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Abstract

Astrometric uncertainty is a crucial component of the asteroid orbit determination process. However, in the absence of rigoro
tainty information, only very crude weighting schemes are available to the orbit computer. This inevitably leads to a correspondin
characterization of the orbital uncertainty and in many cases to less accurate orbits. In this paper we describe a method for carefull
the statistical performance of the various observatories that have produced asteroid astrometry, with the ultimate goal of using thi
characterization to improve asteroid orbit determination. We also include a detailed description of our previously unpublished a
outlier rejection algorithm used in the orbit determination, which is an important component of the fitting process.

To start this study we have determined the best fitting orbits for the first 17,349 numbered asteroids and computed the correspo
astrometric residuals for all observations used in the orbit fitting. We group the residuals into roughly homogeneous bins and co
root mean square (RMS) error and bias in declination and right ascension for each bin. Results are tabulated for each of the 77 bins
more than 3000 observations; this comprises roughly two thirds of the data, but only 2% of the bins. There are several interesti
including substantial bias from several observatories, and some distinct non-Gaussian characteristics that are difficult to expla
limitations of our approach and possible future improvements are discussed.

The correlation of errors among observations taken closely together in time is in many cases an important issue that has r
considered. We have computed the mean correlation between observations with varying time separations and obtained empiric
that model the results. This has been done for several observatories with very large data sets (the remainder has been lumped
mixed batch). These functions could be used for estimating correlation coefficients among different observations of the same ob
supplying a new observation weighting scheme based upon an empirically tested observational error model.
 2003 Elsevier Inc. All rights reserved.

Keywords:Asteroids; Data reduction techniques; Orbits
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1. Introduction

When asteroid orbits are computed by fitting astrome
observations the result is not only a singlenominal solu-
tion, but a region of confidencewhere the orbital elemen
are compatible with the observations. However, the de
tion of such a confidence region depends upon assump
on the possible errors contained in the observations. Rel
information on the statistics of observational errors allo
one to define a statistical model of the result in the sp
of orbital elements; this model in turn defines not only
confidence boundaries, but also the probabilities of find
the orbital elements within each boundary. Prom this p

* Corresponding author.
E-mail address:carpino@brera.mi.astro.it (M. Carpino).
0019-1035/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0019-1035(03)00051-4
s

abilistic assessment of the initial conditions at some ep
it is possible to compute an analogous probabilistic ass
ment for every prediction based upon the future (and p
state of the asteroid, such as a predicted observation
lani, 1999), a close approach (Milani and Valsecchi, 19
Milani et al., 2000a), an orbit identification (Milani et a
2000b), or an attribution of observations (Milani et a
2001). Whenever the predictions have substantial un
tainty, either because the orbit is weakly determined by
few observations, the prediction is required with extre
precision, or the prediction is for a time remote from
observations, this probabilistic point of view should alwa
replace the simple mention of the nominal prediction. D
terministic statements are superior to probabilistic ones
when they are reliable, otherwise they could be a sourc
confusion and even a waste of resources.

http://www.elsevier.com/locate/icarus
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The statistical model of the observational errors can
be decided on the basis of some theoretical argument o
an error model needs to be confirmed by empirical evide
The observational errors are found by analyzing the re
uals, after removing the sources of error not related to
observations (e.g., the orbital errors). We should not fo
the errors to be what we believe they should be: an a
ori model cannot be reliable since a complete physical
statistical model of the observational procedure, includ
the astrometric reduction, would be too complicated an
certainly not available. In particular, the classical assu
tion (Gauss, 1809) that the observation errors arenormally
distributed,that is distributed according to a Gaussian pr
ability density function, is not an axiom but should be
assumption to be tested against empirical evidence. Th
even more true since there is no such thing as a un
Gaussian model, but there is a multidimensional spac
Gaussian probability density functions, depending upon
rameters values are not known a priori.

Thus we have set as our research goals the follow
tasks. First, we would like to test the hypothesis that th
is a statistical model of the observational errors in aste
astrometry, in particular a Gaussian model, which can be
pirically confirmed by analyzing a large and representa
set of residuals. Second, we would like to find the val
of the parameters defining the most appropriate Gaus
distribution, in particular the standard deviations, biases
correlations, in such a way that the model best fits the re
of the observational process. Third, we would like to ass
the impact of the use of such a nontrivial statistical mode
the orbit determination, by comparing the results with th
obtained with a naive error model and by measuring the
provements, if any, in the reliability of the predictions. Th
paper contains the results ob the first two tasks, while
work on the third one is ongoing.

A motivation for this work is the need to replace the si
plistic error model that is implicitly assumed when the tar
function of the least-square orbit determinations is just
sum of squares of the residuals (with equal weights for
the observations) or maybe with weighting based upon c
assumptions. There are very good reasons to think tha
ferent observatories have very different accuracies, that t
are systematic as well as random errors, and that the e
are not independent but correlated. The simplistic model
previously used mostly for lack of something better, rat
than because it was credible. We intend to use the error m
els derived from this paper in a weighting scheme to be u
for orbit determination.

This paper is organized as follows: in Section 2 we
scribe the preparation of a large set of astrometric res
als, which have been used for this statistical analysis;
includes an algorithm for outlier rejection that we have
veloped. In Section 3 we find the most suitable values of
root mean squares (RMS) and bias to be attached to a
sumed Gaussian distribution of the observational errors
Section 4 we find empirical correlation functions which c
s

-

-

respond to the real behavior of the data, to be used to rep
the simplistic assumption of uncorrelated observations.
conclude in Section 5 by discussing the internal consiste
of the statistical model of the observation errors based u
the RMS, bias and correlations computed in this paper
nally we indicate the work which remains to be done to fu
achieve our goal: to firmly base the orbit determination
gorithm on a more rigorous and reliable statistical mode

2. Observation residuals

We have prepared the residuals (observed minus c
puted values of right ascension and declination) to be
alyzed by computing least-square solutions for a large
of orbits, applying a differential correction algorithm un
convergence. Strictly speaking, the two steps of orbit de
mination and statistical analysis of the residuals are in
dependent, since the statistical analysis is performed on
residuals generated by orbit determination and orbit dete
nation uses the results of the statistical analysis for assig
weights to the observations and for performing outlier re
tion. It is therefore necessary to adopt an iterative appro
as a starting point, we have used a simplistic model with
correlations, no bias and all residuals weighted accordin
a crude scheme. (We used weights corresponding to a
sumed RMS of 1 arcsec for modern observations, 2 ar
before 1950, and 3 arcsec before 1890.) The use of su
poor model affects the results in an uncertain way, with
plications discussed in Section 5.

2.1. Data set

A reliable statistical study of observational error requi
a large and homogeneous data set of residuals that can
terpreted as observational errors. Astrometric observa
of asteroids observed only at a single opposition canno
used for this purpose, because in a least-square fit of a
arc a large fraction of the observation error can be abso
in the values of the fit parameters (orbital elements)
therefore does not show up in the residuals. For this
son we have used only the data for numbered aster
specifically, the data published by the Minor Planet Cen
with the monthly update of 19 September 2000, which c
tained 2,145,404 optical observations of 17,349 numb
asteroids (we are not counting, for this purpose, the ra
observations).

2.2. Outlier dejection

The algorithm for differential corrections we have used
preparing the residuals data set includes an automatic o
rejection scheme. This is necessary because in fact the
contain some observations with very large errors. These
arise from erroneous identifications, from mistakes in
astrometric reduction, from typographical errors and m
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other human and machine failures. Such erroneous o
vations can corrupt the orbital solution; thus they must
removed. Having done this, we can assume that the n
nal least-square orbit is the true one, at least to an accu
much better than that given by any single observation. T
implies that the residuals essentially contain only obse
tion errors, but this chain of assumptions needs to be ver
a posteriori.

In this section we carefully describe the algorithms
have used to reject the outliers in a fully automated way.
basic idea is to use the information supplied by the statis
analysis of the residuals (see Section 3) and discard as
liers all the observations for which the residual is too hi
This approach entails forming a 2× 2 residual covarianc
for each right ascension and declination pair. The covaria
of the residual differs from the measurement covariance
cause some component of the residuals can be attribut
orbital error. By combining the measurement and orbital
variances one can determine if a particular residual viol
some threshold of acceptability. From that, one can de
mine not only if an observation should be rejected, but a
if a previously rejected observation should be recovered
the fit.

The following description of the automated outlier
jection method is important because it describes a cri
part of the process by which we have obtained the res
als that form the basis of our statistical analysis. Howe
a detailed understanding of this method is not particul
relevant when considering the main results of this pa
namely a comprehensive analysis of the statistics of aste
astrometric errors. We also recognize that such details
not be of interest to many readers and so we have struc
the paper such that skipping to Section 2.5 or to Sectio
will not substantially detract from the presentation.

2.3. Theory of outlier rejection

The termχ2 can be considered the generalization of
concept ofnormalized squared residualfor vectorial sto-
chastic variablesx ∈ �n and is defined as

χ2 = (x − x̄)′Wx(x − x̄),

wherex̄ = E [x] is thestochastic expectation value or st
chastic average(here indicated by the operatorE [·]) of the
stochastic variablex andWx is then×n weight matrix ofx,
equal to the inverse of its covariance matrixΓx :

Wx = Γ −1
x .

The covariance matrixΓx is defined as the stochastic expe
tation value of then× n matrix (x − x̄)(x − x̄)′:

Γx = E
[
(x − x̄)(x − x̄)′

]
.

