# Relativistic modeling for Gaia and BepiColombo

#### Sergei A. Klioner

Lohrmann Observatory, Dresden Technical University



BepiColombo MORE Meeting, 16 February 2009

## Relativistic modeling for Gaia



#### General relativity for space astrometry



#### The IAU 2000 framework

• Three standard astronomical reference systems were defined

- BCRS (Barycentric Celestial Reference System)
- GCRS (Geocentric Celestial Reference System)
- Local reference system of an observer
- All these reference systems are defined by

the form of the corresponding metric tensors.

Technical details: Brumberg, Kopeikin, 1988-1992 Damour, Soffel, Xu, 1991-1994 Klioner, Voinov, 1993 Soffel, Klioner, Petit et al., 2003 Klioner,Soffel, 2000; Kopeikin, Vlasov, 2004



#### Necessary condition: consistency of the whole data processing chain

- Any kind of inconsistency is very dangerous for the quality and reliability of the results
- The whole data processing and all the auxiliary information should be assured to be compatible with the PPN formalism (or at least GR)
  - planetary ephemeris: coordinates, scaling, constants
  - Gaia orbit: coordinates, scaling, constants
  - astronomical constants
  - onboard clock monitoring (time synchronization)
  - ???

Monitoring of the consistency during the whole project



### Example 2:

#### Optical aberrations by a rotating instrument

• Two special-relativistic effects modifying PSF of a rotating instrument:

- Finite light velocity leads to propagation delays within telescope; these delays depend on the position in the field of view
- Special-relativistic change of the reflection law (Einstein, 1905)
- Reassessment study for Gaia was necessary

(Anglada, Klioner, Soffel, Torra, 2007, Astronomy & Astrophysics, 462, 371)

### Optical aberrations by a rotating instrument

Model instrument



#### Optical aberrations by a rotating instrument

#### • Aberration patterns by the instrument at rest



#### Optical aberrations by a rotating instrument

#### • Aberration patterns by the rotating instrument



#### Data analysis models compatible with IAU 2000

- Ephemeris construction (JPL, IMCCE, IAA):
  - equations of motion
     OK
  - radar ranging, classic positional data, etc. OK
  - time scales: precompiled, lower accuracy
  - new generation of the ephemerides:
     computed together with the ephemeris, full accuracy (Fienga, et al. 2007)
     OK

conventional space ephemeris

+ time ephemeris (Fukushima, 1995)

relativistic 4-dim ephemerides

partially OK

#### Relativistic equations of motion used in practice

In BCRS for planets:

the so-called Einstein-Infeld-Hoffman equations

first published in 1917 used in JPL since 1971

$$\begin{split} \ddot{\mathbf{x}}_{A} &= -\sum_{B \neq A} \mu_{B} \frac{\mathbf{r}_{AB}}{|\mathbf{r}_{AB}|^{3}} \\ &+ \frac{1}{c^{2}} \sum_{B \neq A} \mu_{B} \frac{\mathbf{r}_{AB}}{|\mathbf{r}_{AB}|^{3}} \left\{ \sum_{C \neq B} \frac{\mu_{C}}{|\mathbf{r}_{BC}|} + 4 \sum_{C \neq A} \frac{\mu_{C}}{|\mathbf{r}_{AC}|} + \frac{3}{2} \frac{(\mathbf{r}_{AB} \cdot \dot{\mathbf{x}}_{B})^{2}}{|\mathbf{r}_{AB}|^{2}} \\ &- \frac{1}{2} \sum_{C \neq A, B} \mu_{C} \frac{\mathbf{r}_{AB} \cdot \mathbf{r}_{BC}}{|\mathbf{r}_{BC}|^{3}} \\ &- 2 \dot{\mathbf{x}}_{B} \cdot \dot{\mathbf{x}}_{B} - \dot{\mathbf{x}}_{A} \cdot \dot{\mathbf{x}}_{A} + 4 \dot{\mathbf{x}}_{A} \cdot \dot{\mathbf{x}}_{B} \right\} \\ &+ \frac{1}{c^{2}} \sum_{B \neq A} \mu_{B} \frac{\dot{\mathbf{x}}_{A} - \dot{\mathbf{x}}_{B}}{|\mathbf{r}_{AB}|^{3}} \left\{ 4 \dot{\mathbf{x}}_{A} \cdot \mathbf{r}_{AB} - 3 \dot{\mathbf{x}}_{B} \cdot \mathbf{r}_{AB} \right\} \\ &- \frac{1}{c^{2}} \frac{7}{2} \sum_{B \neq A} \frac{\mu_{B}}{|\mathbf{r}_{AB}|} \sum_{C \neq A, B} \mu_{C} \frac{\mathbf{r}_{BC}}{|\mathbf{r}_{BC}|^{3}} + O(c^{-4}), \end{split}$$

