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1 The MORE orbit determination problem

and how we currently understand it
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1.1 MORE: science goals

S1 To measure the rotation state of the planet Mercury,

to constrain the dimension and the state of the core

(ROTATION EXPERIMENT).

S2 To measure the global gravity field of Mercury, to

constrain the deep internal structure; to measure the

local gravitational anomalies, to constrain the man-

tle structure, the mantle-crust interface, the mascon

(GRAVIMETRY EXPERIMENT).

S3 To measure the orbit of Mercury and the propagation

of radio-waves between Earth and Mercury to test

the theory of General Relativity, constrain possible

alternative theories and provide an improved dynam-

ical model for the Solar System (RELATIVITY EX-

PERIMENT).

s4 To determine the MPO orbit around Mercury for the

duration of the Mercury orbit mission (auxiliary goal,

required by the previous ones, by the altimetry ex-

periment and with possible operational implications).
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1.2 Dynamics
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D1 The MPO orbit around Mercury, with perturbations:

gravitational and non gravitational, tides, relativistic

and using the ISA accelerometry data.

D2 The orbit of Mercury and of the Earth, taking into

account the current model for the other planets and

the Moon, in a fully relativistic framework with all the

Post-Newtonian parameters and the Sun’s gravita-

tional parameters (including J2 of the Sun).

D3 The rotation of Mercury, including the spin-orbit res-

onance, obliquity, libration in longitude and possible

other deviations from Cassini’s laws (affects the S/C

mercury-centric orbit).

d4 The rotation of the Earth, according to the most up

to date IERS model.
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1.3 Measurements
+

S1
S2

O

G1 G2

EARTH

MERCURY

STAR

R1 Range and range rate between the ground station(s)

and the Mercury Planetary Orbiter (MPO) S/C, re-

moving plasma effects by the multi-frequency link and

taking into account spacetime curvature.

R2 Non gravitational perturbations acting on the S/C, mea-

sured by ISA (with calibration problems).

R3 The angles between a number of reference points on

Mercury’s surface, as seen from the MPO, and the

axes of an inertial reference system.

The measurements R3 are obtained by combining suit-

ably processed high resolution camera images (repeated

on the same area of the surface) and S/C attitude data

deduced from the star trackers measurements.
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1.4 Visibility conditions
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1.5 Parameters to be solved (Goals)

P1 Coefficients of the spherical harmonics of the gravity

field of Mercury, static part; of degrees from 2 to at

least 25 (possibly 30); goal S2.

P2 Dynamical Love number k2 for the second harmonic

solar tides, possibly phase delay; goal S2.

P3 The main deviations of the rotation state of Mercury

from the resonant Cassini state, e.g., obliquity and

amplitude of libration in longitude; goal S1.

P4 Post-Newtonian Parameters for the Sun’s gravity field,

e.g., γ,β, also mass, J2 of the Sun; goal S3.

P5 Initial conditions for the orbits of Mercury and Earth;

goal: S3 (solar system ephemerides).

These parameters are global, that is constant over the

mission, and are by themselves mission goals (even if the

conclusions, to be drawn in geophysics and fundamen-

tal physics, may be obtained by further processing; e.g.,

computing the moments of inertia of Mercury, the main

moment of inertia of the mantle).
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1.6 Parameters to be solved (Auxiliary)

p6 Initial conditions for the S/C mercury-centric orbit, for

each observed arc (' one observing session, 1–2

per day).

p7 Accelerometer calibration coefficients, for each ob-

served arc.

These parameters are local, that is variable from one ob-

served arc to the next. A delicate problem is the knowl-

edge of the correlations between values of the local pa-

rameters in nearby observed arcs.

The accelerometer calibration may be assisted by ther-

mal information (provided by the accelerometer auxiliary

instrumentation); however, a posteriori (digital) calibration

is needed anyway.

The S/C initial conditions for each day may be initialized

from some long arc solution, which is anyway of lower ac-

curacy (for lack of accelerometer a posteriori calibration).

These data are not primary science goals by themselves,

although they are important for other reasons, e.g., the

S/C orbit is an essential input for laser altimetry.