In the case of a one-dimensional stochastic varia
x ∈ �, Γx is simply thevarianceσ 2

x andχ2 reduces to the
normalized squared residual(x − x̄)2/σ 2

x . In our case the
-

y

-

o

d

residual of what we consider a single astrometric observa
x has dimension 2 (having aright ascensionand adeclina-
tion component). For the sake of the following discussio
is important to notice that in our statistical tests we are
going to use the residualsx − x̄ with respect to the averag
values of the observationsx̄ (which are of course unknown
butpostfit residuals

ξ = x − x̃

which are differences between the observed values of th
trometric coordinatesx (including measurement errors) a
the corresponding values̃x computed by numerical integra
tion starting from the adopted set of orbital elementsβ . In
our case the orbital elementsβ are not known a priori, bu
are computed through a least-square fit to the observa
x. Therefore they are functions of the stochastic variabx
and are to be considered as stochastic variables thems
If we adopt the convention of using atilde ( ˜ ) for indicat-
ing quantities which are estimated from (function of)
observationsx, we can make this fact explicit by denotin
the orbital elements with the symbolβ̃ . As a consequence
the covariance matrix of the residualsΓξ is not equal to the
covariance matrix of observation errorsΓx , but can be com
puted from it with the approach we describe in the followi

In order to compute the expression ofΓξ , we need first to
recall the basics of the algorithm of the least-square fit.
will use the following notation:

N : total number of observations used in the lea
square fit;

ti : time of observations(i = 1,2, . . . ,N);
xi , ξi : astrometric observation and residual at a gi

instant of timeti (2-dimensional stochastic var
ables);

X,Ξ : 2N -dimensional vectors of all observations a
residuals at timest1, t2, . . . , tN

X=



x1
x2
...

xN


 ; Ξ =



ξ1
ξ2
...

ξN


 ;

β̃: solved-for parameters (orbital elements: usuall
6-dimensional stochastic variable);

A: model matrix(2N ×6) of the least-square fit, equ
to the partial derivatives of the value of the o
served quantities with respect to the parameters

(1)A= ∂X

∂β



∂F (t1)/∂β
∂F (t2)/∂β

...

∂F (tN )/∂β


 ,

whereF (β, t) is the function mapping the orbita
elementsβ into the astrometric coordinates (rig
ascension and declination) at timet ; in practice,
F (β, t) is computed by numerical integration;
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γi , wi : 2× 2 covariance and weight matrices of single o
servationsxi (with wi = γ−1

i );
Γ , W : 2N×2N covariance and weight matrices of the o

servation vectorX, withW = Γ −1.

If we assume, as is the case in the simplified error mo
that we are using as a starting point that observations ma
different times are uncorrelated (E [ξiξk] = 0 if i �= k), these
matrices have a simple block-diagonal structure

Γ = diag(γi, γ2, . . . , γN);
W = diag(wi,w2, . . . ,wN);
however, this assumption is not used in the following de
opment, which remains valid in the more general case.

The least-square solution can be computed by integ
ing numerically the orbit starting from values of the orbi
elementsβ0 chosen asreference values,1 thus generating
a corresponding set of reference (predicted) values of
observationsX0 = X(β0); in a linear approximation, cor
rections to the orbital elements�β = β − β0 are related to
corrections to the observations�X = X − X0 through the
relationship

(2)�X =A�β

and the corrections�β̃ = β̃ − β0 satisfying the least-squar
criterion

Ξ ′WΞ = minimum

are given by the expression

(3)�β̃ = (A′WA)−1A′W�X,

where�X = X − X0 are the residuals of the observatio
with respect to the reference orbit. As is well known,
covariance matrix of the least-square solutionβ̃ is given by

Γβ̃ = E [�β̃�β̃ ′]
= (A′WA)−1A′WE [�X�X′]WA(A′WA)−1

= (A′WA)−1A′WW−1WA(A′WA)−1

(4)= (A′WA)−1

and the residualsΞ with respect to the least-square orbit a
(in the linear approximation)

Ξ =X− X̃ =�X−�X̃ =�X−A�β̃

=�X−A(A′WA)−1A′W�X
(5)= [

I −A(A′WA)−1A′W
]
�X,

whereI is the unit matrix of dimension 2N×2N . The proce-
dure outlined up to this point is quite classical and ultimat

1 The reference valueβ0 can be selected quite arbitrarily, with the on
constraint that it must be close enough to the true solution as to allow
convergence of the subsequent iterative corrections; usually it is the o
of a preliminary orbit determination algorithm.
t

goes back to the work of C.F. Gauss; for more modern
counts of it see for instance Danby (1988, Section 7.5)
Cappellari et al. (1976).

The covariance matrix of the residualsΞ can be com-
puted directly from their expression of Eq. (5) as

ΓΞ = E [ΞΞ ′] = [
I −A(A′WA)−1A′W

]
E [�X�X′]

× [
I −A(A′WA)−1A′W

]′
= [

I −A(A′WA)−1A′W
]
W−1[I −WA(A′WA)−1A′]

=W−1 −A(A′WA)−1A′ = Γ −AΓβ̃A
′.

If we indicate with the notationAi the 2×6 matrix obtained
by selecting from matrixA only the two lines related to th
observation at timeti , we can express the covariance mat
of a single residualξi as

(6)γξi = γi −AiΓβ̃A
′
i .

In a similar way it is possible to compute the covariance m
trix of a prediction residualξ∗, namely the residual (with
respect to the orbital solution) of an observation (perform
say, at timet∗) which has not been used for the least-squ
fit; of course, also in this case the linearized relationship
tween orbital error�β and prediction error�x∗

pred has the
same form already expressed by Eqs. (1) and (2)

�x∗
pred=A∗�β, with A∗ =

(
∂F (t∗)
∂β

)
,

and the covariance matrix of theprediction erroris therefore
given by

γx∗
pred

= E
[
�x∗

pred�x
∗ ′
pred

] =A∗Γβ̃A
∗ ′.

In this case, however, the prediction error and the meas
ment error are uncorrelated, since we have assumed
observations be mutually uncorrelated and the observa
x∗

obs at timet∗ wasnot used in the least-square fit; therefo
the covariance matrix of theprediction error

ξ∗ = x∗
obs− x∗

pred

is given simply by the sum of the covariances of the t
components

γξ∗ = E
[(
x∗

obs− x∗
pred

)(
x∗

obs− x∗
pred

)′]
= E

[
x∗

obsx
∗ ′
obs

] + E
[
x∗

predx
∗ ′
pred

] = γ ∗ + γx∗
pred

(7)= γ ∗ +A∗Γβ̃A
∗ ′,

whereγ ∗ indicates the covariance matrix ofx∗
obs. Therefore,

if we take into account the possibility that some of the
servations are considered asoutliers and are not used fo
computing the least-square solution, we must generalize
expression of the covariance of the residual given by Eq
in the following way

(8)γξi = γi ±AiΓβ̃A
′
i,

where the sign to be used is±1 if the observation is an ou
lier and−1 if the observation is included in the least-squ
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solution. Therefore, the expected error in the residualξi is
larger than the observation error in the case of a reje
outlier (the prediction error is an independent source o
ror which must be added quadratically to the observa
error in order to compute the total error), but is smaller if
observation is included in the fit, because the least-sq
solution has a tendency to interpolate observations (pre
tion error in the vicinity of an observation tends to go in
same direction as the observation error).

2.4. Outlier rejection: practical application

In practice, outlier rejection is performed in an iterat
way in the course of the same iterations which are perfor
for computing the differential corrections to the orbital e
ments. Each observation is marked by arejection flagthat
is used by the program for deciding whether it has to be
cluded in the least-square fit. At each iteration, the prog
computes the residualsξi of all observations with respect
the corrected orbit, their expected covarianceγξi (according
to Eq. (8)) and the correspondingχ2 value

(9)χ2
i = ξiγ

−1
ξi
ξ ′
i .

If we can assume that the observation errors are dis
uted normally, then also the distribution of residuals is n
mal and the value ofχ2

i has the distribution of aχ2 variable
with 2 degrees of freedom (for instance, 95% of the ob
vations should haveχ2

i < 5.99 and 99% of the observation
should haveχ2

i < 9.21). Therefore the decision whether
discard (mark as outlier) an observation can be done
ply by comparingχ2

i with somethreshold valueχ2
rej: the

observation is discarded ifχ2
i > χ2

rej. (In practice,χ2
rej is a

predefined value chosen somewhat arbitrarily in the ra
5–10.) However, although the algorithm is in principle qu
simple, its practical implementation presents the follow
delicate points that deserve particular attention.

1. Since the reference orbit is changed in the course o
iterations and in some cases its initial value can be q
far from the final one, it is necessary to check at eac
eration if some of the observations already marked
outliers should be recovered, i.e., returned to the
of observations used for computing the least-square
lution. In doing so, some care must be taken in or
to avoid the possibility that the rejection process d
not terminate, typically because the program enter
infinite loop of rejection and recovery of the same o
servations in successive iterations. For this reason
advisable to select the outliers to be recovered acc
ing to a criterion of the kindχ2

i < χ
2
rec whereχ2

rec< χ
2
rej

(we are currently usingχ2
rec= 7 andχ2

rej = 8). We point
out that, in principle, if we neglect problems of no
linearity and rounding-off, such a caution would not
necessary if outlier rejection was accomplished on
gle observations, applying Eqs. (8) and (9) and perfo
ing only one outlier rejection/recovery for each iterati
This is because the value ofχ2
i supplied by Eq. (9)

for an observation included in the fit (using the ne
tive sign in Eq. (8)) is exactly the same which wou
be obtained by removing that observation from the
(eliminating the corresponding row in matrixA), com-
puting again the least-square solution (Eq. (3)) and e
uating again Eqs. (8) (using the positive sign) and (9)
practice, however, with data sets containing hundred
thousands of observation this method would require
much computing time and so we discard/recover sev
observations at each iteration. Thus the value ofχ2

i can
change and it is necessary to adopt a value ofχ2

rec< χ
2
rej.