• In the GCRS for Earth satellites: e.g., IERS Conventions, 2003

In ALL theoretical works TCB and TCG are used to derive these equations

 $\Rightarrow$  only linear functions of TCB and TCG are allowed

#### Relativistic Time Scales: TCB and TCG

- t = TCB Barycentric Coordinate Time = coordinate time of the BCRS
- T = TCG Geocentric Coordinate Time = coordinate time of the GCRS

These are part of 4-dimensional coordinate systems so that the TCB-TCG transformations are 4-dimensional:  $(r_E^i = x^i - x_E^i(t))$ 

$$T = t - \frac{1}{c^{2}} \Big( A(t) + v_{E}^{i} r_{E}^{i} \Big) + \frac{1}{c^{4}} \Big( B(t) + B^{i}(t) r_{E}^{i} + B^{ij}(t) r_{E}^{i} r_{E}^{j} + C(t, \mathbf{x}) \Big) + O(c^{-5}) \Big)$$

• Therefore:  $TCG = TCG(TCB, x^i)$ 

• Only if space-time position is fixed in the BCRS  $x^{i} = x_{obs}^{i}(t)$ TCG becomes a function of TCB:

 $TCG = TCG(TCB, x_{obs}^{i}(TCB)) = TCG(TCB)$ 

#### Relativistic Time Scales: TCB and TCG

• Important special case  $x^i = x^i_E(t)$  gives the TCG-TCB relation at the geocenter:

main feature: linear drift  $1.48 \times 10^{-8}$ zero point is defined to be Jan 1, 1977 difference now: 14.7 seconds

linear drift removed:



#### Relativistic Time Scales: proper time scales

- τ proper time of each observer: what an ideal clock moving with the observer measures...
- Proper time can be related to either TCB or TCG (or both) provided that the trajectory of the observer is given:

$$x_{obs}^{i}(t)$$
 and/or  $X_{obs}^{a}(T)$ 

The formulas are provided by the relativity theory:

$$\frac{d\tau}{dt} = \left(-g_{00}\left(t, \mathbf{x}_{obs}(t)\right) - \frac{2}{c}g_{0i}\left(t, \mathbf{x}_{obs}(t)\right)\dot{x}_{obs}^{i}(t) - \frac{1}{c^{2}}g_{ij}\left(t, \mathbf{x}_{obs}(t)\right)\dot{x}_{obs}^{i}(t)\dot{x}_{obs}^{j}(t)\right)^{1/2}$$
$$\frac{d\tau}{dT} = \left(-G_{00}\left(T, \mathbf{X}_{obs}(T)\right) - \frac{2}{c}G_{0a}\left(T, \mathbf{X}_{obs}(T)\right)\dot{X}_{obs}^{a}(T) - \frac{1}{c^{2}}G_{ab}\left(T, \mathbf{X}_{obs}(T)\right)\dot{X}_{obs}^{a}(T)\dot{X}_{obs}^{b}(T)\right)^{1/2}$$

#### Relativistic Time Scales: proper time scales

• Specially interesting case: an observer close to the Earth surface:

$$\frac{d\tau}{dT} = 1 - \frac{1}{c^2} \left( \frac{1}{2} \dot{X}_{obs}^2(T) + W_E(T, \mathbf{X}_{obs}) + \text{"tidal terms"} \right) + O(c^{-4})$$
  
