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CHAPTER I. TRANSFORMATION THEQRY

1. Differential Eguations and Vector Fields.

{a) The flow of a system of differential equations.
The object of these lectures are systems of ordinary

differential equations of the form
dx _
{1.1) at = fx

or in cowponents, :
dx . i

(1.1%) a = fytx) 3 =1,....n), *

s

defined in an open domain D € R®, The right-hand side f(x)

. n .
‘is a vector valued Function mapping D into R, belonging to

Cr(D,Rn) for r > 1. We recall the well known fact which |
will not be proven here that the system (l1.1) has a unique

solution x(t) for a given initial value x(0) € D, w‘tére . {
the solution x(t) is defined on an interval |t] < &, & > 0.

More precisely, if K is a compact subset of b then there

Ty ® -

exists a § > 0 depending on K and £ such that the solution '
#{t) with initial values x(0) € K exists for 'the interval
I ={t | Jt] < &}
To indicate the dependence on the intial value x{0) we denote
this solutien by
t
x(t) = 9 (x(0)).
Then, according to the standard existcnce theorem
]
o (x(0)y € a1 x x,0) . :

.1



by

For fixed t € I we can view ¢t as a mapping of K into D,

which satisfies

t+
(1.2} otesS = oE¥S
for sufficiently small values of [t]. |s], and
(1.3) ¢F = identity for t = 0 . .

This one parameter family of mappings ¢t is called the "flow"

of the system (1.1). Clearly we have -t =
g%f = £(4%)

for sufficiently small [t]. Settinc t = 0 we see that ¢t,
in turn, determines f unigquelv.

Setting s = -t 1in (1.2) we sea that ¢t has an inverse
{defined on ¢t(K)) whic£ is also in Cr, We will call a
Cr-mapping which has a CT inverse a ~'-diffeaomorphism. Thus
¢t isa ¢f diffeomorphism, where defined.

We will also consider C systers, in which case ¢t is ;

- o

c”-diffeomorphism as well as c¥ syst -ms, for which f£(x) is real
analytic in which case ¢t is also rcal analvtic, which we
call a Cm—diffeomorphism.

Geometrically one interprets t!: system (1.1) &as a vector
field, which assigns to each point » © D the vector f(x).
The solution x{t) = ¢t[x(0)] is th.n a curve which at every
point is tangent to this vector field. We will use the term
system of differential equations anr! vector field interchange-

ably.

(b} Transformation properties

We subject the system (1.1) Lo an invertible coordinate

transformation
x = u(y)
where we Aassume that the Jacobian matrix

Ju,
-
3y.

YJ Y

is invertible. Then (1.1) goes over into a new system, say,

¥ =g

where
(1.4) gly) = u;lf(u(y)) .

This is the transformation law for vector fields.

If we denote by wt the flow belonging to g we have

(1.5) pt = uloston

where o indicates composition of the various diffeomorphisms
and u ! denotes the inverse map of u. Of course, the above
relations have to be restricted to domains in which the
mappings are defined.

To verify (1.5) we simply define wt by (1.5) and then
show that it agrees with the flow for g. Clearly wt = identity
for ¢t = 0 and differentiating the relation

uowt = ¢tou

we get



t .
dv- t, Lo t
uy T £{¢ ou) fluey ™) uyg(w )

hence

L]

t
g%— g(wt) .

=¥

Since ¢t is uniquely determi-.ed by this relation and its
injtial value (1.5) is proven.
The transformation law (1.4) 13 the same as that for

the partial differential operators

E } ~
X = f.{x) %=,
=1 1 X W
To describe the transformation laws under X = uly) -and
observe that for any h = hix) € Cl the expression
({X})ou

must be express%ble in‘terms of a uvifferential operator Y
acting on heu, i.e.

(Xh)}eu - ¥ (how) .

[

We call Y the transformed differential operator and denote ..

it by u®X, so that

(1.6) (u*X) (hou, = (Xh)ou .

If we write
* 3
uXx = wr—
!9,y By
we find for the vector g = (gk) readily

g = u;lfou '

as we claimed,

&

There is a more direct relationship between the vector

field (1.1) and X, namely

o= Sene |,
i.e. X is the directiocnal derivative of a function h along
the vector field.
The operator X is determined by the vector field £ and

conversely X determines f; indeed for h = Xy we find

Xxj = fj(x) .

Therefore we will also use the operator X to describe the
vector field. This is merely another notation which, however,

has the advantage to reflect the transformation law under

. coordinate transformations. For this reason this notation is

preferred in differential geometry and in the global study
of vector fields on manifelds. -

Incidentally, this notation shows that the vector fields
in D form a Lie algebra since the comﬁutator

XY - ¥YX = [x%,¥]

of two vector fielés X,Y defines again a vector field.

Indeed if
n n
.3 3
X= I f.ix) =, Y= 5 g (x) =2
j=1 axj k=1 K axk
then
P ) 52
[x,¥] = f.g - g.f
j, k=1 J kxj j kxj Bxk

ey e -

ey

oy -



since the second order derivatives c.acel. It is an almost

obvious conseguence of the definition (1.6) that

u'ix,¥] = [u*x,u’v]

so that the definition of [X,¥] is independent of the choice

of the coordinates.

{c) Local egquivalence of vector fields.

Two vector fields f,g w~hich can be transformed into each
other will be considered as cquivalent, i.e., £,4 are considered
equivalent in some domains Dl'DZ resp., if there exists a

diffeomorphism u: D, * Dl for which

-
=nu  fou .
9= Yy

Only properties which are preserved under such transformatinn
are of jnterest.

Therefore it is important to re.lize that locally, in the
neighborhood of a peint at which £ # 0 it is equivalent to any

other vector field with this property, e.g. to the vector field-

where e is the unit vector in the Y1 direction. Geometfically
this statement simply means that in a small neighborhood of a
point x* where f(x‘l # 0 the flow can be mapped into the
parallel flow '

wt(y) = v + te, .

Lemma 1. If f, g define two vector fields with
*
£(x*y # 0, g(y*) # 0 then there exist two neighborhoods
Dl’D2 of x*,y* respectively and a map u: D2 - D1 such

-1
that u_"feu = q.
y g

. * s
Proof: We may take x = y* = 0 by applying a translation.

By appropriate cheice of the coordinate axes we may assume

£,(0) = <£(0),e;> £ 0. Tf $"(x) defines the flow of f we

set

. R4
ul(y) = ¢ (0,y2,...,yn).

Then one computes readily //,H

Y oeep Y
detluy (0)) = £,(0) ¥ 0 ovf .

.,

—_
so that x = uly) definecs a diffeoméahism near x = 0. Moreover,
we  have

y,+tt t
{0,y 0eeery ) = ¢ o uly)

with ¢t =y + tey

t
uep " {y) = ¢
so that u maps ¢t into the parallel flow ¢t. By differentia-

tion we find

u;]fou = e .

Similarly, we can construct a diffeomorphism v with
-1
\.fy geVv = el ’

thus uov—l takes £ into g. a
7



The assumption £(x") # U in tle lemma is crucial. A
point x* at which £{x*) = 0 is cal ed a §ingu1ar point ,
(equilibrium point, stagnation point)&‘Af the vector field.
If x = uly) maps a point y' inte x" = ul{y*) then

u;lfau

1]

9

has a singular point at y = y* and the Jacobian is

-1 *
u‘ fx(x ) uy

*
gy(y ]
where uy = uy(y*). Thus the Jacobians fx(x‘), gy(y’) at a
stationary point are similar. leance the eigenvalues of
fx(x*) are invariant and must be essential for the vector
field. 1In fact they are basic for the stability theory of
vector fields at a singular point which was developed by
Lyapunov.
It has t2 be mentioned that the Above lemma is valid
only "in the small" and fails in large domains. This is

illustrated by the three sirple examples in the plane: L st

. , 1%‘
(i) x) = % (ii) x; =-x, o (iii) xX) =% ..

X, = x, X, =(§xl Xy = -2x,.

The corresponding flows are plotted belcow.

ey W

and it is obvious that there is no diffeomoréhism taking

any of these flows into any other — although this is possible
locally ncar any point different from the origin,
. The properties "in the large®” are of principal interest.
Examples of such properties are the existence of singular
points, of periodic orbits, their stability or instability

behavior, etc., which will be investigéted in these lectures.

e

Systems of differential equations of the form (1.1}
are usually called "autonomous" to distinguish them from

systems

dx _
d—E = f(t,x) .

which depend on t as well, and are called nonautohomous.

These systems can easily be reduced to (l.1) by introducing

X9 = t + const. as independent variable so that we obtain

L]
oy W -

a system ’ i
4.
dx dx
0 . .
o=, Tt = £ (xg %) (3=1,2,...,n)

in n+l dimensional space.

Also systems of second order

x| g, %)
a2 I e

Can easily be reduced to (1.1), simply introducing x and dx/at

as independent variables. As a rule we will therefore assume

T

that this reduction has been carried out and study systems of
the form {1.1). The domain D ig called the "phase space”,

in whiclh we visualize the motion,



{¢) Examples.

We illustrate this concept wilh some simple examples.

(i) The differential equatirn

2
g—:'2c+s.in:;c
dat

x € Rl

desceribes the motion of a pendulum, where x denotes the angle

of deflection from the vertical.
The phase space in this
case is the plane with
: - dx
coordinates x and x = ac -
Multiplying the eguation by x

and integrating we obtain the

energy relation

where E is a constant along 2ach orbit.

This equation defines

a set of curves (see Fig. 2) on which the solutions travel.

lc

A4

Without determining the solutions explicitly (they are given
in terms of elliptic functions) we can read off the figure
the nature of the motion: The oscillations about the down
position is given by the islands, the motion of the pendulum
swinging over the top by the wavy lines on top and kottom
and the "separatrices" which describe a motion where the
pendulum just goes from the top position,'falls down, and
asyamptotically returns to the top positien.

Since x is an angle we should identify point (x,&)
and (xl,il) if x - %) = 20, X - ;l = 0 for any integer jJ.
Thus the phase space becomes a cylinder and the many "islands”

are identified to one.




R

(ii} Geodesics on sz.

The two-dimensional sphere 8% can be given by the equa-

tion

and the geodesics on it are the grrcatest circles. They are

described by the differential equation

d2
3 X = Ax
dc
‘ o~
where the scalar A is so0 determined that the equation (x| = 1
remains valid for all t. 4his reguires A = -|x|? since
0= Go%ix1? = 2(ex,Ee 4+ 14% = 20r 4+ [%]%) ,
and the differential equation becoves
d2 ‘-|2
- —7F x+ [x| x 0,
dt .
vhere we have to restrict ourselves to
x]2 =1, <X, %> = 0 . '
o

More precisely, if the las' two conditions hold for t = 0
then they hold for all t. Ve see this by applying the
uniqueness theorem for the initial value problem to the

system

%
LS

= 2ex,x>

Ix12a-1x]?).

u

<X, x>

S

A3

. \
|

What is the phase space in this case? If we set ¥y = x 7

we have the system of first order ﬁ,?'ﬁf»ﬂWl B
(1.6) x=y, y = -lyl? x

where [x] = 1, <x,y> = 0, ‘Thus the element of the phase
space are the vectors y attached at the point x € 52_

The set of tangent vectors
6 =
(x,y) € R° | |x| = 1, <x,y> = 0

form a manifold which is called the tangent bundle T(Sz) of

the sphere. Thus T(S2) is the phase space in this case.

The speed [x| = |y| is a constant along any solution since
d 2 - 2
ac |YI = 2<y,y> = - ZIY! <Y.x> = 0
and we may restrict ourselves to the case {x] = |yl =1 in

which case t is the arc length. Then the phase space is

given by
{fx,y} ERG ] le =1, <k, ¥y> =0, IYl = 1] ’

the unit tangent bundle Tl{sz) of the sphere,
Clearly all solutions are periodic of peried 2.

To give a better picture of this flow and its phase space
we show that Tl(sz) can be mapped one to one onto S0(3),

the group of 3 by 3 orthogonal matrices U with determinant +1

and the differential equation becomes

d 0 -1 o]
(1.7) EE’U =UA where A = H ¢ 0 J .
0 [1] [+

13

R
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The solutions of this system are o.carly

.os £ -—sin t 1}
(1.8) ut) =u(o) e™® = v | sint cos t 0 .
0 0 1

The required mapping ‘s obtained as follows:

For (x,y) € Tl(sz) we construct the orthonormal frame ’
* - .
x,y,z=xf\y() g Y& 1( b:f ——
Uel = X , Ue2 =¥ 4 Ue3 = 2z ,

i.e., x,y,z can be taken as the column vectors of U. Then

writing U = (x,y,2} we have

U = (;(l';’lé) = (Y:'*XIU) =UA,

Qa\ﬂ-
o

Thus both the representation of the differential equation
(1.6) on the unit tangent bundle 31(52) and (1.7) on 50(3)
are equivalent, in the sensn that one can be transformed into
the other. This illustrates the concepf of equivalence o%
vector fields, but shows the lack of our previous definition,
since we have to extend our concepts from the lecal represen-
tation to the global one on manifolds. We return to the

definition of vector field:s on manifolds later.

* Q
*) x & y denotes the vector product in R3.

T4

P

A5

{(iii) Kepler problem in the plane.

It is described by the system
(1.9) — = =

This system of second order differential equations has as its
phase space the four-dimensional space R4 {with coordinates
X,y,X,y} minus the plane x = y = 0, where the system is

singular. This syvsterm possesses the energy integral

(iz + §2) -

NI b=
NI

which is constant, say E, along each orbit. It is well known
that the solutions correspond to conic sections in the
X,y planc: hyperbolae for E > 0, parabolas for E = 0 and

ellipses for E < 0, Thus if we consider the energy surface

y .2 2

S(X +'}.’)‘ =E <D

a1

for a fixed negative E all solutions are pericdie and have,

372y,

as it turns out, a fixed period (namely 27(-2E)"
¥n the course of this chanter we will show that after an
appropriate change of t and an appropriate compactification
this flow of the Kepler problem on a fixed ncuative encrgy
surface is equivalent to the flow {1.8) of the geodesics on 52

In particular, it will fellow that the energy surface properly

compactified is equivalent to S0(3}).

15
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For the following we will ¢xtend the concept of equiva-
lence of two vector fields

dx _ . dv
it - fi(x) an- as ~ gly)

in domains Dl and D, respectively. We will say that f is
equivalent in the extended sense 1if there exists a diffeo-
morphism u: D, > D, and a positive function A = A(y)

€ Cr(Dz,R) such that

(1.7 ' g = Au;lf o u . »

The factor A = A{y)} correspond. to a change of the
independent variable., More precisel,, if the independent

variable for the g-vector field is cilled s, i.e. if

,§§= gly)

and ws the corfésponding flow then we have

(1.8} v = ule 4t u

where s and t are related by
)
= vis,y) = f A(¥%(y)) do .
4]
This shows that the solutiors of one system are mapred into

those of the other with a change of parametrization.

w, F (fg )

We have clearly <:
N

s t
fug=u T e a3 s ue ar et e,

™ % as

showing (1.7). 1In other words, here we subject the vector field

to the transformation
le

e

x = uly) , t = vis,y}

of the n+l dimension space R™ x I. We will simply write

dt _
a;—l.
Remark. We assume throughout that wu € Cr, r > 1, but

frequently one studies also "topological eguivalence"
of vector fields when u is assumed to be a homeomorphism only.
In that case (1.4} loses meaning and topological equivalence
is defined through that of the flows (see (1.8)) and an

appropriate t-transformation. We will hardly be concerned

with this concept and discuss it when it comes up.

17
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A9

d

t,* -
S H z|t=0 = [x,z} .

Hint: Differentiate
- t
¢yt h{¢ (Y)]v

.

with respect to t at ¢ = 0 .

(b} Show: If [x,2] = 0 in some nd ghborhood then the Flows
¢t . ws belonging to £, 7 re:pectively commute, i.e.
t 8 s t
PR

for small |t],|s]|. Show alsc the converse.

*
Verify {e.g. using any bock { ,) on this subject} that
the sclutions of the Kepler problem (1.9) for negative
energy can be represented in terms of an auxiliary variable
N

u (mean anomaly) as ecc Q_q{{' :G
\~ e - . .

e oL -
C 7 .
x = ale + cos u)cos a - a’l-e” cin u sin a
y = ale + cos u}sin a + a,l-e” sin u cos «
t = a3/2[u + e sin u) R
where

a=- ey tso

is the semimajor axis of the ellipse and e (0 < e < 1)

is the eccentricity of the elliy:e. The angle deternines

the position of the ellip:e.

