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The Keplerian distance function

Let (Ej, vj), j = 1, 2 be the orbital elements of two celestial bodies on
Keplerian orbits with a common focus:
Ej represents the trajectory of a body,
vj is a parameter along it.
Set V = (v1, v2). For a given
two-orbit configuration
E = (E1,E2), we introduce the
Keplerian distance function

T2 3 V 7→ d(E ,V) = |X1 −X2|.

We are interested in the local
minimum points of d and in
particular in the absolute
minimum dmin, called orbit
distance, or MOID.
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Geometry of two confocal Keplerian orbits

Is there still something that we do not know about distance of
points on conic sections?

ἐθεώρουν σε σπεύδοντα μετασχεῖν

τῶν πεπραγμένων ἡμῖν κωνικῶν
(1)

(Apollonius of Perga, Conics, Book I)

(1) I observed you were quite eager to be kept informed of the work I was doing in conics.
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Critical points of d2

The local minimum points of d can be found by computing all the
critical points of d2 (so that crossing points are also critical).

How many are they?

Apart from the case of two concentric coplanar circles, or two
overlapping ellipses, d2 has finitely many critical points...

... but they can be more than what we expect!

There exist configurations with 12 critical points, and 4 local
minima of d2.
This is thought to be the maximum possible, but a proof is not
known yet.
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Computation of the local minima

There are several papers in the literature about the computation of
the MOID, e.g. Sitarski (1968), Dybczyński et al. (1986) and more
recently Hedo et al. (2018), Baluev and Mikryukov (2019).

The following papers introduced algebraic methods to compute all the
critical points of d2:

Kholshevnikov and Vassiliev, CMDA (1999), with Gröbner
bases;

Gronchi, SJSC (2002), CMDA (2005), with resultant theory.

They are based on a polynomial formulation of the problem, which
gives some advantages.
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Algebraic formulation

The critical points equations is

∇Vd2(E ,V) = 0. (1)

By the coordinate change

s = tan(v1/2) ; t = tan(v2/2)

we obtain from (1) a system of 2 polynomials in 2 unknowns{
p(s, t) = f4(t) s4 + f3(t) s3 + f2(t) s2 + f1(t) s + f0(t) = 0
q(s, t) = g2(t) s2 + g1(t) s + g0(t) = 0

each with total degree 6; precisely p(s, t) has degree 4 in s and
degree 2 in t, while q(s, t) has degree 2 in s and degree 4 in t.
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Computation of the solutions

From elimination theory we know that p and q have a common
solution if and only if

Res(p, q, s)(t) = detS(t) = 0 ;

where

S(t) =


f4 0 g2 0 0 0
f3 f4 g1 g2 0 0
0 f3 g0 g1 g2 0
f1 0 0 g0 g1 g2
f0 f1 0 0 g0 g1
0 f0 0 0 0 g0

 .

R(t) = Res(p, q, s)(t) is a polynomial with degree 20; it has a
factor (1 + t2)2 giving 4 imaginary roots.
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Maximal number of critical points

For the case of two bounded orbits we can prove the following:

If there are finitely many critical points of d2, then they are at
most 16 in the general case and at most 12 if one orbit is
circular.
The proof uses Bernstein’s theorem, which says that an upper bound
for the solutions in C2 is given by the mixed area of Newton’s
polygons of p e q:

Mixed Area(P,Q) = Area(P + Q)− Area(P)− Area(Q)
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Example with 12 critical points, 4 minima
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level curves of d2, plane of the
eccentric anomalies + = max

+ = min
∗ = saddle

By Morse theory
#(max) + #(min) = #(saddles)

Q e1 q e2 iM ω
(1)
M ω

(2)
M

0.585 0.415 0.462 0.615 80.0◦ 8.0◦ 176.0◦
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Near-Earth asteroid 1999AN10(data from NEODyS, August 7, 2006)
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u2 u1 distance type
57.20790383 214.71613368 0.00020038 MINIMUM

305.39545534 33.46086711 0.00443519 MINIMUM
1.58119802 124.24652678 0.66236738 SADDLE
1.65988384 304.47441317 1.53697717 SADDLE

180.95186706 303.07116589 1.64610573 SADDLE
180.19171642 122.55726209 3.12113151 MAXIMUM

http://newton.spacedys.com/neodys
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Conjecture

The following table gives a conjecture on the maximum number
of critical points in case of bounded orbits:

e1 6= 0 e2 6= 0 12 points
e1 6= 0 e2 = 0 10 points
e1 = 0 e2 6= 0 10 points
e1 = 0 e2 = 0 8 points

This is still an open problem!
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The local minimum distance maps

Gronchi and Tommei, DCDS-B (2007)

Let Vh = Vh(E) be a local minimum point of V 7→ d2(E ,V).
Consider the maps

E 7→ dh(E) = d(E ,Vh) ,

E 7→ dmin(E) = min
h

dh(E) .

