
Chapter 3

Perturbation theory and the averaging
principle

3.1 Integrable systems and action-angle variables

We say that a system of Ordinary Differential Equations (ODEs) is integrableif its so-
lutions can be expressed by analytic formulas up to inversions (by the implicit function
theorem) or quadratures; we call the systemnon-integrableif this is not possible.

It is easy to show that if we consider a system of 2n differential equations (wheren is
an integer) and we have 2n first integrals, then we can integrate the equations and solve the
problem. If the system is canonical, in several cases we onlyneed to known first integrals
satisfying some properties to integrate the system. We havein fact the following:

THEOREM 10. (Liouville-Arnold) LetM be a symplectic manifold2n-dimensional and
let Fi : M → R, i = 1. . .n be functions, defined onM , that arein involution, that is the
Poisson brackets{Fi,Fj} vanish for each0≤ i < j ≤ n. We consider the level set of the
Fi :

M f = {x : Fi(x) = fi , i = 1. . . ,n}.
Let us assume that the Fi are independent onM f (the1-forms dFi are linearly independent
in each point ofM f ). Then we can conclude thatM f is a smooth manifold, invariant with
respect to the phase flow with Hamilton function H= F1.

If M f is a compact connected manifold, it is diffeomorphic to the n-dimensional torus

T
n = {(φ1, . . . ,φn) mod2π} ,

and

1. the phase flow with Hamilton function H determines onM f a quasi-periodic motion,
that is, using angular variablesφ = (φ1, . . . ,φn), we have

φ̇ = ω; ω = ω( f );

2. the canonical equations with Hamilton function H can be integrated.
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If we are in the hypotheses of Theorem 10 we can select symplectic coordinates(I ,φ)
such that the first integralsF depend only on the coordinatesI (actionvariables), whileφ
(anglevariables) are angular coordinates on the torusT

n.

3.2 Perturbation methods

Most of the problems in Dynamics, included the three body problem (see [64]), are not
integrable, anyway several of them can be represented by differential equations that are
a small perturbation of an integrable problem. LetM be a smooth manifold, letF,G :
M −→ TM be smooth maps from the manifoldM to its tangent bundleTM and letε
be a natural small parameter; we can consider the system

Ẋ = F(X)+ εG(X) (perturbed problem), (3.1)

obtained by perturbing the integrable system

Ẋ = F(X) (unperturbed problem).

Even if the system (3.1) is non integrable, we can study it in aqualitative sense, that
is we can study some properties of the solutions or we can try to approximate them.
Perturbation theory consists of the methods that allow to approximate the solutions of a
perturbed problem, like (3.1), starting from the solutionsof the unperturbed one.

3.3 The averaging principle

The averaging principle is a powerful tool to study the qualitative behavior of the solutions
of Ordinary Differential Equations. It consists in solvingaveraged equations, obtained by
an integral average of the original equations over some angular variables; then we consider
the solutions of the averaged equations as representative of the solutions of the original
equations for a long time span (of the order of 1/ε). A review of the classical results on
averaging methods in perturbation theory can be found in [2].

Let us assume thatM = Ω×T
n whereΩ is an open set inRk (with k integer). We

consider theunperturbed equations
{

φ̇ = ω(I)
İ = 0

and the correspondingperturbed equations
{

φ̇ = ω(I)+ ε f (I ,φ,ε)
İ = εg(I ,φ,ε) (3.2)

where f (I ,φ,ε),g(I ,φ,ε) ∈ C1(Ω×T
n× [0,1]) are 2π-periodic function in the variable

φ ∈ T
n.
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We define asaveraged equations

J̇ = εG(J)

where

G(J) =
1

(2π)n

Z 2π

0
. . .

Z 2π

0
g(J,φ,0) dφ1 . . .dφn

is thespatial averageover the torusTn.
Let us consider a time interval[0,T], with 1≪ T ≪ 1/ε, that isT is big with respect to

1, and small if compared to 1/ε. The increment in theI variable after timeT has elapsed
is approximated by

∆I = εT

[
1
T

Z T

0
g(I ,φ(t),0)dt

]
+o(εT) (3.3)

whereI(t),φ(t) are the solutions of the unperturbed problem, that isI(t)= I(0) is constant
(we have called itI for brevity) andφ(t) = φ(0)+ω(I)t.

We define thetime averageof the functiong as

g∗(φ(0)) = lim
T→+∞

1
T

Z T

0
g(I ,φ(t),0)dt

(it obviously depends on the initial phaseφ(0)) and we notice that the expression between
the square parentheses in (3.3) is representative of the time average of the functiong as
the timeT is large. If we introduce theslow timeτ = εt, we can write

∆I
∆τ

≈ g∗(φ(0))

and, if we consider the limit forεT → 0 and we use a prime for the derivation with respect
to the slow time, we obtain

I ′ = g∗(φ(0)). (3.4)

From relation (3.4) we can see that the passage to the averaged equations corresponds to
the substitution of the time average with the spatial average.

3.3.1 Averaging in 1-frequency systems

We assume that the phase spaceD is the direct product of an open setΩ ⊆ R
n and the

circle S1; then we can take into account the average of the perturbed equations (3.2) over
the angular variableφ ∈ [0,2π[. In this case the averaged equations are

J̇ = εG(J) ; G(J) =
1
2π

Z 2π

0
g(J,φ,0)dφ . (3.5)

THEOREM 11. Let I0 ∈ Ω ⊆ R
n and let us callI(t) the solution of equations (3.2) and

J(t) the solution of the averaged equations (3.5) starting from the same initial conditions
I(0) = J(0) = I0. If ε > 0 is small enough, ifω(I) 6= 0 for all I ∈ Ω and if J(t) remains
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in a compact domainK ⊂ Ω for t ∈ [0,T/ε], then there exists a constantC, independent
fromε, such that

|I(t)−J(t)| ≤ εC

for all t ∈ [0,T/ε].

In other words, provided thatε is small enough, the difference between the solution of
the perturbed equations and the solution of the averaged equations, starting from the same
initial conditions, will remain small during a time spanT/ε.

Proof. This proof is based on the one given in [1]. We divide it into 5 steps:
Step 1We shall see that ifε is small enough, it is possible to define a variable change

Ψε : (I ,φ)−→ (P,φ)

where
P = P(I ,φ,ε) = I + εh(I ,φ) (3.6)

andh(I ,φ) is 2π-periodic function in the variableφ. We want to selecth(I ,φ) in order to
eliminate the dependence onφ from the differential equation forP, up to the first order in
ε included. Let us differentiate equation (3.6) with respectto time: we obtain

Ṗ = İ + ε
[

∂h
∂I

(I ,φ)İ +
∂h
∂φ

(I ,φ)φ̇
]

=

= εg(I ,φ,ε)
[
1+ ε

∂h
∂I

(I ,φ)

]
+ ε [ω(I)+ ε f (I ,φ,ε)]

∂h
∂φ

(I ,φ) =

= ε
[
g(I ,φ,ε)+ω(I)

∂h
∂φ

(I ,φ)

]
+ ε2 r(I ,φ,ε)

(3.7)

where

r(I ,φ,ε) =

[
g(I ,φ,ε)

∂h
∂I

(I ,φ)+ f (I ,φ,ε)
∂h
∂φ

(I ,φ)

]
.

We search for a functionh(I ,φ) such that
[
g(I ,φ,ε)+ω(I)

∂h
∂φ

(I ,φ)

]
= 0 :

let us set

h(I ,φ) = − 1
ω(I)

Z φ

0
g̃(I ,ψ)dψ (3.8)

with
g̃(I ,φ) = g(I ,φ,0)−G(I).

so thath(I ,φ) is 2π-periodic inφ (g̃ has zero average), and the following relation holds:

g(I ,φ,ε)+ω
∂h(I ,φ)

∂φ
= g(I ,φ,ε)−g(I ,φ,0)+G(I) . (3.9)
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Using (3.9) we can write equation (3.7) as follows

Ṗ = ε [G(I)+g(I ,φ,ε)−g(I ,φ,0)]+ ε2 r(I ,φ,ε) . (3.10)

Let K ⊂ Ω be acompact, convexset containingI0 and such thatJ(t) ∈ K for each
t ∈ [0,T/ε]; for each functionu = u(I ,φ,ε)∈C1(Ω×S1× [0,1]) we set

|u|0 = max
(I ,φ,ε)∈K×S1×[0,1]

|u(I ,φ,ε)| ;

|u|1 = |u|0+ max
(I ,φ,ε)∈K×S1×[0,1]

∣∣∣∣
∂

∂(I ,φ,ε)
u(I ,φ,ε)

∣∣∣∣ .

REMARK 4. When we consider functionsv = v(I ,φ), not depending onε we shall use the
notation|v|0 := |ṽ|0 and|v|1 := |ṽ|1 whereṽ(I ,φ,ε) := v(I ,φ).

We select a constantc1 such that

| f |1 ≤ c1; |g|1 ≤ c1; |ω−1|1 ≤ c1;

(ω(I ,φ) = ω(I)).
Step 2Let us show that the applicationΨε : (I ,φ) −→ (P,φ) is a diffeomorphism for

ε small enough. From Definition 3.8 we haveh ∈ C1(Ω×S1) and|εh|1 < 1 for ε small
enough. First we prove thatΨε is one-to-one: ifΨε(I1,φ1) = Ψε(I2,φ2) thenφ1 = φ2 := φ
and

I1+ εh(I1,φ) = I2+ εh(I2,φ).

This means
εh(I1,φ)− εh(I2,φ) = I2− I1 ,

that is in contradiction with the relation|εh|1 < 1, that gives an upper bound to the Lips-
chitz constant of the functionεh (note that the convexity of the domainK is needed at this
step to use Lagrange’s theorem and obtain a Lipschitz constant smaller than 1).

From |εh|1 < 1 also follows thatΨε is a local diffeomorphism, in fact
∣∣∣∣
∂P(I ,φ,ε)

∂I

∣∣∣∣ =

∣∣∣∣
∂
∂I

(I + εh(I ,φ))

∣∣∣∣ =

∣∣∣∣1+
∂
∂I

(εh(I ,φ))

∣∣∣∣ >

∣∣∣∣1−
∣∣∣∣

∂
∂I

(εh(I ,φ))

∣∣∣∣
∣∣∣∣ > |1−|εh|1| > 0

for each(I ,φ,ε) ∈ K ×S1× [0,ε] with ε > 0 small enough, and we are in the hypotheses
of the local inversion theorem; we can conclude thatΨε is adiffeomorphismfor ε small
enough.