2, . 71/2 .
Moreover, the distance r = (x"+y ) / is given by

r=all +ecos u).

*)

E.g. A. Wintner, with some change of notation.

19

~

(a)

()

(c)

(a)

(b)

(a)

/8 .

Exercises - 1

Show with the example ax xz for x € Rl that

dt
the flow ¢t is not defined for all t,.

r()'_ [

Show if in the systeﬁ {1.1) with D = R" and

- M (viet)

is defined for all real t. ~ -

| £(x)}] <L§3 in r"

then ¢t(x)

Show, if in the system (1.1), with D = R"

. : n
[fx(x}l <3# in R

then ¢t is again defined for all real ¢.

Let [{x) be a Cl—vector field satisfying

(i) fix) = ¢ for |x| > r

(ii) <f£(x),c> > 0 for all x € R"

vhere ¢ is a constant vector in R" and r a positive
Let oY, ot

constant. denote the flows corresponding

to the vector fields ; = f£{x), ; = gly) = c.

t

t 2
Show that ¢, ¢ are defined for all t and that

u = lim ¢-t ° UJt

-+

is a diffeomorphism satisfying

g=u"f « u.

Use this result to give a proof of Lemma 1, by
setting f(x) = ¢ and modifying f outside a small
ball so that £ = c there,
If ¢% is the flow of X and
-y )
‘e hzl "k T
any other vector field then

18
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2. Variational Principles. Lami‘?nian Systems
In many fields of application.., the differential :z(
equations are derived from a vari.:tional principle'and "
consequently have special features which we will investi- L
gate in this section. 0:‘
{a) Variational Principles. < ]
. - . I
We begin with the standard v.:iational principle and g i
its Euler equation. We consider a function F(t.g,r) of £~, QzF\'_!
2n+l variables lthdS—Rﬂrmqpévﬁq Gufined in a domain U ;
1=1I= Rzn s 1I = {t,tlipiﬁz}, an:" form the functional '+J /
N A
£ "
2
= I S+ T - - dgq
(2.1) ¢lg) = F(t, qft), qft)y L ; 9= 3¢ -
t

1
for curves g G_Cz(I,#) and fixel end points q(tl) = ai N
q(tz) = b. The rather ugly choice of the‘letters
q-= (ql,qz,...,qn) !s dictated by tréfﬁitionl
This functional assigns to <oy curve g € Cz(I,Rn) a Yeal
number. The stationary values of this functional are obtained

by forming the first variation

t2
¢'lq,q) = [ (<F_,q> + <F ,4 ) dt
d q
£
of ¢ and reguiring that it vanishos for every choice of

a € Cl(I,Rn). Integ:ation by part. luwade to the Evler equa-

tions

0

4

o

{2.2) it (Fé{t.q,q)] = F lt,q.q)

for q = g(t}, é = gf g({t) which we will investigate. This

is a system of second order
2

- P
- - -

d d
F..5%d+r, Sdo-F =
99 g¢?  Tdq dty Tq ¢ \
[ S
where we omitted the arguments of the derivatives of F.
One calls a point (t,q,q) € I x R2n “regular" if
(2.3) det(F,.) # 0

a9

and we will impose this assumption of regularity. It implies

that we can write the Euler equation in the explicit form

q = G{t,q,§)

and hence as a system of first order

f

l Z ] i { G(t?q.é) ]

O-lﬂ.
rt

{b) Legendre Trénsformation.

There is a more elegant way to achieve this reduction to
a first order system of differential equations which leads to
the Hamiltonian form of the equation, This is achieved by
so~called Leyondre transformation according to which one

introduces instead of g the vector variable

21
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"

(2.4) p = pé or pj Fé (t,q,é) . © dH <p,dg> + <q,dp> =~ <Fq,dq> - <Fé'dq> - Ft dt
3j .

L}

<p - F_, dé’ + <érd9> - <Fq, dg> - P, dt

21l the following considerations are "local” in nature since t

we appeal to the implicit function theurem., The Legendre

]

transformation maps <g.dp> - <Fq.dq> - F dt .

. Thus
{t,q,9) = (t,q,p)
where p is defined by (2.,). The Jaunbian of this mapping is 14 (2.5) Hp =q, H =-F_, Ho = = F .
q q
clearly det F,, which by (2.3} is a:sumed not to vanish, gt =
a9 The first relation shows that

Therefore the inverse mapping exi:ity, locally:

. . V(t'qu) = H (tfqlp)‘
{t,q,p) —> {t,q,q} when g = V(t,q,p}. P
' These calculations show that the Euler egquations are

This mapping can be expressed effect.ively if one introduces
pping P Y transformed into the system

the Hamilton function

= H
="
H'(t;qvp) = <p,V> - 1 {t,q,V} , {(2.6)
. p=L ) =F =-u
or equivalently, atc 3 q q
. |
F = <F > - Hit,q,F.) . . : . s
(t,q,9) q'q ¢ i 3 N . This form of the equations is called lHamilton's form of the
v
Tn other words we have differential eguations, or short Hamiltonian systems.
- . . We have to keep in mind that this derivation was only local
H(t,q,p} = <p,q> - Fit,q.q)
in nature — but we will see that in many applications the
if p = F. or if é = V¥, Therefore taking the differential, Legendre transformation is linear in & and is meaningful
9 .
where we consider at first ¢ and p inrdependently and then in the large. Morcover, one frequently considers the Hamiltonian
set p = F_, we find system as the primary cbject, rather than the variational
q
principle.

22 . ' 23
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(c) Autonomous case.

If we assume F to be indepaondent of t the same is true
for H and we obtain an autonomous '.3uiltonian system, which
we will write in the form {l.1} of §1., For this purpose

we introduce the 2n vector x and the 2n by 2n matrix J by

»
1]

-] SNE

where I = I is the n by n identity matrix.

Then the Hamiltonian system (2.6) can be written in the form

{(2.7) g—’tﬁ= J H

x

where Hx is the vector with components H, i.e. the gradient
of H. 1In other words, H, is defined by the differential

relation

dH = <H_,dx> . 3
X
Thus Hamiltonian systems are vector {ields (1.1} where
£ = JH
X

is defined in terms of a single function, the Hamiltonian.

This suggests that these systems arc "special” in nature.

This is indeed the case as we shall see.

24
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{d) Canonical transformations. —

If we subject the system (2.7)/\the special form of“
the equation will be destroyed and we will determine a class
of transformations which preserve the class of Hamiltonian

systems.

Since J2 = = I2n we can write {(2.7) also in the form

{2.8) - J k=H_ .
If we subject this system to an arbitrary transformation

x = uly) , K{y) = H{uly))
we find

. y T
= K =
X =uy Y . v (uy) H ou

where { )T denote the transposed matrix. Thus (2.8) goes
into
~uw Ju y=K .
Y Yy Y
Hence if we reguire the identity

2.9 . w Ju =43

then the transformed system is

¢ = JK
¥ Y

with. the Hamiltonian K = H = u obtained from H simply by
transformation. Thus transformations x = u{y) satisfying
the identity (2.9) «. pres..ve the class of Hamiltonian

system,
25
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Definition. A diffeomorphism = uly} is called

canonical if it satisfies (2.9).

The canonical transforwatinns form a group which we

will investigate in the next section.

(e) Examples.

Ex. 1: If n =1 and
~
g = % pz - cus g
then the Hamiltonian system gives risc to the pendulum
equation G + sin g =0 .
Ex. 2: The eguations of particle mec! anics are written in
Hamiltonian form
2
n P
H = I E';l + U(q‘
=1 °"3
where Ulqg) is called the potential a; A mj > 0 are the masdes.
TH: differential eguations bocome Sa
(2.10) qu) = - qu (j=1,2,...,n).
Notice that in this case the Ledendre transfeormation is
By ® mjéj which is globally invertible.
The N-body problem in R3 is contained in the above
£ 1 . = = = = i
formulation: If n 3N, M2 mjj—i Myg My > 0 is
the mass and ’
N
T LT
e e \_‘
26 T 4 one

2%

[ 935-2
9y = l 934-1
q35

#he position of the jth mass point we have the potential / 7& (

N LT

Utg) = -}
jrk=1 Ioj -9

then (2.10} becomes

u

= s _
2 kzj Ioj—0k|3 (Q-2,)

which are the equationgof motion of the N-body problem. ,fdx'/

\\\\- N L
Ex. 3: Geodesics,
If we introduce the metric

-2 .
ds” = i,g:l gij(x) dxi dxj ’

where g(x) = <qij(x)> is a positive definite symmetric

matrix the gecdesics can be defined as the extremals of

the functional

t
2 ..
I 5 <g{x)x,x> dt .
t
The Euler equations
4 + _1 P
E ac [gij(X} xj) =3z I Ik, ¥5%k
I 1

can be written as

27
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F{tla
/

v
. . _l . . O
g 935%5 1 jfk (gijdk z gjnxi]xjxk =
Using the obvious identity ‘#¢"'</ o >
T ogian Reko= T g, XX
ik 3% k Tk 1kxj i"k

we can write the eguation in lhe form

§g..%., + § r.oox.x 0 P
. . k
571373 T o 3k

where

:
I'... = =% |g + g. - g. ] .
jik 2 ijxk 1kxj ]kxi
We use the notation of differ~ntial geometry and denote the
inverse matrix g'l by (glj) &nd introdace the Christoffel

symbols

i ¢ it 1 it }
Tik = E 9 Tk =217 [gljxk + Takx, gjkxl]

£ e L

so that the Euler equation become : D 4

X, + 1 OrIoxx =0 .
50k k737K
We were inconsistent in the notation describing points
by the letter x instead of g The Lejendre transformation

is given by
P = gx)x

which is clearly invertible since dut g > 0 and the Hamiltonian

29

is given by

—

H{x,p} = 3 <q'1{x)p.p>-

Ex, 4: Charged particle in an electromagnetic field.
We consider a particle of mass m > ¢ and charge e in an
electromagnotic field where the electric potential is
¢{q) {scalar) and the magnetic vector potential is A(g)
{3 vector). The position of the particle is given by g € r3.

Then the motion of the particle is governed by the equation

qAB

=]
o
[
'
m
o
+
oo

whkere

= A (.)
B{q) v A Alg)

is the magnetic field, and ¢ 1is the speed of light.
Also these equations are the Euler eguation C;.?-f a
variational problem with the Lagrange functioqsf'
. mo - 2 a .
(2.12) Fla,q) = 3 la] =~ ed + 2 <q,2> .

Therefore they can also be written in Hamiltonian form if

p=F =mg +
q

oln

A

is introduced. Again the Legendre transformation is linear

()]

VA A or curl A is the vector with components

A - A , A - A + A - A .
293 Tiq, 3, “la, lg, "2qy

ry =

i

B Rad
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in gq and gleobally invertible. One computes

.

Hig,p) = 5% lp - %Mqll? + ed.

As a special case we d scribe the equation of a charged
particle in a magnetic diEolgljifig_(,ike that of the earthj.
In this case the vector potencial is

A=2Ca T(|q|_l)
where C has the direction of 'he dipole axis and [C]
measures its strength.

If C = e, one verifiec that

] f -1, _ -3
%4, vilg| ") = Vigy]al ™)

=]
H
<]
=

-
1]
1

so that the differential egquations are

The Hamiltonian is in *"is case

- 1 _e
H=gq lp - g A -
2 2

q. q

_ 1 e " e =1 2

_2_m{[pl s =) vl +P3}
r

where r = |qg].

30

This relation is not

where the constant is, of course,

K/

Ex. 5: The relativistic equations.

Actually the above equations are valid only for
velocities |é] small compared to the speed of light c.
The relativistic egquations aresdescribed by the Lagrange

function
Flq,q) = m02[1 - /1 - c-zlélz] - e¢ + % <q,A> .

1f one expands this function in powers of c—1|é] and drops
terms of at least fourth order one cbtains (2.12).

Therefore the Euler eguationgof these two variational

problems are "close" if cpllél is small.

The variable p is introduced by
_—m % A .

-2, "
1-¢ “fq]

.

linear in g any more;

to be restricted to speed [q] < c. Since
2 -2 " 2 2
[m202 + |lp - %—A| J(1 - ¢ |q|2) = m'c

it is easy to determine the
C 22 e 2712
g = (m°c® + Ip - ElAl ) cp - el .

The Hamiltonian becomes

1/2
Hig,p) = C[mzc2

+ |p - % A|2} + ep - m c?
irrelevant.

il

1

inverse map as .

moreover, it has

i~
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(£) Generalized canonical tiansformatLions. ]
Exercise 1 Prove that the most general matrix M = M{y)

Under {d) we required tlat the transformation x = u(y) .
for which M Ky is a gradient for all functions K = K(y)

takes the Hamiltonian system
is of the form

X = JHx 1Lty Yy = JKY
Miy) = p I
where K = Hou. One can ask “»r the more general class of
where p is a constant,
transformations % = u(y) which teke any system (2.8) in
Hint: (i) Use that (M Ky)y must be a symmetric matrix.

T

Hamiltonian form into another such system where we do not ]
{ii} Using K = <Sy,y> , § = 5" show that

specify the relation between hese Hamiltonians,

e M{0}s = sm(0)T
Theorem 2.1 If x = uly) is « difreomorphism taking every for every symmetric matrix S£. Taking 8 = I and
system (2.8) in Hamiltonian form into another then : then arbitrarily show

there exists a constant p ¥ U such that
M(0) = const. 1

. .
2.11 u tJu, = op g hence
( ) Y y = ¥
4 Mly) = u(y)I .
The new Hamiltorian is given by u “Heu. ‘ -
5 (iii1) ©Using K = <b,y> with any constant vector b
Wle shall call a transfocrmation y + x = uly) general- . i
show that ”y =0 , i.e. ¥ is a constant.
ized eanonical if it satisfies (2.11) with some constant
u# 0. L ‘J‘
We indicate the proof ¢f Theorem 2.1. If we set ’
K = Heu then the transformed system takes the form
v =3 14K
¥ Yy
where M = My} is given by
M o=ulgu a7t
b Y
It remairns to characterize those matrices M = M(y) for which
MK
Y
is a gradient whichever functicn K is chosen. 13

32
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Exercise 2 Let Flx,2) € C? x ¢+ R A E€ER such that
Exercise 3 Show that the motion of a particle in a constant
2 Lxeltret 2
o F ) . ; .
det [ax. vi] £ 0 magnetic field given by the equations
1 3
and define the Legendre transiormation L(F) = G by 4=gq AB

takes place along helices.
Gily M) = <y, uly, )~ = E(uir 23]

where x = ufy, i) is defined irnli.citly by
Exercise 4 Study the geodesic problem in R" , |x| < 1, defined

—_-.a_.,F..fx ))
¥ =gk T by the matrix
- . - -1 .2 -2 .
P -
o 3G 26 ar <gi{x}x,x> = (l—lxlz] tx| + [1-§x|2j <x,x>2= 2F (x,x).
(i) R 35 T 8%
Show that this metric is positive definite in [x| < 1 where
- det =1 .
(ii) det ny € FXX the <Legendre transformation
iii) L2(F) = L{G) = F =
{iii) L) = = . y =Fg
is invertible. Determine the Bamiltonian H = H{x,y).
2
answer: 2H{x,y} = (1 -|x| ](|y}2 - <x,y>2)
. Can you show that the gecdesics are straight line segments?
-7 ~
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3. Canonical Transformation

'ransfio nations which were

-

The group of cancnical
defined at the end of the previous scction preserve the class
of Hamiltonian vector fields. They ave of basic importance
and will be studied in this seotion. However, we will restrict
ourselves here to local consicerations. We will extend these
concepts to manifolds in  Section 8.

e

{a) Symplectic Geometry. P

We begin with the study of canonical ;mappings which are

linear and of the form
(3.1} ® = Uy

where U is a 2n by 2n matrix. By (2.9} this mapping is
canonical if the identity

(3.2) vlau =4

-

holds. Matrices of this natw. e are also called symplectic —
and for this reason the term canonical transformation has
sometimes been replaced by symplectic transformation.

We will generally use the older term, and reserve symplectic
for linear maps.