2. When the data contain some very distant outliers (ob
vations with very large errors), they affect the solution
such a way that also “good” observations may have q
large residuals and therefore may be rejected on the
sis of theχ2 criterion. As a result a large fraction of th
observations could be discarded at the same time, p
bly causing problems of convergence. For this rea
it is advisable to perform outlier rejection in a “pr
gressive” way, discarding of during the first iteratio
only the largest outliers and refining the selection o
when the orbit is converging toward the final solutio
In practice, this is accomplished by finding at each
eration the largest valueχ2

max of the χ2
i values for the

observations that were included in the fit and disca
ing only those observations for which the value ofχ2

i

is larger than max[χ2
rej, αχ

2
max], whereα is chosen in a

suitable way in the range 0< α < 1 (we are presentl
usingα = 0.25). For the same reason of stability it
advisable that the total number of outliers discarde
each iteration does not exceed a certain percentag
20%) of the total number of observations available.

3. Since the method of outlier rejection described her
based on statistical estimates, its reliability grows poo
as the number of observations used for the determ
tion of the orbit decreases. If the number of observat
is very small a single outlier can affect the solution
such a way that it may become impossible to dis
guish the outlier from the correct data points on
basis of orbital residuals alone, and in such cases
safer to give up completely with automated outlier
jection. From the point of view of the stability of th
convergence of the algorithm, it is much better if t
transition between the two cases (rejection/no reject
does not occur abruptly at a certain value of the num
of observationsN (or, better, of the number ofselected
observationsNsel, i.e., the number of observations us
for the least-square fit), but is as smooth as poss
This can be obtained by adding to the rejection thresh
χ2

rej “fudge term”φ(Nsel) which is a smooth function o
Nsel; its expression must be chosen in such a way
φ(n) is very large for small values ofn (say, forn < 10)
and essentially equal to zero for largen (n > 50). For
the sake of the present work, we have used



Error statistics of asteroid astrometric observations 253

isti-
MS
has
-
On
ser-
) at
ally

duce
ions
be
or-
of
be

ns
es in
uch

e
and
nts
rst
tro-
r

take
een

the

d or
dual
ith
to
ob-
test
ce

r re-
the
ur
s in

e the
s is
Sec-
the
jec-
for
the

ons,
the

uto-
als
φ(n)= 400· (1.2)−n.
4. As we discuss in detail in Section 4, the use of a stat

cal model that describes correctly the dispersion (R
error) of observations but neglects their correlations
the effect ofoverweightingthe contribution of observa
tions that are grouped in a short interval of time.
average, this means overweighting modern CCD ob
vations (especially those produced by large surveys
the expense of older measurements, which are usu
much less dense in time. In some cases this can pro
an abnormal increase in the residuals for observat
that are more sparse in time, which may therefore
rejected; this usually has the effect of weakening the
bital solution, especially if it results in a shortening
the total time span of observations. This problem can
solved completely only by estimating the correlatio
between observations and introducing these estimat
the stochastic model of the least-square fit. Lacking s
a rigorous solution, it can be advisable to limit in som
way the rejection of sparse or isolated observations
in particular to avoid discarding all the measureme
belonging to one opposition of the asteroid. In this fi
iteration of the procedure, however, we have not in
duced any limitation of this kind in the algorithm fo
outlier rejection.

For the sake of clarity, we note that the form of theχ2 test
expressed by Eqs. (8) and (9) is the same whether we
into account in the statistical model the correlations betw
different observations. This is due to the very nature of
decision process, which must assessseparatelyandindepen-
dentlyfor each observation whether it has to be discarde
not. In statistical terms this means to compare the resi
of the observation with its expected variance, namely w
the 2× 2 block of the total covariance matrix pertaining
that observation. Therefore correlations among different
servations are not relevant: they affect the result of the
only indirectly, by determining the value of the covarian
matrix of the orbital parametersΓβ̃ through Eq. (4).

2.5. Outlier rejection: results

To assess the performance of the automated outlie
jection scheme we present in Fig. 1 the distribution of
postfit RMS of normalized residuals for the objects in o
sample. We have excluded from this histogram the case
which there are radar astrometric observations, becaus
relative weighting of the radar and optical observation
a problem which needs to be solved, as discussed in
tion 5. The RMS displayed in Fig. 1 does not include
residuals for rejected outliers. The relative number of re
tions is documented in Fig. 2. The small tail of asteroids
which the rejections are a comparatively large fraction of
observations (for 2% of the cases, the rejections are> 20%)
is essentially due to the processing of very old observati
including the ones from the 19th century, together with
more accurate modern ones.

Another way to measure the effectiveness of the a
matic outlier removal is to determine how well the residu
ber 200
bef
observ
Fig. 1. Histogram of the postfit RMS of the normalized residuals of all optical observations of all the 17,349 asteroids numbered (up to 19 Septem0).
The residuals are normalized by the weights used in the least-square orbit estimation, specifically, observations before 1890 use 3 arcsec, thoseore 1950
use 2 arcsec, and for observations after 1950 the weight corresponds to 1 arcsec. Thus the figure can be interpreted as scaled in arcsec for modernations,
which comprise the vast majority of the data set.
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Fig. 2. Histogram of the percentage of rejected outliers among the catalog of 17,349 numbered asteroids.
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ithout
that have not been rejected fit a Gaussian distribution.
is related to the issue of whether the errors are norm
distributed, in that this assumption can apply only after
outliers have been removed. In other words, the errors
in fact not Gaussian, and we are removing the outliers w
the goal of using in the fit only those observations for wh
the errors are Gaussian. This argument is not necessar
circular as it first appears because it is based on the ass
tion that the distribution of residuals comprises two sepa
distributions: acore distribution which is Gaussian and
produced by the routine performance of the observing
tem and an anomalous (outlier) distribution, generated by
sporadic occurrence of different mechanisms. This sec
distribution is hopefully much less populated but has a m
larger RMS; of course, the sum of the two distributions is
normal even if the two components are in themselves
mal. The algorithm of outlier rejection is designed in su
a way as to eliminate the significant elements of the sec
contribution while keeping almost unmodified the core d
tribution (apart from trimming its extreme wings); therefo
the assumption of normality of the core distribution can
checked by a statistical analysis of the residuals.

As the best test of the distribution of residuals, we h
used the data set taken from a single observatory, na
LINEAR (observatory code 704), the survey with more o
servations than any other, thanks to a fully automated sy
based on a very sensitive CCD. Figure 3 shows both the
data set, in which a non-Gaussian tail is evident, and th
of nonrejected residuals, which approximate the Gaus
shape. Apparently, the automated outlier rejection algori
is very effective in eliminating the non-Gaussian tail of la
residuals. Unavoidably it even removes a little more t
s
-

l
t

needed to follow a Gaussian distribution, but the rela
number of such overzealous rejections is very small. Th
few borderline cases generally will not significantly imp
the orbital solution, and anyway this has a negligible ef
on the global statistics.

3. Standard deviation statistics

3.1. Data binning

Astrometric observations have to be subdivided by ob
vatory, and within each observatory piece of by mean
every piece of information we have on the possible chan
in the levels of accuracy. In the observations available f
the MPC as a global, homogeneous data set we have
three sources of information, apart from the observa
code. A code in the MPC public observation format indica
the technology used for the observations, e.g., P for ph
graphic measurements, C for CCD camera. The numb
digits reported for the time and for the measured angles
indication of the precision, although it is not clear whet
this is the result of an assessment done at the observato
at the MPC.2 Finally the time at which the observation w

2 In order to avoid misunderstandings we have to specify that we
the number of digits of the observed quantities only for the sake of divi
the measurements of a given site into homogeneous batches and n
quantitative estimate of their accuracy (which is derived from the statis
analysis described below). In other words if a given observatory publi
some of its measurements to, say, 0.1 arcsec in declination, and some
to 0.01 arcsec, we simply perform separate statistics on the two sets, w
making any assumption on its results.
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refe
Fig. 3. Histogram of the residuals of all observations by the LINEAR survey, in declination (above) and right ascension (below). The dashed linesr to the
observations accepted by the automatic rejection algorithm described in Section 2.
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taken is certainly relevant, since the observatories imp
their technology and the reduction procedures over time,
often the skills of the observers also improve with exp
ence.

Thus for each observatory, each technology code,
each number of reported digits, we form time bins such
there are enough data in each one; we currently requi
least 50 observations per bin. The binning algorithm beg
t

with equal time intervals of 400 days; consecutive bins
joined if they contain< 50 observations, with a maximu
length of 4000 days. If an observatory has too few ob
vations of a given class the binning procedure may fail
the data cannot be analyzed in this way to avoid the p
lems of small number statistics. However, even these
are used by bundling together the residuals from all obse
tories with few data.
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3.2. Estimation of the RMS and bias

For each batch of data we have computed the RMS
the residuals separately for declinationδ and for right as-
censionα; residuals inα need to be multiplied by cosδ
because of the metric of the unit sphere. This, howeve
only the first step of a procedure which must account for
fact that there are spurious and grossly wrong observa
(outliers). These large residuals have to be removed to a
contamination of the computed statistics. The underlying
sumption is again that the distribution of the residuals i
fact not Gaussian, but can become Gaussian through o
removal. To avoid a circular argument, we need to show
the removal of some outliers is appropriate because it i
empirically verified fact that the distribution of the residu
is not Gaussian. This is achieved in a very immediate wa
plotting histograms of residuals (separately for each bin
already shown in Fig. 3, which clearly shows a tail of co
paratively large residuals by far exceeding what would oc
for a Gaussian.

A quantitative way to measure the deviation of a se
residualsξi from a Gaussian distribution is to compute t
kurtosis

k(ξ)= n
∑n

i=1 ξ
4
i[∑n

i=1 ξ
2
i

]2

which should be 3 if the distribution were Gaussian. T
kurtosis, because of the presence of the fourth power o
residuals, is strongly sensitive to the presence of outliers
instance, introducing a single 10-σ outlier in a normal dis-
tribution of 100 data points has the effect of increasing
value of the kurtosis from 3 to about 26. The kurtosis for
full set of residuals shown in Fig. 3 is 7006 for right asc
sion and 213 for declination. This shows that some ou
rejection scheme needs to be used.

