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The Keplerian distance function

Let (E;,v;),j = 1,2 be the orbital elements of two celestial bodies on
Keplerian orbits with a common focus:

E; represents the trajectory of a body,
v; is a parameter along it.

Set V = (v1,1,). For a given

two-orbit configuration

& = (E\, E»), we introduce the
Keplerian distance function

T> 5V dE,V) =& — &

We are interested in the local

minimum points of 4 and in
particular in the absolute
minimum d,,;,, called orbit
distance, or MOID.
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Geometry of two confocal Keplerian orbits

Is there still something that we do not know about distance of
points on conic sections?

£0ewpouy oe GTELBOVTA UETACYELY
6V memporyUévev AU xwvixéy (D
(Apollonius of Perga, Conics, Book I)

(1) I observed you were quite eager to be kept informed of the work | was doing in conics.
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Critical points of d°

@ The local minimum points of d can be found by computing all the
critical points of @* (so that crossing points are also critical).

How many are they?

@ Apart from the case of two concentric coplanar circles, or two
overlapping ellipses, 4> has finitely many critical points...

... but they can be more than what we expect!

@ There exist configurations with 12 critical points, and 4 local
minima of d>.
This is thought to be the maximum possible, but a proof is not
known yet.
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Computation of the local minima

There are several papers in the literature about the computation of
the MOID, e.g. Sitarski (1968), Dybczynski et al. (1986) and more
recently Hedo et al. (2018), Baluev and Mikryukov (2019).

The following papers introduced algebraic methods to compute all the
critical points of ¢2:

@ Kholshevnikov and Vassiliev, CMDA (1999), with Grébner
bases;
@ Gronchi, SJSC (2002), CMDA (2005), with resultant theory.

They are based on a polynomial formulation of the problem, which
gives some advantages.
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Algebraic formulation

The critical points equations is
Vyd*(E,V) = 0. (1)
By the coordinate change
s =tan(vy/2); t = tan(v/2)
we obtain from (1) a system of 2 polynomials in 2 unknowns

{ p(s, 1) =fa()s* +f5(1) 8 + fo(t) s + fi(t) s + fo(t) = O
q(s,t) =g (1) s> +g1(t) s+ go(r) =0

each with total degree 6; precisely p(s, t) has degree 4 in s and
degree 2 in ¢, while ¢(s, ) has degree 2 in s and degree 4 in 1.
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Computation of the solutions

From elimination theory we know that p and ¢ have a common
solution if and only if

Res(p,q,s)(t) = dets(t) =0;

where
fi 0 g 0 0

0
Sofa &1 & 0 0
0 f5 g & & O
fi 00 g & &
o i 0 0 g &
0O fo6 0 0 0 g

R(t) = Res(p, q,s)(t) is a polynomial with degree 20; it has a
factor (1 + £2)? giving 4 imaginary roots.
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Maximal number of critical points

For the case of two bounded orbits we can prove the following:

If there are finitely many critical points of d°, then they are at
most 16 in the general case and at most 12 if one orbit is
circular.

The proof uses Bernstein’s theorem, which says that an upper bound
for the solutions in C? is given by the mixed area of Newton’s
polygons of p e ¢:

Mixed Area(P, Q) = Area(P + Q) — Area(P) — Area(Q)

s

Minkowski sum
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Example with 12 critical points, 4 minima

level curves of 4%, plane of the
eccentric anomalies

200 1% —+ = max
+ = min
150 * = saddle

By Morse theory
#(max) + #(min) = #(saddles)

0 el q e iM wﬁ) w,(,j)

0.585 0.415 0462 0.615 80.0° 8.0° 176.0°
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) uy distance type
57.20790383 214.71613368 0.00020038 MINIMUM
305.39545534 33.46086711 0.00443519 MINIMUM
1.58119802 124.24652678 0.66236738 SADDLE
1.65988384 304.47441317 1.53697717 SADDLE
180.95186706  303.07116589  1.64610573 SADDLE
180.19171642 122.55726209 3.12113151 MAXIMUM

http://newton.spacedys.com/neodys
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The following table gives a conjecture on the maximum number
of critical points in case of bounded orbits:

e1 #0 | ex#£0 | 12 points
e1 20 | e =0 | 10 points
e1 =0 | e; #0 | 10 points
e1=0|e;=0] 8points