Step 3Writing the differential equation (3.10) in the(P,φ) variables, we obtain

Ṗ = ε [G(P)+R(P,φ,ε)] . (3.11)

We shall show thatR(P,φ,ε) is an infinitesimal of the first order inε, so that the differential
equation forP, up to terms of the second order inε, is given by

Ṗ = εG(P) ;
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we shall do the computations using the variables(I ,φ). As

G(P) = G(I + εh(I ,φ)) = G(I)+ εh(I ,φ)
∂
∂I

G(ξ(P, I))

for ξ(P, I) on the line joiningI andP, we have

R(P(I ,φ,ε),φ,ε) = −εh(I ,φ)
∂
∂I

G(ξ(P, I))+g(I ,φ,ε)−g(I ,φ,0)+ εr(I ,φ,ε)=

= −εh(I ,φ)
∂
∂I

G(ξ(P, I))+g(I ,φ,ε)−g(I ,φ,0)+ ε
[
g(I ,φ,ε)

∂h
∂I

(I ,φ)+ f (I ,φ,ε)
∂h
∂φ

(I ,φ)

]
.

We use the following bounds for each(I ,φ,ε) ∈ K ×S1× [0,1]:

|h(I ,φ)| ≤ |h|0 ≤ 2π
∣∣ω−1

∣∣
0|g̃|0 ≤ 4π

∣∣ω−1
∣∣
0|g|0 ;

∣∣∣∣
∂G
∂I

(ξ(P, I))

∣∣∣∣≤ |g|1 ;

|g(I ,φ,ε)−g(I ,φ,0)| ≤ ε|g|1 ;

|r(I ,φ,ε)| ≤ |g|0
∣∣∣∣
∂h
∂I

(I ,φ)

∣∣∣∣+ | f |0
∣∣∣∣
∂h
∂φ

(I ,φ)

∣∣∣∣ ;
∣∣∣∣
∂h
∂I

(I ,φ)

∣∣∣∣≤ 4π
{
|ω|1

∣∣ω−2
∣∣
0 |g|0+

∣∣ω−1
∣∣
0 |g|1

}
;

∣∣∣∣
∂h
∂φ

(I ,φ)

∣∣∣∣ ≤ 2π
∣∣ω−1

∣∣
0 |g|1 ;

and we conclude that the differential equations (3.11) differ from the averaged equations
(3.5) only for terms of the second order inε; in particular there exists a constantc2,
independent onI ,φ,ε and such that

|R(P(I ,φ,ε),φ,ε)| ≤ εc2

for each(I ,φ,ε) ∈ K×S1× [0,1].
Step 4Let us consider theslow timeτ = εt; if we use a prime for the derivative with

respect toτ we obtain thatP andJ are the solutions of the following differential equations:

P′ = G(P)+R(P,φ,ε) ; (3.12)

J′ = G(J) . (3.13)

We estimate the difference between the solution of the averaged equations (3.13) and the
function P = P(t), that is solution of the equations (3.12). Let us setZ(τ) = P(t(τ))−
J(t(τ)), then, assuming thatI ,P,J remain in the domainK, we have

∣∣Z′(τ)
∣∣ ≤ a|Z(τ)|+b (3.14)

wherea = |G|1 andb = εc2.
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Let us suppose that|Z(0)| = c; then by Gronwall’s lemma we obtain

|Z(τ)| ≤ (c+bτ)eaτ, (3.15)

because the right hand side of (3.15) is the solution of the Cauchy problem

Z′ = aZ+b; Z(0) = c .

We observe that

|c| = |Z(0)| = |P(0)−J(0)|= |I(0)+ εh(I(0),φ(0))−J(0)|= ε|h(I(0),φ(0))|< ε|h|0 .

Step 5If we setc3 = |h|0 we obtain|P(I ,φ,ε)− I |≤ εc3. On the other hand from (3.14)
we obtain

|P(t)−J(t)|= |Z(τ)| ≤ εc4

with c4 = (c3+c2T)eaT for all t such that 0≤ εt ≤ T; we conclude that

|I(t)−J(t)| ≤ |I(t)−P(t)|+ |P(t)−J(t)| ≤ ε(c3+c4) ∀ t ∈ [0,T/ε] .

3.3.2 Multi-frequency systems and resonances

Let us consider a system with more than one frequency, where the frequenciesω = ω(I)
depend on the slow variablesI ∈ B. The main difficulty when dealing with such systems
is the possible presence of resonances between the frequencies:

DEFINITION 10. Let us consider a system like (3.2); we say that the frequencyvectorω =
(ω1, . . . ,ωn) is resonantif there exists a vector k= (k1, . . . ,kn) with integer coefficients
such that〈k,ω〉 = 0. The vector k is called theresonance number.

DEFINITION 11. A point I∈ B is calledresonantif the vectorω(I) is resonant. We define,
for each resonant number k, theresonant hypersurface

Γk = {I ∈ B : 〈k,ω(I)〉= 0} .

DEFINITION 12. We say that the domain isnon-resonantif for each I∈ B the condition

|〈k,ω(I)〉|> c−1|k|−ν (strong incommensurability) (3.16)

holds for some constants c,ν and for all the vectors k6= 0 with integer components such
that the harmonic with phase〈k,φ〉 appears in the Fourier expansion of the function f in
equations (3.2).

If the domainB is non-resonant, then we can apply the averaging principle and we
obtain an accuracy of the orderε over times of the order 1/ε for the results.

We can also replace the strong incommensurability condition (3.16) with the weaker
condition〈k,ω(I)〉 6= 0, but we have to take into account a possible loss in accuracy.
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REMARK 5. Note that in most cases in a multi-frequency system there areno non-resonant
domains because the incommensurability conditions is generally violated on an every-
where dense set.

Then we have to face the problem of crossing the resonant surfaces. We notice that
some resonances are more important than others, in particular the effects of the reso-
nances decrease with their orders (we say that the number|k| = ∑n

i=1 |ki | is the order of
the resonance defined byk∈ Z

n).
We observe that in a multi-frequency system there is the possibility of a capture in

resonancefor the solutions; in such cases the averaged system is not representative of the
behavior of the projection of the basisB of the solutions of the full equations. Anyway
the capture in resonance can happen only for an exceptional set of initial conditions.

A case that has been intensively studied is the case of two frequencies only. Let us
consider the system





İ = ε f (I ,φ,ε)
φ̇1 = ω1(I)+ εg1(I ,φ,ε)
φ̇2 = ω2(I)+ εg2(I ,φ,ε)

(3.17)

and let us assume that the functions at the right hand sides of(3.17) are analytic. The
following result holds:

THEOREM 12. Suppose that
(

ω1
∂ω2

∂I
−ω2

∂ω1

∂I

)
f > c−1

1 > 0

holds true. Then the difference between the slow motion in the perturbed system, I(t), and
in the averaged system, J(t), remains small over time1/ε; if I (0) = J(0), then

|I(t)−J(t)| ≤ c2
√

ε, 0≤ t ≤ 1/ε .

The case with more that two frequencies has been studied lessbecause the arrange-
ment of the resonant surfaces in the phase space is more complicate. In the case of two
frequencies the main effect is a passage through a single resonance, while in the case
of more than two frequencies we have to take into account the tangency to the resonant
surfaces and the addition of the effects of several resonances (see [2] for a more detailed
explanation).

However there exist some theorems that justify in a statistical sense the applicability
of the averaging methods also in the multi-frequency case: we give the statement of one
of them. Let us assume that for almost all the values of the integrals of the unperturbed
problem, the unperturbed motion on the common level set is ergodic; then we have

THEOREM 13. (Anosov) For eachρ > 0, the measure of the set of initial conditions (in
a compact subset of the phase space) for which the error made in describing the exact
motion by averaging exceedsρ, i.e.,

mes{(I0,φ0) : max
0≤t≤1/ε

|I(t)−J(y)|> ρ if I(0) = J(0) = I0},
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tends to zero asε → 0.

3.3.3 Averaging in Hamiltonian systems

We consider the study of small Hamiltonian perturbations ofa completely integrable
Hamiltonian system, that was called by Poincarè [64]the fundamental problem of dy-
namics. Let us set

H(I ,φ,ε) = H0(I)+ εH1(I ,φ,ε)
whereH1(I ,φ,ε) is a 2π-periodic function in the variableφ. The HamiltonianH0(I) of
the unperturbed system depends only on the action variablesI so that the equations of the
unperturbed motion are {

İ = 0

φ̇ =
∂H0

∂I
and the equations of the perturbed motion are





İ = −ε
∂H1

∂φ

φ̇ =
∂H0

∂I
+ ε

∂H1

∂I
.

PROPOSITION 3. In a Hamiltonian system with n degrees of freedom and n frequencies,
evolution of slow variables does not occur, in the sense thatthe averaged system has the
form J̇ = 0.

Proof. The integral
R 2π

0 [−(∂H1/∂φ)] dφ yields zero, because it is the increment of the
periodic functionH1 over its period.

REMARK 6. The averaged equation is equal to the differential equationfor I in the unper-
turbed system.

3.3.4 Averaging in Hamiltonian systems in the degenerate case

Often we encounterproperly degenerateproblems. in which the unperturbed Hamiltonian
depends only on a part of the action variables and some of the unperturbed frequencies
vanish identically:

H = H0(I1, . . . , Ir)+ εH1(I ,φ,ε) r < n . (3.18)

As the anglesφ j with j > r are slow variables the averaging method can represent the
evolution of the system if it is done only on the fast phasesφi with i ≤ r.

We have the following

PROPOSITION 4. In a Hamiltonian system with n degrees of freedom, with Hamiltonian of
the form (3.18), we have r< n fast frequencies and the variables canonically conjugate
to the fast phases are first integrals of the averaged system.
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We say that the degeneracy of the system issimpleif the number of the fast phases is
smaller by only one unit than the number of the degrees of freedom of the system: in this
case the averaged system is integrable.

As the Hamiltonian of the Solar System planets is degenerate, we can deduce from
Theorem 4 the following

COROLLARY 1. (Lagrange’s theorem) The semimajor axes of the Solar system planets do
not present a secular evolution, up to terms of the first orderin the perturbing masses (the
ratio of the masses of the planets with respect to the mass of the Sun).

3.4 Perturbative formulation of the restricted three body problem

In 1772, while studying the three body problem Sun-Earth-Moon, Leonard Euler thought
to simplify the problem by assuming that the two more massivebodies had a circular
motion around their common center of mass and that the Moon moved under the influence
of the two bodies without perturbing their motion: this is called circular restricted three
body problem. Even with these simplifications, the three body problem turns out to be
not integrable, nevertheless the restricted circular problem has been used successfully for
qualitative investigations of the motion of the Solar System bodies; the approximation
that is made disregarding the influence of the third body makes even more sense if this
body is an asteroid.