~ 10

• Idea: let us define a time scale linearly related to T=TCG, but which is numerically close to the proper time of an observer on the geoid:

$$TT = (1 - L_G) TCG, \quad L_G \equiv 6.969290134 \times 10^{-1}$$

$$\frac{d\tau}{dTT} = 1 - \frac{1}{c^2} \left( \text{"terms} \sim h, v^i \text{"+"tidal terms"+...} \right) + \dots \text{ can be neglected in many cases}$$

0

-17

*h* is the height above the geoid

 $V^{i}$  is the velocity relative to the rotating geoid

### **Relativistic Time Scales: TT**

• To avoid errors and changes in TT implied by changes/improvements in the geoid, the IAU (2000) has made  $L_G$  to be a defined constant:

 $L_G \equiv 6.969290134 \cdot 10^{-10}$ 

• TAI is a practical realization of TT (up to a constant shift of 32.184 s)

• Older name TDT (introduced by IAU 1976): fully equivalent to TT

#### **Relativistic Time Scales: TDB-1**

Idea: to scale TCB in such a way that the "scaled TCB" remains close to TT

• IAU 1976: TDB is a time scale for the use for dynamical modelling of the Solar system motion which differs from TT only by periodic terms.

• This definition taken literally is flawed: such a TDB cannot be a linear function of TCB!

But the relativistic dynamical model (EIH equations) used by e.g. JPL is valid only with TCB and linear functions of TCB...

### Relativistic Time Scales: TDB-2

The IAU (2006) has re-defined TDB to be a fixed linear function of TCB:

• TDB is defined through a conventional relationship with TCB:

$$TDB = TCB - L_B \times \left(JD_{TCB} - T_0\right) \times 86400 + TDB_0$$

- $T_0 = 2443144.5003725$  exactly,
- $JD_{TCB} = T_0$  for the event 1977 Jan 1.0 TAI at the geocenter and increases by 1.0 for each 86400s of TCB,
- $L_B \equiv 1.550519768 \times 10^{-8}$ ,
- $TDB_0 \equiv -6.55 \times 10^{-5} s.$

# Iterative procedure to construct an ephemeris with TDB in a fully consistent way

a priori TDB-TT relation (from an old ephemeris)





## How to compute TT(TDB) from an ephemeris

Fundamental relativistic relation between TCG and TCB at the geocenter

$$T = \mathsf{TCG}$$
$$t = \mathsf{TCB}$$

$$\frac{dT}{dt} = 1 + \frac{1}{c^2} \alpha(t) + \frac{1}{c^4} \beta(t) + \mathcal{O}(c^{-5})$$

$$\alpha = -\frac{1}{2} v_E^2 - \sum_{A \neq E} \frac{GM_A}{r_{EA}},$$

$$\begin{split} \beta &= -\frac{1}{8} \, v_E^4 + \left(\beta - \frac{1}{2}\right) \left(\sum_{A \neq E} \frac{GM_A}{r_{EA}}\right)^2 + (2\beta - 1) \, \sum_{A \neq E} \left(\frac{GM_A}{r_{EA}} \sum_{B \neq A} \frac{GM_B}{r_{AB}}\right) \\ &+ \sum_{A \neq E} \frac{GM_A}{r_{EA}} \left(2(1+\gamma) v_A^i v_E^i - \left(\gamma + \frac{1}{2}\right) \, v_E^2 - (1+\gamma) v_A^2 + \frac{1}{2} a_A^i r_{EA}^i + \frac{1}{2} (v_A^i r_{EA}^i / r_{EA})^2\right) \end{split}$$

#### How to compute TT(TDB) from an ephemeris

- definitions of TT and TDB
  - **1)** TT(TCG) :

 $TT = TCG - L_G \times (JD_{TCG} - T_0) \times 86400$  $T_0 = 2443144.5003725, L_G = 6.969290134 \times 10^{-10}$ 

2) TDB(TCB) :

 $\mathsf{TDB} = \mathsf{TCB} - L_B \times (JD_{\mathsf{TCB}} - T_0) \times 86400 + \mathsf{TDB}_0$ 

