
Lecture II: Charlier’s theory

Giovanni Federico Gronchi

Dipartimento di Matematica, Università di Pisa
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Equations for preliminary orbits

From the geometry of the observations we have

r2 = ρ2 + 2qρ cos ǫ+ q2 (geometric equation). (1)

From the two-body dynamics, both Laplace’s and Gauss’

methods yield an equation of the form

C ρ

q
= γ − q3

r3
(dynamic equation) , (2)

with C, γ real parameters depending on the observations.

Giovanni F. Gronchi Orbit Determination, University of Turin, November 11, 2019



Preliminary orbits and multiple solutions

intersection problem:







(qγ − Cρ)r3 − q4 = 0

r2 − q2 − ρ2 − 2qρ cos ǫ = 0

r, ρ > 0

(3)

reduced problem:

P(r) = 0 , r > 0 (4)

with

P(r) = C2r8 − q2(C2 + 2Cγ cos ǫ+ γ2)r6 + 2q5(C cos ǫ+ γ)r3 − q8.

We investigate the existence of multiple solutions of the

intersection problem.
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Charlier’s theory

Carl V. L. Charlier (1862-1934)

In 1910 Charlier gave a geometric

interpretation of the occurrence of multiple

solutions in preliminary orbit determination with

Laplace’s method, assuming geocentric

observations (γ = 1).

‘the condition for the appearance of another solution simply

depends on the position of the observed body’ (MNRAS, 1910)

Charlier’s hypothesis: C, ǫ are such that a solution of the

corresponding intersection problem with γ = 1 always exists.
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Charlier’s theory

A spurious solution of (4) is a positive root r̄ of P(r) that is not a

component of a solution (r̄, ρ̄) of (3) for any ρ̄ > 0.

We have:

P(q) = 0, and r = q corresponds to the observer position;

P(r) has always 3 positive and 1 negative real roots.

Let P(r) = (r − q)P1(r): then

P1(q) = 2q7C[C − 3 cos ǫ].

If P1(q) < 0 there are 2 roots r1 < q, r2 > q; one of them is

spurious.

If P1(q) > 0 both roots are either < q or > q; they give us 2

different solutions of (3).
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Zero circle and limiting curve

zero circle: C = 0,

limiting curve: C − 3 cos ǫ = 0.
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The green curve is the zero circle.

The red curve is the limiting curve,

whose equation in heliocentric

rectangular coordinates (x, y) is

4 − 3
x

q
=

q3

r3
.
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Geometry of the solutions
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The position of the observed

body corresponds to the

intersection of the level curve

C
(1)(x, y) = C with the

observation line (defined by ǫ),
where C

(1) = C(1) ◦Ψ,

C(1)(r, ρ) = q

ρ

[

1 − q3

r3

]

and (x, y) 7→ Ψ(x, y) = (r, ρ) is

the map from rectangular to

bipolar coordinates.

Note that the position of the observed body defines an

intersection problem.
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The singular curve
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singular The singular curve is the

set of tangency points

between an observation

line and a level curve of

C
(1). It can be written as

4 − 3q
x

r2
=

r3

q3
.
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Multiple solutions: summary
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Alternative solutions

occurs in 2 regions: the

interior of the limiting

curve loop and outside

the zero circle, on the

left of the unbounded

branches of the limiting

curve.
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Generalized Charlier’s theory

See Gronchi, G.F.: CMDA 103/4 (2009)

Let γ ∈ R, γ 6= 1. By the dynamic equation we define

C
(γ) = C(γ) ◦Ψ , C(γ)(r, ρ) =

q

ρ

[

γ − q3

r3

]

with (x, y) 7→ Ψ(x, y) = (r, ρ).

We also define the zero circle, with radius

r0 = q/ 3
√
γ, for γ > 0.

Introduce the following assumption:

the parameters γ, C, ǫ are such that the corresponding

intersection problem admits at least one solution.
(5)
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Topology of the level curves of C(γ)
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Topology of the level curves of C(γ)
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The singular curve

For γ 6= 1 we cannot define the limiting curve by Charlier’s

approach, in fact P(q) 6= 0. Nevertheless we can define the

singular curve as the set

S = {(x, y) : G(x, y) = 0} , G(x, y) = −γr5 + q3(4r2 − 3qx).
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An even or an odd number of solutions

The solutions of an intersection problem (3) can not be more

than 3. In particular, for (γ, C, ǫ) fulfilling (5) with γ 6= 1,

if the number of solutions is even they are 2,

if it is odd they are either 1 or 3.

For γ 6= 1 we define the sets

D2(γ) =







∅ if γ ≤ 0

{(x, y) : r > r0} if 0 < γ < 1

{(x, y) : r ≤ r0} if γ > 1

and

D(γ) = R
2 \ (D2(γ) ∪ {(q, 0)}) .

Points in D2(γ) corresponds to intersection problems with 2

solutions; points in D(γ) to problems with 1 or 3 solutions.
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Residual points

P=P’

Earth Earth

b)a)

P’

P

Fix γ 6= 1 and let (ρ̄, ψ) correspond to a point P ∈ S = S⋂D.
Let

F(C, ρ, ψ) = C ρ
q
− γ +

q3

r3
, r =

√

ρ2 + q2 + 2ρq cosψ

If Fρρ(C, ρ̄, ψ) 6= 0, we call residual point related to P the point

P
′ 6= P lying on the same observation line and the same level

curve of C(γ)(x, y), see Figure a).

If Fρρ(C, ρ̄, ψ) = 0 we call P a self–residual point, see Figure b).
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The limiting curve

Let γ 6= 1. The limiting curve is the set composed by all the

residual points related to the points in S.
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The limiting curve

Separating property: the limiting curve L separates D into two

connected regions D1,D3: D3 contains the whole portion S of

the singular curve. If γ < 1 then L is a closed curve, if γ > 1 it is

unbounded.
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The limiting curve

Transversality: the level curves of C(γ)(x, y) cross L
transversely, except for at most the two self–residual points and

for the points where L meets the x-axis.

Limiting property: For γ 6= 1 the limiting curve L divides the set

D into two connected regions D1,D3: the points of D1 are the

unique solutions of the corresponding intersection problem; the

points of D3 are solutions of an intersection problem with three

solutions.
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Multiple solutions: the big picture
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γ = 1
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