Let us consider a restricted 3-body problem Sun-planet-asteroid (we allow also elliptic
orbits for the Sun and the planet): the gravitational attraction of the asteroid on the other
two bodies is neglected and the equations to solve, in an inertial reference frameOy1y2y3,
are 




ÿ = k2
{ y⊙−y
|y⊙−y|3 +µ

y′−y
|y′−y|3

}

ÿ′ = k2µ
y⊙−y′

|y⊙−y′|3

ÿ⊙ = k2µ
y′−y⊙
|y′−y⊙|3

wherey,y′,y⊙ are the positions of the asteroid, the planet and the Sun respectively,k2 is
Gauss’s constant andµ = m′/m⊙ that is the ratio between the mass of the planet and the
mass of the Sun.

The last two equations are independent from the first and the motion of the Sun and
of the planet is completely determined as solution of a 2-body problem. Therefore the
problem consists only in determining the motion of the asteroid around the Sun.

Perturbation theory is used to compute an approximation of the solution of this non-
integrable problem.
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In a heliocentric reference frameO′x1x2x3, oriented likeOy1y2y3, the equations of
motion for the asteroid are

ẍ = k2
{
− x
|x|3 +µ

x′−x
|x′−x|3 −µ

x′

|x′|3
}

(3.19)

wherex = y−y⊙ andx′ = y−y′.
The right hand side of equations (3.19) is the gradient of apotential U= U0 + µU1

where

U0 =
k2

|x| U1 = k2
[ 1
|x−x′| −

< x,x′ >
|x′|3

]

(<,> is the usual Euclidean scalar product) so that equations (3.19) can be written in the
form

ẍ = ∇x(U0+µU1) .

We observe that the mass of Jupiter, the most massive planet in the Solar System, is
only about 1/1000 of the mass of the Sun, so that we can regardµ as a small parameter:
hence we are dealing with a perturbed problem of the integrable two body motion of the
asteroid.

3.5 The secular evolution of Main Belt Asteroids

Let us consider a Solar System model with the Sun,N− 2 planets and an asteroid and
let the mass of the asteroid be negligible, so that we have arestrictedproblem. Let us
suppose in addition that the mass of the planets is small if compared to the mass of the
Sun, then we haveN−2 small perturbative parametersµi , i = 1. . .N−2.

We assume that the motion of the planets is completely determined and that there are
no collisions between them or with the Sun.

We can apply the averaging principle in order to study the qualitative behavior of the
orbits of Main Belt Asteroids (MBAs) assuming thatno mean motion resonances with low
order occuroccurs between the asteroid and the planets in the model. This means that
there existsε > 0 not too small and a positive integerM not too large such that for each
pair (a(t),ai(t)), composed by the semimajor axes of the osculating orbits of the asteroid
and the planeti (i = 1. . .N−2) we have

∣∣∣ p[a(t)]3/2−q[ai(t)]
3/2

∣∣∣ > ε

for each pair of positive integersp,q≤ M and for eacht in the considered time span.

REMARK 7. As our purpose is not a study of the structure of the mean motion resonances
we shall not give further details or any estimates on the sizeof ε andM.
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We can study the motion of the asteroid using the heliocentric Delaunay variables
(L,G,Z, ℓ,g,z), defined by





L = k
√

a
G = k

√
a(1−e2)

Z = k
√

a(1−e2)cosI

{
ℓ = n(t− t0)
g = ω
z= Ω

where{a,e, I ,ω,Ω, ℓ} is the set of the Keplerian elements,k is Gauss’s constant,n is the
mean motion andt0 is the time of passage at perihelion; the same variables witha suffix
(Li ,Gi,Zi , ℓi,gi ,zi) i = 1. . .N−2 can be used to describe the motion of the planets.

Delaunay’s variables, like the Keplerian elements, describe the evolution of the oscu-
lating orbit of the asteroid, that is of the trajectory that the asteroid would describe in a
heliocentric reference frame, given its position and velocity at a timet, if only the Sun
were present. For negative values of the Keplerian energy ofthe asteroid the osculating
orbits are ellipses; we shall consider only such cases.

The Hamiltonian can be written as

H = − k2

2L2 −R (3.20)

where−k2/(2L2) is theunperturbed term, describing the two body motion of the asteroid
around the Sun, andR is theperturbing functiondefined by

R=
N−2

∑
i=1

µiRi ; Ri = k2
[ 1
|x−xi |

− < x,xi >

|xi |3
]

; i = 1. . .N−2 (3.21)

in which 〈 ,〉 is the Euclidean scalar product andx andxi are the position vectors of the
asteroid and of all the planets in a heliocentric reference frame.

Note that eachRi is the sum of adirect term k2/|x− xi |, due to the direct interaction
between the planeti and the asteroid, and anindirect term−k2 < x,xi > /|xi |3, represent-
ing the effects on the motion of the asteroid caused by the interaction between the Sun
and the planeti.

If we setED = (L,G,Z, ℓ,g,z) we can write Hamilton’s equations as

ĖD = J(∇ED
H) t (3.22)

whereJ is the 6×6 matrix [
O3 −I3
I3 O3

]

composed by 3×3 zero and identity matrices, and

(∇ED
H) t =

(
∂H
∂ED

)t

is the transposed vector of the partial derivatives of the Hamiltonian H with respect to
ED .
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3.5.1 The averaged equations

In this case we can consider averaged equations obtained by the integral average of the
right hand side of (3.22) over the mean anomaliesℓ,ℓ1, .., ℓN−2 of the asteroid and the
planets.

In the expression of the perturbing function (3.21) the effect of each planet is indepen-
dently taken into account: eachRi is a function of the coordinates and the masses of the
asteroid and one planet only. We shall study the case of only one perturbing planet and
we shall use a prime for the quantities related to this planet: the perturbation of all the
planets, up to the first order in the perturbing massesµi, will be obtained as the sum of the
contribution of each planet.

Let us consider a three body restricted problem Sun-planet-asteroid; If we take into
account the reduced set of Delaunay’s variablesED = (G,Z,g,z), the averaged equations
of motion for the asteroid can be written in the following form:

˙̃
ED = −J ∇ED

R
t

(3.23)

whereẼD = (G̃, Z̃, g̃, z̃) are averaged Delaunay variables,J is the 4×4 matrix

J =

[
O2 −I2
I2 O2

]

composed by 2×2 zero and identity matrices, and∇ED
R

t
is the transposed vector of the

integral average over(ℓ,ℓ′) of the partial derivatives of the perturbing functionR with
respect toED

∇ED
R=

1
(2π)2

Z π

−π

Z π

−π
∇ED

Rdℓdℓ′ ; ∇ED
R=

∂R
∂ED

.

As the variableℓ becomes cyclic in this framework, then the corresponding conjugate
variableL is constant.

A more explicit form for the averaged equations of motions (3.23) is




˙̃G =
∂R
∂g

˙̃Z =
∂R
∂z

= 0





˙̃g = −∂R
∂G

˙̃z= −∂R
∂Z

.

(3.24)

The solutions of equations (3.23) or (3.24) are representative of the solutions of the
full equations of motion if there are no mean motion resonances between the asteroid and
the planet and if no close approaches occur between them.

If the derivatives ofRwith respect to Delaunay’s variables are regular functionswe can
use thetheorem of differentiation under the integral sign[19] to exchange the derivatives
and the integrals in (3.23); then the averaged equations take the form

˙̃ED = −J (∇ED
R)

t
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where

R=
1

(2π)2

Z π

−π

Z π

−π
Rdℓdℓ′ =

1
(2π)2

Z π

−π

Z π

−π

µk2

|x−x′| dℓdℓ′ (3.25)

(µ is the ratio between the mass of the planet and the mass of the Sun); in fact the av-
erage of the indirect part of the perturbation is zero (see Appendix A for a proof of this
statement).

REMARK 8. From the form of the equations (3.23) we can deduce that if we decrease the
perturbation by rescaling the perturbing parametersµi , we do not change the evolution
trajectories but we only rescale the time needed to that evolution.

3.5.2 An integrable problem

The averaged problem (3.23) has been studied in [78] assuming that all the orbits of the
planets in the model are circular and coplanar, following the example of [39].

This assumption makes the averaged dynamics integrable as the problem has three
degrees of freedom and we have

PROPOSITION 5. The following three quantities are first integrals independent and in in-
volution:

1. the semimajor axis a;

2. the third component of the angular momentum Z= k
√

a(1−e2)cosI;

3. the averaged perturbing function

R=
1

(2π)2

Z π

−π

Z π

−π
Rdℓdℓ′ (Kozai integral). (3.26)

Proof. The functional independence of these three quantities is evident; we shall prove
that they are in involution. We use the symbol{,} for the Poisson brackets; that is, given
two functionsf1(ℓ,g,z,L,G,Z) and f2(ℓ,g,z,L,G,Z) we have

{ f1, f2} =

(
∂ f1
∂ℓ

∂ f2
∂L

− ∂ f1
∂L

∂ f2
∂ℓ

)
+

(
∂ f1
∂g

∂ f2
∂G

− ∂ f1
∂G

∂ f2
∂g

)
+

(
∂ f1
∂z

∂ f2
∂Z

− ∂ f1
∂Z

∂ f2
∂z

)
.

As a = L2/k2 it follows immediately that{a,Z} = 0. Furthermore we have

{
a,R

}
= −∂a

∂L
∂R
∂ℓ

= 0

because we have eliminated the dependence on the mean anomaly ℓ in R by averaging
over it.

We evaluate the last Poisson bracket:

{
Z,R

}
= −∂Z

∂Z
∂R
∂z

= 0
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because the perturbing function itself, even without averaging, does not depend on the
longitude of the Nodez if we consider the planets on circular coplanar orbits.

REMARK 9. Note that the assumption on the symmetry of the orbits of the planets (circular
orbits) is essential in order to be able to integrate the problem.

We also observe that Lidov and Ziglin [43] made an analyticalstudy of the restricted
circular twice-averaged three body problem Sun-planet-asteroid in the case in which the
orbit of the asteroid is uniformly close to the orbit of the planet.
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Chapter 4

Averaging on planet crossing orbits:
circular coplanar case

We take into account the possibility of intersections between the orbit of an asteroid an the
orbits of the planets in the framework of a restricted problem. Let us give the following

DEFINITION 13. We say that an asteroid isplanet crossingif its orbit crosses the orbit of
some planet during its evolution.

Starting from 1898, the year in which the asteroid Eros (433)was discovered, a new
asteroid population has been detected: theNear Earth Asteroids(NEAs). We say that an
asteroid is a NEA if its osculating perihelionq satisfies the relation

q = a(1−e) < 1.3AU .