The procedure to remove the outliers from the statist
analysis is an iterative one, which attempts to converge
partition of the residuals of a given bin into a subset of “o
liers” and a subset, representing a Gaussian distribution
each iteration, the RMS and kurtosis are computed for
non-outliers, and the list of outliers is increased by add
the largest residuals if the kurtosis is> 3. At the end, the
kurtosis of the non-outliers is just below 3, that is, it wou
become> 3 by discarding one outlier less. When the num
of observations in the bin is large the non-outliers repre
a good approximation to a Gaussian and the distributio
their residuals is well described by only two parameters,
RMS and the mean, or bias. Note that this procedure is
ferent, and independent of, the outlier rejection scheme
in the orbit determination (described in Section 2), wh
we were assuming we already know the variance of the
distribution, which is what we wish to estimate here. Tha
some residuals which have not been used in the orbita
lution can be considered in the error statistics, and also
converse; this is advisable also because it keeps as se
r

te

as possible the stages of orbit determination and statis
analysis.

Tables 1 and 2 list the RMS and bias, as well as oth
parameters useful to assess the station performance, fo
77 bins containing more than 3000 observations. These
comprise 67% of the data, even though they are only
of the bins. The data for all observatories and all bins
available upon request and are distributed with the Or
software.

The results of our RMS estimation for the largest bi
the same listed in Tables 1 and 2, are summarized in Fi
There is a clear trend toward lower RMS for the more rec
observations, at least for the observatories currently
tributing the most data. However, for a given time there
a very significant scatter of RMS values; while a differen
by a factor< 2 might not make a big difference in the lea
square solutions, a difference by a factor 10 can affec
results in a very significant way.

The results for the bias are summarized in Fig. 5, wh
shows the number of observations with given ratio betw
bias and RMS. The histograms are based only on the la
bins, again those listed in Tables 1 and 2. The figure cle
shows that the bias should be taken into account in a rea
model of the observation errors. There are several isol
peaks, especially in declination, which are associated
some of the bins containing more data. For example,
most recent declination observations from LINEAR ha
a bias 0.39 × RMS, the ones from LONEOS have a bi
0.83 × RMS, and these two batches largely contribute
the two peaks on the right of the histogram. These bia
batches are so large that the rest of the data are biased t
negative residuals to preserve the zero mean of all the r
uals which is enforced by the least-square solutions. Th
the orbits have been shifted somewhat north with respe
the solutions which would be obtained if the observatio
bias were corrected for in the orbit determination proces

The interpretation of the biases is not easy. The p
ence of a comparatively large bias in declination for m
observatories using Schmidt telescopes could point to
problems arising from deformations in the star images.
similar problems appear in telescopes with different opt
systems, such as LINEAR. Even more puzzling is the
that the bias appears to change with time, and in some c
including the two examples cited above, appears larger in
most recent data. Our intent is only to provide this inform
tion to all the major observatories for them to analyze
discuss the possible causes and the corrective actions w
may be possible.

3.3. Limitations and possible improvements

The procedure outlined in the previous section has t
main limitations in describing the error statistics. First
does not reflect all the systematic errors, it just bundles t
together with random errors to compute a realistic RMS
bias.
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Table 1
Observation error statistics—declination

Prec. (′′) Obs. type Date range Nobs kall Rej. (%) RMS (′′) Bias (′′) Bias

RMS

046—Klet Observatory, Ceske Budejovice
0.1 C 1995-10-10–1996-11-13 3340 5.7 3.14 0.39 0.00 0.00
0.1 C 1996-11-13–1997-12-18 3130 5.3 3.99 0.34 0.05 0.14

095—Crimea-Nauchnij
0.1 A 1978-04-02–1979-05-07 3489 1991.0 3.21 1.24 0.34 0.27
0.1 A 1979-05-07–1980-06-10 3020 1835.0 3.61 1.59 −0.25 −0.16
0.1 A 1982-08-19–1983-09-23 4417 183.3 3.98 1.50 0.18 0.12
0.1 A 1990-04-19–1995-10-10 3364 262.0 1.90 2.13 −0.26 −0.12

106—Crni Vrh
0.1 C 1999-01-22–2000-02-26 4136 1377.0 5.61 0.39 0.16 0.41

120—Visnjan
0.1 C 1997-12-18–1999-01-22 3725 112.5 3.65 0.44 0.02 0.05
0.1 C 1999-01-22–2000-02-26 5988 7.9 2.84 0.47 −0.07 −0.15

327—Peking Observatory, Xinglong Station
0.1 C 1995-10-10–1996-11-13 4524 7.0 1.88 0.45 0.04 0.09
0.1 C 1996-11-13–1997-12-18 6554 16.4 2.85 0.39 0.10 0.27
0.1 C 1997-12-18–1999-01-22 6254 8.2 3.47 0.37 0.10 0.26

413—Siding Spring Observatory
10.1 A 1980-06-10–1981-07-15 7630 120.4 1.91 0.95 −0.18 −0.19

566—Haleakala-NEAT/GEODSS
0.1 C 1993-08-01–1996-11-13 7927 10.9 4.60 0.57 −0.07 −0.13
0.1 C 1996-11-13–1997-12-18 6345 61.6 3.69 0.51 0.16 0.31
0.1 C 1997-12-18–1999-01-22 17454 5.1 2.34 0.62 −0.18 −0.29

608—Haleakala-AMOS
0.1 C 2000-02-26–2000-09-19 11329 6.8 4.36 0.59 −0.39 −0.66

675—Palomar Mountain
0.1 A 1959-08-20–1962-12-02 4754 38.2 1.07 0.69 −0.06 −0.08
0.1 A 1970-08-02–1972-10-10 3343 1504.0 0.84 1.16 −0.77 −0.66
0.1 A 1972-10-10–1974-12-19 5813 100.2 0.71 1.34 −0.66 −0.49
0.1 A 1977-02-26–1978-04-02 4192 696.9 0.95 1.15 −0.44 −0.38
0.1 A 1989-03-15–1990-04-19 3359 302.3 3.57 1.13 −0.90 −0.79
0.1 A 1990-04-19–1991-05-24 8991 68.8 2.15 1.03 −0.71 −0.69
0.1 A 1991-05-24–1992-06-27 6002 972.0 3.15 0.93 −0.64 −0.69
0.1 P 1988-02-09–1989-03-15 4849 3.8 0.56 0.96 −0.24 −0.25
0.1 P 1989-03-15–1990-04-19 3495 7.3 1.00 0.85 −0.03 −0.03
0.1 P 1990-04-19–1991-05-24 5227 6.1 0.48 0.90 −0.03 −0.03
0.1 P 1991-05-24–1992-06-27 6818 122.3 1.45 0.87 −0.35 −0.40
0.1 P 1992-06-27–1993-08-01 6075 1077.0 0.94 0.86 −0.11 −0.12
0.1 P 1993-08-01–1994-09-05 8324 122.4 0.61 0.89 −0.24 −0.27
0.1 P 1994-09-05–1995-10-10 3213 3.5 0.53 0.89 −0.18 −0.20

688—Lowell Observatory, Anderson Mesa Station
0.1 A 1980-06-10–1981-07-15 3380 81.5 2.78 1.06 −1.65 −1.55
0.1 A 1981-07-15–1982-08-19 4330 319.0 1.45 1.33 −1.97 −1.48
0.1 A 1982-08-19–1983-09-23 5159 64.9 2.56 1.06 −1.43 −1.35
0.1 A 1983-09-23–1984-10-27 4647 17.1 1.66 1.13 −1.49 −1.31
0.1 A 1984-10-27–1985-12-01 3586 82.9 2.04 1.18 −0.47 −0.40

689—US Naval Observatory, Flagstaff
0.1 C 1997-12-18–1999-01-22 26516 11.9 6.29 0.13 −0.00 −0.01
0.1 c 1999-01-22–2000-09-19 29511 11.2 7.01 0.14 −0.03 −0.22

691—Steward Observatory, Kitt Peak-Spacewatch
0.1 c 1990-04-19–1992-06-27 3891 16.9 2.18 0.40 0.06 0.14
0.1 c 1993-08-01–1994-09-05 3260 12.8 3.50 0.31 0.04 0.12
0.1 c 1994-09-05–1995-10-10 5105 14.7 3.37 0.30 −0.05 −0.15
0.1 c 1995-10-10–1996-11-13 5884 18.2 2.19 0.28 −0.03 −0.12
0.1 c 1996-11-13–1997-12-18 5666 23.5 2.49 0.32 −0.02 −0.07
0.1 c 1997-12-18–1999-01-22 7993 12.8 3.32 0.29 −0.01 −0.04
0.1 C 1999-01-22–2000-02-26 13013 27.1 4.15 0.29 −0.09 −0.31
0.1 C 2000-02-26–2000-09-19 6157 10.3 3.54 0.30 −0.18 −0.61

699—Lowell Observatory-LONEOS
0.1 C 1996-11-13–1999-01-22 42995 20.8 1.99 0.52 0.19 0.37
0.1 C 1999-01-22–2000-02-26 56339 12.5 2.54 0.47 0.39 0.83
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Table 1 (continued)

Prec. (′′) Obs. type Date range Nobs kall Rej. (%) RMS (′′) Bias (′′) Bias

RMS

0.1 C 2000-02-26–2000-09-19 26756 5.1 4.06 0.39 0.16 0.40
0.1 c 1999-01-22–2000-09-19 26180 8.7 3.42 0.33 0.16 0.49

703—Catalina Sky Survey
0.1 c 1999-01-22–2000-02-26 43723 14.9 7.44 0.34 0.28 0.82
0.1 c 2000-02-26–2000-09-19 7148 40.2 5.19 0.36 0.21 0.58

7041—Lincoln Laboratory ETS, New Mexico
0.1 C 1996-11-13–1997-12-18 16328 7.0 3.82 0.75 0.11 0.15
0.1 c 1997-12-18–1999-01-22 184448 5.6 2.65 0.80 0.02 0.03
0.1 c 1999-01-22–2000-02-26 376635 552.8 3.35 0.60 −0.02 −0.03
0.1 c 2000-02-26–2000-09-19 236411 46.5 3.76 0.49 0.19 0.39

