quite classical and ultimately

1 The reference valugg can be selected quite arbitrarily, with the only
constraint that it must be close enough to the true solution as to allow the

trix of a prediction residualé*, namely the residual (with
respect to the orbital solution) of an observation (performed,
say, at time*) which has not been used for the least-square
fit; of course, also in this case the linearized relationship be-
tween orbital erroAg and prediction erronx; .4 has the
same form already expressed by Egs. (1) and (2)

33:(,*))
B )

and the covariance matrix of tipeediction erroris therefore
given by

Vxhied = 8[Ax|.;JkredAx|;kr/ed] = A*FﬁA*/'

In this case, however, the prediction error and the measure-
ment error are uncorrelated, since we have assumed that
observations be mutually uncorrelated and the observation
x3pcat timer* wasnotused in the least-square fit; therefore
the covariance matrix of thgrediction error

E
Axpre

4= A*AB, with A* = (

£" =xgps— x;)kred
is given simply by the sum of the covariances of the two
components

/

Yer =& [(xgbs_ x;red) (x:)kbs_ x;red) ]

= g[xgbsxgt/)s] + g[x;redx;r/ed] =y*+ Ve

=y*—|—A*F5A*’, @)
wherey* indicates the covariance matrix of,,. Therefore,
if we take into account the possibility that some of the ob-
servations are considered astliers and are not used for
computing the least-square solution, we must generalize the
expression of the covariance of the residual given by Eq. (6)
in the following way

Ve =vi £ AiT3A], (8)

B

convergence of the subsequent iterative corrections; usually it is the output Where the sign to be usedaisl if the observation is an out-

of a preliminary orbit determination algorithm.

lier and—1 if the observation is included in the least-square
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solution. Therefore, the expected error in the residuas
larger than the observation error in the case of a rejected
outlier (the prediction error is an independent source of er-
ror which must be added quadratically to the observation
error in order to compute the total error), but is smaller if the
observation is included in the fit, because the least-square
solution has a tendency to interpolate observations (predic-
tion error in the vicinity of an observation tends to go in the
same direction as the observation error).

2.4. Outlier rejection: practical application

In practice, outlier rejection is performed in an iterative
way in the course of the same iterations which are performed
for computing the differential corrections to the orbital ele-
ments. Each observation is marked byegction flagthat
is used by the program for deciding whether it has to be in-
cluded in the least-square fit. At each iteration, the program
computes the residuads of all observations with respect to
the corrected orbit, their expected covariagpgeg(according
to Eq. (8)) and the correspondind value

XF=Eve & ©)

If we can assume that the observation errors are distrib-
uted normally, then also the distribution of residuals is nor-
mal and the value of? has the distribution of &2 variable
with 2 degrees of freedom (for instance, 95% of the obser-
vations should havgl.2 < 5.99 and 99% of the observations
should havex? < 9.21). Therefore the decision whether to
discard (mark as outlier) an observation can be done sim-
ply by comparingx? with somethreshold valuexrzej: the
observation is discarded jf? > x&,. (In practice, x5, is a
predefined value chosen somewhat arbitrarily in the range
5-10.) However, although the algorithm is in principle quite
simple, its practical implementation presents the following
delicate points that deserve particular attention.

1. Since the reference orbit is changed in the course of the
iterations and in some cases its initial value can be quite
far from the final one, it is necessary to check at each it-
eration if some of the observations already marked as
outliers should be recovered, i.e., returned to the list
of observations used for computing the least-square so-
lution. In doing so, some care must be taken in order
to avoid the possibility that the rejection process does
not terminate, typically because the program enters an
infinite loop of rejection and recovery of the same ob-
servations in successive iterations. For this reason it is
advisable to select the outliers to be recovered accord-
ing to a criterion of the kingy? < x/5c Wherexz. < xg&;

(we are currently usingZ,= 7 andxrzej = 8). We point
out that, in principle, if we neglect problems of non-
linearity and rounding-off, such a caution would not be
necessary if outlier rejection was accomplished on sin-
gle observations, applying Eqgs. (8) and (9) and perform-
ing only one outlier rejection/recovery for each iteration.

This is because the value ogfi2 supplied by Eg. (9)
for an observation included in the fit (using the nega-
tive sign in Eqg. (8)) is exactly the same which would
be obtained by removing that observation from the fit
(eliminating the corresponding row in matri), com-
puting again the least-square solution (Eq. (3)) and eval-
uating again Eqgs. (8) (using the positive sign) and (9). In
practice, however, with data sets containing hundreds or
thousands of observation this method would require too
much computing time and so we discard/recover several
observations at each iteration. Thus the valug ©tan
change and itis necessary to adopt a valugigf< szej'

. When the data contain some very distant outliers (obser-

vations with very large errors), they affect the solution in
such a way that also “good” observations may have quite
large residuals and therefore may be rejected on the ba-
sis of they 2 criterion. As a result a large fraction of the
observations could be discarded at the same time, possi-
bly causing problems of convergence. For this reason
it is advisable to perform outlier rejection in a “pro-
gressive” way, discarding of during the first iterations
only the largest outliers and refining the selection only
when the orbit is converging toward the final solution.
In practice, this is accomplished by finding at each it-
eration the largest valug2,, of the x2 values for the
observations that were included in the fit and discard-
ing only those observations for which the value)@?f

is larger than maby %, @ x&axl, Wherea is chosen in a
suitable way in the range @ « < 1 (we are presently
usinga = 0.25). For the same reason of stability it is
advisable that the total number of outliers discarded at
each iteration does not exceed a certain percentage (5—
20%) of the total number of observations available.

. Since the method of outlier rejection described here is

based on statistical estimates, its reliability grows poorer
as the number of observations used for the determina-
tion of the orbit decreases. If the number of observations
is very small a single outlier can affect the solution in
such a way that it may become impossible to distin-
guish the outlier from the correct data points on the
basis of orbital residuals alone, and in such cases it is
safer to give up completely with automated outlier re-
jection. From the point of view of the stability of the
convergence of the algorithm, it is much better if the
transition between the two cases (rejection/no rejection)
does not occur abruptly at a certain value of the number
of observationsv (or, better, of the number afelected
observationgVsey, i.€., the number of observations used
for the least-square fit), but is as smooth as possible.
This can be obtained by adding to the rejection threshold
Xr2ej “fudge term” ¢ (Nse) Which is a smooth function of
Nsel, its expression must be chosen in such a way that
¢ (n) is very large for small values af (say, forn < 10)

and essentially equal to zero for larggn > 50). For

the sake of the present work, we have used
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¢(n) =400- (1.2)7". different observations. This is due to the very nature of the
decision process, which must assesgaratelyandindepen-
dentlyfor each observation whether it has to be discarded or
not. In statistical terms this means to compare the residual
of the observation with its expected variance, namely with
the 2x 2 block of the total covariance matrix pertaining to
that observation. Therefore correlations among different ob-

vations (especially those produced by large surveys) atserva}tlops are not relevar_1t:. they affect the result of the test
only indirectly, by determining the value of the covariance

the expense of older measurements, which are usually . ;
much less dense in time. In some cases this can producemamx of the orbital parameters; through Eq. (4).

an abnormal increase.in t'he resicjuals for observations, g qutlier rejection: results
that are more sparse in time, which may therefore be
rejected; this usually has the effect of weakening the or-  To assess the performance of the automated outlier re-
bital solution, especially if it results in a shortening of jection scheme we present in Fig. 1 the distribution of the
the total time span of observations. This problem can be postfit RMS of normalized residuals for the objects in our
solved completely only by estimating the correlations sample. We have excluded from this histogram the cases in
between observations and introducing these estimates inwhich there are radar astrometric observations, because the
the stochastic model of the least-square fit. Lacking such relative weighting of the radar and optical observations is
a rigorous solution, it can be advisable to limit in some a problem which needs to be solved, as discussed in Sec-
way the rejection of sparse or isolated observations andtion 5. The RMS displayed in Fig. 1 does not include the
in particular to avoid discarding all the measurements residuals for rejected outliers. The relative number of rejec-
belonging to one opposition of the asteroid. In this first tions is documented in Fig. 2. The small tail of asteroids for
iteration of the procedure, however, we have not intro- which the rejections are a comparatively large fraction of the
duced any limitation of this kind in the algorithm for observations (for 2% of the cases, the rejections-a2®%)
outlier rejection. is essentially due to the processing of very old observations,
including the ones from the 19th century, together with the
For the sake of clarity, we note that the form of tfretest more accurate modern ones.
expressed by Egs. (8) and (9) is the same whether we take Another way to measure the effectiveness of the auto-
into account in the statistical model the correlations between matic outlier removal is to determine how well the residuals