8



1.7 Rank deficiency

If the BepiColombo orbit determination is summarized in

a normal equation relating the corrections ∆X of the pa-

rameters vector X to the normalized residuals vector Ξ

BT B ∆X = −BT Ξ

where B = ∂Ξ/∂X , then the normal matrix C = BT B

is numerically singular, the covariance matrix Γ = C−1

cannot be reliably computed and anyway the confidence

ellipsoid (with matrix C) is huge. If the differential correc-

tions are iterated, the procedure diverges. If the iterations

are stopped, the solution obtained is disastrously wrong.

This disaster is rank deficiency, exact if C is singular,

approximate if C is very badly conditioned (ratio of largest

to smallest eigenvalue > inverse of machine accuracy).

Total failure of 3 BC experiments (MORE, ISA, BELA)?

No, experts know recipes to remove rank deficiency, but

this is kraftmanship, not science. Let us build a theory.

There are only 3 ways to stabilize a problem with either

rank deficiency or a very badly conditioned normal matrix:

descoping, additional observations and constrained

solution. For all three there is a legitimacy problem.
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1.8 Rank deficiency and symmetries

Theorem: There is an effective one-parameter group of

exact symmetries of all the observations =⇒ the N ×N

normal matrix C has rank N−1. There is an effective dim.

d Lie group of exact symmetries =⇒ C has rank N −d.

Exact symmetry means the residuals are exactly the same.

Approximate symmetry means that a value ε of the sym-

metry parameter changes the residuals by O(ε2). The

converse is not always true, symmetries can be only ap-

proximate (unless some other hypothesis is available).

Classical examples: in the n-body problem, if the obser-

vations are only range and/or range-rate between planets

(e.g., radar), the group SO(3) of rotations is an exact and

effective group of symmetries, of dimension 3. If the ob-

servations are angles only, the changes of scale by λ in

length and µ in mass are exact symmetries for λ3 = µ.

Application to BepiColombo: initial conditions for Earth

and Mercury, mass of the Sun cannot be adjusted at once

(approximate symmetry, due to weak coupling with other

planets). 4 constraints are needed.
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2 The MORE simulations

performed in the definition phase of
BepiColombo
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2.1 The BepiColombo simulations

Our group has performed three cycles of simulations of

the BepiColombo Radioscience Experiment (now MORE).

• The first cycle (1999-2000) was focused on the Gravi-

metry Experiment. Results published in Milani, A.,

Rossi, A., Vockrouhlicky, D., Villani, D., Bonanno, C.

2001, Gravity field and rotation state of Mercury from

the BepiColombo Radio Science Experiments, Plan-

etary and Space Science, 49, 1579–1596.

• The second cycle (2001) was focused on the Relativ-

ity Experiment. Milani, A, Vokrouhlický, D., Villani, D.,

Bonanno, C. & Rossi, A. 2002 Testing general relativ-

ity with the BepiColombo radio science experiment,

Physical Review D, 66, 082001-082012.

• The third cycle (2002-2003) adressed the Gravimetry

Experiment, with special emphasis on the accelerom-

eter calibration problem, the Conjunction Experiment

(defined later) and the interaction between the Gravi-

metry and the Rotation experiments. The results have

appeared only in Contractual Reports to ESA, like

Milani, A, Rossi, A. & Villani, D. The BepiColombo

Radio Science Simulations, Version 2, 11 April 2003.
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2.2 Simplifying Assumptions
The simulations were performed without having a purpose-
built interplanetary orbit determination software system
(no resources; ESA does not support research as such).
To be able to adapt a software system designed for satel-
lite geodesy of the Earth we have adopted the following
shortcuts and compromises.

The short arc technique was used, with uncorrelated ob-
served arcs: the local parameters (initial conditions, one
accelerometer constant for each axis) were processed as
if there was no dependence of the observables from the
state in a previous/later arc (also to decrease the compu-
tational resources).

The Relativity Experiment was performed separately, by
solving for a local correction to Mercury’s orbit for each
arc, then fitting these corrections to a solar system model.
Also the Rotation Experiment was assumed to be per-
formed separately, by using the S/C orbit as reference.

The symmetries were controlled by assuming an a priori
knowledge of the S/C orbit to ' 3 m due to hypothetical
long arc solutions.