 $T_0 = 2443144.5003725, L_B = 1.550519768 \times 10^{-8}, \text{TDB}_0 = -6.55 \times 10^{-5} \text{ s}$ 

#### How to compute TT(TDB) from an ephemeris

 $TT = TDB + \Delta TDB(TDB)$  $TDB = TT - \Delta TT(TT)$ 

- two differential equations

two corrections

$$\frac{d}{dTDB}\Delta TDB = \left(L_B + \frac{1}{c^2}\alpha(TDB)\right)\left(1 + L_B - L_G\right) - L_G + \frac{1}{c^4}\beta(TDB)$$

$$\frac{d}{dTT}\Delta TT = \frac{1}{c^2}\alpha(TT - \Delta TT)\left(1 - L_B + L_G\right) + \frac{1}{c^4}\left(\beta(TT - \Delta TT) - \alpha^2(TT - \Delta TT)\right) + \left(L_B - L_G\right)\left(1 + L_G\right)$$

#### Representation with Chebyshev polynomials

 Any of those small functions can be represented by a set of Chebyshev polynomials

$$y(x) \approx \sum_{n=0}^{N} a_n T_n(x)$$

The conversion of tabulated y(x) into  $a_n$  is a well-known task...

#### TT-TDB: DE405 vs. SOFA for full range of DE405

**ns** -15

SOFA implements the corrected Fairhead-Bretagnon analytical series based on VSOP-87 (about 1000 Poisson terms, also non-periodic terms)



 $0.868 \text{ ns} - 8.28 \cdot 10^{-18} t +$ 

#### Other time scales

- The same procedure with numerical integration can be used to compute

- proper time of a space craft
- coordinate time of some other planetocentric reference system and TCB

#### Scaled time scales: the price to pay

- If one uses scaled version TCB –  $T_{eph}$  or TDB – one effectively uses three scaling:

• time 
$$t^* = F \cdot TCB + \mathbf{x}^*$$
  
• spatial coordinates  $\mathbf{x}^* = F \cdot \mathbf{x}$   
• masses (µ= GM) of each body  $\mu^* = F \cdot \mu$   
 $F = 1 - L_B$ 

#### WHY THREE SCALINGS?

#### Equations to leave unchanged

- These three scalings together leave the dynamical equations unchanged:
  - for the motion of the solar system bodies:

$$\begin{split} \ddot{\mathbf{x}}_{A} &= -\sum_{B \neq A} \mu_{B} \frac{\mathbf{r}_{AB}}{|\mathbf{r}_{AB}|^{3}} \\ &+ \frac{1}{c^{2}} \sum_{B \neq A} \mu_{B} \frac{\mathbf{r}_{AB}}{|\mathbf{r}_{AB}|^{3}} \left\{ \sum_{C \neq B} \frac{\mu_{C}}{|\mathbf{r}_{BC}|} + 4 \sum_{C \neq A} \frac{\mu_{C}}{|\mathbf{r}_{AC}|} + \frac{3}{2} \frac{(\mathbf{r}_{AB} \cdot \dot{\mathbf{x}}_{B})^{2}}{|\mathbf{r}_{AB}|^{2}} \\ &- \frac{1}{2} \sum_{C \neq A, B} \mu_{C} \frac{\mathbf{r}_{AB} \cdot \mathbf{r}_{BC}}{|\mathbf{r}_{BC}|^{3}} \\ &- 2 \dot{\mathbf{x}}_{B} \cdot \dot{\mathbf{x}}_{B} - \dot{\mathbf{x}}_{A} \cdot \dot{\mathbf{x}}_{A} + 4 \dot{\mathbf{x}}_{A} \cdot \dot{\mathbf{x}}_{B} \right\} \\ &+ \frac{1}{c^{2}} \sum_{B \neq A} \mu_{B} \frac{\dot{\mathbf{x}}_{A} - \dot{\mathbf{x}}_{B}}{|\mathbf{r}_{AB}|^{3}} \left\{ 4 \dot{\mathbf{x}}_{A} \cdot \mathbf{r}_{AB} - 3 \dot{\mathbf{x}}_{B} \cdot \mathbf{r}_{AB} \right\} \\ &- \frac{1}{c^{2}} \frac{7}{2} \sum_{B \neq A} \frac{\mu_{B}}{|\mathbf{r}_{AB}|} \sum_{C \neq A, B} \mu_{C} \frac{\mathbf{r}_{BC}}{|\mathbf{r}_{BC}|^{3}} + O(c^{-4}), \\ c \left(t_{2} - t_{1}\right) = |\mathbf{x}_{2} - \mathbf{x}_{1}| \\ &+ \sum_{A} \frac{2\mu_{A}}{c^{2}} \ln \frac{|\mathbf{r}_{1A}| + |\mathbf{r}_{2A}| + |\mathbf{r}_{1A}| - |\mathbf{r}_{21}|}{|\mathbf{r}_{2A}| + |\mathbf{r}_{1A}| - |\mathbf{r}_{21}|} + O(c^{-4}), \end{split}$$