To intcrpret (3.f) it is good to introduce the bilinear

form

(3.3) fv,w} = <v,Jw>,

which is {i) antisymmetric, i.e., el [,U‘J'Lr:]
. -

[v,w] = - [v,w]}

and (ii) is nondegenerate, i.c.,

36

3#

[v.wl = 0 for all w & R2D

implies v = 0 .
The latter condition follows from det J # 0.

The condition (3.2) is then tantamount to the condition

]

that the mapping y + x Uy preserves the bilinear form [v,w].

Indeed if v' = Uv, w' = Uw then
[v',w'] = [Uv,Uw] = <v,UTJ Uw>

which agrees with {v,w] if and only if {3.2) holds,
Thus we can define symplectic maps as those linear maps which
preserve the bilinear form [v,w].

From this formulation it is clear that the symplectic
maps form a group, which is denoted by Sp(R,2n). Moreover,

taking the determinant of (3.2} we find

(det 2 a1 .

-

Since J satisfies 32 = -I it is clearly symplectic and by (3.2)

T 1_-1

ut = g U

is also symplectic.
Euclidean geometry is characterized by the group of

transformations x + Ux preserving an inner product

Vow? ,{‘r-ﬂ'b
LA

i.e. by the group of orthogonal transg fmrations:

vlu = 1 .

Similarly the domain of symplectic geometry are properties

invariant under symplectic transformations.

37
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From now on we will no* insist that the bilinear form
[v,w] is given by the above roprgsentetion with the matrix
J but allow an arbitrary bilinear form which is
{i) antisymmetric, and {ii}) nondegenerate on a finite
dimensional real vector space V. (2 will sce presently that
this, in fact, is not more guneral.) We call Vv equipped
with this form [ , 1 a symplectic .space.

We will say that v 4, w , O "y is orthogonal to w
with respect to the symplectic form [ , 1 ™ if [v,w} = 0.

If E is a linear subspace of Vv we define
1
E = {wev ]| [v,wl = 0 for all v € E}.

fhis is clearly a linear sukrpace and since v i w is equivalent

to w + v we see that

-

Since [ , } is nondegeneratc we have
. . 2 .
dim E + éim I = dim V (. N

However, the concept of orthogonality in symplectic
geometry differs sharply from that in Fuclidean gecometry:
E and El necd not be complercntar:; for example, every vector
is orthogonal to itself, sirwe [v,vl = =[v,v]), hence 1f

dim E = 1 we have

Wwe can restrict the bilinear form [, 1 to a linear

subspace. This restricted {orm will obviously be antisymmetric

"8

39

put in general fails to be nondegenerate. It is nondcgenerate

if and only if

(3.4) END El = {0)

s = * ‘l
i.e. precisely if E and E are complementary.

Indeed, in order that the restriction of | , 1 to E is

nondegenerate, we require that for v € E

[v,w] = 0 for all w € E implies v =
This is clearly equivalent to
L

. vEENE =v=20

The converse follows the same way.

0

.

Thus in case (3.4) we can call E a symplectic subspace.

1
Because of the symmetry of (3.4} in E and E we see:

: . : : Lo
E is symplectic if and only if E is symplectic.

—rIMME~T. For a symplectic space V, dim V is even,

say 2n, and there exists a basis LARAS TARREA ST satisfying

=48 for 1 < j < k+n < 2n

[vj.vk+n] 3k

such a basis will be called a “canonical basis".

Procof: We take any nonzero vector vy- Since [ , ] is

nondegenerate there exists a vector, which we call Voo v

such that [vl,vn] = 1. 1If dim V = 2 the proof is finished.

If dim V > 4 we set E = 5pan(v1,vn) which is a symplectic

. 1 i . 1
subspace of V, and so is E . Since dim E

we can use induction on the dimension

2n-2 < 2n

to complete the proof.

Lemmu,SJ
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If we represent x in terms ol ihis basis, i.e.

7 5
x = X. V. , x' X.V.
j=1 23 373
we find
v - T v
[x,x'] =} xjkajh
where ij =+1 for k=3j+n and ) otherwise. Thus in this

basis the bilinear form is repres~nted by the matrix J.
Thus it is no loss of generslity to operate with the symplectic

form (3.3). o~ -

Corcllary to Lemma 1. TIf [ , jl and [ , ]2 are two

nendegencrate antisymmetric bilinear forms on vector spaces
Vl,vz of equal dimensions, then the. e exists an invertible

linear map T: Vl -+ V2 such that

(3.5) i [TV,TW]2 = [vowl, .
Indeed, we just select canonicul bases vél), v}z) )
in Vl,v2 respectively and d:fine
'l
(i} _ ()
Tvl = v2 . s -

Thus all symplectic spaces of equal dimension-are equivalent
in this sense.
We introduce some vocabulary: A linear subspace E of

a symplectic space V is called

4

isotropic if E CE

L

coisotropic if E D F
{3.6) .
Lagrange space if E = B

iFENnE = (0) .

‘”40

symplectic

ey =

The last definiticn was introduced before. Any one-
1
dimensional space E is igsotropic. Since dim E + dim E = dim V

it is clear that for an isotropic space
dim E < n
and for a coisotreopic space dim E >n. If dim E = n and E

is isotropic then it is a lLagrange space.

We illustrate these concepts with the bilinear form
A - ¥

x,x'] = <Jx, x'> = <p.q'> - <q’p.>£/-

ey T

in Rzn, where x = {q,p] and x' = {g',p'}. The manifold
{xlql=q2=c-c=qr=0} "

is coisotropic for r < n, a Lagrange space for r = n.

The space

{xlq‘lzpl=0'___'qr=pr=0}

oy W

is symplectic, and the space N

{xlqla-'¢=q =0'pl=v--=p = 0}

0 X

is isotropic.

{b) Differential Forms.
To express the condition (2.9) for canconical maps,
in a concise form suitable for cocordinate transformations

we use the exterior algebra of differential forms. A two

ey W -

. . m . . i
form o in R is written

m
. = . dx. dx. .
(3.2) af{x) i,§=1 alJ(x} Xj A dxy

41
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We will simply use the formalism of differential forms

(see ) but remind the rea‘er of the rule dx; A dxj
= - dxj A dx,. If we view dxi A dxj as antisymmetric
bilinear forms on R"
dxi A dxj {v,w: = vi“j - iji .
for every pair v = (vi) and w = {wj) of vectors in Rm,
m

then the above two form a arsociates to cvery x € R

. N - . m .
an antisymmetric bilinear form on R°. In order to remind
the reader of the transformation law of two forms, we write

- for the moment Ythe form fJin the handy and suggestive form

S

alx) = <a() dx A di-,

where A = (aij), dx = (dxi).
For a differentiable map wu: y b= X = u{y) from

Rk into ™ we call the resulling two form in Rk

uw¥aly) = <afuty))u, dy u, dy>

Y
T(a o wu_  dy a dy>
¥

1!

<Bly) dy a dy>,
so that u*o is represented by the matrix

T
3.8 B = u (A o u; .
{ ) {y) 'y U

More conceptually the two form u*u at vy is the antisymmetric

bilinear form on Rk,

u*a{y) (v,w) = alx) (Uv,Uw) ,

42

&3

x = ul{y), where U = uy , and v,w E Rk. In particular, if u
is a coordinate transformation in R™ with uy nonsingular,
we have recalling the transforhation law for vector fields

f{x}, gi{x} on Rm,
wiaty) {(u't(y),ufgly)) = a0 £(x),9ix)),

%x = u(y), expressing the coordinate independence.

we apply thesc remarks to the special two form on Rzn
. 1
w o= 5z <J dx A dx>
1 ¢
= = dp. a Qg. = dg. A dp.
2 -£1 (dpyj » day = day A dpy)
3
)
= - dp. A dq. .,
=1 J ]

with xj = qj . xj+n = pj . 3= 42,...,n, i.e.,

wiv,w) = <Jv,w> for v,w € Rzn. This leads to the egquivalent
Definition. A mapping x = uly) is canonical precisely if
(3.9) we = w ,
where

n
{3.10) w= Y dap. s dq,

3=1 ] 3

This differential form, called the symplectic form,
takes the place of the antisymmetric nondegecnerate bilinear
form in the lincar case. It is a closed two-formj{.e.

dw = 0, which ls nondegenerate. We will see that every two-form

- 43



”

.\(_rl‘:..\
Lemma 3. The Poisson bracket satisfies the following identities!
{F,6} = -~ {G,F}
{{F,G},H} + {{G,H),*} + {{H,F},C} = 0
for all functions F,G,H.
The first relation is obvious, the second, called the
Jaccbi identity, requires z c.ulculation which we leave to
the reader. ~~
With the notation of Scction ! we will associate with
any function F = F(X) a Hamitonian system
X = JFx
or the partial differential operator
n
J
N N (RS
F . T . 9p.
j=1 Py "y 4y 9py
which also represents our vector field. With this notation®
L

XoG = <Fp,Gq> - <Fq,cp> = -~ {F,G}
Hence we have

(3.11) X.F={F,G}l =~ Xx_0G.

It is easy to see now that the Hamiltonian vector

fields form a Lie algebra, i.e. that the commutator

[XF,KG] = xeG - XGXF

is again a Hamiltonian vector fieid. 1In fact

g 44

e

with these two properties can be transformed by appropriate
local coordinates into the form {(3.10). But in this section

we shall continue to work with the differential form (3.10). H

(c) Poisson Brackets.

There is a third and most important way to characterize

canonical mapping. For any two scalar Cl-function F,GC we

o=

define the function

{F,G} = <Fq,Gp> - <Fp,Gq>

where again xj = q for j=1,2,~**,n, or

j r

{F,G} = <JF_,G3 .

Lemma 2. A mapping x = u(y) is canonical if and only if the

Poisson brackets transform like

* {F,Gleu = {Feou,Gou) ‘
for all functions F,G.
’
Proof: Since
iy
Fou) =nu'F, onu
( Yy Yy %
we find
T T
{Feu,Gou} = <Juy Fyeo usu 6o u> |
_ T
= <uyJ uy Fxn u, Gxu u> ‘
and the condition of the lemma requires that uyT is a symplectic xt
matrix. But we saw that U is symplectic if and only if u? is,
proving the lemma. . "
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(3.12) [XF,XG] = XH withh H = - {F,G}.

To verify this apply boih sider to a function, say h,
and apply (3.9) and the Jacobi identity.
{d) Flow of a Hamiltonian vector field.

THEOREM 3.1. A vector field

T 3
x= 1 f500 5
. t .
is Hamiltonian if and only if the corrcsponding flow ¢~ 18
canonical.
rroof: Since ¢t satigfies the diff:rential equation
d .t _ t
Jac ¢ " L{d7)
the Jacobian matrix
st = 4 (x)
' x
satisfies 3
L2
.cdl_t olt,x) = F(+5 () &it,x)
where F({x) = fx(x).
If the vector field is liamit'tonian then
£f=2J Hx
and
F=2J Hxx

where H‘< ig the.matrix of sczond der .vatives and hence
XX

symmetric. Thus
40

-

‘.

5
[y

i

U

4. (473 0) = ¢T3 4 4 Tape = 0~ F)T+ JF)e = 0 ,
since -JF = L. is symmetric. Therefore

o753 @
is independent of t and since it is egual to J for t =0

the matrix ¢ is symplectic, hence ¢t canonical.

Conversely, if ¢t is canonical, hence ¢ symplectic

we conclude from the above formula that
-JF=-4J fx =49,
is symmetric where g = - J f. In other words we have
g, ! E
Ixg kx]

this is the integrability condition for the existence of a

function H , in a sufficiently small neighborhood for which

holds. Hence

i.e. the vector field is HMamiltonian.

Later we will replace this somewhat elumsy argument
~

+ith a more elegant derivation using differential forms.

flow of =a Hamiltonian vector field

Corollary, The

is volume preserving, i.e. preserves the 2n-form

dxl A dx2 A cve A dxzn N

Proof: We have to show that
£y =
det (¢x )y =1 .,

A



Since ¢xt is symplectic its d.terwinant is + 1 and for t = 0
it is +1 hence the statement.

Actually the determinant of any -—-eal symplectic matrix

is +1. If ¢t is the flow nf tine Humiltonian vector field
XH , then for every function
d t d t+s’
— G s § === 0G o ¢
dt ds Is=0
=x6 e o = f(cu < ¢t
[ )
and in particular for G = H
g-—tHO:'t=0;
hence H » ¢t = H is independe..L of t i.e. ¥ is an integral of
the motion —- which usually correspends to the energy integral.
This means that the flow leaves the surfaces.
{x | B(x} = ¢}
invariant. .
It is useful to note that on tiese so-called energy o

surfaces one also has an invariant v ume form, provided

dH # 0. Such an invariant form, sav @ = azn_l is defined by

A dx., A .., A dx =@ A dH .

axy 2 2n

Of course, o is defined only rodulo | by this formula, but - &hL' %

ates

this does not matter for the restriction of & tg;y =0 on
whose tangent space one has dH = 0. Since both ‘
dxl A dx2 A Loo A dx2n and di! are preserved under the flow

we have

48

t, k- -
(¢7) w = w (mod dH)

and the restriction of & to {H{x)}) = c}.is preserved.

If 0 is the surface element on {H = c} which belongs

2 2n 2
to the metric ds° = | dx.° then we can take

=1 )
2n
~ a 2 2
W o= - ‘ o= 1 ns.
]Hx] x 3=1 x]
49
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Sectionf . — Exuruiscs

Exercisc 1 If a 2n by 2n wmatrix U is written in block form

n B ]

it is symplectic if and onlw if

ATC, BTD rre symmetric and
aTp - ¢Ta = 1_ .
n
In particular, such a matrix with B = 0 is symplectic

if and only if A is nonsingular and U can be written as

A 0 I 0
U= -
o ) “lls 1
with some symmetric matrix S.

Exercise 2. It is known that every real nonsingular matrix

U can be uniquely represented as (polar decomposition)

U=PO0

whore P = pT is positive definite and O orthogonal.

Show: If U is symplectic then both P and O are symplectic.

Exercise 3. Show that a positive symmetric matrix P is

symplectic if and only if il is o: the form
A B
B ~h

and A,B are symmetric n by n matrices.

r = eM where M=

50

Excrcisce 4. Show that an orthogonal matrix O is symplectic

if and only if it is of the form

A B 1
0 =
-5
where ATB is symmetric and
T T

AA +BB=1.

These conditions arc alsc necessary and sufficient for the

conplex matrix

A+ i8B

to be unitary. Hence we have established an isomorphism

SP{2n,R} N 0f(2n) » U{n} .

Hint: Note that the relation

OTK 0 =K

holds for K =1 and J hence also for

2n

-

K=1I +id

2n 2n

Write out this condition in terms of E = A + iC, F
E*E=FF=1, EF-=il.
From the first and last relation get
E*(E + iF) =0

hence IE + iF = 0 which gives the result.

Exercise 5 show that with

the matrix O of Excrcise 4 is transformed into

51
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f a1 0
To1t=
0 A+il

showing that the mapping of tnat exercisc is a homomorphism,

i,e. respects the group operai.on.

Exercise 6 show that for any syuvlectic matrix U one has
det U =+ 1 .

Remark: It is only a matter of shiwing that det U is

positive. One can use Exercies 2 .nd 5 to show this.

Exercise 7 Show that the most gcaeral symplectic mapping‘

X + Ux which preservzs the two Lajrange subspaces

E

1 {x | Xy = oxy = o= xS ¢}

E

2 = Ix lxgyy = oo =3y, = 0}

has the form

A Q ’
0= -
0 (Aq) 1 1
Exercise 8 A transformation xj = uj(y) is canonical if and
only if
{uj,uk] - ij
where Jj-jiP =+ 1, ij = { otherwise.

Hint: Apply Lemma 2 to the function

Fi{x) = xj . Gix) = xk .

&3

-G (""t')
Exercise 9 Show ! E;;on two vectors v # 0: w# 0 in a
symplectic space (V, [ , 1} there exists a symplectic
mapping U with
Uy = w

(i.e. the symplectic group acts transitively on V - (06)).

Hint: Use the argument of Lemma 1 te construct two cancnical

bases v. and w, with v. = v and w, = w.
J b] 1 1
Exercise 10 (i} Let E be a Lagrange subspace of the symplectic

space V then there exists a complementary Lagrange subspace F,
i.e., V=E+F, ENF = {0},

(ii) Given two complementary Lagrange subspaces E, F of
V and a basis €y:€5r...,e Of E show there exists a unique

basis fl'fz""’fn of F such that

[ei,fj] = 6ij'
Exercise 11 Let E be an isotropic subspace of V with basis
el,ez,...,ed. Show that ed+l""'en’ fl,...,fn can be chosen

such that ei,fj form a symplectic basis of V.

