Lecture II: Charlier's theory

Giovanni Federico Gronchi

Dipartimento di Matematica, Università di Pisa

e-mail: gronchi@dm.unipi.it

MPM Space Sciences

November 11, 2019, University of Turin

A (10) A (10)

From the geometry of the observations we have

 $r^2 = \rho^2 + 2q\rho\cos\epsilon + q^2$ (geometric equation). (1)

From the two-body dynamics, both Laplace's and Gauss' methods yield an equation of the form

$$C \frac{\rho}{q} = \gamma - \frac{q^3}{r^3}$$
 (dynamic equation), (2)

with \mathcal{C}, γ real parameters depending on the observations.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Preliminary orbits and multiple solutions

intersection problem:

$$\begin{cases} (q\gamma - C\rho)r^3 - q^4 = 0\\ r^2 - q^2 - \rho^2 - 2q\rho\cos\epsilon = 0\\ r, \rho > 0 \end{cases}$$
(3)

reduced problem:

$$P(r) = 0, \qquad r > 0 \tag{4}$$

with

$$P(r) = \mathcal{C}^2 r^8 - q^2 (\mathcal{C}^2 + 2\mathcal{C}\gamma\cos\epsilon + \gamma^2)r^6 + 2q^5 (\mathcal{C}\cos\epsilon + \gamma)r^3 - q^8.$$

We investigate the *existence of multiple solutions of the intersection problem*.

Charlier's theory

Carl V. L. Charlier (1862-1934)

In 1910 Charlier gave a geometric interpretation of the occurrence of multiple solutions in preliminary orbit determination with Laplace's method, assuming geocentric observations ($\gamma = 1$).

'the condition for the appearance of another solution simply depends on the position of the observed body' (MNRAS, 1910)

Charlier's hypothesis: C, ϵ are such that a solution of the corresponding intersection problem with $\gamma = 1$ always exists.

A *spurious solution* of (4) is a positive root \bar{r} of P(r) that is not a component of a solution $(\bar{r}, \bar{\rho})$ of (3) for any $\bar{\rho} > 0$.

We have:

- P(q) = 0, and r = q corresponds to the observer position;
- P(r) has always 3 positive and 1 negative real roots.

Let $P(r) = (r - q)P_1(r)$: then

 $P_1(q) = 2q^7 \mathcal{C}[\mathcal{C} - 3\cos\epsilon].$

If $P_1(q) < 0$ there are 2 roots $r_1 < q$, $r_2 > q$; one of them is spurious.

If $P_1(q) > 0$ both roots are either < q or > q; they give us 2 different solutions of (3).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Zero circle and limiting curve

zero circle: C = 0, limiting curve: $C - 3\cos \epsilon = 0$.

The green curve is the zero circle. The red curve is the limiting curve, whose equation in heliocentric rectangular coordinates (x, y) is

$$4-3\frac{x}{q}=\frac{q^3}{r^3}.$$

Geometry of the solutions

The position of the observed body corresponds to the intersection of the level curve $\mathcal{C}^{(1)}(x, y) = \mathcal{C}$ with the observation line (defined by ϵ), where $\mathcal{C}^{(1)} = \mathcal{C}^{(1)} \circ \Psi$,

$$\begin{split} \mathcal{C}^{(1)}(r,\rho) &= \frac{q}{\rho} \left[1 - \frac{q^3}{r^3} \right] \\ \text{and} \ (x,y) &\mapsto \Psi(x,y) = (r,\rho) \text{ is} \\ \text{the map from rectangular to} \\ \text{bipolar coordinates.} \end{split}$$

Note that the position of the observed body defines an intersection problem.

The singular curve

The singular curve is the set of tangency points between an observation line and a level curve of $\mathbb{C}^{(1)}$. It can be written as

$$4-3q\frac{x}{r^2}=\frac{r^3}{q^3}.$$

Multiple solutions: summary

Alternative solutions occurs in 2 regions: the interior of the limiting curve loop and outside the zero circle, on the left of the unbounded branches of the limiting curve.