4. As we discuss in detall in Section 4, the use of a statisti-
cal model that describes correctly the dispersion (RMS
error) of observations but neglects their correlations has
the effect ofoverweightinghe contribution of observa-
tions that are grouped in a short interval of time. On
average, this means overweighting modern CCD obser-
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Normalized RMS of optical residuals

Fig. 1. Histogram of the postfit RMS of the normalized residuals of all optical observations of all the 17,349 asteroids numbered (up to 19 Sef@mber 200
The residuals are normalized by the weights used in the least-square orbit estimation, specifically, observations before 1890 use 3 arcsee, 1B66e bef
use 2 arcsec, and for observations after 1950 the weight corresponds to 1 arcsec. Thus the figure can be interpreted as scaled in arcsec foratiodsrn observ
which comprise the vast majority of the data set.
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Number of asteroids
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Fig. 2. Histogram of the percentage of rejected outliers among the catalog of 17,349 numbered asteroids.

that have not been rejected fit a Gaussian distribution. Thisneeded to follow a Gaussian distribution, but the relative
is related to the issue of whether the errors are normally number of such overzealous rejections is very small. These
distributed, in that this assumption can apply only after the few borderline cases generally will not significantly impact
outliers have been removed. In other words, the errors arethe orbital solution, and anyway this has a negligible effect
in fact not Gaussian, and we are removing the outliers with on the global statistics.

the goal of using in the fit only those observations for which

the errors are Gaussian. This argument is not necessarily as o o

circular as it first appears because it is based on the assump3: Standard deviation statistics

tion that the distribution of residuals comprises two separate
distributions: acore distribution which is Gaussian and is
produced by the routine performance of the observing sys-

tem and an anomalous (outlier) distribution, generated by the o )
( ) 9 y vatory, and within each observatory piece of by means of

sporadic occurrence of different mechanisms. This :;econdever iece of information we have on the possible changes
distribution is hopefully much less populated but has a much . yp P g

larger RMS; of course, the sum of the two distributions is not ![E th&llgec\:/els of alcct:”f?/' In the obser\(/jatlons ?vallar?le froml
normal even if the two components are in themselves nor- € as a giobal, homogeneous data set we have only

mal. The algorithm of outlier rejection is designed in such three sources of |nformat|or!, apart frqm the obgeryatory
a way as to eliminate the significant elements of the secondCOde' A code in the MPC public obser\_/auon formatindicates
contribution while keeping almost unmodified the core dis- the tef:hnology used for the observations, e.g., P for photo-
tribution (apart from trimming its extreme wings); therefore, grgphlc measurement;, C for CCD camera. The numbgr of
the assumption of normality of the core distribution can be _d'g!ts rgported forthe'tlrne and for thg measured angles is an
checked by a statistical analysis of the residuals. mgllqatlon of the precision, although it is not clear whether
As the best test of the distribution of residuals, we have this is the result of an assessment done at the observatory or

used the data set taken from a single observatory, namelyat the MPC? Finally the time at which the observation was
LINEAR (observatory code 704), the survey with more ob-

servations than any OFher, thanks 'tO afully automated system 2 | grder to avoid misunderstandings we have to specify that we use
based on a very sensitive CCD. Figure 3 shows both the totalthe number of digits of the observed quantities only for the sake of dividing
data set, in which a non-Gaussian tail is evident, and the setthe measurements of a given site into homogeneous batches and not as a
of nonrejected residuals, which approximate the Gaussianquantitative estimate of their accuracy (which is derived from the statistical

h A tlv. th t ted tli iecti | ith analysis described below). In other words if a given observatory publishes
Shape. Apparently, tne automated outlier rejection algoritnm g, o ¢ its measurements to, say, 0.1 arcsec in declination, and some other

is very effective in eliminating the non-Gaussian tail of large 1o 0.01 arcsec, we simply perform separate statistics on the two sets, without
residuals. Unavoidably it even removes a little more than making any assumption on its results.

3.1. Data binning

Astrometric observations have to be subdivided by obser-
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Fig. 3. Histogram of the residuals of all observations by the LINEAR survey, in declination (above) and right ascension (below). The dashedittirtbe refe
observations accepted by the automatic rejection algorithm described in Section 2.

taken is certainly relevant, since the observatories improvewith equal time intervals of 400 days; consecutive bins are
their technology and the reduction procedures over time, andjoined if they contain< 50 observations, with a maximum
often the skills of the observers also improve with experi- length of 4000 days. If an observatory has too few obser-
ence. vations of a given class the binning procedure may fail and

Thus for each observatory, each technology code, andthe data cannot be analyzed in this way to avoid the prob-
each number of reported digits, we form time bins such that lems of small nhumber statistics. However, even these data
there are enough data in each one; we currently require atare used by bundling together the residuals from all observa-
least 50 observations per bin. The binning algorithm begins tories with few data.
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3.2. Estimation of the RMS and bias as possible the stages of orbit determination and statistical
analysis.

For each batch of data we have computed the RMS of Tables 1 and 2 list the RMS and bias, as well as others
the residuals separately for declinati®rand for right as- parameters useful to assess the station performance, for the
censione; residuals ine need to be multiplied by coé 77 bins containing more than 3000 observations. These bins
because of the metric of the unit sphere. This, however, is comprise 67% of the data, even though they are only 2%
only the first step of a procedure which must account for the of the bins. The data for all observatories and all bins are
fact that there are spurious and grossly wrong observationsavailable upon request and are distributed with the OrbFit
(outliers). These large residuals have to be removed to avoidsoftware.
contamination of the computed statistics. The underlyingas- ~ The results of our RMS estimation for the largest bins,
sumption is again that the distribution of the residuals is in the same listed in Tables 1 and 2, are summarized in Fig. 4.
fact not Gaussian, but can become Gaussian through outlier’here is a clear trend toward lower RMS for the more recent
removal. To avoid a circular argument, we need to show that Observations, at least for the observatories currently con-
the removal of some outliers is appropriate because it is antributing the most data. However, for a given time there is
empirically verified fact that the distribution of the residuals @ very significant scatter of RMS values; while a difference
is not Gaussian. This is achieved in a very immediate way by by @ factor< 2 might not make a big difference in the least-
plotting histograms of residuals (separately for each bin), as Square solutions, a difference by a factor 10 can affect the
already shown in Fig. 3, which clearly shows a tail of com- results in a very significant way.
paratively large residuals by far exceeding what would occur ~ The results for the bias are summarized in Fig. 5, which
for a Gaussian. shows the number of observations with given ratio between

A guantitative way to measure the deviation of a set of Pias and RMS. The histograms are based only on the largest
residualss; from a Gaussian distribution is to compute the bins, again those listed in Tables 1 and 2. The figure clearly

kurtosis shows that the bias should be taken into accountin a realistic
model of the observation errors. There are several isolated

k(&) = ny i 5,4 peaks, especia}lly in deglipation, which are associated with
[Z?:léiz]z some of the bins containing more data. For example, the

most recent declination observations from LINEAR have

which should be 3 if the distribution were Gaussian. The a pjas 039 x RMS, the ones from LONEOS have a bias
kurtosis, because of the presence of the fourth power of thep.83 x RMS, and these two batches largely contribute to
residuals, is strongly sensitive to the presence of outliers; for the two peaks on the right of the histogram. These biased
instance, introducing a single -outlier in a normal dis-  batches are so large that the rest of the data are biased toward
tribution of 100 data points has the effect of increasing the negative residuals to preserve the zero mean of all the resid-
value of the kurtosis from 3 to about 26. The kurtosis for the uals which is enforced by the least-square solutions. That is,
full set of residuals shown in Fig. 3 is 7006 for right ascen- the orbits have been shifted somewhat north with respect to
sion and 213 for declination. This shows that some outlier the solutions which would be obtained if the observational
rejection scheme needs to be used. bias were corrected for in the orbit determination process.

