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Relativistic modeling for Gaia 
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Astronomical observation  

no physically 
preferred coordinates 

observables have 
to be computed as 
coordinate 
independent  
quantities 
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General relativity for space astrometry 

Astrometric catalogs 
are just realizations of 
the BCRS 

Relativistic reference  
systems 

Equations of 
signal 

propagation 

Astronomical 
reference 
frames 

Observational  
data 

Relativistic 
equations 
of motion 

Definition of 
observables 

Relativistic 
models  

of observables 
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The IAU 2000 framework 

•  Three standard astronomical reference systems were defined 

•  BCRS (Barycentric Celestial Reference System) 

•  GCRS (Geocentric Celestial Reference System) 
•  Local reference system of an observer  

•  All these reference systems are defined by  
   
 the form of the corresponding metric tensors. 

Technical details: Brumberg, Kopeikin, 1988-1992 
                                Damour, Soffel, Xu, 1991-1994 
                                Klioner, Voinov, 1993 
         Soffel, Klioner, Petit et al., 2003 
                                Klioner,Soffel, 2000; Kopeikin, Vlasov, 2004 

BCRS 

GCRS 

Local RS 
of an observer 
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Necessary condition:  
consistency of the whole data processing chain 

•  Any kind of inconsistency is very dangerous for the quality and reliability of 
  the results 

•  The whole data processing and all the auxiliary information should be  
  assured to be compatible with the PPN formalism (or at least GR) 

•   planetary ephemeris: coordinates, scaling, constants 
•   Gaia orbit: coordinates, scaling, constants 
•   astronomical constants  
•   onboard clock monitoring (time synchronization) 
•   ??? 

•  Monitoring of the consistency during the whole project 
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Example 1: 
Lissajous orbit around L2 

L2 x 

Y 
z 

Sun 

Earth 

Because of Newtonian aberration,  
the velocity must be known with an accuracy 
of 1 mm/s 

in 103 km from L2 
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Example 2:  
Optical aberrations by a rotating instrument 

•  Two special-relativistic effects modifying PSF of a rotating instrument: 

•  Finite light velocity leads to propagation delays within telescope; 
   these delays depend on the position in the field of view 

•  Special-relativistic change of the reflection law (Einstein, 1905) 

•  Reassessment study for Gaia was necessary 

   (Anglada, Klioner, Soffel, Torra, 2007, Astronomy & Astrophysics, 462, 371) 
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Optical aberrations by a rotating instrument 

•  Model instrument 
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Optical aberrations by a rotating instrument 

•  Aberration patterns by the instrument at rest 
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Optical aberrations by a rotating instrument 

•  Aberration patterns by the rotating instrument 
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Data analysis models compatible with IAU 2000 

•  Ephemeris construction (JPL, IMCCE, IAA): 

•  equations of motion     OK 

•  radar ranging, classic positional data, etc.  OK 

•  time scales: precompiled, lower accuracy  partially OK 

•  new generation of the ephemerides:  

 computed together with the ephemeris, full accuracy   

 (Fienga, et al. 2007)    OK 

conventional space ephemeris 

+ time ephemeris (Fukushima, 1995)   
relativistic 

 4-dim 
ephemerides 

 
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•  In BCRS for planets: 

  the so-called 
  Einstein-Infeld-Hoffman 
  equations 

  first published in 1917 
  used in JPL since 1971 

Relativistic equations of motion used in practice 

•  In the GCRS for Earth satellites: e.g., IERS Conventions, 2003 

•  In ALL theoretical works TCB and TCG are used to derive these equations 

      only linear functions of TCB and TCG are allowed 
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Relativistic Time Scales: TCB and TCG 

•   t = TCB  Barycentric Coordinate Time = coordinate time of the BCRS 

•  T = TCG  Geocentric Coordinate Time = coordinate time of the GCRS 

These are part of 4-dimensional coordinate systems so that  
the TCB-TCG transformations are 4-dimensional: 

•  Therefore:    

•  Only if space-time position is fixed in the BCRS 
  TCG becomes a function of TCB: 

   
T = t  1

c2
A(t) + vE

i rE
i( ) + 1

c4
B(t) + Bi (t)rE

i + Bij (t)rE
i rE

j +C t, x( )( ) +O c5( )