In the last years, thanks to the new observational techniques, the number of known NEAs
has increased very rapidly, and up to now we know the existence of about 1800 of such
asteroids.

As the orbits of the NEAs are close to the one of the Earth and ofthe inner planets,
generally these asteroids are planet crossing.

4.1 Difficulties arising with planet crossing orbits

When we consider a planet crossing asteroid at the time of intersection of the orbits, the
averaged perturbing functionR is the integral of an unbounded function that is convergent
because 1/|x−x′| has a first order polar singularity in the valuesℓ,ℓ

′
corresponding to a

collision. The derivatives at the right hand side of (3.23) have second order polar singu-
larities inℓ,ℓ

′
, hence equations (3.23) do not make sense in this case because the integrals

overℓ,ℓ′ of these derivatives are divergent and the classical averaging principle cannot be
applied.

The study of the dynamics of NEAs requires the development oftheories that can
give statistical informations on the evolution of these objects, because the evolution start-

39
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ing from a single initial condition is not representative for long time spans, due to the
chaoticity of the orbits; thus it is desirable to have an averaging method also in this case.

In this chapter we describe a generalization of the classical averaging principle, first
presented in [28], that is suitable for planet crossing orbits in the framework of a Solar
System with the planets on circular and coplanar orbits. We shall refer to this problem as
to thecircular coplanar case.

4.2 Geometry of the node crossing

We give a description of the possible geometric configurations in the plane(ecosω,esinω)
when a node crossing occurs.

Recall that the ascending and descending node crossings with a planet with semimajor
axisa′ are characterized by the vanishing of the following expressions respectively:

d+
nod =

a(1−e2)

1+ecosω
−a′ ; d−

nod =
a(1−e2)

1−ecosω
−a′ ;

that are callednodal distances(and can be negative).
As we observed in Chapter 3, in the averaged problem with the planets on circular

coplanar orbits we have three integrals of motions: the semimajor axisa, theKozai inte-
gral H = H0−R and thez-component of the angular momentum Z= k

√
a(1−e2)cosI .

The Z integral allows to determine the evolution of the averaged inclination I(t) if we
know e(t); if we also know the evolution of the averaged perihelion argumentω(t) we
can determineΩ(t) by a simple quadrature of∂R/∂Z, that does not depend onΩ. From
the expression of the integralZ we deduce the maximum value of the averaged inclination
and eccentricity:

Imax=I |e=0= arccos
Z

k
√

a
; emax=e|I=0=

√
k2a−Z2

k
√

a
.

For a given value of the semimajor axisa we can represent the level lines of the
averaged Hamiltonian, on which the averaged solutions evolve, in the plane(ξ,η) :=
(ecosω,esinω). We define theKozai domain

W = {(ξ,η) : ξ2+η2 ≤ e2
max} ,

where the averaged dynamics is confined.
In the(ξ,η) reference plane the node crossing lines with the planets arecircles: they

are defined by

Γ+(i) = {(ξ,η) : d+
nod(i) = 0} ; Γ−(i) = {(ξ,η) : d−

nod(i) = 0} ;

wherei is the index of the planet.
At the ascending node crossing with the planeti the equation to be considered is

1−ξ2−η2 =
a′i
a

(1+ξ) .
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Figure 4.1: The Kozai domain{(ecosω,esinω) : 0≤ e≤ emax,ω ∈ R} is represented in the figure by the
setW. We plot also the four circles corresponding to ascending and descending node crossing with two
planets (they have their centers shifted respectively on the left and on the right). An additional exterior
circle corresponding to the boundary for closed orbits (e= 1) is drawn.

After the coordinate changeX = ξ+a′i/(2a); Y = η we obtain

X2+Y2 =

(
1− a′i

2a

)2

,

that is, in the(ξ,η) plane, the equation of a circle of radiusR+
i = 1−a′i/(2a), with center

in (ξ+
i ,η+

i ) = (−a′i/(2a),0) (see Figure 4.1).
By the previous calculations we have






d+
nod(i) > 0 insideΓ+(i)

d+
nod(i) < 0 outsideΓ+(i) .

In a similar way we can prove that the equationd−
nod(i) = 0 represents a circle of radius

R−
i = R+

i = 1−a′i/(2a), with center in(ξ−i ,η−
i ) = (+a′i/(2a),0); furthermore we have





d−
nod(i) > 0 insideΓ−(i)

d−
nod(i) < 0 outsideΓ−(i) .

DEFINITION 14. A double (node) crossingis a crossing between the orbit of the asteroid
and the orbit of a planet at both the ascending and descendingnode.
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By the symmetry of the circles{d+
nod(i) = 0} and{d−

nod(i) = 0}, for each indexi, we
can deduce that a double crossing is possible only whenω = π/2 orω = 3π/2 (see Figure
4.1). We obtain the following condition on the ratio of the semimajor axesa,a′i:

− a′i
2a

≥−1
2

that is a≥ a′i ,

and in particular we obtain thatthere cannot exist Athen asteroids(see Chapter 7)that
have a double crossing with the Earth.

DEFINITION 15. A simultaneous crossingis a crossing of the orbit of the asteroid and the
orbits of two planets at the same time.

We note that if we calla′1,a
′
2 the semimajor axes of the orbits of two different planets,

we cannot have a simultaneous crossing at the ascending nodeof both planets (this would
imply a′1 = a′2 in this model). By a similar argument we cannot have a simultaneous
crossing at the descending node of both planets. On the otherhand we have a simultaneous
crossing at the ascending node with one planet and at descending node with the other one
if

a′1 =
a(1−e2)

1+ecosω
and a′2 =

a(1−e2)

1−ecosω
,

that is if
a′1
a′2

=
1−ecosω
1+ecosω

.

In this framework we cannot have crossings of different typefrom the ones presented
above (liketriple crossing, etc.).

4.3 Description of the osculating orbits

We consider a model with three bodies only: Sun, planet, asteroid. We set thex1 axis
along the line of the nodes, pointing towards the ascending mutual node, and thex2 axis
is chosen on the orbital plane of the planet (see Figure 4.2).The equations defining the
osculating orbitsP(u) = (p1(u), p2(u), p3(u)) andP′(u′) =

(
p′1(u

′), p′2(u
′), p′3(u

′)
)

of the
asteroid and the planet are





p1 = a[(cosu−e)cosω−βsinusinω]
p2 = a[(cosu−e)sinω+βsinucosω]cosI
p3 = a[(cosu−e)sinω+βsinucosω]sinI





p′1 = a′cosu′

p′2 = a′sinu′

p′3 = 0
(4.1)

whereu,u′ are the eccentric anomalies andβ =
√

1−e2. These orbits are respectively an
ellipse and a circle.

The distance between a point on an orbit and a point on the other one, appearing at the
denominator of the direct term of the perturbing function, is defined by its square as

D2(u,u′) = (p1− p′1)
2+(p2− p′2)

2+(p3− p′3)
2 =
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= a2(1−ecosu)2+a′2−2aa′{cosu′[(cosu−e)cosω−βsinusinω]+

+sinu′ cosI [(cosu−e)sinω+βsinucosω]} .

We introduce the function D(ℓ,ℓ′), which is implicitly defined by

D
(
ℓ(u), ℓ′(u′)

)
= D(u,u′)

and by Kepler’s equations

ℓ = u−esinu; ℓ′ = u′ (4.2)

for the asteroid and the planet (the latter has a simpler formbecause the orbit of the planet
is circular).

We define the values of the anomaliesu,u′ corresponding to the mutual ascending
node: we immediately notice thatu′ = 0, while from

a(1−ecosu) =
aβ2

1+ecosω
we obtain

cosu =
cosω+e

(1+ecosω)
; sinu = − βsinω

(1+ecosω)

(the sign of sinu has been chosen in such a way that it is opposite to the sign of sinω).
The equations defining the anomaliesu1,u′1, corresponding to the mutual descending

node, are

u′1 = π ; cosu1 =
e−cosω

(1−ecosω)
; sinu1 =

βsinω
(1−ecosω)

.

In the following we shall study the case of the ascending nodecrossings, but the same
methods are suitable to deal also with the descending ones and with double crossings:
we shall give the formulas to be applied in these cases at the end of this chapter and in
Appendix B.

4.4 Weak averaged solutions

The idea of the generalization of the averaging principle in[28] starts from the fact that
if there are no crossings between the orbits, by thetheorem of differentiation under the
integral sign[19], the averaged equations of motion (3.23) are equivalent to Hamilton’s
equations (4.3) with the averaged perturbing functionR:

˙̃
ED = −J

[
∇ED

R
]t

(4.3)

where

R=
1

(2π)2

Z π

−π

Z π

−π
Rdℓdℓ′ .
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We write equations (4.3) in a more explicit form:




˙̃G =
∂R
∂g

˙̃Z =
∂R
∂z

= 0





˙̃g = −∂R
∂G

˙̃z= −∂R
∂Z

;

(4.4)

We shall skip the ‘tilde’ over the averaged variables in the following, to avoid the use of a
heavy notation.

We shall prove that when the orbits intersect each other it ispossible to define piece-
wise smooth solutions of equations (4.4), that we callweak averaged solutions, and we
shall see that the loss of regularity corresponds exactly tothe crossing configurations of
the orbits: in fact we shall give a twofold meaning to the right hand sides of (4.4) at the
node crossing, corresponding to the two limit values of the derivatives coming from inside
and outside the circle that represents the ascending node crossing with the planet in the
plane(ξ,η).

Note that the weak averaged solutions correspond to the classical averaged solutions
as far as their trajectories in the reduced phase space(ξ,η) do not pass through a node
crossing line.

We also observe that the exchange of the differential and integral operators in (4.4)
is not essential for a theoretical definition of the weak solutions (they could anyway be
defined as the limits of the solutions of (3.23) coming from both sides of the node crossing
lines) but, as we shall see, this operation is necessary to obtain analytic formulas for
the discontinuity of the average of the derivatives ofR, that are not defined on the node
crossing lines, and to define the semianalytic procedure to compute the weak solutions.

4.5 The Wetherill function

Let {P(u),P′(u′)} be the ascending mutual node. We consider the two straight lines r(ℓ)
and r′(ℓ′), tangent inP(u) andP′(u′) to the orbits of the asteroid and of the planet (see
Figure 4.2); they can be parametrized by the mean anomaliesℓ,ℓ′ so thatP(u(t)) and
r(ℓ(t)) have the same velocities (derivatives with respect tot) in P(u) andP′(u′(t)) and
r′(ℓ′(t)) have the same velocities inP′(u′):

{ r1 = x1−F k
r2 = x2 +G cosIk
r3 = x3 +G sinIk





r ′1 = x′1
r ′2 = x′2+a′k′

r ′3 = x′3

(4.5)

wherek = ℓ− ℓ,k′ = ℓ′− ℓ
′
, andℓ,ℓ

′
are the values of the mean anomalies corresponding

to u,u′ (so thatℓ
′
= 0). We have used the following notations

F =
sinucosω+βcosusinω

1−ecosu
=

aesinω
β

;
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Sun

perihelion

x1

x2

x3

asteroid

r

r’

planet

nodal line

Figure 4.2: The straight lines r, r′ represent Wetherill’s approximation at the ascending nodefor the two
osculating orbits of the asteroid and the planet.