Exercise 12 Let
d2
L= —5 + qx}, q € Cla,b]
dx

be an ordinary differential operator acting on y € Cz[a,b},

and let Vv = R4 be the space of boundary values, i.e., x € V:

X = (xl = ula), x, = u'fa}, x5 =.ulb), X, = u'(b)].
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Then
I {(Lv)u - V(Lu)} dx [u,v]a
a
depends only on the boundary values . .1 defines a bilinear

form on V. Prove that this bilinzar ‘orm is a symplectic
form, hence V a symplectic vertor spac2.

Let E € V be the two dimension.l subspace defined by

the pair of linearly independent and . cal boundary condi- .
tions for L: A 4 ,
‘3?‘ ‘r‘ ' di,
] a.x. =0, L Ry, =0 . -
j= 13 j=1 J ol

Prove that the operator L belonginc to these boundary
conditions is symmetric precisely if 1 € V is a Lagrangian

subspace.

-

Generalize to ordinary differential operators of even

order.
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4. Yamilton-Jacobi Fquations

In this scction we give other representations of cancni-
cal iransformations which will be of importance in the
following chapters —— and which will lead us to the first
order partial differential equations, called the Hamilton-
Jacobli equation.

{a) Generating Functions.

From now on we will abandon the notation (gq,p) and
replace it by (x,y), x,¥ € R". This may lead to a confusion,
since x does not stand for the 2n-vector any longer, but for
an n-vector. Similarly we will denote by (E,n) € R2n another

point and consider the mapping

u: {(&,n) > (x,y)
where -
% = al(f,n) ,

(4.1)
b(g,n} .

e
n

This mapping is canonical if and only if

n .
o = w where o = ] dn, A df.
3=1 J 3

for which we also write

n
{4.2) I dyja dxg = ) dng A dgy .



If we assume

(4.3) det (a ) A0

2
then locally the first equation in (4.1, can be solved for
£ = af{x,n). If we insert this into the second equation of

(4.1) we get

{ £ =ul{xn)

(4.4)

Y = B(x,n)
where

{4.5) det(ax) det(ug) =1

The advantage of scrambl ing the variables in this manner
is that the condition for u to be cancnical is much easier
to express in terms of the «,f than in terms of the a,b.
In fact, under condition (4.3), u is canonical if and only if

there exists a scalar function W = W(x,n) with

£ = a(x,n) Jn(x,n) 1

1

B{x,n)

Y Wx(x.l'l)

i.e. {a,f) must be the gradieat of a function. The necessary
compatibility conditions for a,B are Iinear in contrast to
the gquadratic conditions for r.b. We emphasize again that
this statement is of Ioecal nature.

To prove this statement une uses the differential form

n
g = .odx. + . adn.
jlfl Yj dxy + &y dnyg

5%

whose exterior derivative is

noy
do = Ady. A dx. + df. A .J
jfl [Gyj & dxg + agy any
X ;
= dy. Ao dx, - an. & dg. |.
j=1 J ] j=1 bl 3)

This differential vanishes precisely if X,¥,8.,n are related
by (4.1} or equivalenty by (4.4) provided u is canonical.

This means that

n
JE Bj(x,n) dxj + aj{x,n) dnj

1

is closed, and therefore locally exact ji.e. it is of the form

n
dW(x,n) = (W dx., + W dan.
' j£1 xg &5+ ny)

with some functicn W = W{x,n). Comparison of the coefficients

of*dxj ' dnj gives the result which we summarize.

THEOREM 4.1. Every cancnical transformation (4.1) satisfying

{4.3) can locally be represented in the implicit form

#

£
Yy

wn(x,n)

Nx(x,n)
where

det wxn #0 .

Conversely, any smooth function W = Wix,n) satisfying this
inequality defines implicitly a canonical transformation near

a point,
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The proof has been given above cxcopt for the last state-

ment which follows by reversira the steps. The last inequality,

which follows from (4.5}, alliws us to reoturn to thae explicit
representation {4.1}).

The function W = W(x,n} is call. 4 a generating function
of the canonical transformation. Thi - thceorem shows that
canonical transformations satlcfying (4.3) can locally be
described in terms of a single function showing how scverely
the 2n functions aj, bj are restricted,

The identity map corresponds to = <x,n>. Thus any

function

W= <x,n>  wix,n)

Wwith a function wix,y} which is small +ith its first deriva-

tives defines a canonical transformition mnear the identity.

We can use the function wi(x,i} to "p¢rametri2e“' canonical
transformations near the idertity.
There are variations orn this theme and other generatin?

functions can be constructed: If we single out x. , £ as

J ]
independent variables — wherc we assume
(4.6) det(a“) #0
instead of. (4.3) -—— then we cah reprewont the canconical trans-

formation u in the implicit form

n = -VE
, act V # 0
= v x
Y X
with a generating function V = V(f,x}. The proof proceeds

as above but starts with the differcatial form

£~

&9

For coxample, the identity map violates conditien (4.6)

but satisfies (4.3), while the simple rotation

which is canonical satisfies (4.6) but violates (4.3).
However, for any canonical transformation there is some
generating function

respresenting it, as follows from

the following lemma. To Iohmulate it we introduce the
group of "elementary canonical transformations" which are

generated by the rotation

xp =Ny e ¥y = ke X TR Ve Ty for k 2 2
and the mappings
X% by 0 Y5 T Mgy G 7 b2

o

where 1 is a permutation of the numbersé;l,Z,...,n.
N ]
It is clear that these transfoqiations are canonical

and can thercforc be represented by symplectic matrices,

say E.

Lemma 4.1. Given any symplectic matrix U there exists an

elementary canonical transformation E such that
A B

C D
with det A # 0.

We will leave the proof to the reader {(Exercise 11).
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Applying this lemma to a canonical t ansformation u with
Jacobiag U at some point we s o that one can achieve that
condition (4.3} holds for u o v, for some elementary canonical
transformation, and thus finu a repr: sentation in terms of

a generating function near this poin‘ .

(b) Extending a transformatlion to a canonical one.

We apply Lemma 1 to determine tlLe most general canonical

transformation (4.1) for which
{(4.7) x = a(f)

is prescribed, where det(aE) A0, ind a(f) is independent

of n. This represents a transformation in "confiquration
space"” which is to be extended to a —anonical transformation
in phase space..

If we apply Lemma 1 to ocur prohiem the generating

function W(x,y} has to satisfy
E = Wn(x,n) = a(x,

where a(x) is the inverse mopping t> x = a{f). Thus
W= <a({x),n> + wix)

with an arbitrary scalar function wix).
It is more efficient to represent the canonical trans-
formation in terms of another generating function V = V(L,y)

using Ej‘ ¥. as indc¢pendent variables. This canonical

3
transformation is given by

x = v ey, n =V (E,¥).

cn

A

By (4.7} we have ‘
. Vy(i.y) = a(g)
or
VIE,¥) = <a(£),y> + v(E)
or
n=VvV, = aT(E)y + v, (£)
g £ £

and the desired explicit representation is

4.8) { x = a(g)
y = (ag)-l(n - ve)

where v = v(f) is an arbitrary scalar function. This is the
most general canonical transformation compatible with (4.7).‘
This generalizes Exercise 1 of Section 3 to the nonlinear
case. ‘

We will frequently apply (4.8). It is cumbersome to
determine the inverse of the Jacobian a..

£

disappears for conformal mappings £ > a(f) for which

But this difficulty

lax]? = § ax? = xqe) T a}
or

T
a, = .
aE € Ag) 1
BEven if the Ej represent an "orthogonal®™ coordinate system, i.e.

)

j=1

if

2 2
d . dEs
[ax | 95 (&) dej
holds we have

T .
a; a, = g{f) = diag (909500209}
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and (4.8) can be written in t' . form

x = al&) '
(4.9)

y = a;9 tn - vl
For example, we apply this statc :ont to the conformal

inversion on the sphere

for which

a, = lhi—d I.

x = €] %
{4.10)

n=- 2 f,nxg

e
1
-

as one easily verifies. This wapping is, like the inversion,

-

an involution, i.e. satisfies u ¢ u = id. It played a central

role in K. Sundman‘s investication »f the three-body problem.

In generalization of the extenz-on (4.8} of (4.7) we

ask when the relations
1l
(4. xg = aglb,m ‘4= 1,2,...,0)

can be extended to a canonica’ trar .formation., Clearly

we have to require that

{i) {a .2} =0 el el

J
{(ii) the matrix

(a., , a._ 1}
& I k=1,2,...,n

kmﬁthavﬂirank n.
7
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Taking v = 0 in (4.9) one obt wins the ~anonical transformation y;

(‘ 11531';

—— e

63

These conditions are also sufficient, as we now ! show,
By applying an clcmentary canonigal transformation we can

assume that

det(ajck) # 0
]

and solve the eqguations (4.&) for
.= oo, (x, .
Ej “3( nj

We claim that the matrix au is symmctric as a consequence of

condition (i). That condition can be written as

T

i.e. aEanT is a symmetric matrix. Multiplying this eguation

by arl from the

>

from the left and its transposed
right we find

. T, T -1 -1 _
an(di) aE an =0,

£ n is a symmetric matrix.
On the other hand, differentiating the identity

£ = alalg,n),n)

yields
1= ax aE
0 = +
LN un
or
-1
= - a, a_ .
%n £ n

This shows that o is a symmetric matrix and therefore

locally there exists a function, say W = W(x,n) with

an(x,n) = aj(x,n) .
63
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Moreover,

i

det (Wxn) = det a, = {det a A0

}-

£

and therefore W = W(x,n) is a weneray ing functicon of a
3t

canonical transformation exte.ding ( M.

f?) \
AsyTorollary to the extension ol {4.%) we have
o

Lemma 4.é. I1f ao,al,...,an are n+l [unctions for which

r
(4.17) fajia =0 Jik=0,+<,n

»
and

rank[a =n

-S|
TIN5 2e ey

then a, can be expressed as a function of al,az,-o-,an.
In other words there are at most n independent functions

satisfying (4.1&).

Proof: Applyiné'the canonical extension of (4.11) we can
find a canonical transformation u such that

ajou(x,y) = xj .

We set

ageu = E{x,y)
Since the Poisson brackets are preserved under u we have

¢ = {aj.ao} = {xj.f} = fyj

i.e. £ is independent of y. ¥cnce

ao = f (al;azt"'tan)
2
proving Lemma 4.\.
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{c) Local Fguivalence.

In Section 1 we saw that any two vector fields are locully,
near a nensingular point, equivalent. The same applies,
in particular, to Hamiltonian vector fields but it is not
obvious that the mapping u establishing the equivalence cuu
be chosen as a canonical mapping. That this is the case is

the content of

THEOREM 4.2, If dH # 0 at a point (x,y) = (x*,y*) and H € ¢t

L2

(r > 1) in a neighborhood of (x*,y*) then there exists
a canonical Cr"mapping u: (E,n) — (x,y} near
a point  (£*,n*) which is mapped into (x*,y¥%)

such that Heu = "1 - Thus the transformed vector field

is parallel to the Cl—axis.

This theorem follows from the somewhat sharper
3 r+l '
Lemma 4.3. IfHEC near the origin (x,y) = (0,0)

and
dH = <a,dx> 4+ <b,dy> # 0 at x = Yy =0
then there exists a canonical map u near the origin with ;

u(0) = 0 , Jacobian u{0) = [ug(o),un(o)] =1
such that f%

Heu{f,n) = <a,&> + <b,n> ,
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Indecd, to deduce Theo>.m 2 f-om this lemma one R 0 HT H,
. A = z . where HZ = .
has to construct a symplectic nap, say v, taking <a,£> + <b,n> -H J HY
L
into ny - That this is possible follows from Exercise 9 of .
and the Jaccbian of ¢ by the matrix
Section 3. Before proving Lorma 4.3 we need an extension é?
of the formula rA . [ 1 o ]
4 = I
% n JH L4
(4% e = w , w o= 1 ay, A dx, 2

where ¢ is the Jacobian of ¢t. Then one computes readily

for the flow ¢t of a Hamiltonian vector field X.,. This

I . . ’ that

formula simply expresses that ut is canonical, and therefore

is a consequence of Theorem 3.1, iTA F = [ ° 0 ] '
We wish to extend this formula to the mapping $ in R2n+1, 0 J _
- since ¢ is symplectic and <HZ,JHZ> = 0, This formula is in
- t [
. r —
j&ft,g) B (e 07tn), & (&on) ¢ C;chl agreement with (4.13).
t . - .
i = = > te the identity (4.13)
We define the extended differertial form on Rzrﬁ1 Since =z (x,y) ¢7(Em) we write th v
- n 3 in the suggestive form
A | 63=d[): y, day -~ H at
j=l 3 i n n
. - dat = an. a df. .
which is equal to N (4.14) j£1 dyj A dxj an A ' jzl HJ 3
n n ® O 3
) dyj A dxj- aH A dt = ] \dyjﬂ-[x dt) A (dxj—}[y dae)y , Proof of Lemma 4.§: We can assume H{0} = 0 and that
i=1 i=1 J J
(a,b) = e 1! using Exercise 9 of Section 3, so that
n

and which agrees with w on dt = 0.
q =y, 4 Hixy)

Lemma 4.t. If ¢t is the flow nf XH , and 5 the ahove extension )
where H and its first derivatives vanish at 0. We wish to

we have
construct a canonical mapping
{4.13) M0 = w .
x = alg,n)
z = u(f,n} or
Proof: One carn simply verify this statement by a matrix y = b(g,n)
calculation. The form is reprecented by the (2n+l) by {(2n+1} so that
£7

matrix

Cri
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(4.15) Heu- ny o
The resulting vector field ¢ = €, + uw =0 has the flow
t =
v (E,n) = (,tte; .n)

and u has to satisfy
(4.16) A

There is a large freed»m in the choice of u and we

could attempt to take u when restricted to the hypersurface .

El = 0 egqual to the identity. However, this would not be G

compatible with (4.15). Therefore we require for El =0 0n1m§/

aj(E.n) = E] for j= 1,2,+++,n

AE,n) = n. j > 2
bJ(E n) ny for 3 >

while bl = bl(EL,n) will be <. termined by

{4.17) H(o,z'.bl,n') =Ny .

H
Here we write £' = (52,°°-,Ent. nt o= (Nyes**yn_). This equa~ °

tion determines bl uniquely with L (0} = 0 since Hy (0) # 0.
1

Note that bl igs independent of El. Next we set El =0

in (4.16) and find

(4.18) 0500,€" by ,n") = w(t 60 n 00 .
Therefore we will define u = a{E,n) by

31
u(g,n) = ¢ (O,E',bl,n')

where b; is defined by (4.17). We have to verify that u has
the required properties.

68

69

First u satisfies {(4.16) since

£

t+f
$%ou = 404 10,800 0" = g

10,600, 0y = ueyt
Second, one computes easily from (4.17) that

(Prgebyd (0) = e

and from this that the Jacobian of u at 0 is the identity.
Third, we have to show that u is cancnical. For this
we use Lemma 4, which we apply in the notation {4.14).
Note that u is obtained from ¢t by setting El = 0 and
replacing t by £l {see (4.18)) so that (4.14) restricted

to El = 0 becomes

n n
dy. A dx. - dH A 4 = dn. A ag, .
Jg y 3 £ 22 n £y

1 3 j= J

£
But since H is an integral under the flow ¢t we have

13
Hou(f,n) = Hed 1(0,5',b1,n') = H(D.E',bl,n') =0,y

s8¢0 that

N

This shows that u is canonieal and the proof of Lemma 4./

is complete,

To summarize the seemingly tricky construction: We

introduce the time t elapsed from passing the hyperplane

69
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El = 0 and the Hamiltonian H as indcrendent variables (which

we called £ above) togethe. with £, ,nj {j > 2) to chtain

1™ j
the desired canonical transformatior. An alternate proof of

Theorem 4.2 is indicated in Exercise 6 below.