  TCG = TCG(TCB,xi )

  ( rE
i = xi  xE

i (t) )

  TCG = TCG(TCB, xobs
i (TCB)) = TCG(TCB)
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Relativistic Time Scales: TCB and TCG 
•  Important special case                     gives the TCG-TCB relation  
  at the geocenter: 

linear drift removed: 

s 

s 

main feature: linear drift 1.4810-8 

zero point is defined to be Jan 1, 1977 
difference now: 14.7 seconds 
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Relativistic Time Scales: proper time scales 

•    proper time of each observer: what an ideal clock moving  

 with the observer measures… 

•  Proper time can be related to either TCB or TCG (or both) provided 
  that the trajectory of the observer is given: 

  The formulas are provided by the relativity theory: 

    

d
dt

= g00 t,xobs(t)( )  2
c

g0i t,xobs(t)( ) xobs
i (t)  1

c2
gij t,xobs(t)( ) xobs

i (t) xobs
j (t)











1/ 2

    

d
dT

= G00 T ,Xobs(T )( )  2
c

G0a T ,Xobs(T )( ) Xobs
a (T )  1

c2
Gab T ,Xobs(T )( ) Xobs

a (T ) Xobs
b (T )











1/ 2
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Relativistic Time Scales: proper time scales 

•  Specially interesting case: an observer close to the Earth surface: 

    

d
dT

= 1 1
c2

1
2
Xobs

2 (T ) +WE T ,Xobs( ) + "tidal terms"








 +O c4( )

is the height above the geoid 

is the velocity relative to the rotating geoid 

•  Idea: let us define a time scale linearly related to T=TCG, but which 
  is numerically close to the proper time of an observer on the geoid: 

  TT = (1 LG ) TCG, LG  6.96929013410-10

   

d
d TT

= 1 1
c2

"terms  h, i "+ "tidal terms"+ ...( ) + ...
can be neglected 
in many cases 
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Relativistic Time Scales: TT 

•  To avoid errors and changes in TT implied by changes/improvements 
  in the geoid, the IAU (2000) has made LG to be a defined constant: 

•  TAI is a practical realization of TT (up to a constant shift of 32.184 s) 

•  Older name TDT (introduced by IAU 1976): fully equivalent to TT 
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Relativistic Time Scales: TDB-1 

•  Idea: to scale TCB in such a way that the “scaled TCB” remains close to TT 

•  IAU 1976: TDB is a time scale for the use for dynamical modelling of the 
  Solar system motion which differs from TT only by periodic terms. 

•  This definition taken literally is flawed:  
  such a TDB cannot be a linear function of TCB! 

  But the relativistic dynamical model (EIH equations) used by e.g. JPL 
  is valid only with TCB and linear functions of TCB… 
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Relativistic Time Scales: TDB-2 
The IAU (2006) has re-defined TDB to be a fixed linear function of TCB: 

•     TDB is defined through a conventional relationship with TCB: 

•  T0 = 2443144.5003725 exactly, 

•  JDTCB = T0 for the event 1977 Jan 1.0 TAI at the geocenter and 
  increases by 1.0 for each 86400s of TCB, 

•  LB  1.550519768×10−8, 

•  TDB0  −6.55 ×10−5 s. 

  
TDB = TCB  LB  JDTCB T0( )86400 +TDB0
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Iterative procedure to construct an ephemeris 
with TDB in a fully consistent way 

a priori TDB–TT relation (from an old ephemeris) 

convert observational data from TT to TDB 

construct the new ephemeris 

update the TDB–TT relation  
(by numerical integration using the new ephemeris) 

yes 

final 4D 
ephemeris 

no changed much? 
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How to compute TT(TDB) from an ephemeris 
-  Fundamental relativistic relation between TCG and TCB at the geocenter 
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How to compute TT(TDB) from an ephemeris 
-  definitions of TT and TDB 

 1) TT(TCG) :  

 2) TDB(TCB) :  
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How to compute TT(TDB) from an ephemeris 

-  two corrections 

  

d
dTDB

TDB = LB +
1
c2
(TDB)









 1+ LB  LG( )  LG +

1
c4
(TDB)

-  two differential equations 

  

d
dTT

TT =
1
c2
(TT  TT ) 1 LB + LG( )