These simplifications, because of the overparametriza-
tion, weaken the fit and therefore the simulations provide
a lower bound to the results which should be achieved
with the experiment.
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2.3 Parameters and symmetries
For the simulations of the Gravimetry Experiment, with lo-
cal corrections to the orbit of Mercury and separate rota-
tion experiment, we have the following parameters count:

Local parameters: 6 MPO initial conditions for the arc,
3 calibration coefficients for the accelerometer, 2 correc-
tions to heliocentric Mercury.

Global parameters: 262−3 harmonics of Mercury’s po-
tential, Mercury’s dynamical Love number k2.

If the arc is short, ranging to the MPO only provides an es-
timated correction to the range to Mercury’s center of
mass (CoM). Range-rate to MPO allows to correct range-
rate to Mercury CoM. Thus the number of local parame-
ters is 11, not 15, per arc, for a total of 365×11+674 =

4,689 local and global parameters.

One exact symmetry is well known in the limit case for
distance → +∞ (Extrasolar planet): if the orbit of a satel-
lite is rotated around the fixed direction from the Earth to
the central body (assumed to be spherical), the residuals
are the same. We assume that long arc, less accurate, or-
bit solutions can be used to constrain the short arc orbit
(the symmetry is approximate with as small parameter the
angle by which the Earth-Mercury direction moves during
one short arc).
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2.4 Gravimetry Experiment
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The figure shows, as a function of the degree `, from the

top: the signal (simulated, Kaula’s rule); the actual error

assuming the accelerometer data have no a priori cali-

bration, 10% and 1% calibration from thermometers; the

formal error.

Other parameters: the k2 Love number has an actual er-

ror of 0.067,0.011,0.004 in the three assumptions on ac-

celerometer calibration (simulated value 0.25; formal error

0.0035).
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2.5 Local Parameters
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2.6 Accelerometer Calibrations
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2.7 The photo-gravitational symmetry
The three accelerometer axes are orthogonal and oriented
radially (to Mercury’s CoM), in plane and out of plane. Let
there be a constant calibration f along the out of plane
axis. It is the same as thinking there is a constant radia-
tion pressure acceleration and no accelerometer.

MPO

3000 km + 6e−4 cm

ω2
|R|

|R|=3000 km

|H|=6 m

MERCURY

|G|=300 cm/s^2

|F|=6e−4 cm/s^2

~0 = ω2 ~R+~A+~F

~A = −
GM (~R+ ~H)
(

r2 +h2
)3/2

; ω2 r =
GM r

(

r2 +h2
)3/2

f =
GM h

(

r2 +h2
)3/2

=⇒
h
r

=
f

ω2 r

M′

M
=

(

1+
h2

r2

)−3/2

=⇒ M′ = M (1−6×10−12)
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2.8 Superior Conjunction Experiment (SCE)

Light propagation in curved spacetime (Shapiro effect)
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2.9 Conjunction Experiment Results
Results from the 2003 work, Simulation 37 (1% accelerom-
eter a priori calibration, 3 ground stations, corona degra-
dation, best Sup. Conj.).
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The results from the SCE (RMS(γ) = 4× 10−6) can be
used to constrain γ a priori with respect to the solution
for the orbit of Mercury, but not as well as we assumed in
the 2002 paper (probably due to a more realistic model of
accelerometer calibration problems).

In an SCE the contribution of range-rate is just 1% of the
normal matrix. Thus by repeating the same cruise phase
SCE as Cassini, but with ranging in Ka band, we can
gain a factor 10 in accuracy. The cruise phase SCE is
much easier because the S/C is in a very stable, quies-
cent state, radiation pressure and thermal effects are sta-
tionary. Anyway a long (weeks) cruise test for instrument
calibration is needed.