Corollary to Lemma 4;5. If Hy(D) # © then therc exists a
canonical transformation u: (£ n)} — [(%,¥) = (atg,m) ,blE,n})
with

det aE(O) #£0
and

Heut = 1), «

3

Proof: By Lemma 4.} it suffices to r .mstruct a symplectic
map

2 £ . tA B
e ) ’ U= i
n n C D
with det A # ¢ taking

K(E,ﬂ) = <al£’ + <b:"‘>

into ny . where we reguired b # 0. With a map given by

— T

a o T /X :I)

U = , AD =1
0 D

we can replace b by pTh = e A second symplectic map of
the form
I 0
U = . ST = 8
5 I
keeps b = ey fixed and replaces a by atse, which can be made

egual to zero by choice of 5. laus K is replaccd by ny -
70

+H

{d) Hamilton - Jacobi Equation

The cancnical transformation u of the corollary to

Lemma 4.% can by Theorem 4.1 be represented in the form

E=WwW_, y = wx . det wxn # 0

n
Hence the relation Heu = ny turns into
{4.19) Hix, W_{x,n)) = n,y .,

which is called the Hamilton-Jacobi equation. Thus we have
established the following existence theocrem:

If Hy(O,D) # 0 then there exists a function W = W({x,n)
satisf{ying the eqﬁation {4.19) and det wxn # 0 in a neigh-
borhoed of the origin. Notice that MgeNy ==° N, are just
parameters not given by the equation. Any solution of this
first order partial differential equation depending on these
parameters such that det wxn # 0 is called a complete
integral.

Jacobi's approach, however, was the oppesite: e tried
to find a complete integral W of (4.19) and used it to solve
the Hamiltonian system of ordinary differential equations.

In fact, if W(x,n) is known, it defines a canonical trans-
formation, say u, which transforms the system into

é =e; . a =0
with the flow

WEEny = (ete, n).
Thus the f{low of the original system is given by

T



¢t(X.y) = uawt(ﬁ.n) whore {%,y} = ul(f,n) ,

which defines the solution of _he yiver system.
Finding a complete solution of 74.19}) is therefore
equivalent to solving the syst~m of ordinary differential
/
equations — but it has to be Kept in ind that the solu-
tion we gave is only local, Muny of t+: difficulties which
we will encounter later on arc tied to the fact that a
global solution of {4.19) gen. rally does not exist.
Actually it suffices to find & solution of the eguation
H(x.Wx) = ¢{n) , det wxn £0
since in this case the differcntial equations become
[J 'r]=0

E=o,

which is easily*integrated by

E{t) = £(0) + t ¢n(n(0}) ’ nlt) = n(o) .
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Exercise 1
s orse 1

defines a canonical transformation of (€,

Exercise 2
ZRErClse £

1

frees by, oy s

43

Show that
X = /2n cos £
1
y = V0 sin £

Show that

El sin E5 v ¥y

-1 R
nlcos 52- El n2 5in 52

= nlsin £2- E;lnz cos £2

is a canonical tra%gformation.

Exercise 3
—Soorime J

Transform the Hamiltonian

-

1 e 2
H=x5lp=-Zaj

for the vector potential of the dipole

A

1 -3
Te3 AV = |ql

into polar coordinates

where

P,

9 =

9, =

q3

a,

p cos 6 , pl

p sin 0 , Py

-q,
+g 1
0

_ Py |
= pp cos @ - - sin @

= 2 . p3=

zand p,, pg, p

z

73

Py

Py

sin 8 + —gg cos 8

are the new variables.

n>0) — (x,y}.

e ® -
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Excrcise 7 Consider a function H = H(g,p) which is invariant

(Answer: 2
9 = [HBQ _ 9,2_] +p - P 2 under the translations
p c r3 p z
with r = D2 4 z2 ) qj i qj te pj ) pj RS
and let Ty eflypene, My be positive numbers. Introduce
Exercise 4 Show that in Exercise 2 68 =0, i.e., the relative coordinatesnxl,xz,...,xn by

P, 15 a constant along soluticns wnd the differential )
e 3 qj+l - qj for j < p-1
equations can be written

n n
-1 .
- x =M Z qQy. » M= E e}
b= -v, v (P e s 2 n k:lmkk k=1m"\._/
B ov, el T e '
2z Extend this to a canonical transformationg, u: {q,p) — (x,y)
Exercise 5  Discuss the solu%*oeiff Exercise 4 which \ N\ homogeneous in the Py- Show that
n
lie *“ the ptane 2z = 0, for ¢/c = 1. Show, in particular, ! ; vy = ) p.
n L

j=1 J

that for Pg <0 all solutions escape .nd for Py ? 0 ithere

. ) . -1 and that F = Hou_l is independent of x_  , hence
is a periodic circular solution of radius p = 2p0 . n

\'a = =F = 0 .
n Xy
Exercise 6 Prove Theorem 4.2 in case HY (0) # 0 by ]
. 1 . . In case the Hamiltonian function is of the form
constructing u in the form
.-t ot H(g,p} = T{p) + v(q)
u = lim & Toy
L= where
where wt is the flow correspoading to K = y, and 21 -1 2
¢ 1 T(p) = 3 _Zl LN
¢t the flow corresponding to a modificd ol (sce Section 1, 1=
is a positive definite quadratic form there is a more elfec-
Excrcise 2). .
tive way to introduce relative coordinates via a canonical
transformation which keceps T in diaganal form. This
transformation is duec to Jacobi and is based on the Gram-
! schmidt orthogonalization process with respect to T(p),
7" which is presented in the following two exercises,
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Exercisc 8 Introduce x by the linear transformation

g + x = Aq given by yA -
m,t )
b] f-’
5% L et 95 RIS
-1 B
=M .
xn le quj

and extend it to a canonical map u: {q,p) = (x,y) by

T, -1
y=(") "p
We write A in terms o  its row vectors aj= (ajk)k=1,2...n
e.g.
I |
a =M (ml,mz,...,mn) '

and consider the bilinear form

¥ o.-1
T{v,w} = | mItv.w..
- j=1 1 173
The vectors al,az,...,an_l wiil he chosen in such a way
that
H
T(ai,aj) =0 for i # 3, i,3=1,2,-++,n.
Show that the aj, hence A, ire uniquely determined by this

requirement, that xl,xz,"',xn_1 are invariant under

translation qj + qj+a and that

Moreover, F = Hou™} has the form

n
‘i Ll-l y? + V(x)f
j=1 3 ]

where V is independent of x  and uj > 0.

N -

F(x,y} =

3

¢

Exercise 9 Verify that the matrix A constructed above

given by

A

=
1

s}

X, = —[ E m ]Hl[ f m, q j + g for 3
J kel K ko1 kK kJ i+l 3z

and the coefficients “j of F in Exercise 8 are

g j+1 -1
37 ’“J‘+1[k=l | ! n) 3 xed

M, =M, (:;;;’/,,

Note that X4 can be interpreted as the vector
from the center of mass of ql,qz,"',qj to 9y41-

are called the reduced masses. This construction applies

equally well for vectors qj.

Exercise 10 Let u: (£,n) — (x,y) given by

- X = a(t,n)

Y = b(g,n)

is

P

oy ™

The u.
u]

be a canonical transformation with generating function Wix,n

and

A 0
M= . aATh =1
0 D

)

& symplectic matrix. Show that u commutes with M if and only if

wWhx,on) = Wix,n) 4 ctagt

N

C

LI

el
— e

Ty



H

Exercise 11 Let {A,B) be an r by 2n matrix of rank n,

with two n by n matrices A and B satisfying

ABT = PAT.

Prove there is a symplectic m:trix S such that (A,B}S = (nr,B)
satisfies

det(A'] # 0 .

pProve that S can be chosen to bpe an clementary symplectic

matrix E. (The definition of elementary symplectic

was given before Lemma 4.1.)
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5. Integrals and Group Actions

{a) Integrals.
For any vector field X with flow ¢t we call a function

L]
G = G{x) an integral if G{¢t(x)] is independent of t, i.e.,
t
Gl (x)) = 6{x)
Since

but the gradient Gx of G is not zero.

d t
) (x)]i =X G
dt =0

this is equivalent with the following

Definition. A Clufunction in a domain D is called an integral

of the vector field X if

X6 =20, dc # 0 in D .
If X = XH is a Hamiltonian vector field then
(5.1} x.6=- {H,6} = {G,H} _\_

s Z

and G is an integral if and only if

H,6} =0 , ac #0 in D .

On account of (5.1) the conditions

XHG =0 and XGH = 0

are equivalent and this equivalence is the basis of the princi-
ple relating group invariance of H and the existence of
integrals to be discussed in this section. We begin with

a simple example. -
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(b} Example,

We consider a function H in RF and assume that it is

rotation invariant, in the sense that
H(Rx,Ry} = H(x,3!

for any orthogonal 3 by 3 matrix R w:-th det R = 1, It is

well known that X_ hag the integrals

H

(5-2) 6 = xy5 - %3y, G2 = X3¥) = X3¥3 + Gy= X1¥,~ X7

which are the components of the angular momentum vector x A y.

To show this we recall that the group of all rotations

is generated by rotations about the three axes, i.e. by

CoB T =~sin 1 0
R3(T) = sin t oS T 0
0 0 1

and two similar matrices Rl(Tl), thrz), defining rotations
about the xl-axis and the xz-axis respectively. The

matrix R3(t) can also be written as

[ 0 -1 ¢
Thy ‘
Ryl1) = e . Aay=]4s 0 o
o o6 0 J

and is the solution of the differential equation

dR3

Similarly, we have

I = A3R3 ' R3(0) =1. J i

&1

with

o
o
o
<
[

A, = [
0

- o
1

o -~
-
[
1}

1

- o

[ =]

o o

and an arbitrary orthogonal matrix with determinant +l can
be written as

6 -t3 T, ]

_ A . B -
R=g with A =J LFLS T3 0

i M1

STy, T 0

Thus the matrices A so obtained constitute the antisymmetric
3 by 3 matrices which represent the Lie algebra of the group
of rotations..

Now we observe that the mapping

X R3(1Jx e 3x
— = 1A3
b 4 R3‘T)Y e Y

is a canonical mapping which is the flow corresponding to the

3%

Hamiltonian vector field

dx _
dr " B3X
dy _
ar = Ay

with the Hamiltonian G3 = <A3X,y>. Since by assumption
Heyi=H
is invariant under this flow we conclude by differentiation

with respect to t at 7 = 0,

X H=0,
Gy

. o1

e W

R

o=

g =
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By (5.1} this implies that We speak of a canonical group action of G, if

‘ XHG3 = v: G x R2n — R2n
. ; . A - .
i.e. Gy is an integral of Xy .u R Vo is a smooth map satisfying, with the notation wg = p{g,*),
By the sane reasoning

G ly) = <X,y (5.4) L g/he6,

are integrals which are the =ame as (%.2}.
and in addition wg is canonical for every g € G.
For any one parameter subgroup given by g(1) with (5.3},
{c) Group Actions.
. . T abq(ﬂ represents a flow on Rzn which by Theorem 3.1 is

The above example illustrates thr connection between .
generah—iﬁaﬁl by a Hamiltonian vector field X. This vector

the invariance of H under a finite dimensional Lic group and X
field X = X'(2z) is defined by G - feA

the existence of integrals, whi:h was formulated by

E. Noether (1918) as a general principle in much greater ’ a 7
(5.5) X = 3 w(g(r).z]| . oz = [x,y) € RT.

generality than we will admit. We shall restrict =0

ourselves to translation greups and to groups G repre- If we write

sented by matrices g € G , where the group multiplica- ﬂ)g(ﬂ = explTX)

tion agrees with matrix multiplication. If gl(t), T € R, a

* for the flow generated by X = X", we have the suggestive

describes a one parameter smo~th subgroup of a matrix group, '

. . formula

i.e.
exp TA _ = yh
g“l + tz) = g([l)'g(TZ) ' \ exp{1X) , X .
then Thus we have associated to every A in the ] - algebra 15, of G
. A s . ,
(5.3} ?% (1) = A glt) or glt) = e™h a vector field ¥®. From the definition (5.5) one sces easily

that this mapping is linear, i.e.

where the matrix A is an element of *‘he corresponding Lie

AJA M A A
algebra‘lg.ofG,with xll 2A2=J\lxl+)\2x2.

[A;,A) = ARy - A

172 Al €. if A]_"h‘z € L} - Moreover, as we shall.show,

2 3

'
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{5.6) (x",xBp = ([BeA}

such that the mapping A —» XA is a L'e algebra homomorphism
of 1} into the vector fields un R2n with negative brackets.

To verify this formula we fir.r note that

1

h texpA) W™l =exp (hand), nec .

This action of the group G i1 its Li: algebra is called the
adjoint mapping, and is denoted by

_ -1
Adg A=LanRT,

To prove (5.6) we consider together with the one-parameter

group g{t} = exp (1A} also

9 = hgtt) Wl = exp (+A) with A = ha h-l.
Since we have a group action, ve have
g1 h git) n~t
¥ =9 e - LI '
and different iting with yespest to 1 at 1 = @ '
o~ -1 = 1
(5.7) A=) @ whore A-nanl.

it

To complete the proof we set h exp(sB) in (5.7) and Jdiffer-

entiate with respect to s at s 0. By Exercise 1.3 the
right~hand side gives

ix®, %)

while the left-hand side being linear in A gives

xBAl inee ¢ i = [B,A] .
ds
s=0
84

Ten

gs | :

As already pointed out, the vector fields xA are by Theorem 3.1
Hamiltonian, and therefore there exist functions G = GA
such that

G’ GEGA.
Actually G is defined only up to a constant. We thus
have associated with every A a function (modulo constarnts)

and it follows from (5.6)

i

{GA,GB} = G[A'B] + <{a,B) ,

with constants c(A,B) € R. All these concepts can be general- v
ized to symplectic manifolds. The indetermined constants give

rise to interesting pheno/ena (see for example V. Arnold, / ?Mf
Mathematical Methods of Classical Mechanics, Appendix 5).

However we will be content to study systems for which these

constants can be chosen to be zero. Such a canonical action }

is sometimes called Poisson action, i.e., if

wy -

(5.8) {GA'GB} = G[A,B] .

Examples of Poisson actions are given by group actions
which are not only canonical but Preserve also the cne-form

on Rzn:

WHhe =0 .

ey

Clearly, since w = dB this implies
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n n
. .
Wh'e = o (5.100) b, + £ y,a, =9, I y a., =0 -4
v ’ 3j k=1 k ka k=1 k kyj )

so that the action is canonicul. In this case we Can assocl- Thus the Hamiltonian vector field XG with G = 0(X) is given by

ate with a vector field X a unique Hamiltonian by .

. n
X;= G, =a,+ I vy a
. k "ky.
(5.9) G = 8(X) , ) Y5 9 k=l 75
. n
where B(X)(z) = 8(z){X(z)). Here we ute the concept of ¥y = ~Gy = - E Y Ay, *
m m J k=1 i
an "inner product® of a one form, say o = J a.(x) dx, on R ] .
4=1 J J Because of (5.10), this agrees with
and a vector field on R", say . . . .
X, = a. , y. = b,
3 3 ] ]
T 3
X = -E aj(x) . i.e. X. = X as we wanted to sh N impl tati
j=1 j -e. Xe W e show. Now a simple computation
as
shows
b
alX) = o.(x) a,{x) .
j=1 J 3 B([xl')‘zl) = {e(xz)re(xl)} ]
In our case, if m = 2n and
! n and therefore {5.8) follows from (5.6}, i.e. the action is
. , d .2 -
X = jE [ 24 Exj oy ayj indeed a Poisson action. An example of such an action leaving
the one form ¢ invariant is provided by the example (b}, i.e.
we have . N
n
a{x) = I vy, @ - Y{Rr,z) = (RfoY) ] R € 50(3) .
gy TF Ok ® @
. 2
To verify that this is a Hamiltonia.: for our vector field X More generally, every mapping u: R no. RZn of the form u:
we have to use that the corresponding flow ¢s preserves B, x = ViE)
. (5.11) _
i.e. y = ("’E) 1
a_wH'el =0,
5 =0 leaves 0 invariant, and actually this property characterizes
hence
n mappings of the form (5.11) {see Exericse 3.
n . .
T (y.dx, + vy, dx.) = % (b, dn + y. da.} = 0,
j=1 ] ] ] J 3=1 ] . ] 1 B .

or expressing thi,s in terms of dxj and dyj :
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If we consider a function H wnich is preserved under

the group action 9 . e, Hoyd = g g r all g € 6 then it

follows that

X.H=10 for all g = GA s AE G .