G =
−sinusinω+βcosucosω

1−ecosu
=

a(1+ecosω)

β

and

x1 =
aβ2

1+ecosω
; x′1 = a′; x2 = x3 = x′2 = x′3 = 0 .

REMARK 10. Taylor’s series developments of equations (4.1) in a neighborhood of the
pointsu,u′ correspond, up to the first order inv= u−u,v′ = u′−u′, to the Taylor’s series
developments in the same variables of equations (4.5):





p1 = aβ2(1+ecosω)−1−F (1−ecosu)v+o(v)
p2 = G cosI(1−ecosu)v+o(v)
p3 = G sinI(1−ecosu)v+o(v)





p′1 = a′

p′2 = a′v′

p′3 = 0
(4.6)

From Kepler’s equations we deduce

v = k(1−ecosu)−1 +O(k)

in a neighborhood ofk = 0, so that




p1 = aβ2(1+ecosω)−1−F k+O(k2)
p2 = G cosI k +O(k2)
p3 = G sinI k +O(k2) .
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DEFINITION 16. We callWetherill function[77] the approximated distance functiond,
whose square is defined by

d2(ℓ,ℓ′) = (r1− r ′1)
2+(r2− r ′2)

2+(r3− r ′3)
2 =

= a′2k′2+[F 2+G2]k2−2kk′[Ga′cosI ]−2d+
nodF k+(d+

nod)
2

with k= ℓ− ℓ,k′ = ℓ′.

Note that d2 is a quadratic form in the variablesk,k′: it is homogeneous when there is
a crossing at the ascending node. We can write it more concisely as

d2(ℓ,ℓ′) = d2(κ) = κtA κ+Btκ+(d+
nod)

2

where

κ = (k′,k) ; B = 2(B1,B2) ; A =

[
A11 A12
A21 A22

]
;

with components

{
B1 = 0
B2 = −d+

nodF ;





A11 = a′2

A12 = A21 = −Ga′ cosI
A22 = [F 2+G2] .

For later use we define
d2(u,u′) = d2(ℓ(u), ℓ′(u′)) .

The geometry of Wetherill’s straight lines is strictly related to the degeneracy of the
matrixA , in fact we have

LEMMA 1. The matrixA is alwayspositive definiteif I > 0. If I = 0 we have degeneracy of
A if and only if the straight linesr, r′ are parallel: in this caseA is positive semi-definite.

Proof. A is a symmetric 2× 2 matrix and it is positive definite if and only if its prin-
cipal invariants, the tracetr(A) and the determinantdet(A), are positive. By a direct
computation we have 




tr(A) = a′2+F 2+G2

det(A) = a′2
(
F 2+G2sin2 I

)
.

From the above expressions we deduce thattr(A) > 0 (we are considering only bounded
orbits, so that 0≤ e< 1); furthermore

det(A) = 0 ⇐⇒
{

I = 0
esinω = 0 ,

that corresponds to the straight lines r, r′ being parallel.
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DEFINITION 17. We call tangent crossingsthe crossing orbital configurations for which
det(A) = 0.

The assumption that the inclinationI of the asteroid is different from zero during its
whole time evolution, or at least in a neighborhood of each crossing between the orbits,
implies thatno tangent crossings occur.

4.6 Kantorovich’s method of singularity extraction

We shall describe Kantorovich’s method of singularity extraction (see [15]) that allows
to improve the stability of the numerical computation of theintegrals when the integrand
function f1(x) is unbounded in the neighborhood of one or more points.

Kantorovich’s method consists in searching for a functionf2(x) whose primitive has an
analytic expression in terms of elementary functions and such that the differencef1(x)−
f2(x) is more regular thanf1(x) (for example it is bounded or even continuous).

It is then convenient to split the computation as follows
Z

f1(x)dx=

Z

[ f1(x)− f2(x)]dx+

Z

f2(x)dx

so that the singularity has moved to the second term, that canbe better handled.
This method can help us to study the regularity properties ofthe averaged perturbing

function R defined in (3.25); we shall use the inverse of the Wetherill function 1/d to
extract the principal part from the direct term of the perturbing function.

The function D is 2π-periodic in both variablesℓ,ℓ′ and this property can be used to
shift the integration domain

T
2 = {(ℓ,ℓ′) : −π ≤ ℓ ≤ π,−π ≤ ℓ′ ≤ π}

in a suitable way, so that the crossing values(ℓ,0) will be always internal points of this
domain.

We shall prove that in computing the derivatives ofRwith respect to the variablesED ,
for instance theG-derivative, we can use the decomposition

(2π)2

µk2

∂
∂G

R=
Z

T2

∂
∂G

[
1
D
− 1

d

]
dℓdℓ′+

∂
∂G

Z

T2

1
d

dℓdℓ′; (4.7)

namely we shall prove the validity of the hypotheses of the theorem of differentiation
under the integral sign to exchange the symbols of integral and derivative in front of the
remainder function1/D−1/d . The average of the remainder function is then differen-
tiable as it is derivable with continuity with respect to allthe variablesED . Therefore
we shall need only to study the regularity properties of the last term of the sum in (4.7),
which is easier to handle.

Note that we use Kantorovich’s method of singularity extraction in a wider extent: the
derivatives of the remainder function still have a polar singularity in (ℓ,0), but it is of
order one, so that the integrals overℓ,ℓ′ of these derivatives are convergent.
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4.7 Integration of 1/d

We shall discuss the analytic method to integrate 1/d over the torusT2 = {(ℓ,ℓ′) : −π ≤
ℓ ≤ π,−π ≤ ℓ′ ≤ π} assuming that(ℓ,0) is an internal point of this domain.

We move the ascending node crossing point(ℓ,0) to the origin of the reference system
by the variable change

τℓ,0 : (ℓ,ℓ′) −→ (k,k′) = (ℓ− ℓ,ℓ′) (4.8)

and we set
T

2
= τℓ,0

[
T

2] = {(ℓ− ℓ,ℓ′) : (ℓ,ℓ′) ∈ T
2} .

Then we perform another variable change to eliminate the linear terms in the quadratic
form d2(κ) defined by (4.7). The inverse of the transformation used for this purpose is

Ξ−1 : ψ −→ κ = T ψ+S (4.9)

whereS= (S1,S2) ∈ R
2, ψ = (y′,y) ∈ R

2 are the new variables andT is a 2×2 real-
valued invertible matrix.

Setting to zero the coefficients of the linear terms of the quadratic form in the new
variablesψ we obtain the equations

2AS+B = 0

whose solutions are

S1 =
B2A12

det(A)
=

d+
nodF Ga′ cosI

det(A)
;

S2 = − B2A11

det(A)
=

d+
nodF a′2

det(A)
.

We can determine the non-degenerate matrixT in order to obtain

T tAT = I2 (4.10)

whereI2 is the 2×2 identity matrix: from relation (4.10) we obtainA =
(
T −1

)t
T −1; let

us set

R = T −1 =

(
ρ1 ρ2
ρ3 ρ4

)
; (4.11)

we obtain the system 



ρ2

1+ρ2
3 = A11

ρ1ρ2+ρ3ρ4 = A12
ρ2

2+ρ2
4 = A22 .

(4.12)

System (4.12) has infinitely many solutions; we notice that the relationsA11 > 0 and
det(A) > 0 allows us to find four solutions(ρ1,ρ2,0,ρ4) with ρ3 = 0:

ρ1 = ±
√

A11; ρ2 =
A12

ρ1
; ρ4 = ±

√
det(A)

A11
. (4.13)
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Figure 4.3: Description of the transformations of the integration domainT2 with the two coordinate changes
(4.8), (4.9) used to bring the squared Wetherill function d2(ℓ,ℓ′) into the formy2 +y′2 +(d+

min)
2

in the new

variables(y′,y). Note thatℓ
′
= 0 implies thatT

2
is symmetric with respect to thek axis.

We select the signs in the above expressions and we call(τ,σ,0,ρ) the particular solu-
tion defined by

τ = a′; σ = −G cosI ; ρ =
1
a′

√
det(A); (4.14)

so that we can write

T =
1√

det(A)

(
ρ −σ
0 τ

)
=

(
1/τ −σ/τρ
0 1/ρ

)
. (4.15)

The coordinate change
Ξ : κ −→ ψ = R [κ−S] , (4.16)

where

R = T −1 =

(
τ σ
0 ρ

)
,

bringsd2(κ) into the form

d2(
Ξ−1(ψ)

)
= y2 +y′2+(d+

min)
2

in the new variablesψ, with

d+
min = |d+

nod|
{

1− a′2F 2

det(A)

}1/2

= |d+
nod|

[
a′2G2sin2 I

det(A)

]1/2

. (4.17)

The domainT
2

is transformed into a parallelogram with two sides parallelto they′ axis
(see Figure 4.3).

REMARK 11. Note thatd+
min is the minimal distance between the straight linesr and r ′

(see also the remark after equation (9.16) in Chapter 9).
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Using the variable changes (4.8), (4.16) and the transformation to polar coordinates,
whose inverse is

Π−1 :

(
r
θ

)
−→

(
y′

y

)
=

(
r cosθ
r sinθ

)

we obtain
Z

T2

1
d

dℓdℓ′ =
1√

det(A)

Z

Ξ
[
T

2
]

1√
y2+y′2 +(d+

min)
2

dydy′ =

=
1√

det(A)

Z

T

r√
r2 +(d+

min)
2

drdθ

(4.18)

whereΞ−1
[
Π−1(T)

]
= T

2
.

Let us describe the domainT in details. We define the straight lines that bound the

integration domainΞ
[
T

2
]

as

r1 = {(y,y′) : y′ =
σ
ρ

y+ τ(π−S1)} ; r2 = {(y,y′) : y = ρ(π− ℓ−S2)} ;

r3 = {(y,y′) : y′ =
σ
ρ

y− τ(π+S1)} ; r4 = {(y,y′) : y = −ρ(π+ ℓ+S2)} .