801—Oak Ridge Observatory
0.1 A 1990-04-19–1991-05-24 3193 26.0 3.51 0.44 −0.01 −0.03
0.1 C 1992-06-27–1993-08-01 4035 9.8 3.62 0.45 −0.07 −0.15
0.1 C 1993-08-01–1994-09-05 3608 5.8 3.77 0.48 −0.01 −0.03
0.1 C 1994-09-05–1995-10-10 3479 5.4 4.25 0.49 −0.03 −0.06
0.1 C 1995-10-10–1996-11-13 3438 4.2 2.76 0.55 −0.29 −0.52

809—European Southern Observatory, La Silla
0.1 A 1981-07-15–1982-08-19 3638 821.3 3.79 0.69 0.02 0.02
0.1 A 1983-09-23–1984-10-27 4672 9.4 1.90 0.58 −0.04 −0.07
0.1 A 1984-10-27–1985-12-01 4973 1635.0 1.77 0.63 −0.03 −0.05
0.1 A 1985-12-01–1987-01-05 5572 506.5 3.43 0.54 0.01 0.02
0.1 A 1987-01-05–1988-02-09 7351 1558.0 4.65 0.64 −0.09 −0.14
0.1 A 1988-02-09–1989-03-15 6203 26.1 7.54 0.69 −0.08 −0.11
0.1 A 1989-03-15–1990-04-19 6400 1349.0 4.69 0.94 −0.27 −0.29
0.1 A 1990-04-19–1991-05-24 9304 1500.0 2.57 0.99 −0.15 −0.15
0.1 A 1991-05-24–1992-06-27 4663 450.3 2.55 1.03 −0.03 −0.03
0.1 P 1991-05-24–1992-06-27 3918 7.6 1.30 1.22 −0.13 −0.11
0.1 P 1992-06-27–1993-08-01 5721 4.2 3.37 1.24 −0.14 −0.11
0.1 P 1993-08-01–1994-09-05 8850 5.5 0.58 1.72 0.43 0.25
0.1 P 1995-10-10–1996-11-13 5806 10.4 0.22 1.77 0.63 0.35
0.1 P 1996-11-13–1997-12-18 4741 3.7 0.84 1.72 0.52 0.30
0.1 P 1997-12-18–2000-09-19 6179 3.0 0.00 1.96 0.67 0.34

910—Caussols-ODAS
0.1 C 1997-12-18–1999-01-22 5531 4.2 0.43 0.52 −0.02 −0.05

Note. The following definitions describe the table entries: “Prec.” is the reported precision of the observations, “Obs. type” is the observation meode
reported by the MPC, “Date range” indicates the duration of the time bin considered,Nobs is the number of observations,kall is the kurtosis of all observation
before outlier rejection, “Rej.” is the percentage of observations rejected to obtain kurtosis∼ 3, “RMS” is the root mean square relative to the mean, and “B
is the mean of the residuals in each bin.
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Second, the bundling of residuals into bins should
low us to process homogeneous data, but this is not alw
the case, because we do not have enough information
same observatory code could correspond to different
scopes at the same site: e.g., the code 675 correspon
various telescopes on Mount Palomar (with apertures r
ing from 60 to 500 cm). The information on the telesco
used in each observation run is not available in a for
usable for large scale processing. The same applies t
information on the reduction procedure, including the s
catalog used. The information on the individual obser
tion, such as the exposure time and the sky backgro
level, is not available at all; thus the signal to noise ra
of the individual observation, which could vary by orde
of magnitude even for the same telescope and the sam
parent magnitude of the target, cannot be computed.
MPC has recently proposed an expanded observation fo
(ftp://cfa-ftp.harvard.edu/pub/MPC/) which would substan
tially improve this situation in the long run.
e

to

e

-

t

Another source of non-uniformity among the data o
given bin could arise from the arbitrary time boundaries
have used for our bins. If an observatory has substant
upgraded its equipment or procedures at a date in the m
of one of these bins, the binning should be revised to in
porate this information.

Third, there is some information which in principle cou
be used to form more homogeneous bins of residuals
which we have not used in the present work. The two m
parameters which are certainly relevant are the proper
tion and the apparent magnitude.

Inaccuracy of the measurements due to trailing an
timing errors is a function of the proper motion. If this e
fect is important, the RMS computed on bins of data do
inated by observations of main belt asteroids could be
underestimation of the error for near Earth asteroids (NE
Unfortunately the trailing error is a function also of the e
posure time, which is not available, and for the timing er
very little a priori information is available, although it is ea

ftp://cfa-ftp.harvard.edu/pub/MPC/
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Table 2
Observation error statistics—right ascension

Prec. (′′) Obs. type Date range Nobs kall Rej. (%) RMS (′′) Bias (′′) Bias

RMS

046—Klet Observatory, Ceske Budejovice
0.01 C 1995-10-10–1996-11-13 3340 9.7 5.21 0.37 −0.01 −0.01
0.01 C 1996-11-13–1997-12-18 3130 5.2 2.17 0.39 −0.04 −0.11

095—Crimea-Nauchnij
0.01 A 1978-04-02–1979-05-07 3489 17.6 2.26 1.40 −0.67 −0.48
0.01 A 1979-05-07–1980-06-10 3020 2699.0 1.46 1.89 −0.21 −0.11
0.01 A 1982-08-19–1983-09-23 4416 805.3 1.65 1.83 −0.07 −0.04
0.01 A 1990-04-19–1995-10-10 3364 274.9 3.27 1.77 −0.31 −0.18

106—Crni Vrh
0.01 C 1999-01-22–2000-02-26 4133 8.6 6.00 0.40 −0.04 −0.10

120—Visnjan
0.01 C 1997-12-18–1999-01-22 3725 23.4 7.65 0.55 0.03 0.05
0.01 C 1999-01-22–2000-02-26 5988 7.7 3.77 0.62 −0.07 −0.11

327—Peking Observatory, Xinglong Station
0.01 C 1995-10-10–1996-11-13 4524 36.3 2.70 0.44 0.03 0.08
0.01 C 1996-11-13–1997-12-18 6554 327.1 2.21 0.47 −0.02 −0.03
0.01 C 1997-12-18–1999-01-22 6254 13.9 6.86 0.34 −0.03 −0.08

413—Siding Spring Observatory
0.01 A 1980-06-10–1981-07-15 7630 6.8 2.79 1.28 −0.09 −0.07

566—Haleakala-NEAT/GEODSS
0.01 C 1994-09-05–1996-11-13 7915 23.7 4.94 0.47 −0.07 −0.14
0.01 C 1996-11-13–1997-12-18 6345 35.5 5.23 0.44 −0.12 −0.27
0.01 C 1997-12-18–1999-01-22 17454 7.2 3.57 0.49 −0.03 −0.07

608—Haleakala-AMOS
0.01 C 2000-02-26–2000-09-19 11329 52.4 2.40 0.59 −0.09 −0.15

675—Palomar Mountain
0.01 A 1959-08-20–1962-12-02 4754 27.6 2.15 0.59 0.03 0.05
0.01 A 1970-08-02–1972-10-10 3343 10.1 4.34 1.08 −0.17 −0.16
0.01 A 1972-10-10–1974-12-19 5813 243.6 2.49 1.10 0.24 0.22
0.01 A 1977-02-26–1978-04-02 4186 34.3 2.60 1.03 0.13 0.13
0.01 A 1989-03-15–1990-04-19 3359 507.0 4.82 0.96 −0.10 −0.10
0.01 A 1990-04-19–1991-05-24 8991 134.1 4.72 0.77 0.04 0.05
0.01 A 1991-05-24–1992-06-27 6002 240.5 2.87 0.79 0.06 0.07
0.01 P 1988-02-09–1989-03-15 4849 14.7 3.05 0.71 0.05 0.07
0.01 P 1989-03-15–1990-04-19 3495 11.1 2.58 0.71 0.04 0.06
0.01 P 1990-04-19–1991-05-24 5227 6.1 2.41 0.73 −0.16 −0.22
0.01 P 1991-05-24–1992-06-27 6818 48.4 3.30 0.65 −0.00 −0.00
0.01 P 1992-06-27–1993-08-01 6075 383.0 3.31 0.66 −0.01 −0.02
0.01 P 1993-08-01–1994-09-05 8324 7.5 3.87 0.66 −0.06 −0.09
0.01 P 1994-09-05–1995-10-10 3213 8.3 2.86 0.64 0.00 0.00

688—Lowell Observatory, Anderson Mesa Station
0.01 A 1980-06-10–1981-07-15 3380 197.2 4.08 0.95 0.59 0.62
0.01 A 1981-07-15–1982-08-19 4330 312.7 4.32 1.12 0.72 0.64
0.01 A 1982-08-19–1983-09-23 5159 18.9 4.69 0.96 0.45 0.47
0.01 A 1983-09-23–1984-10-27 4647 9.9 5.34 1.05 0.62 0.59
0.01 A 1984-10-27–1985-12-01 3586 18.0 4.04 1.09 0.51 0.47

689—US Naval Observatory, Flagstaff
0.001 C 1997-12-18–1999-01-22 26516 11.4 4.25 0.13 −0.01 −0.05
0.001 C 1999-01-22–2000-09-19 29511 12.5 4.37 0.13 −0.01 −0.11

691—Steward Observatory, Kitt Peak-Spacewatch
0.01 C 1999-01-22–2000-02-26 13013 12.6 3.15 0.36 −0.04 −0.12
0.01 C 2000-02-26–2000-09-19 6157 5.8 1.90 0.38 −0.23 −0.61
0.01 c 1990-04-19–1992-06-27 3891 8.8 3.14 0.49 −0.08 −0.15
0.01 c 1993-08-01–1994-09-05 3260 8.2 4.05 0.40 −0.13 −0.33
0.01 c 1994-09-05–1995-10-10 5105 16.1 4.72 0.33 −0.10 −0.32
0.01 c 1995-10-10–1996-11-13 5890 979.7 2.89 0.38 −0.09 −0.25
0.01 c 1996-11-13–1997-12-18 5666 6.3 1.15 0.40 −0.11 −0.28
0.01 c 1997-12-18–1999-01-22 7993 5.2 0.49 0.53 −0.14 −0.27