+
1
c4

(TT  TT ) 2 (TT  TT )( ) + LB  LG( ) 1+ LG( )
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Representation with Chebyshev polynomials 
-  Any of those small functions can be represented  

by a set of Chebyshev polynomials 

-  The conversion of tabulated y(x) into an is a well-known task… 
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TT-TDB: DE405 vs. SOFA for full range of DE405 

ns 

ns 

-  SOFA implements the 
 corrected Fairhead-Bretagnon  
 analytical series based 
 on VSOP-87 
 (about 1000 Poisson terms, 
  also non-periodic terms) 
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Other time scales 

-  The same procedure with numerical integration can be used to compute 

       - proper time of a space craft 

       - coordinate time of some other planetocentric reference system  
        and TCB  
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Scaled time scales: the price to pay 

•  If one uses scaled version TCB – Teph or TDB – one effectively uses  
  three scaling: 

•  time 

•  spatial coordinates 

•  masses (µ= GM) of each body 

 WHY THREE SCALINGS? 

   

t* = F TCB + t0
*

x* = F x
µ* = F µ

  F = 1 LB
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•  These three scalings  
   together leave  
   the dynamical equations  
   unchanged: 

•  for the motion of  
  the solar system bodies: 

•  for light propagation: 

Equations to leave unchanged 
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•  GM of the Earth (from SLR): 

•  TT-compatible 

•  TCG/B-compatible 

•  TDB-compatible 

If one uses TCG and TCB one has only one mass…  

TCG/TCB-, TT- and TDB-compatible 
 planetary masses 

  

µ
Earth

**{ }
SI
= 398600441.5± 0.4( )  106

µ
Earth

{ }
SI
=

1
1 LG

µ
Earth

**{ }
SI
= 398600441.8 ± 0.4( )  106

µ
Earth

*{ }
SI
= 1 LB( ) µ

Earth
{ }

SI
= 398600435.6 ± 0.4( )  106
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Relativistic Model for Gaia 
•  GREM: Gaia Relativity Model 

 Klioner, 2003, AJ, 125, 1580 ; Klioner, 2004, Phys.Rev.D, 69, 124001 
 Klioner, Peip, 2003, A&A, 410, 1063 
 Zschocke, Klioner, 2006, Gaia-CA-TN-LO-SZ-001  
 Klioner, 2008, GAIA-CA-TN-LO-SK-006-2 (compact description) 

•   Two modes: 

•  Predictor mode: predict the observed position for a known object 

•  Corrector mode: restore parameters of an object from observable direction 
                             (not always possible & not always accurate) 

•   Two kinds of objects: 

•  “stars” 
•  solar system objects 

•   Accuracy in predictor mode: up to 0.1 µas 
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GREM: retarded moment? 
•  Kopeikin & Schäfer, 1999:  
  deflected body’s position & velocity should be evaluated at the retarded moment: 

•  one iteration is not sufficient to compute t* (Klioner & Peip, 2003): error 0.5 µas   

•  at least 3 evaluation of the ephemeris is required 
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GREM: no retarded moment 
•  Klioner, 1989: formal pN solution for deflectors with constant velocity  

•  The body’s position and velocity only at the moment of observation t0   

•  Klioner & Peip, 2003: accuracy 0.02 µas  

•  only 2 evaluation of the ephemeris is required 
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Gaia: data processing 

•  Parameters 

•  At least 5 parameters for each star: 5  109 

•  4 parameters of orientation each 15 seconds:  108 

•  2000 calibration parameters per day: 4  106 

•  global parameters (e.g., PPN ): 102 

•  Observations 

  about 1000 raw images for each star: 1012 

•  Data volume: 1 PB (iterative data processing) 

•  Computational efforts: ~1019  to 1021 flops 
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Gaia: timetable 

2000 2004 2008 2012 2016 2020 

Acceptance 

Technology Development 

Design, Build, Test 

Launch 

Observations 

Analysis 

Catalogue Early Data 

Concept & Technology Study ESA SCI 2000(4) 