The intersections of these lines with they axis are

y1 = −ρ(π+ ℓ+S2) ; y2 = ρ(π− ℓ−S2) ;

while the intersections with they′ axis are

y′1 = λ3(y1) = −σ(π+ ℓ+S2)− τ(π+S1)

y′2 = λ3(0) = −τ(π+S1)

y′3 = λ3(y2) = σ(π− ℓ−S2)− τ(π+S1)

y′4 = λ1(y1) = −σ(π+ ℓ+S2)+ τ(π−S1)

y′5 = λ1(0) = τ(π−S1)

y′6 = λ1(y2) = σ(π− ℓ−S2)+ τ(π−S1)

whereλ1(y) = (σ/ρ)y+ τ(π−S1) andλ3(y) = (σ/ρ)y− τ(π+S1).
We can then decompose the domainT into four parts (see Figure 4.4)

T =
4

[

j=1

{
(r,θ) ∈ R

2 : θ j ≤ θ ≤ θ j+1 and 0≤ r ≤ r j(θ)
}
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Figure 4.4: We show the decomposition of the integration domain used to compute the last integral in (4.18)
in polar coordinates.

wherer j(θ), with j = 1. . .4, represent the lines rj delimitingΞ[T
2
] in polar coordinates:

r1(θ) =
ρτ(π−S1)

ρcosθ−σsinθ
; r2(θ) =

ρ(π− ℓ−S2)

sinθ
;

r3(θ) =
−ρτ(π+S1)

ρcosθ−σsinθ
; r4(θ) =

−ρ(π+ ℓ+S2)

sinθ
;

while θ1 = θ5−2π andθl , with l = 2. . .5, are the counter-clockwise angles between the
y′-axis and the vertexesvl seen from the origin of the axes (see Figure 4.4):

0 < θ2 < θ3 < π < θ4 < θ5 < 2π ;

tanθ2 =
ρ(π− ℓ−S2)

σ(π− ℓ−S2)+ τ(π−S1)
; tanθ3 =

ρ(π− ℓ−S2)

σ(π− ℓ−S2)− τ(π+S1)
;

tanθ4 =
ρ(π+ ℓ+S2)

σ(π+ ℓ+S2)+ τ(π+S1)
; tanθ5 =

ρ(π+ ℓ+S2)

σ(π+ ℓ+S2)− τ(π−S1)
.

Using the previous decomposition forT and integrating in ther variable the last ex-
pression in (4.18) we obtain

Z

T2

1
d

dℓdℓ′ =
1√

det(A)
·
{

4

∑
j=1

Z θ j+1

θ j

√
(d+

min)
2
+ r2

j (θ)dθ−2πd+
min

}
. (4.19)

Note that the integrals in (4.19) are elliptic and the integrand functions are bounded so
that these integrals are differentiable functions of the orbital elements. We shall see that
the loss of regularity of the averaged perturbing function is due only to the termd+

min.
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4.8 Boundedness of the remainder function

When there is a crossing at the ascending node, then from the equations of the orbits
(4.1) and from Kepler’s equations (4.2) we deduce that Taylor’s development ofD2(κ) =
D2(ℓ,ℓ′) in a neighborhood ofκ = (0,0) is given by

D2(κ) = d2(κ)+O(|κ|3) (4.20)

whereO(|κ|3) is an infinitesimal of the same order as|κ|3 for |κ| → 0. We prove the
following

LEMMA 2. If there is an ascending node crossing between the orbits, there exist a neigh-
borhoodU0 of κ = (0,0) and two positive constants B1,B2 such that

B1d2(κ) ≤D2(κ) ≤ B2d2(κ) ∀κ ∈U0 .

Proof. First we notice that ford+
nod = 0 we haved2(κ) = κtAκ, whereA is positive

definite, hence there exist two positive constantsC1,C2 such that

C1|κ|2 ≤ κtAκ ≤C2|κ|2 ∀κ ∈ R
2. (4.21)

Using the relations (4.20) and (4.21) we obtain

lim
|κ|→0

D2(κ)

d2(κ)
= 1,

that implies the existence of the neighborhoodU0 and of the constantsB1,B2 as in the
statement of the lemma.

We prove the following result:

PROPOSITION 6. The remainder function1/D−1/d is bounded even if there is an ascend-
ing node crossing.

Proof. If there are no crossings between the orbits the remainder function is trivially
bounded, in fact D(ℓ,ℓ′) > 0 for each(ℓ,ℓ′) ∈ T

2 and the minimal value of d(ℓ,ℓ′) is
d+

min that, forI 6= 0, can be zero only ifd+
nod = 0 (see equation (4.17)).

If there is a crossing at the ascending node we have to investigate the local behavior
of the remainder function in a neighborhood of(ℓ,ℓ′) = (ℓ,0), where both D and d can
vanish. The boundedness of the remainder function can be shown using the previous
lemma: we know that there exists a neighborhoodU0 and a positive constantB1 such that
the relation

D(κ) ≥
√

B1d(κ)
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holds for eachκ ∈U0. It follows that in this neighborhood the remainder function can be
bounded in the following way:

∣∣∣∣
1

D(κ)
− 1

d(κ)

∣∣∣∣ =
|d2(κ)−D2(κ)|

d(κ)D(κ)[d(κ)+D(κ)]
≤

≤ 1√
B1[1+

√
B1]

· |d
2(κ)−D2(κ)|

|κ|3 · |κ|3
d3(κ)

.

We observe that|d2(κ)−D2(κ)| = O(|κ|3) and that by (4.21) there is a positive constant
C1 such thatd2(κ) ≥C1|κ|2, so that there exists a constantL > 0 such that

∣∣∣∣
1

D(κ)
− 1

d(κ)

∣∣∣∣ ≤ L ∀κ ∈U0 .

REMARK 12. Although the remainder function 1/D−1/d is bounded, it is not continuous
in (ℓ,ℓ′) = (ℓ,0) when there is a crossing at the ascending node; this can be seen, for
instance, by computing the limits of this function along thestraight linesk′ = λk (λ ∈ R)
ask→ 0.

4.9 Formulas for descending node crossings

Let us assume that a descending node crossing occurs betweenthe orbits, we can follow
a similar procedure to define weak averaged solutions of equations (4.4).

We use the same reference frame as for the ascending crossingcase, with thex-axis
towards the mutual ascending node, in order to be able to use the same formulas also in
case of double crossings.

We already observed in Section 4.3 that the values of the eccentric anomaliesu1,u′1
corresponding to the descending node crossing are given by

u′1 = π; cosu1 =
e−cosω

1−ecosω
; sinu1 =

βsinω
1−ecosω

;

we defineℓ1 = u1−esinu1, ℓ
′
1 = π as the corresponding values of the mean anomalies.

Let {P(u1),P′(u′1)} be the descending mutual node. We consider the two straight lines
r1(ℓ) and r′1(ℓ

′), tangent inP(u1) andP′(u′1) to the orbits of the asteroid and of the planet
(see Figure 4.5); they can be parametrized by the mean anomalies ℓ1, ℓ

′
1 so thatP(u(t))

and r1(ℓ(t)) have the same velocities (derivatives with respect tot) in P(u1) andP′(u′(t))
and r′1(ℓ

′(t)) have the same velocities inP′(u′1):




r1,1 = x1,1−F1k1
r1,2 = x1,2 +G1cosIk1
r1,3 = x1,3 +G1sinIk1





r ′1,1 = x′1,1
r ′1,2 = x′1,2−a′k′1
r ′1,3 = x′1,3 .

(4.22)
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Figure 4.5: The straight lines r1, r′1 represent Wetherill’s approximation at the descending node for the two
osculating orbits of the asteroid and the planet.

We have used the following notations

F1 =
sinu1cosω+βcosu1sinω

1−ecosu1
=

aesinω
β

= F ;

G1 =
−sinu1sinω+βcosu1cosω

1−ecosu1
= −a(1−ecosω)

β
;

and

x1,1 = − aβ2

1−ecosω
; x′1,1 = −a′; x1,2 = x1,3 = x′1,2 = x′1,3 = 0;

We can define aWetherill function, similar to the one of the ascending node crossing
case, by using straight lines tangent to the orbits at the descending mutual node. The
square of this Wetherill function is given by

d2
1 = a′2k′21 +[F 2

1 +G2
1 ]k2

1 +2k1k′1[G1a′ cosI ]+2k1d−
nodF1+(d−

nod)
2

wherek1 = ℓ− ℓ1,k′1 = ℓ′−π and

d−
nod =

a(1−e2)

1−ecosω
−a′ .

REMARK 13. There are some differences between the general appearance of this formula
and the one for the ascending node: they are due to the sign of the mixed quadratic
monomial and of the linear term. The positive signs are due, respectively, to the minus
sign in the expression ofr ′1,2 and to the fact thatx1,1−x′1,1 = −d−

nod.
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We can write it more concisely as

d2
1(ℓ,ℓ

′) = d2
1(κ1) = κt

1Ad κ1+Bt
dκ1+(d−

nod)
2

where

κ1 = (k′1,k1) ; Bd = 2(B−
1 ,B−

2 ) ; Ad =

[
A−

11 A−
12

A−
21 A−

22

]
;

with components

{
B−

1 = 0
B−

2 = d−
nodF1






A−
11 = a′2

A−
12 = A−

21 = G1a′cosI
A−

22 = [F 2
1 +G2

1 ] .

The variable change to eliminate the linear terms in the quadratic formd2
1(κ1) is de-

fined by its inverse
Ξ−1

1 : ψ1 −→ κ1 = T1ψ1 +Sd

whereSd = (S−1 ,S−2 ) ∈ R
2, ψ1 = (y′1,y1) ∈ R

2 are the new variables andT1 is a 2× 2
real-valued invertible matrix.

The equation to be solved in this case is

2Ad Sd +Bd = 0 (4.23)

whose solutions are

S−1 =
B−

2 A−
12

det(Ad)
=

d−
nodF1G1a′ cosI

det(Ad)
;

S−2 = − B−
2 A−

11

det(Ad)
= −d−

nodF1a′2

det(Ad)
.

We obtain

T1 =
1√

det(Ad)

(
ρ1 −σ1
0 τ1

)
=

(
1/τ1 −σ1/τ1ρ1

0 1/ρ1

)
(4.24)

where

τ1 = a′; σ1 = G1cosI ; ρ1 =
1
a′

√
det(Ad);

and
det(Ad) = a′2

(
F 2

1 +G2
1 sin2 I

)
.

The minimal distance between the straight lines in this caseis

d−
min = |d−

nod|
[
1− a′2F 2

1

det(A1)

]1/2

= |d−
nod|

[
a′2G2

1 sin2 I

det(Ad)

]1/2

.
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Chapter 5

Hamilton’s equations with H

5.1 The derivatives of the averaged perturbing functionR

Kantorovich’s method is used to describe the singularitiesof the derivatives of the av-
eraged perturbing function with respect to Delaunay’s variables appearing in equations
(4.4).