The procedure to remove the outliers from the statistical ~ The interpretation of the biases is not easy. The pres-
analysis is an iterative one, which attempts to converge to aence of a comparatively large bias in declination for many
partition of the residuals of a given bin into a subset of “out- observatories using Schmidt telescopes could point to the
liers” and a subset, representing a Gaussian distribution. Atproblems arising from deformations in the star images. But
each iteration, the RMS and kurtosis are computed for the similar problems appear in telescopes with different optical
non-outliers, and the list of outliers is increased by adding systems, such as LINEAR. Even more puzzling is the fact
the largest residuals if the kurtosis:is3. At the end, the  that the bias appears to change with time, and in some cases,
kurtosis of the non-outliers is just below 3, that is, it would including the two examples cited above, appears larger in the
become> 3 by discarding one outlier less. When the number most recent data. Our intent is only to provide this informa-
of observations in the bin is large the non-outliers representtion to all the major observatories for them to analyze and
a good approximation to a Gaussian and the distribution of discuss the possible causes and the corrective actions which
their residuals is well described by only two parameters, the may be possible.
RMS and the mean, or bias. Note that this procedure is dif-
ferent, and independent of, the outlier rejection scheme used3.3. Limitations and possible improvements
in the orbit determination (described in Section 2), where
we were assuming we already know the variance of the core  The procedure outlined in the previous section has three
distribution, which is what we wish to estimate here. Thatis, main limitations in describing the error statistics. First, it
some residuals which have not been used in the orbital so-does not reflect all the systematic errors, it just bundles them
lution can be considered in the error statistics, and also thetogether with random errors to compute a realistic RMS and
converse; this is advisable also because it keeps as separatgias.
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Table 1
Observation error statistics—declination
Prec. () Obs. type Date range Nobs kall Rej. (%) RMS () Bias (') Bias
RMS
046—Klet Observatory, Ceske Budejovice
0.1 C 1995-10-10-1996-11-13 3340 75 314 039 000 000
0.1 C 1996-11-13-1997-12-18 3130 .35 399 034 005 014
095—Crimea-Nauchnij
0.1 A 1978-04-02-1979-05-07 3489 1991 321 124 034 027
0.1 A 1979-05-07-1980-06-10 3020 1835 361 159 -0.25 -0.16
0.1 A 1982-08-19-1983-09-23 4417 183 398 150 018 012
0.1 A 1990-04-19-1995-10-10 3364 262 1.90 213 —-0.26 -0.12
106—Crni Vrh
0.1 C 1999-01-22-2000-02-26 4136 1377 561 039 016 041
120—Visnjan
0.1 C 1997-12-18-1999-01-22 3725 132 3.65 044 002 005
0.1 C 1999-01-22-2000-02-26 5988 .97 284 047 —0.07 —0.15
327—Peking Observatory, Xinglong Station
0.1 C 1995-10-10-1996-11-13 4524 .07 188 045 004 009
0.1 C 1996-11-13-1997-12-18 6554 46 285 039 010 027
0.1 C 1997-12-18-1999-01-22 6254 .28 347 037 010 026
413—Siding Spring Observatory
10.1 A 1980-06-10-1981-07-15 7630 120 191 095 -0.18 -0.19
566—Haleakala-NEAT/GEODSS
0.1 C 1993-08-01-1996-11-13 7927 .90 4.60 057 -0.07 -0.13
0.1 C 1996-11-13-1997-12-18 6345 61 369 051 016 031
0.1 C 1997-12-18-1999-01-22 17454 .15 2.34 062 -0.18 -0.29
608—Haleakala-AMOS
0.1 C 2000-02-26-2000-09-19 11329 .86 4.36 059 -0.39 —0.66
675—Palomar Mountain
0.1 A 1959-08-20-1962-12-02 4754 .38 107 069 —0.06 —0.08
0.1 A 1970-08-02-1972-10-10 3343 1504 0.84 116 -0.77 —0.66
0.1 A 1972-10-10-1974-12-19 5813 120 071 134 —0.66 —-0.49
0.1 A 1977-02-26-1978-04-02 4192 696 0.95 115 —0.44 —0.38
0.1 A 1989-03-15-1990-04-19 3359 382 357 113 —-0.90 -0.79
0.1 A 1990-04-19-1991-05-24 8991 .88 215 103 -0.71 —0.69
0.1 A 1991-05-24-1992-06-27 6002 902 315 093 —-0.64 —-0.69
0.1 P 1988-02-09-1989-03-15 4849 .83 0.56 096 —0.24 —0.25
0.1 P 1989-03-15-1990-04-19 3495 .37 1.00 085 —-0.03 —-0.03
0.1 P 1990-04-19-1991-05-24 5227 16 048 090 —0.03 —0.03
0.1 P 1991-05-24-1992-06-27 6818 122 145 087 -0.35 —-0.40
0.1 P 1992-06-27-1993-08-01 6075 1ay7 0.94 086 -0.11 -0.12
0.1 P 1993-08-01-1994-09-05 8324 w2 0.61 089 —-0.24 -0.27
0.1 P 1994-09-05-1995-10-10 3213 .53 0.53 089 —0.18 —0.20
688—Lowell Observatory, Anderson Mesa Station
0.1 A 1980-06-10-1981-07-15 3380 .B1 278 106 —1.65 —1.55
0.1 A 1981-07-15-1982-08-19 4330 329 145 133 -197 —1.48
0.1 A 1982-08-19-1983-09-23 5159 .84 256 106 —1.43 -1.35
0.1 A 1983-09-23-1984-10-27 4647 17 166 113 —-149 -131
0.1 A 1984-10-27-1985-12-01 3586 .82 204 118 —0.47 —0.40
689—US Naval Observatory, Flagstaff
0.1 C 1997-12-18-1999-01-22 26516 a1 6.29 013 —0.00 —0.01
0.1 c 1999-01-22—-2000-09-19 29511 A1 7.01 014 —-0.03 -0.22
691—Steward Observatory, Kitt Peak-Spacewatch
0.1 c 1990-04-19-1992-06-27 3891 .96 218 040 006 014
0.1 c 1993-08-01-1994-09-05 3260 .82 350 031 004 012
0.1 c 1994-09-05-1995-10-10 5105 14 337 030 —0.05 -0.15
0.1 c 1995-10-10-1996-11-13 5884 .28 219 028 —0.03 -0.12
0.1 c 1996-11-13-1997-12-18 5666 .23 249 032 —-0.02 -0.07
0.1 c 1997-12-18-1999-01-22 7993 .82 332 029 —0.01 —0.04
0.1 C 1999-01-22—-2000-02-26 13013 27 415 029 —-0.09 -0.31
0.1 C 2000-02-26—2000-09-19 6157 .30 354 030 —0.18 —0.61
699—Lowell Observatory-LONEOS
0.1 C 1996-11-13-1999-01-22 42995 .20 199 052 019 037
0.1 C 1999-01-22-2000-02-26 56339 82 254 047 039 083
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Table 1 €ontinued