See Gronchi, G.F.: CMDA 103/4 (2009)

Let $\gamma \in \mathbb{R}, \gamma \neq 1$. By the dynamic equation we define

$$\mathcal{C}^{(\gamma)} = \mathcal{C}^{(\gamma)} \circ \Psi, \qquad \mathcal{C}^{(\gamma)}(r,\rho) = \frac{q}{\rho} \left[\gamma - \frac{q^3}{r^3} \right]$$

with $(x, y) \mapsto \Psi(x, y) = (r, \rho)$.

We also define the zero circle, with radius

 $r_0=q/\sqrt[3]{\gamma}, \qquad ext{ for } \gamma>0.$

Introduce the following assumption:

the parameters γ, C, ϵ are such that the corresponding intersection problem admits at least one solution.

(5)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Topology of the level curves of $\mathcal{C}^{(\gamma)}$

Topology of the level curves of $\mathcal{C}^{(\gamma)}$

The singular curve

For $\gamma \neq 1$ we *cannot* define the limiting curve by Charlier's approach, in fact $P(q) \neq 0$. Nevertheless we can define the singular curve as the set

프 🖌 🛪 프 🕨

The solutions of an intersection problem (3) can not be more than 3. In particular, for (γ, C, ϵ) fulfilling (5) with $\gamma \neq 1$, if the number of solutions is even they are 2, if it is odd they are either 1 or 3. For $\gamma \neq 1$ we define the sets

$$\mathcal{D}_{2}(\gamma) = \begin{cases} \emptyset & \text{if } \gamma \leq 0\\ \{(x, y) : r > r_{0}\} & \text{if } 0 < \gamma < 1\\ \{(x, y) : r \leq r_{0}\} & \text{if } \gamma > 1 \end{cases}$$

and

$$\mathcal{D}(\gamma) = \mathbb{R}^2 \setminus (\mathcal{D}_2(\gamma) \cup \{(q, 0)\}).$$

Points in $\mathcal{D}_2(\gamma)$ corresponds to intersection problems with 2 solutions; points in $\mathcal{D}(\gamma)$ to problems with 1 or 3 solutions.

Residual points

Fix $\gamma \neq 1$ and let $(\bar{\rho}, \overline{\psi})$ correspond to a point $P \in \mathfrak{S} = S \cap \mathcal{D}$. Let

$$F(\mathcal{C},
ho,\psi) = \mathcal{C}rac{
ho}{q} - \gamma + rac{q^3}{r^3}, \qquad r = \sqrt{
ho^2 + q^2 + 2
ho q\cos\psi}$$

If $F_{\rho\rho}(\mathcal{C}, \bar{\rho}, \overline{\psi}) \neq 0$, we call residual point related to P the point P' \neq P lying on the same observation line and the same level curve of $\mathcal{C}^{(\gamma)}(x, y)$, see Figure a).

If $F_{\rho\rho}(\mathcal{C}, \bar{\rho}, \overline{\psi}) = 0$ we call P a self–residual point, see Figure b).

The limiting curve

Let $\gamma \neq 1$. The limiting curve is the set composed by all the residual points related to the points in \mathfrak{S} .

Separating property: the limiting curve \mathcal{L} separates \mathcal{D} into two connected regions $\mathcal{D}_1, \mathcal{D}_3: \mathcal{D}_3$ contains the whole portion \mathfrak{S} of the singular curve. If $\gamma < 1$ then \mathcal{L} is a closed curve, if $\gamma > 1$ it is unbounded.

Transversality: the level curves of $\mathcal{C}^{(\gamma)}(x, y)$ cross \mathcal{L} transversely, except for at most the two self–residual points and for the points where \mathcal{L} meets the *x*-axis.

Limiting property: For $\gamma \neq 1$ the limiting curve \mathcal{L} divides the set \mathcal{D} into two connected regions $\mathcal{D}_1, \mathcal{D}_3$: the points of \mathcal{D}_1 are the unique solutions of the corresponding intersection problem; the points of \mathcal{D}_3 are solutions of an intersection problem with three solutions.

Multiple solutions: the big picture

Giovanni F. Gronchi Orbit Determination, University of Turin, November 11, 2019