Since
XyG = -{H,G6} = {G,H} = - X.H =0

we conclude that all functions G = GA are integrals of the

motion, If Al,Az,-",Ar are a basis of the Lie algebra and
r
A= I c.A
j=1 < 3
then
r
T G, =1 ce¢
P A

and we obtain r integrals G, which generate the other Gp - .
In order that these integrals zre independent one has to
impose a nonde eneracy condition on the group action.

We illustrate this principle which.allows us to associ-
ate r integrals with an r-dimensional canonical group action

leaving H invariant with several examples.

{d) Rotation and Translation Group.

-We consider the example

. N 2.2 N
(5.12) #= £ = |p. + £ v.stlo. - oLty ,
| §=1 ij b] li;(ij ij I i ]'

where Qj‘Pj € RJ ' mj

Then xH describes tl..

pPositive scalars and Uij

motion of N mass points in R3

smooth scalar

functions.

&3

[

under forces which depend only on the distance of the mass

points,

Therefore this Hamiltonian is invariant under the trans-

lations in R3:

3

wg:oj-ijq-g, P. + P_ for g€ R

J J
which is a canonical group action for the additive group

. . 3
G = R3. The corresponding Lie algebra is given by R

again
and for a € R the corresponding Hamiltonian is
N
Ga = 'E <a,Pj> = alG1 + a2G2 + a3G3
i=1
where
r 1,2,3
G = <g L P>, a = IRy
o af jel 3j

These represent the integrals of the system corresponding to

They are the componentfof the

B
total momentum . f
N N N .

the translation -invariance.

Its coms tancy implies that the center of mass moves with

constant velocity.

Clearly the example (5.5) is also invariant under
the gmup S0(3,R of rotationgin R3 re presented by the
orthogonal 3 by 3 matrices w{lh determinant 1. T™e group

action UJE s given by
Q ) ) * R Q E RP -

This example is a slight generali-

where R € S0(3,R) = G,
zation of the ome diszussed above and leads to the integrals

89
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P. A Qj> ’ a=1,2,3.

a a ;3

o
"
A
]
I e B

3
Thus the total angular momentu vector
N N
I P.AQ, = T

T om0, A Q
1 ] ] ]=‘-1- 30

J
is conserved under the flow of XH.

(e) Example with SL(2,R)-action.

We consider the example

(5.13) H{x,y} = % (Ix]2]y|2 - <x,y>2) = %'det s(x,v)

Ly ,X> <x,y>
5 = .
<ILX* LYY
We consider the group G = SL{ 2, R} civen by the matrices

-

a b
g = ) with ad - bec =1,
c d

vhere

arl the group action

vIix,y) = (ax + Ly, cx + dy)
which is clearly canonical, Since
g = T
(5.14) s{y{x,y)) = vS5g

it follows that

Hoyp? = (det D =H,

i.e. H is iwardiant under thi- action. We compute the

corresponding intcgrals.
X %0

44

The Lie algebra corresponding to SL{2,R) consists of

all real 2 by 2 matrices of trace 0 i.e.,  matrices of the form

o B 1 0y 0 1 0 0
= o ) + B8 + Y ( ),
Yy -~a 0 -1 0 0 1 0

The corresponding vector field is given by

|

ox + By

X
¥y YX = ay

which belongs to the Hamilteonian

2 2
¢ wasx,y> + § Iy - T |x? .

Thus these integrals are generated by

2
Gy = [=x]° . Gz = X, ¥* o Gy = |y

With this information it is very easy to integrate the
diffecential equations and show that all solution orbits

with H > 0 are ellipses with period 2n (ZH)-I/Z

, while
for H = 0 all solutions are singular points {(equilibrium points).
Indeed the differential equations for (5.’6 are

13
- ayx + x|y

i

(5.15) )
-lyl%x + <x,y>y .

e M
[}

Although this system is nonlinear itis easily integrated
since all coefficients are integrals and hence constant along
solutions. Therefore the system can be integrated like a

linear onc and the solutions are of the form

921



32 : : 43

T 1 0
x At 2n g5g° = ( where cy = AH .
¢ = Re ce ) , c€C N . 0 cy

Y

Thus we can restrict attention to the case
where X is an eigenvalue of the cocfficient matrix, i.e.

2
32+2H=0 | <] =c1=1, <X,Y>=c2=0
or which we recognize as the tangent bundle %z%n-l of the sphere
A=td J2H . Ix| = 1. The differential equation (5.§¥) become
These solutions represent ellipses for H > 0. By the Schwarz X = y s
. T .
inequality one has always H > 0 and one verifies ea.ily y = -[ylzx
that for H = 0 one has
i.e. they define the geodesic flow on the sphere |x| = 1.

x=0 ,y=0 In particular, for H = % we obtain |y} = 1 and we get the

which proves our claim. geodesic flow on the unit tangent bundle;
We discuss the case H > 0 further and show that it ; -y
- . .16 .
leads to the geodesic flow on the sphore 8" 1. For this purpose (5.16) y = -x
we consider the solutions on the surface .
with the flow
2 2 ! .
€= Ixl"=9cp . Gy=xyy> =cy, Gy = |yv|®=cy
2 ) ) t xcos t +y sint
where cy¢, - €, = A > 0. el (5.17) $ (x,y) =
~X s5in t + y cos t
If we make use of the yroup action y¥ we can by (5./} . 13
replace the symmetric matrix 1 Finally we observe that the Hamiltonian (5.‘) is also
€, ©, invariant under the group 6 = 50(n,R) of n by n orthogonal
S =
c, C4 matrices of determinant 1. If R€ { the group action
. fX;Y) hd (Rx,Ry)

by V3

Seypd = gTS g . ' is clearly cancnical and leaves (S.l) invariant. The corres-

- .

This is the transformation law of quadratic forms an? we can ponding Lie algebra consists of all antisymmetric matrices

i to th ~1)/2 integral
choose g so that leading to the n(n-1)/2 integralsg

22 ’ 93
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(e |
= .
3 . hence it is an element of‘(gz , which we call P(z}, such
Gip = X3¥y ~ Xp¥y o« 1 < k<j=mn,
. 3 3 L - that °
which generalize the angular momentum vector to higher
. . (5.17) P(z)(A) = Gplz) -
dimensions.
In the next section we will see that the three This map P is called the moment map of Souriau. If the
dimensional Kepler problem with the Hamiltonian Hamiltonian vector field XH with flow ¢~ is invariant
L 5 N 3 under +the action ¢, i.e. H e wg = H, for g € G ,
H= = - - €
2 Ipl lal ' p.q R then the flow ¢t leaves P invariant, i.e.
on a fixed negative energy surface does not only admit a . . (5.18) P o ¢t = p
cancnical SO{3,R)-action which leads to the angular momentum
conservation but an S0(4,R)-action which leads to 3 addi- We illustrate and motivate this general concept by example (b),

‘tional integrals. Thesegroup symmetries are rather unexpected where the action is given by

at first, and it is ultimately responsible for the special w(R,2) = [(Rx,Ry) . R € 50(3) .
feature of the inverse square force that all solutions We know
of negative rgy ar losed.
g energy e close LG lx,y) = SRRy A€ g(som).
3

(£) The Moment Map of a Canonical Action. Representing A = _}:1 ajAj in the basis Ay, J = 1,2,3

. j=

] n 7n ' of 17(50(3)) given there, we can write
T a canonical action {: G x R -3 R we have . . c{'
associated in section {c) a lincar map from(#, the Lic GA(X'Y) = <x A y,a> ,
algebra of G, into the functisnzs on Rm s B> Gy . We
a = (al,az,aB), hence the rmoment P{x,y) = x & y is simply the

therefore can define a mapping P:
angular momentum, and [5.18) generalizes the fact, that the

21,1 *
P: R - ‘g' angular romentum vector is an integral. In example {e) of
* *
from R2n inta ‘lg, , the dual space of “g . Hgf is precisely the SL(2,R) actien, the moment is given by

defined ace of linear functionals on U} wh 1ch B 2 2
efined as the 9 7"’ Gplxy) = asx,y> + 3 R I 12‘ =" .
is a Lie algebra again). Tis wapping P is defined as foll ows:

2n where A = oA  + 3-‘-.2 + YA3 is the representation of A in

for fixed z € R*, the map A GA(Z) € R is linear in A,
the giver basis ¢ .he Lie Algebra of 5L{2,R}.
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Ch. I, - § 4

Exercise 1,
o orase o

(é) Show that

2

1,2 1, 22
=73 lyy +y3) +3 (a]x)

with @) > 0 and @y > 0 tus Gj = yj +a v+ 3 =1,2 and

- functions of them as interrals.

{b) Show that if’dz/uI is irrational, then there are

no further integrals,

Hint: 1Introduce canonical polar coordinates:

‘f“—j-x' '

. = 2R. in o,
j ekt ) (v RJ sin uj

¢ YR,

» cos Bj)

and use that the orbits of §. = uj r J o=

, if uz/al is irrational,

1,2, are

dense on the torus T

(c) If ul/u2 is rational, say p,a with p and g natural

numbers, show there exict further integrals, e.g.

the real and imaginary part of ;Ef?‘q?re pelynomial

integrals, where zj = yj

Exexcise 2,
S 2F L

+ ia.x.,
1&) 3

T e

Show that if the map A i~» GA associated to the canonical action

¥ satisfies

=G , A= g_1A g .,

& A

for every g€ ¢ and a € %} ¢ then the action is a Poisson

action, i.e. {GA’GB} = G[A,B] - Ibes the converse also hold true?

96
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Exercise 13,

Let 6 be the one form on R2n

it
8 = Z ¥y, dx. ,

551 73 7

8 is

r

%rove that every diffeomorphism ¢ satisfying ¢%8 =
of the form $:

X = £(x)

y, = (fx(x)T)-ly (:Ef\

Hint: The l-parameter group et: {(x,y) hé-(x,ety) satisfies

et°¢=¢°e.ta

use this to prove that ¢ is of the form $i(x,y) = (f(X),g(x,y)]

and show then that g(x,y) = 2 g{x,0)y , hence linear in Y-

¥

EXercise 4,
onertlse 9

-

The Cayley~Klein metric on elx| <1, € =

is defined by

2 . - . . .
4%s . 2F (x%,x) = (1 —slx[z) 2{(1 - €[x|2)|x|2+ €<x,x>2 }
dat
where ¢ = + 1 defines the hyperbolic, €= - 1 the elliptic
geometry,
(a) Compute the Legendre transformaticon H of F. Result:
2 2 2
2H{x, ¥y} = {1 - g[x}) {Jy]“ « e x,y>%).
(b)  Show that
Gij = xiyj - xjyi ’ i<j
Gk = }’k - £ Xk<x.y>a 1 < k 2n
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are integrals of H, and verify

{Gj,Gk} = - c Gy
We remark that for ¢ = - 1 the ~.e algebra generated by
those integrals is that of s0(:;. 1), and for ¢ = +1

that of so(n,l), the Lorentz gr-up of index 1.

(c) Prove

n 2
m=J 6 "-¢ I G .
= ig ?

(d) Show that the flow of the Hamil onian vector field X,

1
is given by
xl(t) _ sinh U + xj cosh t
cosh t + X, ‘inh t
"3
xj(t) T Tosh t + ¥, sinh t P23
for € = +1 and by TN
. {€ate
sin L + ¥, ¢os t
x. (t) = ] 1 xi .
N 1 cos t -Kxj sin t
-7 . S 1
= X3 2 <36 AN
xj(t)—cos'f'-—:\{lsint ' _J(y) qd
for ¢ = -1. Show that the flow of the vector field
n
I wv.x is given by
ke1 X %k
[sinh t + <x,v>(cosh t - 1)iv + x
if v =1, €= 1.
cosh t + <,v> sinh t
(e} rrove that the projecticis onte the X-space of the solu-

tions of xH are straight lines.

: _ . 2
Hint: Hyk = (1 - ¢ix|")g,.
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{a) Prove that if € = +1, the canonical transformation u:

x = ———25——2,
1+ g
2 2
y = B R K g B
2

1-|¢|?

rakes |£] <1 onto [x] <1 and H into

Ketou=2 - lelBH? Inl?;
and
Gij e u = Einj - Ejni
2 N
1+
Gk.ou:——%_g_l_nk-(E'n)Ek'

where the latter is the analogue of the Runge-Lenz vector
to be introduced in 3$6.

(b) prove that the flow of X, is the geodesic flow for

- 2 <dg,dc>
ds” = —=*f—2— lg] <1 .
a-1e1Ht

Remark: Exercises 4 and 5 are concerned with two
different models of non-Euclidean Geometry, namely Exercise 4
with the projective model which is based on the projective
metric introduced by Cayley in 1859. Later on F. Klein used Qf'd"
this metric to construct a model for non-Euclidean geometry,
€ = 1 courresponding to the hyperbolic, € = -1 to the elliptic
casc. This metric is inv ‘riant under the CJ o = 4

of projective transformation$preserving the gquadrics
n Ie
E { b 2 =1, {which for ¢ = -1 is complex!}. The more familiar

k=1 K

model based un the Poincaré metric of Exercise 5 is invariant

under a group of conformal mappings. Both models are eguivalent

as Exercige 5 shows.

. vy



6. The S0(4) Symmetry of the Kepl.r Problem,

(a) The Kepler problem in R3. This problem deals with the

Hamiltonian

(6.1) B=3 1pl% - g7

where p,q € R3, q #0 and it is well known that the solutions

gl{t},p{t) when projected intu the g-space are given by

planar conic sections and circles when projected into the p-space.

That the solution curves in tl.¢ g-space are planar is true for

any Hamiltonian of the form

1

H=x lpi?

(6.2) + U(lq])

but that all orbits are closed if H < 0 is very special and
remarkable property of the Kepler problem. It has other
special features: From the discussion of Section § it is
clear that the Kepler problem as well as any system {6.2)

possesses the 3 components of the angular momentum

A= paqg
as integr.ls, which follows frcm the SO({3}) syrmmetry. However,
it is surprising that the Kepler problem leaves another vector,

the so-called Runge~Lenz vector

Cr
I,H AP.- -~
P Ta!
invariant, so that we have altogether six integrals. They

are not all independent functions and we have the relation

3
<L,A> = j£1 ujaj =0
100
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since L liecs in the plane spanned by p and g while A is
orthegonal to it. But L and A do define 5 independent

integrals suggesting that a larger symmetry group leaves
the Kepler problem invariant. To show this is the main aim
of this section. We will restrict ourselves to orbits on a

fixed energy surface

{6.3) {a,p | g # 0, H{g,p) = E}

with negative energy, on which all orbits are ellipses.

We will show that the flow on this energy surface — when
appropriately compactified at the sihgularities gq=0 -—
admits the 6-dimensional rotation group 50{(4). This unintuitive
result will be derived by showing that the Kepler problem on
the energy surface {6.3) for E < 0 is eguivalent in the

extended sense (Section 1) to the geodesié flow on the sphere
sPaqgert, (g =1y,

which clearly admits the rotation group S50(4). This way we
will be led to the Runge-Lenz vector following the ideas
of Section 5. .

The derivation presented here has other fringe benefits;
It shows that the energy surface (6.3) when compactified is
topologically equivalent to

T1(53) = {g,n € R4 I |EI =1, <E,n> = 0, [ﬂl =1} ,

the unit tangunt bundle of the sphere 53.

lol
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Morecver, the equivalence will be established by an explicit

mapping. The need for a compactificc®ion of the energy

surface comes from the singul.city at g = 0. Solutions
approaching g = 0 are called ccllision orbits. They will be
mapped into geodesics going through some point of s? and will
be "reqularized" that way, as we will explain below. Finally,
since the geodesic flow on the sphere is given by linear equa-
tions, see (5.9}, (5.10), we effectively transform the nonlinear
Kepler problem on the negative energy surface into a linear
system.

We will derive the proofl for the above statements by,
. beginning with the geodesic f£I:w on the sphere s™, we study

the n~dimensional case since it is in ro way more difficult

Using a canonical extension of the
n

than the 3-dimensional one.
stereograghic projection we will map the vector field to R
and after an appropriate change of the independent variable
identify it with the Kepler prcblem.

This approach can be viewed as an illustration of the
concept of equivalent vector fields, when the two vector fields,
namely the Kepler problem and the geodesic floﬁ, are considered

in the large, in contrast to cur previous considerations which

were local.

(b) Stereographic Projection.

We begin with the Hamiltonian

(6.4) ¢(e,n) = 3 (i€]%ln

- )
= S>> .

where € = (£gs€pu%--sbp)s 0 = (ngympyeeann ) € rRML

lol

2 2 -
| .