Prec. () Obs. type Date range Nobs kall Rej. (%) RMS () Bias () Bias
RMS
0.1 C 2000-02-26—2000-09-19 26756 15 4.06 039 016 040
0.1 c 1999-01-22-2000-09-19 26180 .78 342 033 016 049
703—Catalina Sky Survey
0.1 c 1999-01-22-2000-02-26 43723 a4 7.44 034 028 082
0.1 c 2000-02-26—2000-09-19 7148 .20 519 036 021 058
7041—Lincoln Laboratory ETS, New Mexico
0.1 c 1996-11-13-1997-12-18 16328 .07 382 075 011 015
0.1 c 1997-12-18-1999-01-22 184448 65 2.65 080 002 003
0.1 c 1999-01-22-2000-02-26 376635 552 335 060 —0.02 —0.03
0.1 c 2000-02-26—-2000-09-19 236411 .26 376 049 019 039
801—O0ak Ridge Observatory
0.1 A 1990-04-19-1991-05-24 3193 .26 351 044 —-0.01 —-0.03
0.1 c 1992-06-27-1993-08-01 4035 .89 362 045 —-0.07 -0.15
0.1 C 1993-08-01-1994-09-05 3608 .85 377 048 -0.01 —-0.03
0.1 c 1994-09-05-1995-10-10 3479 .45 4.25 049 —0.03 —0.06
0.1 C 1995-10-10-1996-11-13 3438 .24 276 055 -0.29 —-0.52
809—European Southern Observatory, La Silla
0.1 A 1981-07-15-1982-08-19 3638 831 379 069 002 002
0.1 A 1983-09-23-1984-10-27 4672 49 190 058 —0.04 —-0.07
0.1 A 1984-10-27-1985-12-01 4973 1635 177 063 —-0.03 —0.05
0.1 A 1985-12-01-1987-01-05 5572 566 343 054 001 002
0.1 A 1987-01-05-1988-02-09 7351 1588 4.65 064 —-0.09 -0.14
0.1 A 1988-02-09-1989-03-15 6203 .26 7.54 069 —0.08 -0.11
0.1 A 1989-03-15-1990-04-19 6400 13a9 4.69 094 -0.27 -0.29
0.1 A 1990-04-19-1991-05-24 9304 1500 257 099 -0.15 -0.15
0.1 A 1991-05-24-1992-06-27 4663 480 2.55 103 —-0.03 —-0.03
0.1 P 1991-05-24-1992-06-27 3918 67 130 122 -0.13 -0.11
0.1 P 1992-06-27-1993-08-01 5721 24 337 124 -0.14 -0.11
0.1 P 1993-08-01-1994-09-05 8850 .55 0.58 172 043 025
0.1 P 1995-10-10-1996-11-13 5806 40 0.22 177 063 035
0.1 P 1996-11-13-1997-12-18 4741 73 0.84 172 052 030
0.1 P 1997-12-18-2000-09-19 6179 .03 0.00 196 067 034
910—Caussols-ODAS
0.1 C 1997-12-18-1999-01-22 5531 .24 0.43 052 —-0.02 —0.05

Note The following definitions describe the table entries: “Prec.” is the reported precision of the observations, “Obs. type” is the observatioraeethod c
reported by the MPC, “Date range” indicates the duration of the time bin considéggglis the number of observationk,) is the kurtosis of all observations
before outlier rejection, “Rej.” is the percentage of observations rejected to obtain kurt8stRMS” is the root mean square relative to the mean, and “Bias”

is the mean of the residuals in each bin.

Second, the bundling of residuals into bins should al-  Another source of non-uniformity among the data of a
low us to process homogeneous data, but this is not alwaysgiven bin could arise from the arbitrary time boundaries we
the case, because we do not have enough information. Théhave used for our bins. If an observatory has substantially
same observatory code could correspond to different tele-upgraded its equipment or procedures at a date in the middle
scopes at the same site: e.g., the code 675 corresponds tof one of these bins, the binning should be revised to incor-
various telescopes on Mount Palomar (with apertures rang-porate this information.
ing from 60 to 500 cm). The information on the telescope  Third, there is some information which in principle could
used in each observation run is not available in a format be used to form more homogeneous bins of residuals, but
usable for large scale processing. The same applies to thevhich we have not used in the present work. The two main
information on the reduction procedure, including the star parameters which are certainly relevant are the proper mo-
catalog used. The information on the individual observa- tion and the apparent magnitude.
tion, such as the exposure time and the sky background Inaccuracy of the measurements due to trailing and to
level, is not available at all; thus the signal to noise ratio timing errors is a function of the proper motion. If this ef-
of the individual observation, which could vary by orders fect is important, the RMS computed on bins of data dom-
of magnitude even for the same telescope and the same apinated by observations of main belt asteroids could be an
parent magnitude of the target, cannot be computed. Theunderestimation of the error for near Earth asteroids (NEAS).
MPC has recently proposed an expanded observation formatUnfortunately the trailing error is a function also of the ex-
(ftp://cfa-ftp.harvard.edu/pub/MPOWhich would substan-  posure time, which is not available, and for the timing error
tially improve this situation in the long run. very little a priori information is available, although it is easy
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Table 2
Observation error statistics—right ascension
Prec. () Obs. type Date range Nobs kall Rej. (%) RMS () Bias (') Bias
RMS
046—Klet Observatory, Ceske Budejovice
0.01 C 1995-10-10-1996-11-13 3340 79 521 037 -0.01 —-0.01
0.01 C 1996-11-13-1997-12-18 3130 .25 217 039 —0.04 -0.11
095—Crimea-Nauchnij
0.01 A 1978-04-02—-1979-05-07 3489 .87 226 140 —0.67 —0.48
0.01 A 1979-05-07-1980-06-10 3020 2699 146 189 -0.21 -0.11
0.01 A 1982-08-19-1983-09-23 4416 885 165 183 —0.07 —0.04
0.01 A 1990-04-19-1995-10-10 3364 294 327 177 -0.31 -0.18
106—Crni Vrh
0.01 C 1999-01-22-2000-02-26 4133 .68 6.00 040 —-0.04 -0.10
120—Visnjan
0.01 C 1997-12-18-1999-01-22 3725 23 7.65 055 003 005
0.01 C 1999-01-22-2000-02-26 5988 a7 377 062 -0.07 -0.11
327—Peking Observatory, Xinglong Station
0.01 C 1995-10-10-1996-11-13 4524 .36 270 044 003 008
0.01 C 1996-11-13-1997-12-18 6554 3p7 221 047 —0.02 —0.03
0.01 C 1997-12-18-1999-01-22 6254 .93 6.86 034 —-0.03 —0.08
413—Siding Spring Observatory
0.01 A 1980-06-10-1981-07-15 7630 .86 279 128 —-0.09 -0.07
566—Haleakala-NEAT/GEODSS
0.01 C 1994-09-05-1996-11-13 7915 .23 4.94 047 -0.07 -0.14
0.01 C 1996-11-13-1997-12-18 6345 B85 523 044 -0.12 -0.27
0.01 C 1997-12-18-1999-01-22 17454 27 357 049 —-0.03 -0.07
608—Haleakala-AMOS
0.01 C 2000-02-26-2000-09-19 11329 52 240 059 —-0.09 -0.15
675—Palomar Mountain
0.01 A 1959-08-20-1962-12-02 4754 .87 215 059 003 005
0.01 A 1970-08-02-1972-10-10 3343 .10 434 108 -0.17 —0.16
0.01 A 1972-10-10-1974-12-19 5813 283 249 110 024 022
0.01 A 1977-02-26-1978-04-02 4186 .34 260 103 013 013
0.01 A 1989-03-15-1990-04-19 3359 507 4.82 096 -0.10 -0.10
0.01 A 1990-04-19-1991-05-24 8991 184 472 077 004 005
0.01 A 1991-05-24-1992-06-27 6002 230 2.87 079 006 007
0.01 P 1988-02-09-1989-03-15 4849 A4 3.05 071 005 007
0.01 P 1989-03-15-1990-04-19 3495 a1 2.58 071 004 006
0.01 P 1990-04-19-1991-05-24 5227 16 241 073 —0.16 -0.22
0.01 P 1991-05-24-1992-06-27 6818 48 330 065 —0.00 —0.00
0.01 P 1992-06-27-1993-08-01 6075 383 331 066 —0.01 —0.02
0.01 P 1993-08-01-1994-09-05 8324 57 387 066 —0.06 —-0.09
0.01 P 1994-09-05-1995-10-10 3213 .38 286 064 000 000
688—Lowell Observatory, Anderson Mesa Station
0.01 A 1980-06-10-1981-07-15 3380 197 4.08 095 059 062
0.01 A 1981-07-15-1982-08-19 4330 312 4.32 112 Q72 064
0.01 A 1982-08-19-1983-09-23 5159 .98 4.69 096 045 047
0.01 A 1983-09-23-1984-10-27 4647 .99 534 105 062 059
0.01 A 1984-10-27-1985-12-01 3586 .a8 4.04 109 051 047
689—US Naval Observatory, Flagstaff
0.001 C 1997-12-18-1999-01-22 26516 A1 4.25 013 —0.01 —0.05
0.001 C 1999-01-22-2000-09-19 29511 82 4.37 013 —-0.01 -0.11
691—Steward Observatory, Kitt Peak-Spacewatch
0.01 C 1999-01-22-2000-02-26 13013 a2 315 036 —-0.04 -0.12
0.01 C 2000-02-26-2000-09-19 6157 .85 190 038 —0.23 —0.61
0.01 c 1990-04-19-1992-06-27 3891 .88 314 049 —0.08 -0.15
0.01 c 1993-08-01-1994-09-05 3260 .28 4.05 040 -0.13 —0.33
0.01 c 1994-09-05-1995-10-10 5105 16 472 033 -0.10 -0.32
0.01 c 1995-10-10-1996-11-13 5890 a9 289 038 —0.09 —0.25
0.01 c 1996-11-13-1997-12-18 5666 .36 115 040 -0.11 —-0.28
0.01 c 1997-12-18-1999-01-22 7993 .25 0.49 053 -0.14 -0.27
699—Lowell Observatory-LONEOS
0.01 C 1996-11-13-1999-01-22 42995 1%B6 241 051 003 006
0.01 C 1999-01-22-2000-02-26 56339 504 135 054 006 011
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Table 2 €ontinued