699—Lowell Observatory-LONEOS
0.01 C 1996-11-13–1999-01-22 42995 1536.0 2.41 0.51 0.03 0.06
0.01 C 1999-01-22–2000-02-26 56339 594.2 1.35 0.54 0.06 0.11
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Table 2 (continued)

Prec. (′′) Obs. type Date range Nobs kall Rej. (%) RMS (′′) Bias (′′) Bias

RMS

0.01 C 2000-02-26–2000-09-19 26756 4.7 2.91 0.49 −0.02 −0.05
0.01 c 1999-01-22–2000-09-19 26180 4.8 2.44 0.40 0.05 0.11

703—Catalina Sky Survey
0.01 c 1999-01-22–2000-02-26 43723 10.4 6.55 0.39 −0.04 −0.10
0.01 c 2000-02-26–2000-09-19 7148 10.6 6.21 0.38 0.03 0.08

704—Lincoln Laboratory ETS, New Mexico
0.01 C 1996-11-13–1997-12-18 16328 6.6 5.36 0.95 0.17 0.18
0.01 C 1997-12-18–1999-01-22 184448 7.0 3.92 0.79 −0.03 −0.03
0.01 C 1999-01-22–2000-02-26 376635 16220.0 4.22 0.56 0.02 0.04
0.01 C 2000-02-26–2000-09-19 236411 10.5 5.05 0.45 0.06 0.14

801—Oak Ridge Observatory
0.01 A 1990-04-19–1991-05-24 3193 11.0 3.88 0.37 −0.02 −0.06
0.01 C 1992-06-27–1993-08-01 4035 9.1 3.57 0.40 −0.03 −0.07
0.01 C 1993-08-01–1994-09-05 3608 10.1 5.13 0.43 −0.01 −0.03
0.01 C 1994-09-05–1995-10-10 3479 6.0 3.68 0.49 −0.02 −0.04
0.01 C 1995-10-10–1996-11-13 3438 5.8 5.76 0.37 0.05 0.14

809—European Southern Observatory, La Silla
0.01 A 1981-07-15–1982-08-19 3638 187.8 5.31 0.77 −0.12 −0.16
0.01 A 1983-09-23–1984-10-27 4672 20.6 2.72 0.68 −0.16 −0.23
0.01 A 1984-10-27–1985-12-01 4973 1622.0 2.65 0.73 −0.14 −0.19
0.01 A 1985-12-01–1987-01-05 5572 74.6 3.66 0.66 −0.12 −0.18
0.01 A 1987-01-05–1988-02-09 7351 2203.0 4.72 0.73 −0.01 −0.01
0.01 A 1988-02-09–1989-03-15 6203 115.8 6.50 0.80 −0.03 −0.04
0.01 A 1989-03-15–1990-04-19 6400 2193.0 5.00 0.96 −0.02 −0.02
0.01 A 1990-04-19–1991-05-24 9304 18.6 3.45 1.01 −0.03 −0.03
0.01 A 1991-05-24–1992-06-27 4663 756.0 2.90 1.12 0.11 0.10
0.01 P 1991-05-24–1992-06-27 3918 12.8 3.39 1.14 −0.18 −0.16
0.01 P 1992-06-27–1993-08-01 5721 7.1 4.46 1.16 0.13 0.11
0.01 P 1993-08-01–1994-09-05 8850 328.5 1.90 1.44 0.51 0.36
0.01 P 1995-10-10–1996-11-13 5806 125.5 0.95 1.50 0.55 0.37
0.01 P 1996-11-13–1997-12-18 4741 5.9 3.25 1.34 0.33 0.24
0.01 P 1997-12-18–2000-09-19 6179 4.6 0.44 1.64 0.85 0.52

910—Caussols-ODAS
0.01 C 1997-12-18–1999-01-22 5531 2.9 0.00 1.06 −0.09 −0.08

Note. See Table 1 for column definitions.
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to identify a posteriori. These two errors can be detec
when large residuals have a significant correlation betw
right ascension and declination. Measurement errors du
both trailing and time errors could be relevant in degrad
some observations of NEAs. The most dramatic exam
of this kind is the large data set of observations of (15
Icarus during its close approach at 0.04 AU from Earth
1968. In our present solution more than 100 observat
are discarded because of timing errors, but in this way
information on the position across track, which could be
curate, is also lost. Other infamous cases are 1937 UB
1954 XA, both discovered during close approaches to
Earth and lost after few days, with orbits made even m
unreliable by timing uncertainties. In the future we plan
be able to handle timing–trailing errors by introducing rig
ascension–declination correlation in the least-square fi
gorithm.

There is no doubt that an observation with a low signa
noise ratio will have larger errors. Although the relative s
nal strength is typically a function of apparent magnitude
is, unfortunately, not a function of magnitude only. It a
depends strongly upon exposure time, pixel size, and se
conditions, none of which is available to us. For this rea
we have not used binning based upon the apparent m
tude, but we may explore the value of this in the future.

4. Correlation analysis

Even after the residuals have been rescaled with the
propriate weights, and shifted by appropriate biases, it is
the case that their probability distributions are correctly r
resented by independent, unit variance Gaussian funct
In intuitive terms, the error in each observation has a hig
probability of having the same sign, even a similar value
the previous one. For Gaussian distributions, independ
and zero correlation are equivalent; thus we can test the
pothesis of independence by measuring the correlation
set of couples of residuals(ξi, ξj ), with (i, j) ∈ B:

(10)Corr(ξ,B)= 1

NB

∑
(i,j)∈B

ξi
√
wiξj

√
wj ,

wherewi is the weight associated with the residualξi , that is
the inverse of the variance of the residual in its suppos
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Fig. 4. Time history of the RMS of the residuals in declination (above) and right ascension (below) for the data bins tabulated in Tables 1 and 2, i.e bins
containing at least 3000 observations. The length of the bars indicates the duration of the bin; thus, a long bar indicates a period of lower productivty.
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homogeneous bin, andNB is the total number of couple
contained inB.

The question is how to select the sets of couples,
is B. The values of the correlations are found to be sm
between observations taken from different observatories
the order of 1% or less). Thus we have mostly investiga
the correlations between the observations of the same
servatory. These can be subdivided into subsets eithe
time difference or by difference in apparent position. T
first type of correlation is calledtime-wise, and it appears a
a function of the time difference between the observatio
-

It can be expected that the time-wise correlation decre
with time, until it goes to zero or becomes negative;
length of the time difference for which the correlation go
to zero provides important information. The second typ
the space-wisecorrelation, which appears as a function
the angular separation on the celestial sphere. We are
puting the space-wise correlation by angular difference in
inertial reference frame, looking for effects related to the
catalogs used in the astrometric reductions; there are sm
but still measurable, effects depending upon the topoce
azimuth and elevation.
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abulat
Fig. 5. Histograms of the ratio bias/RMS in declination (above) and right ascension (below). Only data from the 77 largest data bins, which are ted in
Tables 1 and 2, are included. All observations in each bin (see Section 2) are plotted with the bias/RMS ratio computed for their bin.
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We have used for this analysis the same data set desc
in Section 2. Because the correlation analysis requires
data sets, we have been using the data independently
their partition in data taken with different technologies
reported with different accuracies, but we have not inc
porated the observations marked as degraded accura
the MPC. Most of the differences between the data f
the same observatory are due to changes in equipmen
procedures with time; thus, these changes should no
grade the estimation of the short-term time-wise corr
tions.
d

y

d
-

4.1. Time-wise correlation

We have selected for this analysis the eight observa
codes with more than 50,000 observations; they have
formed 65% of the available observations of numbered
teroids. We have also analyzed two observatories with fe
but especially accurate observations (transit circles).
each observatory we have computed the correlation o
residuals as a function of time, both for the same aste
and for different asteroids. In order to show both short-t
and long-term effects we have computed the correlation
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Fig. 6. Time-wise correlation for the right ascension residuals from LINEAR for observations belonging to different asteroids (above) and to the same asteroid

(below). In these and in the following plots the empirical correlation points are shown with error bars equal to their formal errorN
−1/2
B , whereNB is the

number of couples of observations used for the computation of each point (see Eq. (10)).
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ing two different binnings: a short bin of 0.04 d (� 1 h) and
a long bin of 1 d. The plots and the fits are obtained from
mixed data set obtained by using the short bin estimat
to the point where its intrinsic error becomes too large
to the small number of observation couples available and
long bin estimate after that point (the value of the time lag
which the transition occurs depends on the observatory
sidered).

As an example, Fig. 6 shows the correlation in the ri
ascension residuals as a function of the time difference
correlation lag) of the observations for LINEAR (observ
tory code 704). The correlations between observation
the same asteroid (lower half of the figure) show a com
atively high value (� 0.28) for the correlations within th
same night, decaying rapidly, and a more slowly decay
component starting from 0.1 for the next night. The gap
the data correspond to daylight.

The data plotted in the upper half of the figure are
correlations for observations of different asteroids wh
measure other systematic effects, depending upon time
not upon the portion of the sky which appears in the sa
frame as the asteroid and thus, we presume, not related
the errors in the star catalogs. These effects are significa
smaller than those affecting the observations of the sam
teroid, but are still measurable. The figure clearly show
signature depending upon the difference in the hour of ob
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Fig. 7. Correlation among LINEAR right ascension residuals as a func
of the time separation between observations of the same asteroid. The
puted correlations are depicted as well as the derived correlation func

vation. This diurnal signature is likely a result of different
refraction, high air mass, increased sky brightness, or s
other effect having to do with the elevation of the telesc
pointing, all of which would tend to correlate the obser
tional errors.