This is still an open problem!
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The local minimum distance maps

Gronchi and Tommei, DCDS-B (2007)

Let V, = V(&) be a local minimum point of V — d*(&, V).
Consider the maps

& dh(g) = d(g Vh)
Edpuin(€) = mlndh(éf)

The map € — duin(E) gives the MOID.
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Singularities of d;, and d,,,;,

4 4 4
3 3 3
] ] 2
A A 49 | =
© el ©
! ! \/\ ! d1
d1 d2
0 0 0
0 2 4 0 2 4 0 2 4
orbital elements orbital elements orbital elements

() dn and d,,i, are not differentiable where they vanish;

(i) two local minima can exchange their role as absolute
minimum thus d,,;, loses its regularity without vanishing;

(i) when a bifurcation occurs the definition of the maps d;, may
become ambiguous after the bifurcation point.

Giovanni F. Gronchi Bad Hofgastein January 13-17, 2020 (Austria)



Problems in computing the uncertainty of d,,;,

Given a nominal orbit configuration £, with its covariance matrix
'z, the covariance propagation of a function of £, like dyin, is
based on a linearization of the function near €.

i distance
distance .
linearized linearized
MOID map MOID map

MOID map _.-- MOID map

i i nominal orbital
r\l/(;‘lﬂlenal 2{?:;2{1[ value element
regularized
MOID map

Remark: di,(£) is not smooth where it vanishes, thus usually
the linearizzation of d,,;, in a neighborhood of the nominal orbit
is not a good approximation (see fig. on the left)

Problem: can we give a sign to d,,;,(€) so that its linearization
becomes meaningful (see fig. on the right)?
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Smoothing through change of sign
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Toy problem:

= /x Nx _ _f(xay)
f(xay)_ 2+y2 f( 7y)_ f(x,y)

Can we smooth the maps (&), dyin(E)
through a change of sign?

forx >0
forx <0

ad Hofgaste

2020 (Austria)



Local smoothing of d), at a crossing singularity

Smoothing d,, the procedure for d,,;, is the same.
@ Consider the points on the two orbits

Xl(h) = X] (E] y V(lh)) 3 Xz(h) = XQ(Ez, Vgh)> .

corresponding to the local minimum point
Vi = " 0y of a2;
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Local smoothing of d), at a crossing singularity

A

@ introduce the tangent vectors to the trajectories Ey, E; at
these points:

00X,
ovy

00X,

oAz (h)
8\/2 (EZa V2 ) )

n ==L (E, ), T =

and their cross product

T3 =TI X T;
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Local smoothing of d), at a crossing singularity

@ define also
A=X - X, Ap=x" - x.

The vector A, joins the points attaining a local minimum of
d* and |Ah| = d,.

Note that A, x =5 = 0.
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Smoothing the crossing singularity

smoothing rule:

glh = sign(T3 o Ah)dh J j

£ — d,(€) is an analytic map in a neighborhood of most
crossing configurations.
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Uncertainty of the MOID

For a given orbit £, with its covariance matrix I's, the
covariance propagation formula

~ ~ t
admin G admin G

allows us to compute the covariance of the regularized MOID.
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Using the orbit distance
to detect observational biases
in the discovery of NEAs
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(¢,w) plot of all the known NEA

Gronchi and Valsecchi, MNRAS
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The blue dots are NEAs with H > 22.
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plot of all the known NEA
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Geometry of ground-based observations

Consider the orbits of the
Earth and of a NEA. We
denote by d,,;, the MOID
between the trajectories of
these two bodies.