The map E 7→ dmin(E) gives the MOID.
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Singularities of dh and dmin
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(i) dh and dmin are not differentiable where they vanish;
(ii) two local minima can exchange their role as absolute

minimum thus dmin loses its regularity without vanishing;
(iii) when a bifurcation occurs the definition of the maps dh may

become ambiguous after the bifurcation point.
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Problems in computing the uncertainty of dmin

Given a nominal orbit configuration Ē , with its covariance matrix
ΓĒ , the covariance propagation of a function of E , like dmin, is
based on a linearization of the function near Ē .

orbital
element

MOID map

MOID map

linearized 

nominal
value

distance

orbital
element

MOID map

MOID map

linearized 

nominal
value

distance

regularized
MOID map

Remark: dmin(E) is not smooth where it vanishes, thus usually
the linearizzation of dmin in a neighborhood of the nominal orbit
is not a good approximation (see fig. on the left)
Problem: can we give a sign to dmin(E) so that its linearization
becomes meaningful (see fig. on the right)?
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Smoothing through change of sign

y−axis

x−axis

y−axis

x−axis

Toy problem:

f (x, y) =
√

x2 + y2 f̃ (x, y) =

{
−f (x, y) for x > 0

f (x, y) for x < 0

Can we smooth the maps dh(E), dmin(E)
through a change of sign?
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Local smoothing of dh at a crossing singularity

Smoothing dh, the procedure for dmin is the same.
Consider the points on the two orbits

X (h)
1 = X1(E1, v

(h)
1 ) ; X (h)

2 = X2(E2, v
(h)
2 ) .

corresponding to the local minimum point
Vh = (v(h)

1 , v(h)
2 ) of d2;
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Local smoothing of dh at a crossing singularity

introduce the tangent vectors to the trajectories E1,E2 at
these points:

τ1 =
∂X1

∂v1
(E1, v

(h)
1 ) , τ2 =

∂X2

∂v2
(E2, v

(h)
2 ) ,

and their cross product

τ3 = τ1 × τ2;
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Local smoothing of dh at a crossing singularity

define also

∆ = X1 −X2, ∆h = X (h)
1 −X (h)

2 .

The vector ∆h joins the points attaining a local minimum of
d2 and |∆h| = dh.

Note that ∆h × τ3 = 0.
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Smoothing the crossing singularity

smoothing rule:

d̃h = sign(τ3 ·∆h)dh

E 7→ d̃h(E) is an analytic map in a neighborhood of most
crossing configurations.
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Uncertainty of the MOID

For a given orbit Ē , with its covariance matrix ΓĒ , the
covariance propagation formula

Γd̃min(Ē) =

[
∂d̃min

∂E
(Ē)

]
ΓĒ

[
∂d̃min

∂E
(Ē)

]t

allows us to compute the covariance of the regularized MOID.
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Using the orbit distance

to detect observational biases

in the discovery of NEAs
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(q, ω) plot of all the known NEAs

Gronchi and Valsecchi, MNRAS (2014)
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The blue dots are NEAs with H > 22.
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(q, e) plot of all the known NEAs
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The blue dots are NEAs with H > 22.
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Geometry of ground-based observations

Consider the orbits of the
Earth and of a NEA. We
denote by dmin the MOID
between the trajectories of
these two bodies.
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Most NEAs with a small value of dmin are detected, sooner
or later;
small NEAs with a large value of dmin are likely to be
unobserved.
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(q, dmin) plot of all the known NEAs
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Projections

In all the previous plots we see projections on a plane of data
from an N-dimensional space, with N > 2.

pi

‘Nothing was visible, nor could be
visible, to us, except Straight Lines’
(E. A. Abbot), Flatland.
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The near-Earth asteroid class

We define the NEA class N as the set of cometary orbital
elements (q, e, I,Ω, ω) such that

q ∈ [0, qmax], e ∈ [0, 1], I ∈ [0, π], Ω ∈ [0, 2π], ω ∈ [0, 2π].

Here q is the perihelion distance and qmax = 1.3 au.