Prec. () Obs. type Date range Nobs kall Rej. (%) RMS () Bias () Bias
RMS
0.01 C 2000-02-26—-2000-09-19 26756 74 291 049 —0.02 —0.05
0.01 c 1999-01-22-2000-09-19 26180 .84 244 040 005 011
703—Catalina Sky Survey
0.01 c 1999-01-22—-2000-02-26 43723 .40 6.55 039 —-0.04 -0.10
0.01 c 2000-02-26—-2000-09-19 7148 .a0 6.21 038 003 008
704—Lincoln Laboratory ETS, New Mexico
0.01 C 1996-11-13-1997-12-18 16328 66 5.36 095 017 018
0.01 C 1997-12-18-1999-01-22 184448 07 392 079 —-0.03 —-0.03
0.01 C 1999-01-22—-2000-02-26 376635 16220 4.22 056 002 004
0.01 C 2000-02-26-2000-09-19 236411 30 5.05 045 006 014
801—O0Oak Ridge Observatory
0.01 A 1990-04-19-1991-05-24 3193 .1 3.88 037 —-0.02 —0.06
0.01 C 1992-06-27-1993-08-01 4035 19 357 040 —0.03 —-0.07
0.01 C 1993-08-01-1994-09-05 3608 .10 513 043 —-0.01 —-0.03
0.01 C 1994-09-05-1995-10-10 3479 .06 368 049 —0.02 —0.04
0.01 C 1995-10-10-1996-11-13 3438 .85 576 037 005 014
809—European Southern Observatory, La Silla
0.01 A 1981-07-15-1982-08-19 3638 187 531 077 -0.12 -0.16
0.01 A 1983-09-23-1984-10-27 4672 .80 272 068 —0.16 -0.23
0.01 A 1984-10-27-1985-12-01 4973 1622 2.65 073 -0.14 -0.19
0.01 A 1985-12-01-1987-01-05 5572 .84 3.66 066 -0.12 -0.18
0.01 A 1987-01-05-1988-02-09 7351 2203 472 073 —-0.01 —-0.01
0.01 A 1988-02-09-1989-03-15 6203 185 6.50 0380 —0.03 —0.04
0.01 A 1989-03-15-1990-04-19 6400 2103 5.00 096 —-0.02 —-0.02
0.01 A 1990-04-19-1991-05-24 9304 .68 345 101 —0.03 —0.03
0.01 A 1991-05-24-1992-06-27 4663 766 290 112 011 010
0.01 P 1991-05-24-1992-06-27 3918 a2 339 114 -0.18 —-0.16
0.01 P 1992-06-27-1993-08-01 5721 17 4.46 116 013 011
0.01 P 1993-08-01-1994-09-05 8850 28 190 144 051 036
0.01 P 1995-10-10-1996-11-13 5806 B5 0.95 150 055 037
0.01 P 1996-11-13-1997-12-18 4741 95 325 134 033 024
0.01 P 1997-12-18-2000-09-19 6179 64 0.44 164 085 052
910—Caussols-ODAS
0.01 C 1997-12-18-1999-01-22 5531 92 0.00 106 —-0.09 —0.08

Note See Table 1 for column definitions.

to identify a posteriori. These two errors can be detected conditions, none of which is available to us. For this reason

when large residuals have a significant correlation betweenwe have not used binning based upon the apparent magni-
right ascension and declination. Measurement errors due totude, but we may explore the value of this in the future.

both trailing and time errors could be relevant in degrading

some observations of NEAs. The most dramatic example

of this kind is the large data set of observations of (1566) 4. Correlation analysis

Icarus during its close approach at 0.04 AU from Earth in

1968. In our present solution more than 100 observations Even after the residuals have been rescaled with the ap-
are discarded because of timing errors, but in this way the pPropriate weights, and shifted by appropriate biases, it is not
information on the position across track, which could be ac- the case that their probability distributions are correctly rep-

curate, is also lost. Other infamous cases are 1937 UB andesented by independent, unit variance Gaussian functions.
1954 XA, both discovered during close approaches to the In intuitive terms, the error in each observation has a higher

Earth and lost after few days, with orbits made even more probability of having the same sign, even a similar value, as

unreliable by timing uncertainties. In the future we plan to the previous one. For Gaussian distributions, independence
be able to handle timing—trailing errors by introducing right and zero correlation are equivalent; thus we can test the hy-
ascension—declination correlation in the least-square fit al- Pothesis of independence by measuring the correlation of a

gorithm. set of couples of residual$;, &;), with (i, j) € B:

There is no doubt that an observation with a low signal to 1
noise ratio will have larger errors. Although the relative sig- COrfé, B) = Np > EVwiEJw;, (10)
nal strength is typically a function of apparent magnitude, it (i.j)eB

is, unfortunately, not a function of magnitude only. It also wherew; is the weight associated with the residgalthat is
depends strongly upon exposure time, pixel size, and seeinghe inverse of the variance of the residual in its supposedly
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Fig. 4. Time history of the RMS of the residuals in declination (above) and right ascension (below) for the data bins tabulated in Tables 1 aedihs.e., th
containing at least 3000 observations. The length of the bars indicates the duration of the bin; thus, a long bar indicates a period of lowey.productivi

homogeneous bin, anlf is the total number of couples It can be expected that the time-wise correlation decreases
contained inB. with time, until it goes to zero or becomes negative; the

The question is how to select the sets of couples, thatlength of the time difference for which the correlation goes
is B. The values of the correlations are found to be small to zero provides important information. The second type is
between observations taken from different observatories (onthe space-wisecorrelation, which appears as a function of
the order of 1% or less). Thus we have mostly investigated the angular separation on the celestial sphere. We are com-
the correlations between the observations of the same ob-uting the space-wise correlation by angular difference in an
servatory. These can be subdivided into subsets either byinertial reference frame, looking for effects related to the star
time difference or by difference in apparent position. The catalogs used in the astrometric reductions; there are smaller,
first type of correlation is calleime-wisg and it appears as  but still measurable, effects depending upon the topocentric
a function of the time difference between the observations. azimuth and elevation.
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Fig. 5. Histograms of the ratio bias/RMS in declination (above) and right ascension (below). Only data from the 77 largest data bins, whichearéntabulat
Tables 1 and 2, are included. All observations in each bin (see Section 2) are plotted with the bias/RMS ratio computed for their bin.