• for light propagation:

# TCG/TCB-, TT- and TDB-compatible planetary masses

• GM of the Earth (from SLR):

• TT-compatible 
$$\left\{\mu_{\text{Earth}}^{**}\right\}_{SI} = (398600441.5 \pm 0.4) \times 10^{6}$$
  
• TCG/B-compatible  $\left\{\mu_{\text{Earth}}\right\}_{SI} = \frac{1}{1 - L_{G}} \left\{\mu_{\text{Earth}}^{**}\right\}_{SI} = (398600441.8 \pm 0.4) \times 10^{6}$   
• TDB-compatible  $\left\{\mu_{\text{Earth}}^{*}\right\}_{SI} = (1 - L_{B}) \left\{\mu_{\text{Earth}}\right\}_{SI} = (398600435.6 \pm 0.4) \times 10^{6}$ 

If one uses TCG and TCB one has only one mass...

## **Relativistic Model for Gaia**

• GREM: Gaia Relativity Model

Klioner, 2003, AJ, 125, 1580 ; Klioner, 2004, Phys.Rev.D, 69, 124001 Klioner, Peip, 2003, A&A, 410, 1063 Zschocke, Klioner, 2006, Gaia-CA-TN-LO-SZ-001 Klioner, 2008, GAIA-CA-TN-LO-SK-006-2 (compact description)

• Two modes:

- Predictor mode: predict the observed position for a known object
- Corrector mode: restore parameters of an object from observable direction (not always possible & not always accurate)
- Two kinds of objects:
  - "stars"
  - solar system objects
- Accuracy in predictor mode: up to 0.1 µas

#### GREM: retarded moment?

• Kopeikin & Schäfer, 1999:

deflected body's position & velocity should be evaluated at the retarded moment:

$$\delta \boldsymbol{\sigma}_{pN} = -\sum_{A} \frac{(1+\gamma)GM_{A}}{c^{2}} \frac{\hat{\boldsymbol{d}}_{A}}{|\boldsymbol{d}_{A}|} (1+\boldsymbol{\sigma}\cdot\hat{\boldsymbol{r}}_{oA}),$$

$$\boldsymbol{d}_A = \boldsymbol{\sigma} \times \left( \boldsymbol{r}_{\mathrm{oA}} \times \boldsymbol{\sigma} \right), \quad \boldsymbol{r}_{\mathrm{oA}} = \boldsymbol{x}_{\mathrm{o}}(t_{\mathrm{o}}) - \boldsymbol{x}_A(t^*),$$

$$t^* = t_{\rm o} - \frac{1}{c} |\boldsymbol{x}_{\rm o}(t_{\rm o}) - \boldsymbol{x}_A(t^*)|.$$

• one iteration is not sufficient to compute  $t^*$  (Klioner & Peip, 2003): error 0.5 µas