Note that by thechain rulewe can write

∂R
∂ED

=
∂R

∂EK

∂EK

∂ED

whereEK = {e, I ,ω,Ω} is a subset of the Keplerian elements of the asteroid and

∂EK

∂ED
=

[
M O2
O2 I2

]
,

in which I2 andO2 are the 2×2 identity and zero matrices, and

M = − 1
k
√

a

[
β/e 0

−cotanI/β 1/(βsinI)

]
.

Hence we can do the computations using the derivatives ofRwith respect to the Keplerian
elementse, I ,ω (R does not depend onΩ).

We shall not need to perform the splitting of Kantorovich’s method to compute the
derivative ofR with respect to the inclinationI ; in fact we shall see that the derivative of
1/D with respect toI can be bounded by a function with a first order polar singularity in
u,u′, so it is Lebesgue integrable overT

2.
In the following we shall first prove that the derivatives of the remainder function

1/D−1/d are always Lebesgue integrable overT
2, and the integrals have finite values,

even if the two orbits intersect each other. Hence the average of the remainder function
is differentiable: indeed its derivatives can be computed by exchanging the position of
the integral and differential operators as in (4.7). Then weshall see that, if there is an
ascending node crossing, a discontinuous term appears in the derivatives of the average

57
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of 1/d, which is responsible of the discontinuity of the derivatives ofR. These derivatives
admit two limit values at crossings (coming from the regionsdefined byd+

nod > 0 and
d+

nod < 0).
As the properties we intend to prove are invariant by coordinate changes, we shall

show them using the coordinates(u,u′) instead of(ℓ,ℓ′).

The derivatives of the remainder function1/D−1/d.
Let us setυ = (u,u′) andν = (v,v′) = (u−u,u′−u′). We apply Taylor’s formula with

the integral remainder to the vector functionsP(u),P′(u′):




P(u) = P(u)+Pu(u)v+

Z u

u
(u−s)Pss(s)ds

P′(u′) = P′(u′)+P′
u′(u

′)v′+
Z u′

u′
(u′− t)P′

tt(t)dt .

The functions defining the straight linesr(u) = r(ℓ(u)) andr ′(u′) = r′(ℓ′(u′)) have the
same Taylor’s developments, up to the first order in|ν| =

√
v2+v′2, asP(u) andP′(u′)

respectively, so that we can write




r(u) = P(u)+Pu(u)v+
Z u

u
(u−s)rss(s)ds

r ′(u′) = P′(u′)+P′
u′(u

′)v′+
Z u′

u′
(u′− t)r ′tt(t)dt .

We prove the following

THEOREM 14. If there is an ascending node crossing at(u,u′) = (u,u′), the derivatives
of the remainder function1/D−1/d with respect to e,ω can be bounded by functions
having a first order polar singularity inu,u′, so they are Lebesgue integrable overT

2.

Proof. We shall consider only the derivatives with respect toe: the proof for the other
derivatives is similar. First we note that

∂
∂e

[
1

D(υ)

]
= − 1

2D3(υ)

∂
∂e

[
D2(υ)

]
;

∂
∂e

[
1

d(υ)

]
= − 1

2d3(υ)

∂
∂e

[
d2(υ)

]
.

Let us write〈 ,〉 for the Euclidean scalar product. We have

∂
∂e

[
D2(υ)

]
= D2

e,0(υ)+D2
e,1(υ)+D2

e,2(υ) (5.1)

where

D2
e,0(υ) = 2

〈
∂
∂e

[
P(u)−P′(u′)

]
,P(u)−P′(u′)

〉
;

D2
e,1(υ) = 2

〈
∂
∂e

[
P(u)−P′(u′)

]
,Pu(u)v−P′

u′(u
′)v′

〉
;

D2
e,2(υ) = 2

〈
∂
∂e

[
P(u)−P′(u′)

]
,

Z u

u
(u−s)Pss(s)ds−

Z u′

u′
(u′− t)P′

tt(t)dt

〉
;
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and
∂
∂e

[
d2(υ)

]
= d2

e,0(υ)+d2
e,1(υ)+d2

e,2(υ) (5.2)

where

d
2
e,0(υ) = 2

〈
∂
∂e

[
r(u)− r ′(u′)

]
,P(u)−P′(u′)

〉
;

d2
e,1(υ) = 2

〈
∂
∂e

[
r(u)− r ′(u′)

]
,Pu(u)v−P′

u′(u
′)v′

〉
;

d2
e,2(υ) = 2

〈
∂
∂e

[
r(u)− r ′(u′)

]
,
Z u

u
(u−s)rss(s)ds−

Z u′

u′
(u′− t)r ′tt(t)dt

〉
.

If we set thecrossing conditions P(u) = P′(u′) we obtain

D2
e,0(υ) = d2

e,0(υ) = 0

and, in particular, the constant terms in Taylor’s developments of∂D2/∂e and ∂d2/∂e
vanish.

The terms defined byD2
e,2 andd2

e,2 are at least infinitesimal of the second order with
respect to|ν| asυ → (u,u′), so that the first order terms in|ν| at crossing can be given
only byD2

e,1 andd2
e,1.

Using the theorems on the integrals depending on a parameterwe obtain

∂
∂e

[
Z u

u
(u−s)Pss(s)ds−

Z u′

u′
(u′− t)P′

tt(t)dt

]
=

Z u

u
(u−s)

∂Pss

∂e
(s)ds− ∂u

∂e
Puu(u)v−

Z u′

u′
(u′− t)

∂P′
tt

∂e
(t)dt+

∂u′

∂e
P′

u′u′(u
′)v′ ;

∂
∂e

[
Z u

u
(u−s)rss(s)ds−

Z u′

u′
(u′− t)r ′tt(t)dt

]
=

Z u

u
(u−s)

∂rss

∂e
(s)ds− ∂u

∂e
ruu(u)v−

Z u′

u′
(u′− t)

∂r ′tt
∂e

(t)dt+
∂u′

∂e
r ′u′u′(u

′)v′ ;

so that these two expressions are at least infinitesimal of the first order with respect to|ν|.
As these terms are multiplied by first order terms in the expressions ofD2

e,1 andd2
e,1, they

give rise to at least second order terms.
We can conclude that the first order terms in the expressions (5.1) and (5.2) are equal

and they are given by

2

〈
∂
∂e

[
P(u)−P′(u′)

]
−

[
∂u
∂e

Pu(u)− ∂u′

∂e
P′

u′(u
′)
]
,Pu(u)v−P′

u′(u
′)v′

〉
;

therefore the asymptotic developments of thee-derivatives ofD2(υ) andd2(υ) in a neigh-
borhood ofυ = (u,u′) are

∂
∂e

[
D2(υ)

]
= αv+βv′+ rD(υ) ;

∂
∂e

[
d2(υ)

]
= αv+βv′ + rd(υ) ;
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whereα,β are independent onu,u′ andrD(υ), rd(υ) are infinitesimal of the second order
with respect to|ν| asυ → (u,u′).

Using the decomposition
[

1
D3 −

1
d3

]
=

[
1
D

− 1
d

][
1

D2 +
1

Dd
+

1
d2

]
,

the boundedness of the remainder function 1/D−1/d and lemma 2 (that also hold in the
(u,u′) coordinates), we conclude that there exist two constantsL1,L2 > 0 such that

∣∣∣∣
∂
∂e

[
1

D(υ)

]
− ∂

∂e

[
1

d(υ)

]∣∣∣∣ =
1
2

∣∣∣
{[

1
D3(υ)

− 1
d3(υ)

](
αv+βv′

)
+

+
1

D3(υ)
rD(υ)− 1

d3(υ)
rd(υ)

}∣∣∣ ≤ L1
1
|ν| +L2

in a neighborhood ofυ = (u,u′) and the theorem is proven.

Singularities of the{e,ω}-derivatives of the average of1/d.

As det(A) > 0 and(ℓ,0) is in the interior part ofT2, we haved2
min+ r2

j (θ) > 0 for each
θ∈ [θ j ,θ j+1] and for eachj = 1. . .4. Then we can use again the theorem of differentiation
under the integral sign and compute, for instance, the derivative of the average of 1/d with
respect toe as

∂
∂e

Z

T2

1
d

dℓdℓ′ =
∂
∂e

[
1√

det(A)

]
·
{

4

∑
j=1

Z θ j+1

θ j

√
(d+

min)
2
+ r2

j (θ)dθ−2πd+
min

}
+

+

[
1√

det(A)

]
·





1
2

4

∑
j=1

Z θ j+1

θ j

∂
∂e

[(d+
min)

2
+ r2

j (θ)]
√

(d+
min)

2
+ r2

j (θ)
dθ−2π

∂
∂e

d+
min





.

(5.3)
We have similar formulas for the derivatives with respect toω, obtained simply by substi-
tution of the partial derivative operators.

The discontinuities present in the terms

∂
∂e

d+
min;

∂
∂ω

d+
min;

are responsible of the discontinuities in the derivatives of the averaged perturbing function
that produce a sort ofcrestsin the surfaces representing this function (see Figure 5.1)and
cause the loss of regularity in its level lines, where the weak averaged solutions lie.
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Figure 5.1: We draw the graphic of the averaged perturbing function (top) and its level lines (bottom) in the
plane(ω,e) for the Near Earth Asteroid 2000 CO101 (ω is in degrees in this figure). The loss of regularity
at the node crossing lines with the Earth is particularly evident for this object.
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5.1.1 Singularities of theI -derivative of R

We observe that we do not need to perform the splitting of Kantorovich’s method to
compute the derivative with respect toI of the integral average of 1/D, in fact we have
the following

PROPOSITION 7. If there is an ascending node crossing, the derivative of1/D with respect
to the mutual inclination I can be bounded by a function with afirst order polar singularity
in u,u′, so it is Lebesgue integrable overT

2.

Proof. We have
∂
∂I

[
1

D(υ)

]
= − 1

2D3(υ)

∂
∂I

[
D2(υ)

]
,

so we need to prove that∂D2/∂I is an infinitesimal of the second order with respect to|ν|
asυ → (u,u′). For this purpose we only need to check the vanishing of the term

2

〈
∂
∂I

[
P(u)−P′(u′)

]
−

[
∂u
∂I

Pu(u)− ∂u′

∂I
P′

u′(u
′)

]
,Pu(u)v−P′

u′(u
′)v′

〉
(5.4)

that formally represents the first order terms in the derivative of D2(υ) with respect toI .
as we can see from similar computations in Theorem 14. The expression in (5.4) vanishes
becauseP(u),P′(u′),u andu′ do not depend onI , in fact

cosusinω+βsinucosω = 0 .