We use
q′ = 1, e′ = 0, I′ = 0, Ω′ = 0, ω′ = 0

for the elements of the Earth.
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Possible values of dmin as function of (q, ω)

Let D1 = {(e, I) : 0 ≤ e ≤ 1, 0 ≤ I ≤ π}. For each choice of
(q, ω), with 0 < q ≤ qmax, 0 ≤ ω ≤ 2π, we have

max
(e,I)∈D1

dmin = max{q′ − q, δ(q, ω)}

where δ(q, ω) is the distance
between the orbit of the
Earth and a parabolic orbit
(e = 1) with I = π/2.
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Maximal orbit distance as function of (q, ω)
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Distribution of NEAs in the plane (q, ω)

0 0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

200

250

300

350

0.05
0.1

0.2

0.3

0.3

0.5

0.5

0.8
0.8

1

1

0.05
0.1

0.2

0.3

0.3

0.5

0.5

0.8
0.8

1

1

0.05
0.1

0.2

0.3

0.3

0.5

0.5

0.8
0.8

1

1

0.05
0.1

0.2

0.3

0.3

0.5

0.5

0.8
0.8

1

1

perihelion distance

a
rg

u
m

e
n
t 
o
f 
p
e
ri
h
e
lio

n

Blue dots are NEAs with H > 22, red dots with H < 16.
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Distribution of NEAs in the plane (q, dmin)
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Distribution of NEAs in the plane (q, dmin)
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Possible values of dmin as function of (q, e)

Let D3 = {(I, ω) : 0 ≤ I ≤ π, 0 ≤ ω ≤ 2π}. For each choice of
(q, e) with 0 < q ≤ qmax, 0 ≤ e ≤ 1 we have

max
(I,ω)∈D3

dmin = max{min{q′ − q,Q− q′}, δ(q, e)}

where Q = q(1 + e)/(1− e) is
the aphelion distance and
δ(q, e) is the distance
between the orbit of the
Earth and an orbit with
I = π/2, ω = π/2.
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Maximal orbit distance as function of (q, e)
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Distribution of NEAs in the plane (q, e)
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Blue dots are NEAs with H > 22, red dots with H < 16.
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Possible values of dmin as function of (q, I)

Let D5 = {(e, ω) : 0 ≤ e ≤ 1, 0 ≤ ω ≤ 2π}. For each choice of
(q, I) with 0 < q ≤ qmax, 0 ≤ I ≤ π we have

max
(e,ω)∈D5

dmin = max{q′ − q, δI(q, I)}

where δI(q, I) is the distance
between the orbit of the
Earth and an orbit with
e = 1, ω = π/2.
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Maximal orbit distance as function of (q, I)
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Distribution of NEAs in the plane (q, I)
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Blue dots are NEAs with H > 22, red dots with H < 16.
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Observing from inner-Earth circular orbits...
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The eccentric case e′ ∈ (0, 1)

Problem: generalize this theory to the eccentric case e′ ∈ (0, 1).

Gronchi and Niederman, CMDA (2020)

Mutual orbital elements: EM = (q, e, q′, e′, IM, ωM, ω
′
M)

O

A

A′

mutual nodal line

ωM

ω′M

IM
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The eccentric case e′ ∈ (0, 1)
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Graphic of maxD̃1
dmin(q, ω), with D̃1 = {(e, I, ω′) : 0 ≤ e ≤ 1, 0 ≤ I ≤ π/2, 0 ≤ ω′ ≤ 2π}.

e′ = 0.1 (top left), e′ = 0.2 (top right), e′ = 0.3 (bottom left), e′ = 0.4 (bottom right). Here we set q′ = 1.
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The nodal distance

Let

r+ =
q(1 + e)

1 + e cosω
, r− =

q(1 + e)

1− e cosω
,

r′+ =
q′(1 + e′)

1 + e′ cosω′
, r′− =

q′(1 + e′)
1− e′ cosω′

and introduce the ascending and descending nodal distances:

d+
nod = r′+ − r+, d−nod = r′− − r−.

The (minimal) nodal distance δnod is the minimum between the
absolute values of the ascending and descending nodal distances:

δnod = min
{
|d+

nod|, |d
−
nod|
}
. (2)

Note that δnod does not depend on the mutual inclination I.
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The nodal distance

The transformations

(ω, ω′) 7→ (π − ω, π − ω′), (ω, ω′) 7→ (π + ω, π − ω′),
(ω, ω′) 7→ (2π − ω, ω′), (ω, ω′) 7→ (ω, 2π − ω′)

leave the values of δnod unchanged.