• at least 3 evaluation of the ephemeris is required

#### **GREM:** no retarded moment

• Klioner, 1989: formal pN solution for deflectors with constant velocity

$$\delta \boldsymbol{\sigma}_{pN} = -\sum_{A} \frac{(1+\gamma)GM_{A}}{c^{2}} \frac{\boldsymbol{\sigma} \times (\boldsymbol{\rho}_{oA} \times \boldsymbol{g}_{A})}{\delta_{A}^{2}} (1+\hat{\boldsymbol{g}}_{A} \cdot \hat{\boldsymbol{\rho}}_{oA})$$
$$\boldsymbol{g}_{A} = \boldsymbol{\sigma} - \boldsymbol{k}_{A}, \ \boldsymbol{\rho}_{oA} = \boldsymbol{x}_{o}(t_{o}) - \boldsymbol{x}_{A}(t_{o}), \ \delta_{A} = |\hat{\boldsymbol{g}}_{A} \times \boldsymbol{\rho}_{oA}|.$$
$$\boldsymbol{k}_{A} = \frac{1}{c} \dot{\boldsymbol{x}}_{A}(t_{o})$$

- The body's position and velocity only at the moment of observation  $t_0$
- Klioner & Peip, 2003: accuracy 0.02 µas
- only 2 evaluation of the ephemeris is required

#### Gaia: data processing

Parameters

- At least 5 parameters for each star:  $5 \times 10^9$
- 4 parameters of orientation each 15 seconds: 10<sup>8</sup>
- 2000 calibration parameters per day:  $4 \times 10^{6}$
- global parameters (e.g., PPN  $\gamma$ ): 10<sup>2</sup>
- Observations

about 1000 raw images for each star: 10<sup>12</sup>

- Data volume: **1 PB** (iterative data processing)
- Computational efforts: ~10<sup>19</sup> to 10<sup>21</sup> flops



#### Gaia: timetable



# Relativistic modeling for BepiColombo

### What to model?

1. Motion of the observing station in the BCRS:

a. Earth rotation in the GCRS: precession/nutation+polar motion a good model is necessary to have 1mm/s and a few cm accuracy

b. Transformation in the BCRS: trivial

c. Motion of the geocenter in the BCRS: a given(?) solar system ephemeris

2. Motion of the spacecraft in the BCRS:

a. PPN form of the EIH equations (Will, 1993?)
b. Rotational motion of Mercury in Mercurian Celestial RS
c. Structure of the gravitational field of Mercury in a Mercurian "corotating" RS
d. Influence of Mercurian gravitational field on the spacecraft
e. Non-gravitational forces: the onboard accelerometer

#### What to model?

3. Light propagation (delay + frequency?)

a. Shapiro delay in 1+2 pN
b. Retarded moment or the moment of closest approach for the positions of the Sun, Mercury, Earth, ...

#### Post-post-Newtonian terms necessary?

Yes, in principle, but

- only numerical magnitude is interesting for practical work
- in relativity analytical orders of magnitude are used

The situation is similar to "analytical expansions" (e.g., in powers of eccentricities) in classical celestial mechanics...

$$c^{-2}, c^{-4}, e^4, \dots$$

#### Post-post-Newtonian light propagation?

Full post-post-Newtonian expression for the Shapiro time delay with PPN parameters (Klioner, Zschocke, 2007):

$$c \tau = R + (1+\gamma) m \log \frac{x+x_0+R}{x+x_0-R} + \frac{1}{8} \epsilon \frac{m^2}{R} \left( \frac{x_0^2 - x^2 - R^2}{x^2} + \frac{x^2 - x_0^2 - R^2}{x_0^2} \right) + \frac{1}{4} \epsilon \left( 8(1+\gamma) - 4\beta + 3\epsilon \right) m^2 \frac{R}{|\mathbf{x} \times \mathbf{x}_0|} \arctan \frac{x^2 - x_0^2 + R^2}{2|\mathbf{x} \times \mathbf{x}_0|} - \frac{1}{4} \epsilon \left( 8(1+\gamma) - 4\beta + 3\epsilon \right) m^2 \frac{R}{|\mathbf{x} \times \mathbf{x}_0|} \arctan \frac{x^2 - x_0^2 - R^2}{2|\mathbf{x} \times \mathbf{x}_0|} + \frac{1}{2} (1+\gamma)^2 m^2 \frac{R}{|\mathbf{x} \times \mathbf{x}_0|^2} (x - x_0 - R) (x - x_0 + R) .$$

 $m = \frac{GM}{c^2}$ 

The higher-order terms give up to 10 meters. Are all these terms relevant?