5.1.2 The averaged equations and their discontinuities

In this section we describe in details the averaged equations of motion: we also put in
evidence the discontinuities of these equations giving analytical formulas for them. This
is done by means of Kantorovich’s decomposition, that allows us to give anoperative
definitionof the weak averaged solutions.

REMARK 14. It is possible that for very peculiar choices of the initial conditions the def-
inition of a weak averaged solution is not unique but there are two ways of continuing
the solution. This happens when the level line of the averaged Hamiltonian, that con-
strains the orbit in the phase space(ω,e), reaches a node crossing line being tangent to it.
This is possible when the crossing point corresponds to a local minimum of the averaged
perturbing function restricted to the node crossing line (see Chapter 6).

Description of the differential equations.
Let us consider the perturbing function

R= k2µ
1
D

(µ= m′/m⊙)
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as a function of the mean anomaliesℓ,ℓ′. The averaged equations that we want to solve,
in terms of the orbital elements, are

ω̇ = −∂R
∂G

= −∂R
∂e

[ −β
k
√

ae

]
+

∂R
∂I

[ cotgI
k
√

aβ

]
=

= k2µ
{[ β

k
√

ae

][ ∂
∂e

Z

T

1
d

dℓdℓ′+
Z

T

∂
∂e

( 1
D
− 1

d

)
dℓdℓ′

]
−

−
[ cotgI

k
√

aβ

][Z

T

∂
∂I

( 1
D

)
dℓdℓ′

]}
;

Ġ =
∂R
∂ω

=
∂

∂ω

Z

T

1
d

dl dl′+
Z

T

∂
∂ω

( 1
D
− 1

d

)
dℓdℓ′ ;

Ω̇ = −∂R
∂Z

= −∂R
∂I

[ −1
k
√

aβsinI

]
=

[ 1
k
√

aβsinI

]Z

T

∂
∂I

( 1
D

)
dℓdℓ′ .

Discontinuities of the equations.
We present the formulas for the discontinuities of the derivatives ofR.

Let
∂+

∂e
;

∂+

∂ω
; and

∂−

∂e
;

∂−

∂ω
;

be the partial derivative operators applied in the regions of the space whered+
nod > 0 and

d+
nod < 0 respectively, that is the partial derivatives of the restriction of a function to these

domains.
We define the operator ‘Diff’ to describe the differences in the right hand sides of

equations (4.3) atd+
nod = 0 when we pass from a region whered+

nod > 0 to a region
whered+

nod < 0; this definition is given taking into account the existenceof a continu-
ous extension of the derivatives to the boundaries of both the sets{d+

nod > 0}∩W and
{d+

nod < 0}∩W, whereW is the Kozai domain. We have

Diff

(
∂R
∂G

)
=

kµ(1−e2)

2π
√

det(A) ·e√a
·
[
1− a2a′2e2sin2ω

(1−e2)det(A)

] 1
2 ·Diff

(
∂|d+

nod|
∂e

)
;

Diff

(
∂R
∂ω

)
= − k2µ

2π
√

det(A)
·
[
1− a2a′2e2sin2ω

(1−e2)det(A)

] 1
2 ·Diff

(
∂|d+

nod|
∂ω

)
;

Diff

(
∂R
∂Z

)
= 0;

where

Diff

(
∂
∂e

|d+
nod|

)
=

[∂+|d+
nod|

∂e
− ∂−|d+

nod|
∂e

]
=

2a(cosω(1+e2)+2e)
(1+ecosω)2 ;

Diff
( ∂

∂ω
|d+

nod|
)

=
[∂+|d+

nod|
∂ω

− ∂−|d+
nod|

∂ω

]
= −2a(1−e2)esinω

(1+ecosω)2 .
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REMARK 15. In the last formula the quantities

∂+|d+
nod|

∂e
;

∂−|d+
nod|

∂e
;

∂+|d+
nod|

∂ω
;

∂−|d+
nod|

∂ω
;

have to be considered as the extensions of these functions tothe points of the common
boundaryd+

nod = 0.

5.2 Different kind of node crossings

In this section we shall briefly discuss the remaining two cases:crossings at the descend-
ing nodeanddouble crossings.

5.2.1 Descending node crossings

Let us assume that a descending node crossing occurs betweenthe orbits: we can define
weak averaged solutions of equations (3.23) following a procedure similar to the one
described in the previous sections.

We shall use the inverse of the Wetherill function 1/d1 to extract the principal part
from the direct term of the perturbing function. We observe that the point(ℓ1,π) is on the
boundary of the torusT2 = {(ℓ,ℓ′) : −π ≤ ℓ ≤ π,−π ≤ ℓ′ ≤ π}: we use the periodicity of
the function D and consider the shifted domain

τπ,0
(
T

2) = {(ℓ,ℓ′) : −π ≤ ℓ ≤ π,0≤ ℓ′ ≤ 2π} .

so that the crossing value(ℓ1,π) is generally an internal point.
In computing the derivatives ofR with respect to the variablesED , for instance the

G-derivative, we can use the decomposition

(2π)2

µk2

∂
∂G

R=
Z

τπ,0(T2)

∂
∂G

[
1
D
− 1

d1

]
dℓdℓ′+

∂
∂G

Z

τπ,0(T2)

1
d1

dℓdℓ′ . (5.5)

Discontinuities in the derivatives: in case of crossing at the descending node, we have
the following formulas:

det(Ad) =
a2a′2

(1−e2)
· (sin2 I(1−2ecosω+e2)+e2cos2 I sin2 ω) ;

Diff 1

(
∂
∂e

|d−
nod|

)
=

∂+
1 |d−

nod|
∂e

− ∂−1 |d−
nod|

∂e
= −2a(cosω(1+e2)−2e)

(1−ecosω)2 ;

Diff 1

(
∂

∂ω
|d−

nod|
)

=
∂+

1 |d−
nod|

∂ω
− ∂−1 |d−

nod|
∂ω

=
2a(1−e2)esinω
(1−ecosω)2 ;



5.3. DERIVATIVES OFR ALONG THE NODE CROSSING LINES 65

where
∂+

1

∂e
;

∂+
1

∂ω
; and

∂−1
∂e

;
∂−1
∂ω

;

are the partial derivative operators applied to the restriction to the regions of the space
whered−

nod > 0 andd−
nod < 0 respectively, and the operator ‘Diff1’ describes the differ-

ences in the right hand sides of equations (4.3) atd−
nod = 0, when we pass from a region

whered−
nod > 0 to a region whered−

nod < 0.

5.2.2 Double crossings

In the case of double crossings we use both the inverse of the Wetherill functions 1/d
and 1/d1 to extract the principal part from the direct term of the perturbing function. We
observe that the point(ℓ,0) is on the boundary ofτπ,0

(
T

2
)

and the point(ℓ1,π) is on the
boundary ofT2; we use again the periodicity of D and consider the shifted domain

τπ/2,0
(
T

2) = {(ℓ,ℓ′) : −π ≤ ℓ ≤ π,−π/2≤ ℓ′ ≤ 3π/2} ,

so that the crossing values(ℓ,0) and(ℓ1,π) are generally internal points.
In computing the derivatives ofR with respect to the variablesED , for instance the

G-derivative, we can use the decomposition

(2π)2

µk2

∂
∂G

R=

Z

τπ/2,0(T2)

∂
∂G

[
1
D
− 1

d
− 1

d1

]
dℓdℓ′+

∂
∂G

Z

τπ/2,0(T2)

1
d

dℓdℓ′+

+
∂

∂G

Z

τπ/2,0(T2)

1
d1

dℓdℓ′ .

5.3 Derivatives ofR along the node crossing lines

For each point(ω,e) on a node crossing line in the phase space we consider the unitvector
τω,e, tangent to the line at that point and we study the regularityproperties of the averaged
HamiltonianH restricted to the node crossing line. It comes out that the Hamiltonian is
derivable in each point(ω,e) of this curve along the direction ofτω,e, the tangent vector
to the curve in(ω,e).

The following result is easily shown:

LEMMA 3. Let F(x,y) ∈C∞(Ω;R) whereΩ ∈ R
2 is an open domain. Let us assume that

∇F(x,y) 6= 0 for each(x,y) ∈ Ω and let us consider the curveγ defined by the equation
F(x,y) = 0. If for each in(x,y) ∈ Ω we callτx,y the unit vector tangent toγ in (x,y) we
have that the function|F(x,y)| is derivable in(x,y) along the direction defined byτx,y,
and we have

∂|F|
∂τx,y

(x,y) = 0.



66 CHAPTER 5. HAMILTON’S EQUATIONS WITHH

Proof. Take(x,y) ∈ Ω and assume that∂xF(x,y) 6= 0, where∂x is the partial derivative
with respect tox. We can write a vector tangent toγ in (x,y) as

τx,y = (1,β(x,y)) with β(x,y) = −∂xF(x,y)
∂yF(x,y)

.

The derivative of|F| in (x,y), along the direction ofτx,y, is defined by

∂|F|
∂τx,y

(x,y) = lim
h→0

{ |F(x+h,y+hβ(x,y))|− |F(x,y)|
h

}
= lim

h→0

{ |F(x+h,y+hβ(x,y))|
h

}
.

Furthermore we have

F(x+h,y+hβ(x,y)) = F(x,y)+h∂xF(x,y)+hβ(x,y)∂yF(x,y)+o(h) =

= h
{

∂xF(x,y)+β(x,y)∂yF(x,y)
}

+o(h) =

= h

{
∂xF(x,y)− ∂xF(x,y)

∂yF(x,y)
∂yF(x,y)

}
+o(h) = o(h) .

The proof under the assumption that∂yF(x,y) 6= 0 is quite similar.

Let us consider the smooth functiond+
nod, whose zeros define the ascending node cross-

ing line. We observe that the gradient ofd+
nod is never zero in the interior part of the Kozai

domain: in fact

∂
∂e

d+
nod = −a(2e+(1+e2)cosω)

(1+ecosω)2 ;

∂
∂ω

d+
nod =

ae(1−e2)sinω
(1+ecosω)2 ;

so that if sinω = 0 we have either

2e+(1+e2)cosω = (1+e)2 > 0

or
2e+(1+e2)cosω = −(1−e)2 < 0 .

Let us fix a point(ω,e) on the node crossing line. We can prove, following the steps
of Section 5.1, that the only term that can be responsible of adiscontinuity at(ω,e) in the
derivatives of the averaged perturbing function along the directionτω,e tangent to(ω,e)
is

∂|d+
nod|

∂τω,e
;

by the previous lemma this derivative exists in(ω,e) and it is zero.
The proof for the derivatives ofR along the directions tangent to the descending node

lines is quite similar and will be omitted.