Therefore we get all the possible values of δnod even if we
restrict ω, ω′ to the following ranges:

0 ≤ ω ≤ π/2, 0 ≤ ω′ ≤ π. (3)
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Linking configurations

We consider the following linking configurations between the
trajectories A,A′:

- internal nodes: the nodes of A are internal to those of A′,
that is d+

nod, d
−
nod > 0.

- external nodes: the nodes of A are external to those of A′
(possibly located at infinity), that is d+

nod, d
−
nod < 0.

- linked orbits: A and A′ are topologically linked, that is
d+

nod < 0 < d−nod, or d−nod < 0 < d+
nod;

- crossing orbits: A and A′ have at least one point in
common, that is d+

nodd−nod = 0.
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Linking configurations

Assume q′ > 0 and e′ ∈ [0, 1) are given. We introduce the
functions

δint(q, e, ω, ω′) = min{d+
nod, d

−
nod},

δext(q, e, ω, ω′) = min{−d+
nod,−d−nod},

δ
(i)
link(q, e, ω, ω′) = min{−d+

nod, d
−
nod},

δ
(ii)
link(q, e, ω, ω′) = min{d+

nod,−d−nod},

δlink(q, e, ω, ω′) = max{δ(i)
link, δ

(ii)
link}.
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Linking configurations

The linking configurations depend on the sign of these functions
as described below. Given the vector (q, e, ω, ω′), we have

a) internal nodes if and only if δint(q, e, ω, ω′) > 0,
b) external nodes if and only if δext(q, e, ω, ω′) > 0,
c) linked orbits if and only if δlink(q, e, ω, ω′) > 0,
d) crossing orbits if and only if δint = δext = δlink = 0 at

(q, e, ω, ω′).
Moreover,

δnod = max{δint, δext, δlink}.

In the following we assume q′ > 0 and e′ ∈ (0, 1) are given.
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Optimal bounds for δnod when e′ ∈ (0, 1)

Let

D1 = {(e, ω′) : 0 ≤ e ≤ 1, 0 ≤ ω′ ≤ π},
D2 = {(q, ω) : 0 < q ≤ qmax, 0 ≤ ω ≤ π/2}.

For each choice of (q, ω) ∈ D2 we have

min
(e,ω′)∈D1

δnod = max
{

0, `ωint, `
ω
ext
}
,

max
(e,ω′)∈D1

δnod = max
{

uωint, u
ω
ext, u

ω
link
}
,
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Optimal bounds for δnod when e′ ∈ (0, 1)

where1

`ωint(q, ω) = q′− 2q
1− cosω

, `ωext(q, ω) = q−Q′, uω
int(q, ω) = p′−q,

uωext(q, ω) = min
{ 2q

1− cosω
− p′

1− ξ̂′∗
,

2q
1 + cosω

− q′
}
,

with
ξ̂
′
∗ = min{ξ′∗, e′}, ξ

′
∗(q, ω) =

4q cosω

p′ sin2 ω +
√

p′2 sin4 ω + 16q2 cos2 ω
,

and

uω
link(q, ω) = min

{
Q′ − q(1 + ê∗)

1 + ê∗ cosω
,

2q
1− cosω

− q′
}
, (4)

with

ê∗ = max
{

0,min{e∗, 1}
}
, e∗(q, ω) =

2(p′ − q(1− e′2))

q(1− e′2) +
√

q2(1− e′2)2 + 4p′ cos2 ω(p′ − q(1− e′2))
.

1we admit infinite values for the considered functions
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Graphics of (q, ω) 7→ max(e,ω′)∈D1 δnod(q, ω) for e′ = 0.1 (top left),
e′ = 0.2 (top right), e′ = 0.3 (bottom left), e′ = 0.4 (bottom right). Here
we set q′ = 1.
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Optimal bounds for δnod when e′ = 0

Set

D′′1 = {e : 0 ≤ e ≤ 1}, D2 = {(q, ω) : 0 < q ≤ qmax, 0 ≤ ω ≤ π/2}.