We studied this system in Section 5 and saw that for [E] = 1,

<f,n> = 0 it defines the geodesic flow on the unit sphere st
in Rn+l, all of whose orbits are periodic.
.

We use the stereographic projection to map the sphere
punctured at the northpole into R" and ask for the Hamiltonian
system obtained that way. The usual stereographic map takes
an (n+l)-vector £ on |E|= 1 into a vector x.€ R™. 1In order
to avoid this compression of dimension we use a "homogeneous®
version of the stereographic mapping defined by

x, = [E] = a,(E) -
(6.5) { i} [EI aO £
x, = —d— = a; ()

A [ £
which is defined for |E] > {4+ Denoting by L the closed positive

EO axis the equations (5.5) define an invertible mapping

n+l

n+l +
ar R VI +* R+ = {(xoyxl;..-.xn) I xo f 0} ’
with the inverse
2
-1
Eg = Xg
. 0 0 |x|2+l
(6.6)
2x
€= X —3T
J x| “+1
_ N, : n+l
Here x = {xl,xz,...,xn) € R is an n-vector, while £ € R .

In order to avoid confusion we will write Greek letters, e.g.,

a,B, for subscripts running over 0,1,2,...,n and Latin letters,

e.g., J.k for subscripts running over (1,2,...,n}). For example

£ = (8D, x = (xj).

For x, = }E] = 1 the mapping (6.5) is the standard

0

stereographic projection. For arbitrary gy = [£] it takes rays
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. X . n+l . .
through the origin £ = 0 into vertical half-lines in R+ ,
such that the heights x, 3gree with the distance |£]| on ’ The choice of W was made so that the second relation is compat-
the ray See the figure below. ible with (6.6) and the first gives

Yo = <€,m>|g™t
(6.7)

So A _ : vy = (1&] - €5)ng = tyg = np) £

where Yo in the "last equation is to be replaced by the first.

. . " The equations (6.5), (6.7) define the desired canonical mapping
u: (£,n) — (xo.x. ¥g-¥) mapping the domain
(xo,xi (Rn+1 \L+J x gL, Rn+1 x R:i+1
. e ‘
We note that
2 2
(6.8) £]€ = x5 <€, = xv, -
e We‘restrict £,n to
Ceeel {E E_Rn-l-l \L+, ne Rn-hl I IEI =1, <€,p> = 0} = T(énJ
3
. . which is the tangent bundle of the wunit sphere punctured

at the north pole {* = (1,0,...,0) which we denote S™ .

By (6.8) it is clear that
We extend this mapping to a canonical mapping, using the

. : {6.9) u: T(s") — g" x g"
results of Section 4. For example, we use a generating function

2 ZKO where the right-hand side is given by Xg = 1, Yo = 0.
x| -1 . —

n X. N
O x1%1 © [x) %1 351 33

n
Wlx,n) = x We ask for the image of the flow defined by ¢ (see (6.4}))

. i . i under this wmapping. Since u is canonical we merely have
and write the canonical tran:formation in the form b —

to compute F = ¢ » u L,

yﬂ - wxn . E =W o -
104 -
105
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For this purpose we calcilate the rotation invariant

quantities ]x|2 , <x,y> and i}‘z. de find from (6.5) and (6.7)

2 Jel o+ ¢
0
j2l = ———
[l ~ &
<E,n>
<x,y> = %gg = Yok = 1&Ing - Tel %o

lel - gy
R e UKL

Since 2 2z

we obtain from the equation for |y|2

ole,n) = 3 (1ei%inl?

- <£:n>2]

{6.10)
-1 (=2« )21 = Fouy .

Thus the vector field Xy is mapped by u into X, given by

% = G = O
{6.11) -
ar Fyr dr Fx '

where we use 1 as independent variable. We see that Xq:¥g are
integrals which is also clear from the fact that lglz, <E,n>
are integrals of Xg and from (6.8). In fact any Hamiltonian

T = [{£,n) with the integrals IEiz, <g,n> 1is mapped into a
fuﬁction [ « u! which is independent of Xge¥gi they are
called ignorable variables.

Since Xg+Yg do not ente: into the above eguation we can

N

A0T

‘restrict the system (6.11) to xo = 1, YO = 0 énd have shown:

proposition 6.1. The mapping (6.9) takes the geodesic flow

given by

d d 2

at E=1n . a? n= - lnl 4
on T(S") into the system

dx d

T~ Fyr o= R
where
(6.12) Fixy) = 5 (Ix%+ 1%yl%

on Tlrs“) we have
1 2
¢ =3 |nl

and it follows that u maps the unit tangent bundle Tl(én) into
(6.13) . {x,y e g%® | F = % },

which is an energy surface of F(x,y}.

(c) Change of Hamiltonian and of t-vVariable.
The Namiltonian function H is determined by the vector
field Xy up to a constant, since X, determines the gradient

of H. If we restrict the vector field to the surface
H+=0 where dH # 0 ,

then this restricted field allows much more freedom for the  —

choice of H. As a matter of fact any function K which has
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the same zero set K = 0 and ti.e same gradient on this set
will determine the same vector field XK = X;on K= 0.

2 : .
For example, if ¢(A) is any scalar C=function with

¥(0) =0, ¢'(0) =1,
then
K = ¢(#)
will determine the same vector field on H = 0. . Indeed, for
H=0one has K= ¢(0) =0 a:.d dK = y'(0) dH = dH
on H= 0,
We generalize this remar. to a Hamiltonian vector
. field xH with r integrals Gl = H, Gyr »u., G, . We restrict

this vector field to the maniiold defined by
(6.14) Gl =< . G2 =€y wee s ¢ =g

on which dGl""'dGr are assumed t¢ be linearly independent.

If w(&l...;,lr) is a ¢%-function with

sy le) -
W"‘ 6jl ’ < (cla-‘-lcr)
and
K = w(Gl,Gz,...,Gr}
then
i
= ¢, {c) x. =¥ =
Xk 5809 6y T Yoy Xy

on (6.14).

A similar remark refers to the change of the independent .

varjable. 1If we change the independent variable t to a new

variable, say

108

105
t
s = I A{@T(x,y)]dt or g% = A
0
then the new system
d -1 d -1
a§ = ATy B Gy a§ = -ATTy) H (x,y)

will not be in Hamiltonian form. But if we restrict ourselves

to the energy surface

H=c where dH ¢ 0
then the function
K =21~ q
serves as a Hamiltonian on H = ¢ , siﬁce on H = ¢ we have

aK = 2~L ay and  x = a7l Xy -

Again, what is required is the knowledge of the gradient of
the Hamiltonian on the energy surface which allows much

freedom in modifying K. 1In other words, the vector fields
XH, xK may.be gquite different from each other except on the

energy surface.

{d) Transformation into the Kepler Problem.
We make use of these remarks to change the Hamiltonian F

on the energy surface {6.13). First we choose the function

vix) = /2X

which satisfies ¢'(%) =1, w(%) = 1. Therefore we can

replace the Hamiltonian F of {6.12), by

vE) = 3 (Ix]241) ]y

109
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when we restrict it to {6.13) or equivalently to $(F) = 1.

Next we introduce a new time variable t by

dt
ar = Iyl

leading to the Hamiltonian

(x[2+1) - 1yi7t

[T

Iy17  wemy - 1)

for y # 0. Finally if we introduce p,q by the symplectic

transformation

Q==Y p=zx

we obtain the Hamiltonian

% (|p|2+l} - |q|’l = H{c p} + %

of the Kepler problem (6.1) in r",

These formulae establish that the Kepler problem
restricted to the energy surface (6.3 with E = - % is
equivalent' in the extended sense (Section 1} to the linear

]
system

(6.15) €' =n, na'=-g on T.(M .

We can easily remove the restriction n E by rescaling the
variables: With a positive constant ¢ we set

2 .1 «_ 3
q. =P 4q .. P-=r P t = pt

and verify that this transformation takes the Kepler problem
into itself and replaces E by -
E' = p-ZE .

1149
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Thus if E < 0 we can choose p s0 as to achieve E* = -

| =

Thus we have proven:

Theorem 6.1. The Kepler problem restricted to the energy
surface (6.3) is equivalent in the extended sense to the
geodesic flow on the punctured sphere s® with unit velocity —

which is given by (6.15}.
We collect the formulae for the mapping
(E.n.'ﬂ > (g,p,t)
defining this equivalence mapping for (E,n} € Tl(én):

£

Py = Ty

(6.16) ;3" = {3-£g)ny + myEy
a- = lal =1 -§,

{e) Geometrical Interpretation
The above theorem has the following immediate corollaries.
(i) The projection of the solutions (g(t),p(t)] of the
Kepler problem on (6.3) into the p-space are circles.
Indecd by the first formula of (6.16) the point £ € én
igs related to p =‘é by the stereographic projection which takes
cireles into circles. Of course, the motion on this circle
does not take place at uniform speed.

{ii) The energy surface (6.3) can be compactified so that

it is topologically eguivalent to Tlsn. -

) 111
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For this purpose we just have to observe that the mapping
(£.n) > (q,p) of T (5”) onto the erergy surface (6.3) is
invertible; then the energy surface (3 compactified by
compactifying Tl(énj. This ic achieved by restoring the
north pole £* = (1,0,...,0) of s™, i.e. by restoring the
sphere of unit tangent vector:s at [*.

One can try to give a physical méaning to the ideal

points of this compactification. <The north pole £* corres-

ponds to the "point at infinity" in the p-space, or by the .

energy relation to g » 0. The unit tangent vectors at £* can
be interpreted as defining direction. at q = 0. The corres-
. ponding solutions are degenerate ellpses lying on a line

in the given direction. They are c:lled collision orbits.

In the picture of the motion on s" they correspond simply to
geodesics through E*. One has to recall that the t-variable
has been changed; for a collision or.it the velocity é = p

tends to infinity as q approaznes 0 while in the t-variable
: '

it becomés finite. .

(e}  S0{n+l) Symmetry.

After the energy surface is compactified and identi ed
with the unit tangent bundle
2
|

|£ =1, <Epn> =0, I'-[2=lt

and the flow is identified with the ¢-flow of (6.4)

it is evident that it admits SO(n+l) symmetry. Since ¢ isg s

preserved under the symplecti:z grou,. action

112
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(E,n) = (RL,RN)} ; R € 'SQ(n+l)
our system admits the integrals
Tag = &aMg - fgng » 0Ofac<Bzenm,

according to Section 4. From (6.5} and (6.7) we find

XLYj - xjyi = Eiﬂj - Ejni = ri:’ for 1 i ic j i n

which corresponds to the subgroup of rotations leaving the
thaxis fixed, i.e. to the group S0(n}. Therefore the

interesting noncbvious integrals are

Tok = &gk = &N for k =1,2,...,n .

One easily verifies that rOk e uul = GOk is given by
_ 1 2 i 1 2
Sox = = =xyEe + 3 (Ix1% - 1)y = - <pig> py + 3 (Ip]%1)q,

where we used the previous identities for [xl2 and «<x,y>.
These are therefore also integrals of the Kepler problem
restricted to the fixed energy surface H = - % but, of course,
need not be preserved for other values of H. But one computes

readily
Gy = - p (H + %)
- X4Box Py 2
which confirms our statement., But it shows also that

_ 1, _ 2 %k
(6.17) L, = 6o + qu (8 + 3) = <p,q>p, + [p] % " Tar
satisfy

XL, = XuGox * pk(H + %) =90,

113
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hence are unrestricted integrals of tae motion. that this problem can also be treated in a similar way by
Thus we have found an nr-vecto~ L = (L) which is stereographic projection relating it to an eigenvalue problem
conserved under the Kepler flow, Thi- vector L is called on the sphere 53. Therefore this problem also admits the S0(4)
the Runge-Lenz vector. symmetry which accounts for the multiplicities of the negative
It is easy to give a geometrical interpretation of the eigenvalues — which are not explained by the obvious S0(3)~
Lenz-vector: L being a linezr combination of p,q it lies symmetry.
in the orbit plane. At the perihel:.n, i.e. the point of Strangely enough the classical Kepler problem was
minimal |g| on the éllipse, one has <p,g> = <é,q> = 0 hence originally not put into relation to the stereographic projec-
L lies on the line through the perii:licn and the origin. . . tion. Runge 3 found "nis vector" in a simple vector
Finally one computes analytical derivation of the solution of the Kepler problemn.
4/

2 : Later on W. Lenz - used this vector in a provisional version

2 2 .
ip|? = zu(ipllal® - <p>') + 1 = ¢
. of guantum theory. Therefore one often refers to it as
where ¢ turns out to be the eccentri-ity of the ellipse

the Runge-Lenz vector,
(see Exercise 3}. Therefore, if ¢ # 0, we cay say, the
Runge-Lenz vector (6.17) points in the {positive or negative)
direction of the perihelion and its length agrees with the

eacentricity of the ellipse.

The quantum—mechanical analogus. of the Kepler problemis

the eigenvalue problem for the hydrogen atom, . . .
-8 -=200 = 20
Ix|
. V4 2/
1t was the discovery of V. Fock (1937) ~ and V. Bargmann (1936) =
i/ . .
=~ C. Runge, Vektoranalysis, Hirzel, Leipzig, 1919, p. 70.
a4/ =
— Uber den Bewegungsverlauf und die Quantenzustinde der
I/ "zur Theorie des Wasserstoffatom.,” Zeitschrift fOir Physik 9t .
1935, pp- 145_{§u_ gestorten Keplerbewegung,®™ Zeitschrift fiir Physik, 24 (1924),.
_.2_/ " . » 99, p- 187-207.

. 1936, pp. 576-582.
' 115
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Exercise 1 Show for n=3 the Runge -l.enz vector can be
written in the form

where

A=pprg

is the angular momentum vector.

Exercise ? Show that the components I, of the Runge-Lenz

vector (6,17) and ij = q.

ka - qkpj satisfy

{Lk'Lj} f (pkqj - P49 ) 2K
{Gij.le} = cikcjl - aitcjk - ijGiz + 5j£Gik

'{Li, G.

Jk} = GkiL. -4

3 1% -

Exercise 3 After a rotation in g™ every solution of (6.15) can
be brought-into the form
' =34,
€p = -sin a cos T , ng = &y (' =339 .
El = - gin 1
Ez =C03 a Cos T

Eg=0 (323

where o is the inclination angle of the orbit plane against £o= 0.

Show that these solutions are mapped by (6.16) into

. - sin 1t
9 =&tecosx ' Py " T+ COs T
= /1-€2 sin 1. =Jl-ez cos 1
93 ’ Py + € cos T

116

The g-equations describe an- ellipse of eccentricity

€ = sin g and the p describe a circle about the center

-1/2

Py =0, py = ~e(1-e®) "' pinanly,

1
t = I {1 - Eol dt = 1 + € sin 1 ,

corresponds to Kepler's equation,
Obtain the general solution of the Xepler problem of

hegative energy by rescaling and rotation.

In astronomy one uses three angles to describe the
position of the mass peint on an ellipse) which are called
"anomalies®. The true anomaly is the angle in the orbit Plane
measured from a fixed point (usually the perihelion).

The eccentrie anomaly is given by the angle t in the above
formula, or geometrically is given by the angle of the point

*£
on the {see figure).

circle

?inally the mear anomaly is Proportional to the time t elapsed -
from passage of the perihelion, normalized so that one perjod

corresponds to the angle 2w.
117

e =

g -

ry ™



A13

Exercise 4 Show that (up to a corstankt) the angle on the

geodesic;on s® is equal to the eccentric anomaly and the angle

on the circle in the p-space i3 equal

to the true anomaly.

{(By "angle" on the circle we wmean th~ arc length divided

by the radius of the

circle.}
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7. Symptectic Manifolds

{a) Mani folds

We have cncountered various vector fields defined on a
manifold, e.g. the tangent bundle T(Sn) = M of the sphere as
phase space. Also, a Hamiltonian vector field xH is tangent

2n

to the level sets M = [{x € R* | HIx) = const.} and hence

defines a vector field on M., These subscts M of RZn are
examples of manifolds which are embedded in an Euclidean
space. The aim of this section is to extend the concepts of
the Hamiltonian formalism developed so far in RZn to abstract
manifolds which are not considered as subsets of Euclidean
spaces.