#### **Post-post-Newtonian light propagation?**

Are all these terms relevant? NO!



$$m = \frac{GM}{c^2}$$

### Post-post-Newtonian light propagation?

#### NO!

The only numerically relevant term can be written as

$$c \tau = R + (1 + \gamma) m \log \frac{x + x_0 + R + (1 + \gamma) m}{x + x_0 - R + (1 + \gamma) m}$$

This has already been derived by Moyer (2003) in a different way.

All other terms can be estimated as

$$c\,\delta\,\tau \le \ \frac{m^2}{d} \ \left(\frac{3}{4} + \frac{15}{4}\,\pi\right)$$

This gives maximally 4 cm for Sun-grazing ray, and much less in typical cases...

Similar situation with light deflection, post-post-Newtonian equations of motion, etc.

#### Other terms in the light propagation?

Kopeikin, Schäfer, 1999; Klioner, 2003; Klioner, Peip, 2003:

The position of the gravitating body in the shown formula must be evaluated either at the moment of closest approach

$$t^* = t_{o} - \frac{1}{c} |\boldsymbol{x}_{o}(t_{o}) - \boldsymbol{x}_{A}(t^*)|.$$

or at the moment of closest approach between the gravitating body and the light ray:

$$t^{ca} = \max\left(t_{e}, t_{o} - \max\left(0, \frac{\boldsymbol{g} \cdot (\boldsymbol{x}_{p}(t_{o}) - \boldsymbol{x}_{A}^{-}(t_{o}))}{c |\boldsymbol{g}|^{2}}\right)\right),$$
$$\boldsymbol{g} = \boldsymbol{\mu} - \frac{1}{c} \boldsymbol{x}_{A}^{-}(t_{o}),$$

#### Other terms in the light propagation?

Klioner, 1992:

The Shapiro effect due to the quadrupole moment can be estimated as

$$c\,\delta\tau_{J_2} \le 3.18\frac{GM}{c^2}J_2$$

The Shapiro effect due to the angular momentum S can be estimated as (P is the radius of the body)

$$c\,\delta\tau_{S} \leq 4\,\frac{G\cdot S}{P}$$

For the Sun this gives 16 ps and 8 ps, respectively (0.48 cm and 0.24 cm).

### Some suggestions

1. Be very consistent in the model; better too consistent at the price of slower data processing

This should be of course at reasonable level!

2. Do not use time scales TT and TDB:

use TCG and TCB and avoid artificial scaling of e.g. masses GM

Mercury Coordinate Time must be used to model Mercury rotation. Why to bother with all the scalings?

- 3. Use 128 bit arithmetic for orbit propagation and forget about round-off
- 4. Integrate the Sun, do not use the center of mass to reduce the system

Use an approximation to the center of mass integrals only to fix the initial conditions; define the parameters only for the orbit w.r.t. the Sun

# Backup slides

#### Data analysis models compatible with IAU 2000

- Ephemeris construction (JPL, IMCCE, IAA)
- VLBI
- Lunar Laser Ranging

OK OK partially OK

relativistically consistent model for the figure-figure interaction for the Earth-Moon system must be applied

relativistically consistent model for Moon rotation

#### Data analysis models compatible with IAU 2000

- Ephemeris construction (JPL, IMCCE, IAA)
- VLBI
- Lunar Laser Ranging
- Satellite Laser Ranging
- Hipparcos, Gaia, ...
- time keeping and time transfer algorithms
- pulsar timing
- Earth/Moon rotation

up to 2006: a purely Newtonian model was usednot OKfirst relativistic theory: Klioner et al. (2007)partially OK

Minor problems in the models still exist: higher-order terms, scaling, etc.

OK OK partially OK OK OK OK