For each choice of (q, ω) ∈ D2 we have

min
e∈D′′1

δnod = max
{

0, q′ − 2q
1− cosω

, q− q′
}
,

max
e∈D′′1

δnod = max
{

q′ − q,
2q

1 + cosω
− q′

}
.
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Optimal bounds for δnod when e′ = 0
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Left: max(e,I)∈D′1 dmin(q, ω), with D′1 = {(e, I) : 0 ≤ e ≤ 1, 0 ≤ I ≤ π/2}.
Right: maxe∈D′′1 δnod(q, ω).
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The curves γ and β

(G. and Valsecchi 2014) introduced the curve γ, which separates the
region in the plane (q, ω) where the trajectories maximizing dmin over
D′1 have e = 0, from the region where such trajectories have e = 1,
that is, γ is the set of points (q, ω) where q′ − q and δ(q, ω), assume
the same values. The equation of γ is

2q4 + 2q′(−5 + 7y)q3 − 2q′2(3y + 22)(y− 1)q2+

+ q′3(y3 + 13y2 + 9y− 27)q− 2q′4y3 = 0,

with y = cosω.
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The curves γ and β
The equation of the curve analogous to γ for δnod (for e′ = 0) is

qy + 3q− 2q′y− 2q′ = 0, (5)

that is easily obtained by equating q′ − q with 2q
1+cos ω − q′. We denote

by β the curve defined by (5). In Figure 1 we plot both curves for
comparison.
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Figure: Comparison between the curves γ and β.
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Optimal bounds for δnod when e′ ∈ (0, 1)

Let

D3 = {(ω, ω′) : ω ∈ [0, π/2], ω′ ∈ [0, π)},
D4 = {(q, e) : q ∈ (0, qmax], e ∈ [0, 1]}.

For each choice of (q, e) ∈ D4 we have

min
(ω,ω′)∈D3

δnod = max
{

0, ` e
int, `

e
ext

}
,

max
(ω,ω′)∈D3

δnod = max{u e
link, |p′ − q(1 + e)|},

where2

` e
int(q, e) = q′ − q(1 + e)

1− e
, ` e

ext(q, e) = q− Q′,

u e
link(q, e) = min

{
q(1 + e)

1− e
− q′,Q′ − q

}
.

2here ` e
int(q, 1) = −∞, and u e

link(q, 1) = Q′ − q.
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Graphic of (q, e) 7→ max(ω,ω′)∈D3 δnod(q, e) for e′ = 0.1 (top left), e′ = 0.2
(top right), e′ = 0.3 (bottom left), e′ = 0.4 (bottom right). Here we set
q′ = 1.
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Optimal bounds for δnod when e′ ∈ (0, 1)

Let

D5 = {(e, ω) : e ∈ [0, 1], ω ∈ [0, π]},
D6 = {(q, ω′) : q ∈ [0, qmax], ω′ ∈ [0, π/2]}.

For each choice of (q, ω′) ∈ D6 we have

min
(e,ω)∈D5

δnod = max
{

0, `ω
′

ext

}
,

max
(e,ω)∈D5

δnod = max
{

uω
′

link, u
ω′

ext

}
,

where

`ω
′

ext(q, ω′) = q− p′

1− e′ cosω′
, uω′

link(q, ω′) =
p′

1− e′ cosω′
− q,

and
uω′

ext(q, ω′) =
2q

1 + cosω∗
− p′

1 + e′ cosω′
,

with
cosω∗ =

p′e′ cosω′√
q2(1− e′2 cos2 ω′)2 + (p′e′ cosω′)2 + q(1− e′2 cos2 ω′)

.
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Graphic of (q, ω′) 7→ max(e,ω)∈D5 δnod(q, ω′) for e′ = 0.1 (top left),
e′ = 0.2 (top right), e′ = 0.3 (bottom left), e′ = 0.4 (bottom right). Here
we set q′ = 1.
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Linking conditions: (q, ω)

The zero level curves of `ωint, `
ω
ext, u

ω
int, u

ω
ext divide the plane (q, ω) into

regions where different linking configurations can occur. Moreover,
uω

ext(q, ω) = 0 is a piecewise smooth curve with only one component, a
portion of which is a vertical segment with q = p′/2.
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Linking conditions: (q, e)

The zero level curves of ` e
int, `

e
ext, p

′ − q(1 + e) divide the plane (q, e)
into regions where different linking configurations can occur.
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Linking conditions: (q, ω′)

The zero level curves of `ω
′

ext, u
ω′

int , u
ω′

ext divide the plane (q, ω′) into
regions where different linking configurations can occur. Moreover,
the curve uω

′

ext = 0 corresponds to the straight line q = p′/2.
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Application to the known population of NEAs
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Orbital distribution of the known NEAs (July 23, 2019) in the plane
(q, ω). The gray dots correspond to faint asteroids (H > 22).
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Thanks for your attention!
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