To L2 

Phase B2 

Re-Assessment: 
Ariane  Soyuz 



36 

Relativistic modeling for BepiColombo 
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What to model? 
1.  Motion of the observing station in the BCRS:  

 a. Earth rotation in the GCRS: precession/nutation+polar motion 
  a good model is necessary to have 1mm/s and a few cm accuracy 

 b. Transformation in the BCRS: trivial 

 c. Motion of the geocenter in the BCRS:  
 a given(?) solar system ephemeris   

2.  Motion of the spacecraft in the BCRS: 

 a. PPN form of the EIH equations (Will, 1993?)  
 b. Rotational motion of Mercury in Mercurian Celestial RS 
 c. Structure of the gravitational field of Mercury  

 in a Mercurian “corotating” RS 
 d. Influence of Mercurian gravitational field on the spacecraft 
 e. Non-gravitational forces: the onboard accelerometer        
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What to model? 

3. Light propagation (delay + frequency?)   

 a. Shapiro delay in 1+2 pN 
 b. Retarded moment or the moment of closest approach for the positions 
  of the Sun, Mercury, Earth, … 
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Post-post-Newtonian terms necessary? 

Yes, in principle, but 

•  only numerical magnitude is interesting for practical work  

•  in relativity analytical orders of magnitude are used 

The situation is similar to “analytical expansions”  
(e.g., in powers of eccentricities) in classical celestial mechanics… 

   c
−2 , c−4 , e4 ,...
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Post-post-Newtonian light propagation? 

Full post-post-Newtonian expression for the Shapiro time delay  
with PPN parameters (Klioner, Zschocke, 2007): 

The higher-order terms give up to 10 meters. Are all these terms relevant? 
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Post-post-Newtonian light propagation? 

Are all these terms relevant? NO! 
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Post-post-Newtonian light propagation? 

NO! 

The only numerically relevant term can be written as 

This gives maximally 4 cm for Sun-grazing ray,  
and much less in typical cases… 

Similar situation with light deflection, 
                           post-post-Newtonian equations of motion, etc. 

This has already been derived by Moyer (2003) in a different way. 

All other terms can be estimated as 
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Other terms in the light propagation? 

Kopeikin, Schäfer, 1999; Klioner, 2003; Klioner, Peip, 2003: 

The position of the gravitating body in the shown formula must be 
evaluated either at the moment of closest approach  

or at the moment of closest approach between the gravitating body and  
the light ray:  
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Other terms in the light propagation? 

Klioner, 1992: 

For the Sun this gives 16 ps and 8 ps, respectively (0.48 cm and 0.24 cm). 

The Shapiro effect due to the quadrupole moment can be estimated as 

c J2  3.18
GM
c2

J2

The Shapiro effect due to the angular momentum S can be estimated as 

(P is the radius of the body) 

cS  4
G S
P
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Some suggestions 
1.  Be very consistent in the model;  

better too consistent at the price of slower data processing 

 This should be of course at reasonable level! 

2.  Do not use time scales TT and TDB: 

 use TCG and TCB and avoid artificial scaling of e.g. masses GM 

 Mercury Coordinate Time must be used to model Mercury rotation. 
Why to bother with all the scalings?  

3.  Use 128 bit arithmetic for orbit propagation and forget about round-off 

4.  Integrate the Sun, do not use the center of mass to reduce the system 

 Use an approximation to the center of mass integrals only to fix the initial 
      conditions; define the parameters only for the orbit w.r.t. the Sun  
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Backup slides 
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Data analysis models compatible with IAU 2000 

•  Ephemeris construction (JPL, IMCCE, IAA)   OK 

•  VLBI        OK 

•  Lunar Laser Ranging      partially OK 

relativistically consistent model for the figure-figure interaction for 
the Earth-Moon system must be applied 

relativistically consistent model for Moon rotation 
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Data analysis models compatible with IAU 2000 

•  Ephemeris construction (JPL, IMCCE, IAA)   OK 

•  VLBI        OK 

•  Lunar Laser Ranging      partially OK 

•  Satellite Laser Ranging     OK 

•  Hipparcos, Gaia, …      OK 

•  time keeping and time transfer algorithms   OK 

•  pulsar timing       OK 

•  Earth/Moon rotation        

    up to 2006: a purely Newtonian model was used  not OK 

    first relativistic theory: Klioner et al. (2007)   partially OK 

Minor problems in the models still exist: higher-order terms, scaling, etc. 