@ Most NEAs with a small value of 4,,;, are detected, sooner
or later;

@ small NEAs with a large value of d,,;, are likely to be
unobserved.
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(q, dmin) plot of all the known NEAs
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Projections

In all the previous plots we see projections on a plane of data
from an N-dimensional space, with N > 2.

i,

pi

‘Nothing was visible, nor could be
- visible, to us, except Straight Lines’
(E. A. Abbot), Flatland.

|
]
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The near-Earth asteroid class

We define the NEA class N as the set of cometary orbital
elements (q,e,1,,w) such that

q € 10,gmar], €€10,1], 1€[0,7], Q€ [0,27], w € [0,27].
Here ¢ is the perihelion distance and ¢, = 1.3 au.

We use
g=1 =0 1I=0 Q=0 =0

for the elements of the Earth.
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Possible values of d,,;, as function of (¢, w)

Let D; = {(e,I): 0 <e < 1,0 <7<} Foreach choice of
(q,w), With 0 < ¢ < Gax, 0 < w < 27, we have

max d, = max{q — q,0(q,w
s {4 —q,6(q,w)}

//_-_\
where 6(g,w) is the distance

between the orbit of the

Earth and a parabolic orbit ﬁ

(e = 1) with I = /2.
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Distribution of NEAs in the plane (g, w)
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Distribution of NEAs in the plane (g, din)
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Possible values of d,,;, as function of (g, e)

Let D3 = {(I,w) : 0 <I <7,0<w < 2r}. For each choice of
(g,e) wWith 0 < ¢ < Gmax, 0 < e < 1 we have

max  dpyin = max{min{q/ —q, Q - ql}a 5(Q7 e>}

(I,L;))GD:;

where Q =¢q(1 +e¢)/(1 —e)is
the aphelion distance and
(g, e) is the distance
between the orbit of the
Earth and an orbit with
[=7/2,w=m/2.
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Maximal orbit distance as function of
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Distribution of NEAs in the plane (g, ¢)
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Possible values of d,,;, as function of (g, 1)

Let Ds = {(e,w) : 0 < e < 1,0 <w < 2x}. For each choice of
(g, 1) with 0 < g < gmax, 0 < I < 7 we have

max  dy;, = max{q —q,0;(q,1)}
(e,w)€Ds

where ¢&;(g,I) is the distance
between the orbit of the
Earth and an orbit with
e=1,w=m/2.

Giovanni F. Gronchi
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Distribution of NEAs in the plane (g, 1)
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Blue dots are NEAs with H > 22, red dots with H < 16.
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Observing from inner-Earth circular orbits...
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The eccentric case ¢’ € (0, 1)

Problem: generalize this theory to the eccentric case ¢’ € (0, 1).
Gronchi and Niederman, CMDA (2020)

Mutual orbital elements: &y = (¢, ¢e,q, €', I, wpr, wyy)

mutual nodal line
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q 14 0

Graphic of max 5 dnin (4, ), With Dy ={(e,,w):0<e<1,0<I<7m/2,0<w <2r}.

¢/ = 0.1 (top left), ¢/ = 0.2 (top right), ¢/ = 0.3 (bottom left), ¢’ = 0.4 (bottom right). Here we set ¢’ = 1.
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The nodal distance

Let
q(1+e) q(1+e)
r+:7, r-=————,
1+ ecosw 1 —ecosw
L d+e) g+
T 1+ e cosw!’ T 1—¢ cosw!

and introduce the ascending and descending nodal distances:
d+d—r+ ry, doa=r_—r_.

The (minimal) nodal distance 6,4 is the minimum between the
absolute values of the ascending and descending nodal distances:

5n0d = mln{|dnod| |dnod|} (2)

Note that 4,0, does not depend on the mutual inclination 1.
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The nodal distance

The transformations

(w, ) = (T —w,m =), (W, ') = (T +w,m =),

(w, ) = 27 —w,w'), (W, ) = (w, 27 — ')
leave the values of §,,q unchanged.