We have used for this analysis the same data set described.1. Time-wise correlation

in Section 2. Because the correlation analysis requires large

data sets, we have been using the data independently from We have selected for this analysis the eight observatory
their partition in data taken with different technologies or codes with more than 50,000 observations; they have per-
reported with different accuracies, but we have not incor- formed 65% of the available observations of numbered as-
porated the observations marked as degraded accuracy byeroids. We have also analyzed two observatories with fewer,
the MPC. Most of the differences between the data from but especially accurate observations (transit circles). For
the same observatory are due to changes in equipment an@ach observatory we have computed the correlation of the
procedures with time; thus, these changes should not deresiduals as a function of time, both for the same asteroid
grade the estimation of the short-term time-wise correla- and for different asteroids. In order to show both short-term
tions. and long-term effects we have computed the correlations us-
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Fig. 6. Time-wise correlation for the right ascension residuals from LINEAR for observations belonging to different asteroids (above) andea#tersam
(below). In these and in the following plots the empirical correlation points are shown with error bars equal to their forrmaigé{r?nrwhereNB is the
number of couples of observations used for the computation of each point (see Eq. (10)).

ing two different binnings: a short bin of 0.04 ¢t h) and atively high value £ 0.28) for the correlations within the
a long bin of 1 d. The plots and the fits are obtained from a same night, decaying rapidly, and a more slowly decaying
mixed data set obtained by using the short bin estimate upcomponent starting from 0.1 for the next night. The gaps in
to the point where its intrinsic error becomes too large due the data correspond to daylight.
to the small number of observation couples available and the The data plotted in the upper half of the figure are the
long bin estimate after that point (the value of the time lag at correlations for observations of different asteroids which
which the transition occurs depends on the observatory con-measure other systematic effects, depending upon time but
sidered). not upon the portion of the sky which appears in the same
As an example, Fig. 6 shows the correlation in the right frame as the asteroid and thus, we presume, not related with
ascension residuals as a function of the time difference (orthe errors in the star catalogs. These effects are significantly
correlation lag) of the observations for LINEAR (observa- smaller than those affecting the observations of the same as-
tory code 704). The correlations between observations of teroid, but are still measurable. The figure clearly shows a
the same asteroid (lower half of the figure) show a compar- signature depending upon the difference in the hour of obser-



264 M. Carpino et al. / Icarus 166 (2003) 248-270

RA - LINEAR DEC - LINEAR
0.35 T T T T 0.45 T T T T
03k Empirical —+— i 04 L Empirical —+— i
0.266 e 22140079 (1-7/83.) €97 ------ 0.345 246140.102 (1-£358,) 139 -------
025 b i 0.35 s
03T i
02 .
c I c 025} E
£ 015 4 g [
° I s o2f i
8 o i 8 0.15
0.05 }"'! s b
| = 01 % |
0r ;\i _________ 0.05 _,,*‘g% 4
sé## = . A
~§sa~s* S | e
-0.05 0k %“g"”ﬁ* P o
1 1 % 1
-0.1 1 L -0.05
0 20 40 60 80 100 0 20 40 60 80 100
Correlation lag (d) Correlation lag (d)
RA - LINEAR DEC - LINEAR
0.35 T T T T 0.45 T T T T
Empirical ——+— 04 b Empirical +——+— |
o8 r 0.266 6232140.079 (1-4%/83.) %7 - i 0.345 6246 40,102 (1-47/358,) V139 -
0.35 | E
0.25 § i ]
03} i
[= c
.‘% 02 7 % 0.25 | j
s I s I
5 ; i 5 02K 4
8§ o015 g 8 ,“
' 0.15 [+ .
0.1 H . \ .
M 0.1 b e .
- S e e — e
0.05 | FTT e N, ] 0.05 | * * 3
0 1 1 1 Il 0 1 1 1 1
0 1 2 3 4 5 0 1 2 3 4 5
Correlation lag (d) Correlation lag (d)

Fig. 7. Correlation among LINEAR right ascension residuals as a function  Fig. 8. Same as Fig. 7, but showing the declination results for LINEAR.
of the time separation between observations of the same asteroid. The com-

puted correlations are depicted as well as the derived correlation function. . . . . . .
and declination residuals as a function of the time difference.

The same features of the previous example are apparent, in-
vation. This diurnal signature is likely a result of differential cluding an even higher peak-(0.4) at a few hours and a
refraction, high air mass, increased sky brightness, or someslowly decaying component. Negative correlations do not
other effect having to do with the elevation of the telescope occur in a systematic way and are likely only the result of
pointing, all of which would tend to correlate the observa- somewhat more noisy data (the number of data points being
tional errors. smaller).

In Figs. 7 and 8 we show the correlation over two differ- ~ We use these figures as examples to illustrate how such
enttime spans. Note that the data for correlation lag less thaninformation could be used. On one hand, we can make con-
one half day have been binned at a few hours and the rest ajectures on the physical or data processing phenomena re-
integer days. This averages out the effects depending uporsponsible for each feature visible in the correlation plots.
the hour of the observations, seen in Fig. 6. The most note-For example, we can presume that the medium-term (1 to
worthy signature of the correlation is that over the time span 10 days) correlation for the same asteroid is due to system-
20-40 days it becomes negative. The cause of this negativeatic, regional errors in the positions of the stars as reported in
correlation is not clear, but it appears to be a feature of this the star catalog used for the astrometric reductions. The very
station, although it is visible in some others. One possible short term correlation could be due to both the systematic
interpretation is discussed in Section 5. and the random errors in the star catalog: the observations

As another example we have chosen the second most promay have been reduced with exactly the same reference stars
lific survey, LONEQS, which is operated by Lowell obser- if the two frames were taken with the same field of view.
vatory at a geographic location not very far from LINEAR. On the other hand, it is simply not our job to find out if
LONEOS uses a different optical system (Schmidt) and dif- these conjectures are true. The observers themselves can de-
ferent motion-detection algorithms, but is also a highly au- cide if the systematic effects, which are revealed in the corre-
tomated system, hence its large production of observations.lations, can be explained and possibly, if they are important
Figures 9 and 10 show the correlation in the right ascensionenough, removed or compensated for in the data processing.
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Fig. 9. Same as Fig. 7, but showing the right ascension results for LONEOS. Fig. 10. Same as Fig. 7, but showing the declination results for LONEOS.

From this point of view, our work could be considered as a the vector of residual&' = [&;], as

service to the observers, which might help them in improv- 12 1

ing their data, if they wish to do so. To make this service Q = — Z gwiEj=—8 W&, (11)
available to as many observatories as possible, we are plac- mn ij=1 n

ing online all the figures of this type we have produced. They \here the weight matris = w;; is not a diagonal matrix.

can be accessed from the home page of each observatory in 1o maintain the same formalism, and the same proba-
the information system AstDyS. _ ~ bilistic interpretation based upon the Gaussian probability
~ However, the main purpose of our analysis of correlation gensities of the classical least-square method, the only re-
is not to explain it, but to define an a posteriori model for it. guirement is that the weight matri¥ is the inverse of the
Such a.model can t-)e used to fit the data as they are, W|th0uhovariance matrix” = [yl]] of the observations. In the tradi-
degrading the quality of the orbits thus determined and the tional, uncorrelated models for observation errors the matrix
reliability of the confidence regions computed on the basis js zerg apart from the diagonal elements = 1/01_2, where

of the corresponding covariance matrices. This is the subject,; 2 is the variance (ang; the RMS) of the assumed Gaussian
1

of the next section. error probability distribution for residug). On the contrary,
o if the residualsg; and &; contain observation errors with
4.2. Correlated weighting RMS o; ando;, respectively, and with correlation;, the

covariance matriX" should have elements
This paper has the purpose of developing a sound obser-
vation error model, and the way in which this model will Vij =7ij%i0j- (12)
be used in future, e.g., for improved orbit determination, is Of course, the inversioW = I" 1 could become difficult to
the subject of continuing research. However, we need to an-handle computationally if the matrik were full, but this is
ticipate that one of the intended purposes of this work is to not the case if we assume that only the observations from
define a modified least-square method, in which the targetthe same observatory are correlated. In fact, the time corre-
function to be minimized will be expressed, as a function of lations decay with time, and most systematic effects (apart
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from those accounted by the biases) should not result indata (more than 50,000 observations each), which comprise
significant correlations between observations performed attwo thirds of the data set. We have also computed the time-
different oppositions. (We have to acknowledge that this is correlation functions for two especially accurate transit cir-
an assumption, which is very difficult to be tested empiri- cles. The results for these 10 stations are summarized in
cally with the data.) Thus we can decompose the vegtor Table 3.

into blocks =, corresponding to observations by the same  In Figs. 7-10 the best-fitting time-correlation function
observatory during the same opposition; the indedesig- is represented by a dashed line. It is apparent that such a
nates ongassagef an asteroid in the field of view of one  synthetic time-correlation function can represent the main
observatory, during the nearby nights of one apparition (this features of the actual time-wise correlation contained in the
terminology is taken from artificial satellite orbit determina- data, but not all the details. We have decided, for example,
tion, where the meaning is more intuitive). The matfix to ignore the diurnal effect by which the correlation function
is then decomposed into square blodks, one for each should oscillate with period one day (thus we have used one
passage, of moderate size, and they can be easily invertedday bins beyond the first night).