In Figs. 7 and 8 we show the correlation over two diff
ent time spans. Note that the data for correlation lag less
one half day have been binned at a few hours and the re
integer days. This averages out the effects depending
the hour of the observations, seen in Fig. 6. The most n
worthy signature of the correlation is that over the time s
20–40 days it becomes negative. The cause of this neg
correlation is not clear, but it appears to be a feature of
station, although it is visible in some others. One poss
interpretation is discussed in Section 5.

As another example we have chosen the second mos
lific survey, LONEOS, which is operated by Lowell obs
vatory at a geographic location not very far from LINEA
LONEOS uses a different optical system (Schmidt) and
ferent motion-detection algorithms, but is also a highly
tomated system, hence its large production of observat
Figures 9 and 10 show the correlation in the right ascen
-

t

-

.

Fig. 8. Same as Fig. 7, but showing the declination results for LINEA

and declination residuals as a function of the time differe
The same features of the previous example are apparen
cluding an even higher peak (> 0.4) at a few hours and
slowly decaying component. Negative correlations do
occur in a systematic way and are likely only the resul
somewhat more noisy data (the number of data points b
smaller).

We use these figures as examples to illustrate how
information could be used. On one hand, we can make
jectures on the physical or data processing phenomen
sponsible for each feature visible in the correlation pl
For example, we can presume that the medium-term (
10 days) correlation for the same asteroid is due to sys
atic, regional errors in the positions of the stars as reporte
the star catalog used for the astrometric reductions. The
short term correlation could be due to both the system
and the random errors in the star catalog: the observa
may have been reduced with exactly the same reference
if the two frames were taken with the same field of view.

On the other hand, it is simply not our job to find out
these conjectures are true. The observers themselves c
cide if the systematic effects, which are revealed in the co
lations, can be explained and possibly, if they are impor
enough, removed or compensated for in the data proces
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Fig. 9. Same as Fig. 7, but showing the right ascension results for LONE

From this point of view, our work could be considered a
service to the observers, which might help them in impr
ing their data, if they wish to do so. To make this serv
available to as many observatories as possible, we are
ing online all the figures of this type we have produced. T
can be accessed from the home page of each observat
the information system AstDyS.

However, the main purpose of our analysis of correlat
is not to explain it, but to define an a posteriori model for
Such a model can be used to fit the data as they are, wit
degrading the quality of the orbits thus determined and
reliability of the confidence regions computed on the ba
of the corresponding covariance matrices. This is the sub
of the next section.

4.2. Correlated weighting

This paper has the purpose of developing a sound ob
vation error model, and the way in which this model w
be used in future, e.g., for improved orbit determination
the subject of continuing research. However, we need to
ticipate that one of the intended purposes of this work i
define a modified least-square method, in which the ta
function to be minimized will be expressed, as a function
-

n

t

-

Fig. 10. Same as Fig. 7, but showing the declination results for LONE

the vector of residualsΞ = [ξi], as

(11)Q= 1

m

m∑
i,j=1

ξiwij ξj = 1

m
Ξ ·WΞ,

where the weight matrixW =wij is not a diagonal matrix.
To maintain the same formalism, and the same pro

bilistic interpretation based upon the Gaussian probab
densities of the classical least-square method, the onl
quirement is that the weight matrixW is the inverse of the
covariance matrixΓ = [γij ] of the observations. In the trad
tional, uncorrelated models for observation errors the ma
is zero apart from the diagonal elementswii = 1/σ 2

i , where
σ 2
i is the variance (andσi the RMS) of the assumed Gaussi

error probability distribution for residualξi . On the contrary
if the residualsξi and ξj contain observation errors wit
RMS σi andσj , respectively, and with correlationrij , the
covariance matrixΓ should have elements

(12)γij = rij σiσj .

Of course, the inversionW = Γ −1 could become difficult to
handle computationally if the matrixΓ were full, but this is
not the case if we assume that only the observations f
the same observatory are correlated. In fact, the time co
lations decay with time, and most systematic effects (a
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from those accounted by the biases) should not resu
significant correlations between observations performe
different oppositions. (We have to acknowledge that thi
an assumption, which is very difficult to be tested emp
cally with the data.) Thus we can decompose the vectoΞ

into blocksΞα corresponding to observations by the sa
observatory during the same opposition; the indexα desig-
nates onepassageof an asteroid in the field of view of on
observatory, during the nearby nights of one apparition (
terminology is taken from artificial satellite orbit determin
tion, where the meaning is more intuitive). The matrixΓ
is then decomposed into square blocksΓα , one for each
passage, of moderate size, and they can be easily inve
Wα = Γ −1

α . Then the matrixW is known, and indeed th
computations involving the target functionQ and its deriva-
tives can be performed passage by passage, that is blo
block, e.g.:

(13)Q= 1

m

∑
α

Ξα ·WαΞα.

Note that this approach is correct only if we can neglect
correlations between observations at different oppositi
that is, if the time correlation goes to zero with increas
time and is practically negligible for times longer than a f
months. Thus the biases have to be removed: if there
biases left in the observation errors, they would result in n
decaying time correlations. In other words, ifB = [bi] is the
vector of biasesbi for each residualξi the target function
actually is

Q= 1

m

m∑
i,j=1

(ξi − bi)wij (ξj − bj )

(14)= 1

m
(Ξ −B) ·W(Ξ −B).

We have described in Section 3 how to estimate RMS an
ases for the individual observations. To make the correl
least-square algorithm possible we need to be able to c
pute the correlationrij for each couple of observations, tak
by the same stations at timesti andtj , respectively. (We ca
assume the times are not more than few months apart.
idea is to use an a priori estimation of the correlation of
form

(15)rij =Rs(T )

with Rs a function of the time differenceT = |tj − ti |; the
functions are different for different observatories (also
ferent for right ascension and declination).

Thus the goal of the time-wise correlation analysis sho
be to find the most suitable time-correlation functionsRs for
each station. In practice, this estimation can be perfor
only for the stations with the most data, because for
production stations the scatter of values for the estim
correlation would be too large due to small number sta
tics in each time bin. We have computed best-fitting tim
correlation functions for the eight stations with the m
:

y

-

data (more than 50,000 observations each), which com
two thirds of the data set. We have also computed the t
correlation functions for two especially accurate transit
cles. The results for these 10 stations are summarize
Table 3.

In Figs. 7–10 the best-fitting time-correlation functi
is represented by a dashed line. It is apparent that su
synthetic time-correlation function can represent the m
features of the actual time-wise correlation contained in
data, but not all the details. We have decided, for exam
to ignore the diurnal effect by which the correlation funct
should oscillate with period one day (thus we have used
day bins beyond the first night).

In determining the best-fitting correlation functions, it
not the case that we can use a linear combination of an
trary set of functions. There are conditions to be satisfie
ensure that the covariance matrixΓα is always positive defi
nite. It can be shown (Mussio, 1984) that only certain fu
tions of time have the property of ensuring that the corr
tion matrixR = [rij ] defined by Eq. (15) is positive definit
so that also the covariance matrix defined by Eq. (12) is
itive definite. One requirement is that all of these functi
must decay to zero with time: limT→+∞Rs(T )= 0. The list
of such functions include decaying exponential exp(−cT )
and Gaussian functions exp(−cT 2), and also quadratic time
exponential functions of the form(1− dT 2)exp(−cT 2) and
all their linear combinations. For each station, and se
rately for right ascension and declination, we select som
these functionsfk(T ) (in practice, we have used either o
or two, possibly including two exponential functions w
very different values of the exponent coefficientck); then we
perform a least-square fit of the combination

∑
zkfk(T ) to

obtain the values of the coefficientsck , dk contained in the
functions and of the linear coefficientszk . Note that this fit
is nonlinear in the coefficientsck , dk; thus some reasonab
initial guess is required. At present, a this procedure is
automated.

We believe that we have found, by means of the tim
correlation functions of Table 3, a good approximate re
sentation for most of the correlation present in the real
set. This, however, leaves a problem: if the time-correla
function is very different from one station to another, w
should we do with the observations from observatories w
not enough data to compute such a function? To use t
data without taking into account the correlations wo
amount to inappropriately overweighting them with resp
to the data of the stations for which correlation is taken
account in the weight matrix. We have found a comprom
solution, consisting in the computation of a time-correlat
function with mixed data, coming from all the other obs
vatories except those 10 listed in the table. We use the
“MIX” to refer to this mixed set of observatories. Figures
and 12 show the actual time-wise correlation, obtained
computing a correlation only among data of the same ob
vatory but then averaging the results over all the observ
ries except the 10 of the table. These figures also show
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Table 3
Fitted models of correlation functions for 10 major observatories

Observatory Right ascension Declination

095 0.248e−0.0251T 0.299e−0.0199T

675 0.266
(
1− 0.0349T 2)

e−0.225T 0.398e−0.176T

689a 0.145e−1.11T + 0.146e−0.00151T 0.193e−1.29T + 0.129e−0.00674T

691 0.815e−8.36T 0.453e−24.6T + 0.373e−0.126T

699 0.307e−1.58T + 0.121e−0.0418T 0.236e−0.760T + 0.120e−0.0403T

703 0.179e−0.0445T 0.176e−0.0373T

704 0.266e−23.2T + 0.079
(
1− 0.0121T 2)

e−0.103T 0.345e−24.6T + 0.102
(
1− 0.00279T 2)

e−0.0717T

809 0.470e−28.9T + 0.312
(
1− 0.0361T 2)

e−0.240T 0.394e−17.6T + 0.422e−0.258T

950a 0.205
(
1− 0.000630T 2)

e−0.000445T 2
0.051e−0.0139T

999a 0.145e−0.0236T 0.079e−0.0139T

MIX b 0.246e−24.8T + 0.133
(
1− 0.00490T 2)

e−0.109T 0.222e−1.42T + 0.106e−0.00459T 2

Note.Refer to Table 2 for the names corresponding to most of the observatories in this table. Additionally, code 950 denotes La Palma and 9
Bordeaux-Floirac.

a Correlation functions are usually computed by taking into account only observations having a residual RMS lower or equal to 3 arcsec (both
DEC), which are generally reported by the MPC to 0.01 s in RA and 0.1 arcsec in DEC. However, for observatories 689, 950 and 999, where tra
are located, only the observations reported by the MPC to 0.001 s in RA and 0.01 arcsec in DEC are included; these amount to 89.3% of the tota
observations for observatory 689, 98.7% for 950, and 63.8% for 999.

b The MIX class corresponds to observations belonging to all the other observatories. It is computed by taking into account only observations
a specific RMS value has been obtained. Note that only correlations between observations from the same site are computed; however, to com
the small number statistics, these correlations for time bins from different observatories are fitted together to a single time-correlation function (see Figs. 11

and 12).