Therefore we get all the possible values of 6,4 even if we
restrict w,w’ to the following ranges:

0<w<7/2, 0<uo <. (3)
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Linking configurations

We consider the following linking configurations between the
trajectories A, A’:
- internal nodes: the nodes of A are internal to those of A’,
thatis df ;. d,., > 0.
- external nodes: the nodes of A are external to those of A’
(possibly located at infinity), thatis d ,,d__, < 0.

nod7 nod
- linked orbits: .A and A’ are topologlcally linked, that is
dt <0<d_ g ord ,<0<d

nod nod? nod’
- crossing orbits: A and A’ have at least one point in
common, that is dt .d

nod%nod —
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Linking configurations

Assume ¢’ > 0 and ¢’ € [0, 1) are given. We introduce the
functions . o

5int(¢]7 e,w,w ) = mln{dnod’ dnod}’

5ext(Q7 e, w, w/) = min{_dnt)d? _dr?()d}’

51&21((‘17 €, W, w/> - min{_d;:)dv d[;)d}’

61(11rllf<(qv €, W, w,) = min{drj;)d? _dr;)d}’

(g, 50,) = man 00,02
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Linking configurations

The linking configurations depend on the sign of these functions
as described below. Given the vector (g, e, w,w’), we have

a) internal nodes if and only if d;n (g, e, w,w’) > 0,
b) external nodes if and only if dex(g, €, w,w’) > 0,
c) linked orbits if and only if (g, €, w,w’) > 0,
d) crossing orbits if and only if dijp = Jext = diink = 0 at
(g, e,w,w).
Moreover,
Onod = Max{dint, ext: Iink } -

In the following we assume ¢’ > 0 and ¢’ € (0, 1) are given.
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Optimal bounds for 4,,,¢ when ¢’ € (0, 1)

Let

Dy ={(e,u):0<e<1,0<w <7},
Dy = {(q,w) : 0 < ¢ < gimax, 0 < w < 7/2}.

For each choice of (¢,w) € D, we have

. - w o pw
(e 013’1)121)| 5nod B maX{O, ginn Eext ’

_ wow W
( H}?ép Onod = maX{”int? Uext) ”link}v
e,w 1
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Optimal bounds for 4,,,¢ when ¢’ € (0, 1)

where'
(g, w) —g- lalgw)=q-0",  uplq,w)=p"—q,
nt 1 — cosw ex il
2 / 2
ug‘t(q’w):min{l—cqosw_ . 72! o /}’
1-£ + cosw
with )
1 — minfe! o o w) = g cos w
S = min{E,. e}, £ala ) p’ sin2 w + /p'? sin* w + 1642 cos? w
and (1t 5
. gl + e, q ’
w w) =min< Q' — - , 4
uhnk(qa ) {Q 1+ é* COSW7 1 — cosw q } ( )
with
o _ 2
2, = max{0, min{ex, 1}}, ex (g, w) = 20" — a0 )

q(1 —e’?) + \/qz(l — )2 4 4p’ cos? w(p’ — q(1 — e’?))

'we admit infinite values for the considered functions
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we set¢ = 1.
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Optimal bounds for §,,q when ¢/ =0

Set
DY:{EZOSE’SI}, DZZ{(q,w)20<QSCImaXaOSWS7T/2}'

For each choice of (¢,w) € D, we have

2
min 5n0d = max {qu/ - lqaq_q/}v

¢c€D!! —cosw
2q
/ /
max dyog = max<q —q,——— — ¢ .
ecD!! "1+ cosw
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q
Left: max(, nyep; dmin(g,w), With D] = {(e,I) : 0 < e < 1,0 <1 <7/2}.
Right: max,ep: dnod(q, w).
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The curves v and

(G. and Valsecchi 2014) introduced the curve v, which separates the
region in the plane (¢, w) where the trajectories maximizing d,, over
D) have e = 0, from the region where such trajectories have e = 1,
that is, ~ is the set of points (¢,w) where ¢’ — g and 6(g,w), assume
the same values. The equation of v is

2¢" +24' (=5 +7y)q* —2¢"*(3y +22)(y — 1)¢*+
+ 47 (7 + 13y* + 9y — 27)g — 2¢"*y* = 0,

with y = cosw.
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The curves v and

The equation of the curve analogous to v for d,.q (for ¢’ = 0) is

qy+3q—24y—2¢' =0, (5)
that is easily obtained by equating ¢’ — ¢ with 1+§st — ¢'. We denote
by 3 the curve defined by (5). In Figure 1 we plot both curves for

comparison.