W, = I; 1. Then the matrixW is known, and indeed the In determining the best-fitting correlation functions, it is
computations involving the target functighand its deriva- not the case that we can use a linear combination of an arbi-
tives can be performed passage by passage, that is block byrary set of functions. There are conditions to be satisfied to

block, e.g.: ensure that the covariance matfix is always positive defi-
1 nite. It can be shown (Mussio, 1984) that only certain func-
0=— Z Ey - Wy &,. (13) tions of time have the property of ensuring that the correla-
mee tion matrix R = [r;;] defined by Eq. (15) is positive definite,

Note that this approach is correct only if we can neglect the S0 that also the covariance matrix defined by Eq. (12) is pos-
correlations between observations at different Qppositionsyitive definite. One requirement is that all of these functions
that is, if the time correlation goes to zero with increasing Must decay to zero with time: lim., 1o Rs(T') = 0. The list
time and is practically negligible for times longer than a few Of such functions include decaying exponential @xp7")
months. Thus the biases have to be removed: if there wereand Gaussian functions expc7?), and also quadratic times
biases left in the observation errors, they would result in non- exponential functions of the foriti — d72) exp(—cT?) and
decaying time correlations. In other wordspif= [b;] is the all their linear combinations. For each station, and sepa-
vector of biase®; for each residua#; the target function rately for right ascension and declination, we select some of

actually is these functions (T) (in practice, we have used either one
or two, possibly including two exponential functions with
m . .
0= i Z & — bp)wii (& — b)) very different values of the exponent coefficiep); then we
m =t TR perform a least-square fit of the combinatiizy fi (T) to

1 = obtain the values of the coefficients, d; contained in the

= (8 —-B)-W(& — B). (14) functions and of the linear coefficientg. Note that this fit
m is nonlinear in the coefficients,, di; thus some reasonable

We have described in Section 3 how to estimate RMS and bi- initial guess is required. At present, a this procedure is not
ases for the individual observations. To make the correlated automated.
least-square algorithm possible we need to be able to com- We believe that we have found, by means of the time-
pute the correlation; for each couple of observations, taken correlation functions of Table 3, a good approximate repre-
by the same stationat times; and;, respectively. (We can  sentation for most of the correlation present in the real data
assume the times are not more than few months apart.) Theset. This, however, leaves a problem: if the time-correlation
idea is to use an a priori estimation of the correlation of the fynction is very different from one station to another, what
form should we do with the observations from observatories with
v = R(T) (15) not enqugh data _to cpmpute such a function? To use these
J s data without taking into account the correlations would
with Ry a function of the time differenc& = |¢; — 1|, the amount to inappropriately overweighting them with respect
functions are different for different observatories (also dif- to the data of the stations for which correlation is taken into

ferent for right ascension and declination). account in the weight matrix. We have found a compromise
Thus the goal of the time-wise correlation analysis should solution, consisting in the computation of a time-correlation
be to find the most suitable time-correlation functiagydor function with mixed data, coming from all the other obser-

each station. In practice, this estimation can be performedvatories except those 10 listed in the table. We use the label
only for the stations with the most data, because for low “MIX” to refer to this mixed set of observatories. Figures 11

production stations the scatter of values for the estimatedand 12 show the actual time-wise correlation, obtained by
correlation would be too large due to small number statis- computing a correlation only among data of the same obser-
tics in each time bin. We have computed best-fitting time- vatory but then averaging the results over all the observato-
correlation functions for the eight stations with the most ries except the 10 of the table. These figures also show the
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Table 3

Fitted models of correlation functions for 10 major observatories

Observatory Right ascension Declination

095 Q248,—0.0251T 0.299,—0.0199"

675 0266(1 — 0.0349r2)¢~0-2257 0.39g, 01767

68 0.145-1117 | 146000151 0.193—1297 | (,129,—0.00674"
691 0.815e8.367 0.453 2487 4 0,373 ~0.1267
699 03071587 4 0.121,0.0418" 0.236:70-7607" 4 0,120, ~0.0403
703 Q17900445 0.176.—0.0373r

704 0266072327 4 0.079(1 — 0.01217°2) 0107 0.345 2467 1 0.102(1 - 0.00279'2)~0-0717"
809 0470:72897 4 0.312(1 - 0.03617'2) ¢~ 0-2407 0.394 1787 4+ 0.422,~0.258T
9502 0.205(1 — 0.00063Q°2) 00004452 0.051¢~0.0139F

99 0.145,—0.0236r' 0.079—0.0139r

MIX P 0.246:7248T 1 0.133(1 - 0.00490r 2) ¢~ 01097 0.222,~1427" | 0,106, ~0-00459°2

Note. Refer to Table 2 for the names corresponding to most of the observatories in this table. Additionally, code 950 denotes La Palma and 999 denotes

Bordeaux-Floirac.
@ Correlation functions are usually computed by taking into account only observations having a residual RMS lower or equal to 3 arcsec (both in RA and

DEC), which are generally reported by the MPC to 0.01 s in RA and 0.1 arcsec in DEC. However, for observatories 689, 950 and 999, where transit circles
are located, only the observations reported by the MPC to 0.001 s in RA and 0.01 arcsec in DEC are included; these amount to 89.3% of the total number of
observations for observatory 689, 98.7% for 950, and 63.8% for 999.

b The MIX class corresponds to observations belonging to all the other observatories. It is computed by taking into account only observations for which
a specific RMS value has been obtained. Note that only correlations between observations from the same site are computed; however, to compensate fo
the small number statistics, these correlations for time bins from different observatories are fitted together to a single time-correlatio(séeneigs. 11
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Fig. 11. Same as Fig. 7, but showing the right ascension results for the MIX Fig. 12. Same as Fig. 7, but showing the declination results for the MIX
group of observatories.

group of observatories.
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Figure 13 shows the correlation of the residuals as a func-
tion of angular distance on the celestial sphere. We have used

for this purpose the large and comparatively homogeneous
data set of 813,822 observations of numbered asteroids from
the LINEAR survey (observatory code 704).

For very low angular distance<(0.03 degrees) the corre-
lation between all the observations is dominated by the cor-
relation between observations of the same asteroid, for the
obvious reason that there are few cases in which two differ-
ent asteroids are seen within the same small patch. For larger
angular separations the couples formed by different aster-
oids are by far more numerous, and their correlation is not
insignificant, in the range between 0.12 and 0.03. This could
be interpreted as the effect of systematic errors in the star
catalog used in the LINEAR astrometric reductions, which
affect all asteroids which happen to be imaged against the
same background of stars.

The correlations of the subset of couples formed by ob-
servations of the same asteroid are anyway larger, although
the curve is more noisy due to the much smaller sample. This
is related to the time-wise correlation: in comparing Fig. 13
with Fig. 6 we need to take into account that the average
proper motion of a main belt asteroid is 0.2 degrees per day.
The values of the correlations and for time intervals of 1,
2, and 3 days are to a good approximation the same as the
correlations for angular distances of 0.2, 0.4, 0.6 degrees, re-
spectively. The question arises whether these correlations are
better described as space-wise rather than time-wise correla-
tions. The only way to discriminate is to analyze separately
asteroids with very different proper motion, e.g., main belt
and NEA. We plan to address this question in the future.
Fig. 13. Correlations in the right ascension residuals (above) and declination The space-wise correlation can be analyzed, when the
residuals (below), as a function of the angular separation on the celestial data set is large enough, by adding to the control on angular
sphere (in degrees), between observations of the same asteroid (upper linedifference some control on time difference, e.g., space-wise
dashed) and between all obse_rvations (lower curve, continuous), for the datacgrrelation only for data taken within a time difference of a
setof allthe numbered asteroids observed by LINEAR. few years. This could give better information on the effect
of star catalogs changing over the years. We have not per-
formed this analysis for the LINEAR data because they are
IaII recent.