MIX MIX
Fig. 11. Same as Fig. 7, but showing the right ascension results for the
group of observatories.
Fig. 12. Same as Fig. 7, but showing the declination results for the
group of observatories.
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Fig. 13. Correlations in the right ascension residuals (above) and declin
residuals (below), as a function of the angular separation on the cel
sphere (in degrees), between observations of the same asteroid (upp
dashed) and between all observations (lower curve, continuous), for th
set of all the numbered asteroids observed by LINEAR.

best-fitting function as a dashed line. The results are,
should be expected, not very accurate models of the a
correlations for a specific observatory, but significantly b
ter than ignoring the correlations altogether. This inaccu
is not a source of great concern, because the lower pro
tion observatories are not the automatic surveys, and
do not normally observe the same asteroid many times
night. Thus the MIX time-correlation function will be use
much less than the others in future correlated least-squ
orbital solutions.

4.3. Space-wise correlation

We have conjectured that a significant cause of the
relations between observations of the same asteroid w
short time difference is due to the systematic errors c
tained in the star catalogs. This hypothesis can be confir
by looking at the space-wise correlation of the residuals
,

l

-

s

Figure 13 shows the correlation of the residuals as a f
tion of angular distance on the celestial sphere. We have
for this purpose the large and comparatively homogene
data set of 813,822 observations of numbered asteroids
the LINEAR survey (observatory code 704).

For very low angular distance (< 0.03 degrees) the corre
lation between all the observations is dominated by the
relation between observations of the same asteroid, fo
obvious reason that there are few cases in which two di
ent asteroids are seen within the same small patch. For l
angular separations the couples formed by different a
oids are by far more numerous, and their correlation is
insignificant, in the range between 0.12 and 0.03. This c
be interpreted as the effect of systematic errors in the
catalog used in the LINEAR astrometric reductions, wh
affect all asteroids which happen to be imaged agains
same background of stars.

The correlations of the subset of couples formed by
servations of the same asteroid are anyway larger, alth
the curve is more noisy due to the much smaller sample.
is related to the time-wise correlation: in comparing Fig.
with Fig. 6 we need to take into account that the aver
proper motion of a main belt asteroid is 0.2 degrees per
The values of the correlations and for time intervals o
2, and 3 days are to a good approximation the same a
correlations for angular distances of 0.2, 0.4, 0.6 degree
spectively. The question arises whether these correlation
better described as space-wise rather than time-wise co
tions. The only way to discriminate is to analyze separa
asteroids with very different proper motion, e.g., main b
and NEA. We plan to address this question in the future

The space-wise correlation can be analyzed, when
data set is large enough, by adding to the control on ang
difference some control on time difference, e.g., space-
correlation only for data taken within a time difference o
few years. This could give better information on the eff
of star catalogs changing over the years. We have not
formed this analysis for the LINEAR data because they
all recent.

Thus the correlations between observations of the s
asteroid, as well as the peak in spatial correlations for a
lar distances< 0.03 degrees, can be handled by the met
we have outlined to take into account the time-wise co
lation. The remaining tail of correlation between differe
asteroids can be understood only as the effect of system
star catalog errors. There is no computationally efficient
to account for this effect in the orbit determination proce
because it would require us to solve for all the orbits of
asteroids at once, with a normal matrix which is not blo
diagonal.

The effect of star catalog errors can be decreased, fo
future, by the use of the more accurate star catalogs
available as a result of, for example, the ESA Hippar
mission. Even for the observations already contained in
data archives, some a posteriori corrections could imp
the quality of the data if the MPC were to make availab
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in a format suitable for the orbit computers, the inform
tion supplied with the observations submission form on
star catalog used in the reduction. (This should indeed
pen when the new observation format is implemented by
MPC.) Both global rotations and zonal corrections can
applied to align the reductions performed with old star c
alogs, on average, with the current ICRS reference sys
This can result in improvements which are small in size
important because they affect very large data sets.

5. Conclusions

5.1. Tasks completed

We would like to assess the degree to which we h
achieved the goal of confirming the existence of a Gaus
statistical error model for the asteroid optical astrometric
servations. Overall, we believe we have achieved this g
albeit with the following caveats and limitations:

1. The observation errors can follow a Gaussian stat
only after outlier removal. By examining the distributio
of the residuals which are not removed (e.g., in Fig
we find that the tail of the distribution at large residu
(beyond

√
8 times the RMS) has been removed. If t

distribution was indeed the sum of a perfect Gaussia
“good” data and of a distribution of “bad” outliers, the
our outlier removal algorithm (described in Section
would have thrown away a small number of “good” da
along with the “bad.” However, the use of a probab
ity density for the errors which is always positive, ev
for very large errors, is not based upon any compel
reasons having to do with the nature of the meas
ment process. It was indeed the opinion of Gauss (1
p. 254) that a probability density with compact supp
would be more appropriate, the use of analytic functi
(in particular, of exponentials) being dictated by the p
sibility of using more elegant mathematical argumen

2. There are some unusual signatures in the results,
as the pointed non-Gaussian shape of the distribu
of LINEAR residuals (Fig. 3) and the negative tim
correlations of LINEAR residuals (Fig. 7). We can co
jecture that these are the result of the overweightin
the data from what is by far the most prolific obse
ing site. The overweighting would naturally result fro
neglecting the correlations, which are more import
in this case because of the standard procedure use
LINEAR, involving an automated sequence of five o
servations within a few hours. This conjecture can
tested by redoing the same plot after applying the co
lated weighting proposed in Section 4.2.

3. The error model, which we have obtained by analyz
the residuals, unlike all the a priori models used so fa
least in the processing of asteroid astrometry), is n
simple one, with uncorrelated, unbiased Gaussian di
.

y

butions. The hypersurfaces, which play the role of le
manifolds for the target functionQ and also of leve
manifolds for the probability density of the errors, a
simple, symmetric spheres (centered on the origin)
the most basic least-square principle, in which the
get function is exactly a sum of squares. The sphe
have been replaced by ellipsoids with uneven axes
aligned with the coordinate axes, and with center
in the origin. This should not be surprising: every lev
manifold of a function near its maximum is well appro
imated by some ellipsoid, whose equation is obtained
truncating the Taylor expansion to degree two. Ther
no reason why such ellipsoids should in particular
spheres.

4. We have not used all the possible information to fo
homogeneous bins of data, for the purpose of com
ing RMS and biases. More work may be possible in
future on the influence of proper motion, apparent m
nitude, and star catalog selection on the accuracy o
observations.

The next issue is whether we have achieved the tas
finding the most appropriate parameters for such a Gaus
error model. The answer is again that we have obtained
lution for these parameters, which is rigorously founded
the analysis of a large set of data, with the following cave

1. The RMS and especially the biases are not very reli
for observatories and time intervals with low data p
duction rate.

2. The time-wise correlations have been modeled for
most productive stations, for the other stations the mi
correlation function is a rougher approximation.

3. Space-wise correlations and local time effects have
been handled; we believe they are second order eff
but this should be checked.

This model by itself is useful to assess the performa
of the different observatories (and its evolution with tim
the observers may even be able to take corrective acti
they want to. If this happens, the observers are request
inform us, to allow for an appropriate update of the er
model.

5.2. Future work

We conclude by summarizing the work which rema
to be done to achieve our third goal, namely improving
orbit determination (and all its consequences) by the sys
atic application of this error model in the processing of
astrometric observations.

1. We need to implement in software the weighting sche
described in Section 4.2, with weights and biases ba
upon station performance and correlations based on
empirical time-correlation functions. Then we can e
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periment with the generation of large orbit catalogs,
cluding a new global solution for all numbered astero

2. We need to reanalyze the residuals after applying
more advanced weighting scheme and see how larg
changes are to the parameters used in the error mod
self. The procedure is in fact an iterative one; we m
need to significantly change the model after the firs
eration is complete.

3. We would like to know if, after the first iteration
there are changes in the non-Gaussian signatures
an example, both the negative time-correlations and
pointed distributions can be interpreted as the co
quences of overweighting of some very large produc
observatories. The new scheme should provide a m
balanced weighting; thus some orbital errors resul
from overweighting could go away, and the residu
should represent in a more pure way the observatio
rors, which could be more precisely Gaussian.

4. The main issue, however, is not the internal consiste
of the theory, that is, the accuracy with which a Gauss
model fits the data. Rather, the real goal is to improve
external consistency of the theory with the real world
other words, we want to compute orbits more adhe
to the reality of the asteroid true trajectories and cov
ance matrices more accurately representing the r
of values possible for the orbital parameters (and t
consequences, such as future observations and clos
proaches). This can be tested by computing predict
of observations and orbit identifications by using diff
ent weighting schemes and then by checking if in
pendent sources of information (e.g., additional ob
vations not used in the fit) better confirm the predictio
based upon a more advanced weighting scheme.

5. The availability of radar astrometry is a good ext
nal test since the weights for radar range and ran
rate measurements are computed by an entirely diffe
method, one based on the way the individual radar
nals are combined into astrometry. The quality of the
and of the resulting predictions would depend upon
appropriate relative weighting between radar and op
data.

The above program of research will be pursued in the
future by the authors of the present paper, in collabora
with other authors.
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