20



2.10 Relativity Experiment

The PPN corrections to the orbit of Mercury (and Earth)

can be described by an additive term in the Lagrange

function; e.g., for γ

Lγ =
1

2c2 γ ∑
A6=B

GMAMB

rAB
v2

AB

and their effect on Mercury is
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Similarly for β,J2�, preferred frame parameters α1,α2
and Ġ/G. A little more complicated the discussion about

the strong equivalence principle (SEP) violation η param-

eter. Thus all these could be measured from the Earth-

Mercury distance (range-rate does not significantly con-

tribute, timescales months).
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2.11 The PPN Corrector
We have performed (in 2000-2001) a full differential cor-
rection with the PPN and the initial conditions for Earth
and Mercury (minus 4 constraints to remove symmetries),
using daily ranges to Mercury with 10 cm random error
and systematic error growing to 50 cm in a one year nom-
inal mission. The results depend upon choices of the
PPN parameters, especially from the possible use of the
Nordtvedt equation, assuming a metric theory:

η = 4(β−1)− (γ−1)−α1−
2
3

α2

which removes the approximate symmetry β−J2� due to
the angle between spin axis of the Sun and orbital angular
momentum of Mercury being only ε = 3.◦3, thus cosε =
0.998 and Corr(β,J2�) = 0.997 in the solution without
Nordtvedt eq.
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2.12 Relativity Experiment Results
Exp A (non-metric) Exp B (metric)

Par. RMS Real. RMS Real.

β−1 6.7 (-5) 2.2 (-4) 7.5 (-7) 2.0 (-6)
η 4.4 (-6) 1.5 (-5) 3.0 (-6) 7.9 (-6)

d(lnG)
dt 4.0 (-14) 5.2 (-13) 3.9 (-14) 5.3 (-13)

δJ2 7.9 (-9) 2.8 (-8) 2.4 (-10) 2.1 (-9)
δµ 1.9 (-12) 5.9 (-12) 3.3 (-13) 1.0 (-12)

Assuming RMS(γ) = 2× 10−6 and Nordtvedt equation.
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2.13 Mercury Rotation Theory
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The angles relevant for the discussion of Mercury libra-

tion in longitude, all expressed in degrees and over a time

span of one year (with initial time corresponding to Mer-

cury’s perihelion).

M is the mean anomaly of Mercury’s heliocentric orbit. F

is the phase of the planet’s spin, with respect to an inertial

reference system. T is the local solar time (in degrees):

the illumination (at some longitude) is marked in red; note

that the Sun can go back in the sky as seen from Mercury
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the Sun on Mercury equatorial bulge.
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2.14 S/C Orbit as Reference for Rotation
Experiment

Error budget for rotation experiment (if performed sepa-
rately from gravimetry): RMS sum of 4 terms

1. Error in S/C position

2. Error in relative position of surface reference points

3. Error in the S/C attitude (star mappers)

4. Thermo-mechanical stability
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ror (circles), mean value 3.8 m. This is good enough for
the preliminary error budget.
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2.15 Rotation experiment by Gravimetry
Only

Alternate hypothesis: gravimetry+rotation from tracking.
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Adding to the best case (1% accelerometer calibration)
just two parameters (obliquity, long. libration amplitude)
the error in the gravity field increases by a factor ' 100.

Newton’s principle (no mass distribution from gravimetry
alone) is preserved by some hidden symmetry! An un-
known combination of changes in initial conditions, in har-
monic coefficients, in calibrations and in Mercury’s CoM
reproduces a different rotation of Mercury.

New result: with rotation parameters and gravity harmonic
coefficients only there is no symmetry!
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3 The software for MORE data processing

and how to build it properly
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3.1 ORBIT14: top level specifications
The software system ORBIT14 has the goal of determin-
ing all the parameters affecting in a significant way the
measurements R1, R2 and R3, in such a way to achieve
the scientific goals S1, S2, S3 and also s4. This software
is meant for the BepiColombo MORE experiment, could
have other applications, such as Don Quijote and Juno.

As opposed to the software used in the previous simu-
lations, funded by ESA only for the purpose of feasibility
assessment, this effort is funded by ASI as an essential
part of the MORE experiment, to achieve the best possi-
ble scientific results: no compromises and no shortcuts.

To understand the level of inheritance it is enough to con-
sider the number 14. Starting from ORBIT1/2 (1978),
passing through ORBIT5 (Project LONGSTOP), ORBIT7
(Project SPACEGUARD), ORBIT8/9 (AstDys), ORBIT10
(LAGEOS), ORBIT11 (NEODyS), ORBIT12 (BepiColombo
simulations), ORBIT13 (GOCE and LDIM simulations), our
group has accumulated enough experience.