Thus the correlations between observations of the same

; ; : ‘o teroid, as well as the peak in spatial correlations for angu-
ter than ignoring the correlations altogether. This inaccuracy 25:¢°!d.
g g 9 y_Iar distances< 0.03 degrees, can be handled by the method

IS not a source of great concern, because the lower producwe have outlined to take into account the time-wise corre
tion observatories are not the automatic surveys, and they " " . i . )
lation. The remaining tail of correlation between different

do not normally observe the same asteroid many times per . :
) . ) . . asteroids can be understood only as the effect of systematic
night. Thus the MIX time-correlation function will be used . . 2
) star catalog errors. There is no computationally efficient way
much less than the others in future correlated Ieast—square§ . . : o7
) . 0 account for this effect in the orbit determination process,
orbital solutions. : . .
because it would require us to solve for all the orbits of all
asteroids at once, with a normal matrix which is not block
diagonal.
The effect of star catalog errors can be decreased, for the
We have conjectured that a significant cause of the cor- future, by the use of the more accurate star catalogs now
relations between observations of the same asteroid with aavailable as a result of, for example, the ESA Hipparcos
short time difference is due to the systematic errors con- mission. Even for the observations already contained in the
tained in the star catalogs. This hypothesis can be confirmeddata archives, some a posteriori corrections could improve
by looking at the space-wise correlation of the residuals.  the quality of the data if the MPC were to make available,

0.35 T T T T
all -—

same asteroid -+

0 1 1 1 L

0 0.2 0.4 0.6 0.8 1

best-fitting function as a dashed line. The results are, as it
should be expected, not very accurate models of the actual
correlations for a specific observatory, but significantly bet-

4.3. Space-wise correlation
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in a format suitable for the orbit computers, the informa-
tion supplied with the observations submission form on the
star catalog used in the reduction. (This should indeed hap-
pen when the new observation format is implemented by the
MPC.) Both global rotations and zonal corrections can be
applied to align the reductions performed with old star cat-

alogs, on average, with the current ICRS reference system.

This can result in improvements which are small in size but
important because they affect very large data sets.

5. Conclusions
5.1. Tasks completed

We would like to assess the degree to which we have
achieved the goal of confirming the existence of a Gaussian
statistical error model for the asteroid optical astrometric ob-
servations. Overall, we believe we have achieved this goal,

albeit with the following caveats and limitations:

1. The observation errors can follow a Gaussian statistic

269

butions. The hypersurfaces, which play the role of level
manifolds for the target functio® and also of level
manifolds for the probability density of the errors, are
simple, symmetric spheres (centered on the origin) for
the most basic least-square principle, in which the tar-
get function is exactly a sum of squares. The spheres
have been replaced by ellipsoids with uneven axes not
aligned with the coordinate axes, and with center not
in the origin. This should not be surprising: every level
manifold of a function near its maximum is well approx-
imated by some ellipsoid, whose equation is obtained by
truncating the Taylor expansion to degree two. There is
no reason why such ellipsoids should in particular be
spheres.

4. We have not used all the possible information to form

homogeneous bins of data, for the purpose of comput-
ing RMS and biases. More work may be possible in the

future on the influence of proper motion, apparent mag-

nitude, and star catalog selection on the accuracy of the
observations.

The next issue is whether we have achieved the task of

only after outlier removal. By examining the distribution finding the most appropriate parameters for such a Gaussian
of the residuals which are not removed (e.g., in Fig. 3) error model. The answer is again that we have obtained a so-
we find that the tail of the distribution at large residuals lution for these parameters, which is rigorously founded on
(beyond+/8 times the RMS) has been removed. If the the analysis of a large set of data, with the following caveats:

distribution was indeed the sum of a perfect Gaussian of
“good” data and of a distribution of “bad” outliers, then
our outlier removal algorithm (described in Section 2)
would have thrown away a small number of “good” data
along with the “bad.” However, the use of a probabil-
ity density for the errors which is always positive, even
for very large errors, is not based upon any compelling
reasons having to do with the nature of the measure-
ment process. It was indeed the opinion of Gauss (1809,
p. 254) that a probability density with compact support
would be more appropriate, the use of analytic functions
(in particular, of exponentials) being dictated by the pos-

1. The RMS and especially the biases are not very reliable
for observatories and time intervals with low data pro-
duction rate.

2. The time-wise correlations have been modeled for the

most productive stations, for the other stations the mixed

correlation function is a rougher approximation.

Space-wise correlations and local time effects have not

been handled; we believe they are second order effects,

but this should be checked.

3.

This model by itself is useful to assess the performance

sibility of using more elegant mathematical arguments. of the different observatories (and its evolution with time);

. There are some unusual signatures in the results, suchhe observers may even be able to take corrective action if
as the pointed non-Gaussian shape of the distributionthey want to. If this happens, the observers are requested to
of LINEAR residuals (Fig. 3) and the negative time- inform us, to allow for an appropriate update of the error
correlations of LINEAR residuals (Fig. 7). We can con- model.
jecture that these are the result of the overweighting of
the data from what is by far the most prolific observ- 5.2. Future work
ing site. The overweighting would naturally result from
neglecting the correlations, which are more important ~ We conclude by summarizing the work which remains
in this case because of the standard procedure used byo be done to achieve our third goal, namely improving the
LINEAR, involving an automated sequence of five ob- orbit determination (and all its consequences) by the system-
servations within a few hours. This conjecture can be atic application of this error model in the processing of the
tested by redoing the same plot after applying the corre- astrometric observations.
lated weighting proposed in Section 4.2.

. The error model, which we have obtained by analyzing 1. We need toimplementin software the weighting scheme

the residuals, unlike all the a priori models used so far (at
least in the processing of asteroid astrometry), is not a
simple one, with uncorrelated, unbiased Gaussian distri-

described in Section 4.2, with weights and biases based
upon station performance and correlations based on our
empirical time-correlation functions. Then we can ex-
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periment with the generation of large orbit catalogs, in- Sansaturio, S. Ostro, E. Bowell, K. Muinonen, and F. Sanso
cluding a new global solution for all numbered asteroids. for contributing relevant comments; we are also grateful for
2. We need to reanalyze the residuals after applying thethe suggestions given by the two referees (T.B. Spahr and
more advanced weighting scheme and see how large thean anonymous referee) of the preliminary version of the
ChangeS are to the parameters used in the error model it-paper_ We thank all the observers producing asteroid as-
self. The procedure is in fact an iterative one; we may trometry because their work is what this paper is all about,
neeq to_significantly change the model after the first it- 5nq we particularly welcome their comments and sugges-
eration is complete. _ S tions. The work described in this paper was completed at
3. We would like to know if, after the first iteration, o Astronomical Observatory of Milan/Brera and at the
there are changes in the npn-Qaussmn sugnatures. ASUniversity of Pisa, under contracts with the Italian Space
an example, both the negative time-correlations and theAgency (ASI), the SpanisiMinisterio de Ciencia y Tec-
pointed distributions can be interpreted as the Conse'nologia and V\;ith European fundSEDER through Grant
quences of overweighting of some very large production AYA2001-1784, and at the Jet Propulsion Laboratory, Cal-
observatories. The new scheme should provide a more, ) L o
balanced weighting; thus some orbital errors resulting |forp|a Institute of'Technology, under a coqtract with thg
National Aeronautics and Space Administration. The OrbFit

from overweighting could go away, and the residuals i o .
should represent in a more pure way the observation er-free software system is maintained by a consortium led by
A. Milani, M. Carpino, Z. Kneze\i, and G.B. Valsecchi; it

rors, which could be more precisely Gaussian. ! ‘ » ] :
4. The main issue, however, is not the internal consistency S available ahttp:/newton.dm.unipi.it/asteroid/orbfiThe

of the theory, that is, the accuracy with which a Gaussian statistical data on the performance of each observatory are

model fits the data. Rather, the real goa| isto improve the provided with the OrbFit distribution, in the ./lib/num*.cl*

external consistency of the theory with the real world. In files. They are also disseminated through the AstDyS on-

other words, we want to compute orbits more adherent line information systemhttp://hamilton.dm.unipi.it/astdys/

to the reality of the asteroid true trajectories and covari- in the home page for each observatory), where the data cor-

ance matrices more accurately representing the rangeresponding to those of Tables 1 and 2, and also the time-wise

of values possible for the orbital parameters (and their correlation plots such as those of Figs. 7—12 are published.

consequences, such as future observations and close ap-

proaches). This can be tested by computing predictions

of observations and orbit identifications by using differ-

ent weighting schemes and then by checking if inde- References
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