Figure: Comparison between the curves v and .
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Optimal bounds for 4,,,¢ when ¢’ € (0, 1)

Let
D; = {(w,w) :w € [0,7/2],w €0,m)},
Dy ={(q,€) : q € (0,gmax], € € [0,1]}.

For each choice of (¢,¢) € Dy we have

: e e
min = dpog = max{O,Eim, éext},

(w,w’)EDs
max _ Gnod = max{ugy, [p" — (1 +e)|},
(w,w’)EDs
where?
; q(1+e) e
Eint(Qv 6) = q/ - ﬁa eext(qv 6‘) =q— Qly

e . ql—l—e
uii (g, e) mm{ (1 e) — 4.0 q}.

2he|'e giren(qf 1) = — 00, and ulienk(Q7 1) = Ql —dq-
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Graphic of (g, e) — max(,, ,/)ep, dnod(q, €) for ¢’ = 0.1 (top left), ¢’ = 0.2
(top right), ¢’ = 0.3 (bottom left), ¢’ = 0.4 (bottom right). Here we set
qg =1.
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Optimal bounds for 4,,,¢ when ¢’ € (0, 1)

Let

Ds = {(e,w) : e € [0,1],w € [0, 7]},

Ds = {(g:w') : q € [0, gmax], " € [0,7/2]}.
For each choice of (¢,w’) € Ds we have

’
o w
min g = max{O7 Eexl},

(e,w)EDs
(egl)‘?pj Onod = max{uﬁnka u;;t}v
where
' /
!’ p , / p
o) =g — — P R
ext(qv ) q 1 — e cosw’ ’ link (('Ia ) 1= coss q,
and ) |
!’ q p
u? w/ — o
ext(q7 ) ] +COSW* 1 +€/ COSL,L}”
with

[)/(’, cos LL)/
COS Wy =

\/qz(l —e’2cos? w’)2 + (p’e’ cosw’)? + q(1 — e’2 cos? w’)
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Graphic of (g,w’) = max, .)ep, dnoda(q,w") for ¢’ = 0.1 (top left),
¢’ = 0.2 (top right), ¢’ = 0.3 (bottom left), ¢/ = 0.4 (bottom right). Here
we set ¢ = 1.
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Linking conditions: (g, w)

Thg zero level curves of L Coxes Uinys U inide the plane (¢,w) into
regions where different linking configurations can occur. Moreover,

u%.(q,w) = 0 is a piecewise smooth curve with only one component, a
portion of which is a vertical segment with ¢ = p’/2.

é:zt = O
Link
Ext Ext
Cross
=0
14 16 18

q
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Linking conditions: (g, )

The zero level curves of £, 05, p" — q(1 + e) divide the plane (g, e)

nt?

into regions where different linking configurations can occur.

Ext -
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Linking conditions: (g, w’)

The zero level curves of (<, ut:, u%, divide the plane (¢,«’) into

regions where different linking configurations can occur. Moreover,
the curve u%, = 0 corresponds to the straight line g = p'/2.

ext
90
80 -
"
u:)zi = 0
70 -
60 -
Link Int
_ %07 Int Link
3 wl Cross Ext
Cross
30 -
20 -
10 U,
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Application to the known population of NEAs

350

300 -

250

200 [,

150 -

100 -

Orbital distribution of the known NEAs (July 23, 2019) in the plane
(¢,w). The gray dots correspond to faint asteroids (H > 22).
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Thanks for your attention!
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