Anyway we intend to restart the software design from the
top and from scratch, by using modern methods and pro-
gramming style. We shall use the language Fortran 95
and a style based on data abstraction. The main system
component are: I/O and control system, dynamics, obser-
vations, least squares and symmetry control.
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3.2 ORBIT14: top level block diagram
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3.3 ORBIT14: non critical modules

ORBIT14 shall be entirely redesigned (with respect to OR-

BIT12/13), of course reusing some existing modules with

comparatively simple modifications (including changes of

language and programming style), and anyway using avail-

able know-how, maybe based upon the experience in other

projects (e.g., asteroid radar astrometry). A tentative list

of these non-critical modules could be as follows.

N1 Control and I/O.

N2 Least squares iterative procedures.

N3 Angular observations.

N4 Range and range-rate observations (at interplane-

tary distances, with iterative algorithms).

N5 Planetary gravity field and solid tides.

N6 Non gravitational accelerations, including accelerom-

eter data and calibrations.

N7 Numerical propagators for equations of motion and

variational equations.

N8 Planetary perturbations.

Of course the work needed to rewrite all the above is by no

means small, but is just a matter of time and manpower.

30



3.4 ORBIT14: critical modules

Problems arise when there is a critical module, either not

available or not of the appropriate accuracy level in the

previous versions. More so when the expertise for it is

not available in our sub-team. A tentative list of critical

modules is as follows.

C1 The relativistic dynamical model for the motion of the

planets and the Sun.

C2 The model for relativistic propagation of radiowaves

(not including the plasma and tropospheric effects,

supposedly corrected in a preprocessing phase).

C3 The definition and conversion algorithms for the space-

time reference system applicable in C1, C2.

C4 The dynamic model for the rotation of Mercury.

C5 The model for the rotation of the Earth, expressed in

the space-time reference of C3.

C6 The algorithms to identify approximate symmetries

and to constrain them to avoid weak solutions.

C7 Error model for angular observations, including con-

tributions from image processing and attitude.
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3.5 ORBIT14: work sharing

Our subgroup shall be entirely responsible for the inte-

gration of the orbit determination software and shall take

care of the non-critical modules, provided there is uninter-

rupted support from ASI.

We shall also perform simulations to update the assess-

ment of the achievable performances (with respect to the

old simulations mentioned before). However, there are

problems in doing this before the new software is at least

partially operational.

Most critical modules require help from other subgroups

of the MORE team. The main reason is that on some sub-

jects we are not involved in research inside our subgroup,

thus we need contributions from the scientists in charge.

This help may consist in supplying either ready-to-compile

modules or well documented algorithms which we can im-

plement; in revising, correcting and taking responsibility

for the scientific accuracy of some code we have imple-

mented. Some examples follow.
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3.6 ORBIT14: specific requests for help

For the general relativity issues (C1 and C2) we need ex-

pert advice, especially since we believe that the O(v2/c2)

approximations easily found in the literature (e.g., Moyers)

are not enough.

For the reference systems (C3 and C5) we need expert

advice, also because of the recent IAU/IERS changes of

standard and the not fully satisfactory situation with plan-

etary ephemerides.

For Mercury’s rotation (C4) we are prepared to use a semi-

empirical model, but this may not be enough also due to

the oscillating attitudes of the best known experts. A self-

consistent model is needed, and this cannot be our work.

Symmetries and constraints (C6) are our own research

work, although of course we cannot promise to solve all

the problems.

To synthesize the camera (and star mapper) data into an-

gular observable is the task of the camera team, which

should include a proper statistical error model (C7).
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3.7 MORE Sub-team in Pisa

The subgroup working in Pisa to the MORE experiment

includes the following people:

1. Andrea Milani Comparetti (Dept. Mathematics, Univ.

Pisa) milani@dm.unipi.it

2. Giovanni-Federico Gronchi (Dept. Mathematics, Univ.

Pisa) gronchi@dm.unipi.it

3. Alessando Rossi (ISTI, CNR, Pisa) alessandro.rossi@

@isti.cnr.it

4. Giacomo Tommei (to be employed at Dept. Mathe-

matics, Univ. Pisa) tommei@mail.dm.unipi.it

5. XXXXXXX (to be employed at Dept. Mathematics,

Univ. Pisa)

6. YYYYYYY (graduate student 2008-2010, Dept. Math-

ematics, Univ. Pisa)
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