It is not our aim to give a systematic derivation of
differential calculus on manifold but rather introduce
the relevant concepts and notations in a cursory manner,
which should make it clear how to pass from the local
considerations already studied to the global ones. We do
not believe that it is opportune to use just one notation,
e.g. the classical one wusing coordinates or the differential
geomelric one using differential calculus, since different
mathematical problems reguire different tools and we would
like to be frec to use them if they help to a better under-
standing.

A systematic description of the calculus on manifolds

can be found in many books on differential geometry (see e.g.
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M. Berger and B. Gostiaux, "Crometr’ . differentielle”
Armand Colin 1972, M. Spivak, "Difiirential Geometry."*)
To set the notation we briefi, recall the definition.

of a manifold. It is a topolcgical i.ausdorff space M
which locally locks like an Euclideun space: every point p
on M has an open neighborhood U whicn is described by local
coordinates in Rn, i.e. therc is a homeomorphism ¢ of an

open set V in RP onto U
¢t VC R »ucCwm,

Hence the points p = ¢(x1,...,xn) in 7 are in one-to-ocne
correspondence to points x = (xl,....xn) in the open set V
of R, The pair (U,¢) is often call Jd a chart and thg
points x € V the correspondin, coordinates. Overlapping
charts are patched together us follows:; if (U1,¢1) is

another chart at the point p such that U1 N0 # @, we require
that the following map representing the coordinate transforma-

s
tion

1

(7.1) o7t e g: 47t

-1
(un Ul) + ¢1 (un Ul)

is a diffeomorphism, In other words this map y = u{x)

= ¢Il ¢ ¢(x), which is a one-to-one map between open sets
of R” is required to be differentiable and also the inverse

is required to he differentiable.

120
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The space M together with a collection of charts covering
M having this compatibility property is called a differentiable
manifold of dimension, n, denoted by M™, The compatibility

property allows the extension of concepts of differentiable

functions, vector fields and forms thus far considered in R" to M.

A function F: M + R defined on M 1s called differentiable
if for every point p € M there is a chart (U,¢) such that the
local representation Fegp: X+ F o ¢(x), which is a function in Rn,
is differentiable. This then holds true for any other chart
(Ul,¢1) at p due to the compatibility condition (7.l1) and the

chain rule, since

121
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Fogp=(Fod TR S

.

More generally, a map F: M" + M™ t-tween two manifolds
is differentiable if for eve:y point p there is a chart
(U,¢) in M and a chart [U1,¢1} at £{») with F{U} © U,

such that in local representation
-1 -1 N -1 m
$,7 ° F o ¢ = 4 (U) T W4y (U < R

which is a map between Euclicd~an sp. es, is differentiable. .
In order to define the tangenc space at a point p in M
we consider a dif ferentiable rcurve ¢: R » M through this
point p with c{0) = p. In a chart (U,¢) at p, this curve
-1

is represented by the curve 4 = e c: t > ¢—1 o cf{t) = x(t)

in R" which has a tangent vector at x(0) = ¢—1(p) given by

(6™ o cpro) = v RT .

Qaiﬂa
lad

In other coordinates (Ul,¢1) in which the curve is repre-

- :
sented by ¢11 o c we find a Aifferert vector

d -1 ‘ _ n
ac (¢1 e c)fo} = vy €ER .

Since ¢I1 o C = (¢Il o ¢) o L¢"l o ¢) these two vectors

Ve vy € R" are related by the linea. isomorphism

(7.2) vio= e e triv . x =0T ()

1

where (¢—1 o &)'(x) is the derivative of the map ¢Il e ¢ at

1
X : ; . . n : n
x, which is a linear isomorphism of R . We view v and ¥ € R

as coordinate representations of a Lungent vector at p and

A 23

therefore define a tangent vector at p € M to be the
equivalence class of all vectors v € R" with the eguiva-
lence relation {7.2) under coordinate transformations. The
collection of all tangent vectors is denoted by TpM.

The derivative of a map between Euclidean spaces can
now be extended to manifolds. If £: M" » N is a differenti-
able map between two manifolds we define the tangent map

at a point p € M, denoted by

{(7.3) , df {p): TpM + Tf(p)N

as the linear map which in coordinates (U,¢) at p and

(Ul,¢l] at f(p) is represented by the linear map
-1 ] -
vyt e £fo )" xiv, x=1¢ (p)

from R" to R™ , where ¢Il o £ o ¢ is the local representa-
tion of f.

A vector field X on a manifold associates to every point
p € M a tangent vector X{p} € TPM. In local coordinates (U,¢)
at p it _  is represented by a vector function f({x} € rR",
x = ¢ p);

£: ¢ ) c ”R™ 4 RT

Similarly if (Ul,¢l) are other coordinates at p, the vector
X(p) is represented by gly) € rR" s Y = ¢I1(p), and by (7.2)

the vector functions f(x) and gly) are related by

aly) = 071 o 970 E) L.y =47 e eln) .

I



Hence with the notation y = ((x) = qil °¢(x) we have
gly) =u' - f e u (y) and

(7.4)
fi{x) = u'_l-g o ux) ’

which is precisely the familiar tran formation law of vector
fields in R" encountered in ZJection 1. Conversely, if there
are vector fields given in all local coordinates, they define
a vector field on M if they satisfy the compatibility
conditions (7.4) for the corresponding transition maps.

Alternatively we can define a vector field X as a

directional derivative, in loral coordinates represented by’

n

)
f. s
. ax.
=1 I %%
where £ = (fl,...,fn) is the corres.onding vector function

from akove. The relation tc the previous definition is as .
follows. We consider in locul ecoordinates any curve
t ¢t o) = x(t) through x(0) = x and having there

the tangent vector
-1 N n
¢ (¢ e c)(0, = £{x) € R .

If then F is any function in 2" we have

d -1 o 3
== F(¢ ~ o cl(t)) = § f.(x) = Fix)
dt £=0 je1 3 ij '

i,e. the derivation of F in the direction of the vector field f

at x.
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{f one has a diffeomorphism F: M » Ml between two
manifolds of the same dimension, it gives rise to a transfor-
mation of vector fields which however goes backwards from
TM1 to TM and hence is called a "pull back". It maps a
vector field Y on Ml into the vector field X = F*(Y) on M

defined by
(7.5) F*(Y)(p) = d(F 1)y o F(p) .

In coordinates (U,¢) at p and (Ul,¢l) at F(p) this map

between vector fields is represented by

-1

f(x) = u* g e uflx) ,

u{x) = ¢Il ° F o ¢(x) being the representation of F and g
being the representation of the vector field Y. That is
again the transformation law of vector fields.

Finally differential forms can be defined on a maniféld
M. A k~form a associates to every point P € M a skew

symmetric k-multilinear form “p on the tangent space TPM '

up(xl,...,xk) ' xj € TpM .
In local coordinates XyseeooXy Of M it is represented as
a =17 a, co(x) dx. & ... oA dx, ,
x iyeeedy i i,
where the form dx. o ... A dx, on R" is defined by
I *x
125
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12}
dxi (Vl) . dxi (Vl)
1 k (b} Lie Derivatives and Contractions.
dxilA e A dxik(vl,...,vk) = det ' '
. dxi (Vk) L. odx. (vk) If Xt is a time dependent vector field on a manifold M
1 k it has a flow ¢t defined by .
. e oi- £ set d .
here dxl(va) stands for the i-th component © the vector * ¢t - xt o ¢t , ¢t = id ;
v_ € Rr".
a
The cxterior derivative @ of forms is locally defined by conversely every one-parameter family of diffeomorphisms ot
5a such that ¢0 = id defines a time dependent vector field X
n 11...1k ’ havi t - ¢
{da) = ) [s£1 3% tx) d's] A dxil A -s A dxik . . aving ¢ as its flow by

a .t t, "1
atd o ) =X -
and it is invariant under conrdiinite transformations, that is

d{u*a) = u* (de) holds for any diffeomorphism of R", Therefore A vector field X, having the flow ¢t gives rise to
. t
d can be viewed as an operation on forms on M. which maps an operation on forms which is called the Lie derivative
k-forms into (k+1) ~forms. ’ with respect to xt , dencted by Lx . 1f a and hence (¢t)*a
. . . t
A map f: M - M, between manifolds gives rise to a are k-forms on M, then the k-form L, o is defined by
&
"pull back® map £ , mapping forms on Ml backwards into forms t
o . 1t is defined foll + if i k-f M R § t,* a4 L, *
n M t is defined as follows if a is a orm on M, . ona - tiﬁ i (45 % - ] = g w5 e o
then f*u is defined as the fnllowing k-form on M: . .
for £ = 0, and we conclude
{7.6) (f'a)p(xl,...,xk) = uf(P)[df{xl),...,df(xn)}, _
d t,* d t+h, * t, *
= () o= (7 ) o = {(¢) L, a .
dt dh h=0 xt

for every p € M and Xj € TPM. This is well defined since by

definition of the tangent map., df(x.) € Tf( )Ml‘ We emphasize i .
R P For example, if f is a function viewed as a 0-form, then

that in contrast to vector {ields, the pull back of forms

CL;Q-

is defined for any map between marntfolds, not only for (7.7) L. f =

t
fle )] = X {f}
Xy t =0 0

those that are invertible.
is the derivative of £ in the direction of the vector xo.
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Similarly one can define the Lie derivative on vector-

fields Y by

d t, *
L, (Y} = 5= (¢7) ¥
%o ac t=0

and one shows {Exercise 3 in faction 1) that

(7.8) LXO(Y) = [XO,Y] .

i.e. the commutator of Xy and ¥,
A vector field X also gives rise to another action
on forms, the so called contraction (or inner product)

denoted by i which maps a {k+l)-form o into a k-form ixa

X
and which is defined by

{(7.9) ixu(xl,...,xk) = a(x,xl,...,xk) .

For example, if w is a 2-forn, then ixw is the 1-form
ixw(-) = w(X,-), where the dot is to be replaced by an
ar! trary vector field.

In order to evaluate Lie derivatives, the following

important identity due to E. Cartan is very useful:

an = ix(du) + d(ixa)

for any form a, i.e.

(7.10) Lx = ix °od+4d . ix .

There are other rules relating the operations contraction

and Lie derivative, e.g.:
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(7.11) g,y = [Lyeiyd -

Also the exterior derivative d can be expressed by

the Lie derivative, e.g. if o is a l-form, then
dc;(X,Y) = Lygad¥) - Loa(X) + alLy(¥)]
which in view of (7,7) and (7.8) is equal to
X al¥) - Y a(X) + a({X,¥)) .
Generally, if o is a k-form, then

da(xo,xl,...,xk)

k

i A
izo (-1) in(a(xo....,xi,...,xk) )

it

+ s UM e, ) X R R
Oiigjik [ e e R LT

where ﬁi denotes that X; is deleted.
We shall use this formula for 2-forms w later on,

for which we find

{7.12) dm(xl,xz,x3) = le(xz,x3) + cyclic permutation

- {u([xl,le,x3) + cyclic permutation}.

For proofs we refer to the above cited books.
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(c) Symplectic structures oa wanifo’ as.

In order to introduce the Hamilt nian formalism cn
a manifeld, we first have to extend the symplectic structure
2n

dyj A dx., on R

n
(7.13) w= 3 5

=1
introduced in Section 2 to even dimen: ional manifolds Mzn.
pefinition. A symplectic structure or an even dimensional
manifold M = MZn is a two form o« on M with the following
two properties:
{i) w is closed, i.e. dwu =0 ;
{ii) w® is nowhere degenerate, i.e.

for every X € TxM . x €M there is a vector

Y& TM with wx(x,Yl # 0.

The pair (M,w) is then called a sympleo . ic manifold.

1
Thus every tangent space TxM , which is a 2n-dimensional

vector space becomes a symplectic vecior space with respect
to the antisymmetric nondegenerate bilinear form W at x,
and it is clear that M must have even cimension.

The basic examples of a symplectic manifold is the
cotangent-bundle of any manifild N which we discuss now.

If N is a manifold of dimension n, and if TPN is the
tangent space of p € N, we dennte its dual ¢, the so called
cotangent space, by T;N ; it is the space of linear forms

defined on the vector space TPR. The vnion of all cotangent

120
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spaces is called the cotangent bundle of N denoted by TN,

L] L]
TN= U THN.
peN P
In other words, a polnt a in the set M = TN is a linear
form an in the tangent space TPN at some point p € N,

and we shall sometimes use the notation
a = (p,ap)

for a point a in M. One can view T'N as a differentiable
manifold of dimension 2n by introducing local coordinates
e.g. as follows, If Hyreeo X, are local coordinates in N,
a one form a € T;N is represented by o = ? Yj dxj having
the coordinates Yyreo-e¥y o and together 1=t
(xl,...,xn,yl,....yn) form local coordinates for T'N.

In these local coordinates one can define a l-form
8 on T'N by

n

(7.13) 8 = j£1 Y; dxj ,
which has so far only a local meaning. It is remarkable and
crucial for the following, that the above form & has a general
meaning which we explain briefly. Since a point of T*N is rep-
resented by a 1-form o at a point p € N, we can form a{V)
for any vector V € TPN. To define a one form on T*N, say B,
one has to give its value B{X) for any tangent vector X of T'N.

If X is such a tangent vector at a point a € T*N o©ne can use

the form a to define

13
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.

a(dnX)
the tangent bundle can be mapped diffeomorphically onto
L
as a linear functional. Here the map the cotangent bundle, and the symplectic form w on T N is
mapped by the pull back into a symplectic form on TN.
m: TN + N
This 2-form, however, depends on the choice of the mapping r
is the projection map which maps the points a = (p,ap) into of TN onte T*N. Such a mapping can, for example, be .
their base puints p € N, and thercfore dn maps the tangent constructed with the help of a metric on N which can always .
space Ta(T*N) at o into the tangent space T _N at p. be found. A metric defines an inner product < , >p in TPN
This form which is sometimes called the tautological form . . and therefore an isomorphism X -+ "xv')p of the tangent
since it is defined in terms of itself, defines a l-form 8 space T_N onto the cotangent space T;N « This map
on T'N by gives a diffeomorphism of TN onto T*N uniquely associated
« to the metric,
{7.14) ea(x) = a{dwm X}, XET (TN .
. Cotangent bundles are examples of so called exact ‘
It is readily verified, that in the above local coordinates this symplectic manifolds (M,w) where the 2-form is not only B
form 8 agrees with the form (7.13). 1In fact, if closed, i.e. dw = 0 but exact, i.e. w = 48 for a 1-form
]
= ] ]
X—le[aj-sg-l-bjﬁ;;],th_n . B on M.
We have already remarked that every manifold M can
n
(X} = { aj séh ’ [] carry a Riemannian structure. 1In contrast not every even
=1 J
. . dimensional manifold allows a symplectic structure. For
n
and with a = z yj dxj we have instance spheres 52" do not admit a symplectic structure
j=1 .
n if n > 2. In fact assume w is a symplectic structure, then
{
= . . b
aldn X) = 'Zl 3Y5 T =wa ... A w (ntimes) is a volume form, since w is C
]ﬂ
. . , n nondegenerate, But w = da for a l-form a, since the second
which agrees with 6(X) if & = § Y4 dxj » From the local g 2 2 ' '
. . j=1 n de Rham group vanishes, H“(S ™y =0 forn > 2. Therefore :
expression (7.13) we find do = § dy; A dx; ., and we -
. j=1 = dR with 8 =w s ... A wh g and hence by Stokes'
conclude that the form w = d¢ is clused and nondegenerate
thecrem
and hence defines a symplectic two-form on T*M. '
One may asi: whether the tangent bundle also has a IZ 2 = [2 B=0,
i . : §4n ag“h l
symplecti¢ structure. The answer is, of course, yes since t
' 133 .
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which is, of course, not possible ‘far a volume form. This
argument evidently applies to :my corpact manifold M

without boundary having H2(M) =0 .

(d} A thecorem by Darboux.

We shall prove that therc are always local coordinates,
in which the symplectic form w is represented by the

constant 2-form (7.13).

Theorem 7.1, Suppose w is a nondegencrate 2-form on a
manifold M of dimensicn 2n, Then de = 0 if and only if
at each point p € M there are coordinates (U,¢},

¢z (xl""'xn'yl""'yn) + g € U such that ¢{0} = p and

* =
¢ w = 3

i t~13

dvsy A dx. .
- ]

j=1

Remark. Such coordinates are sometLimes called canonical
{or symplectic) coordinates. Clearcly they are not uniguely
determined; the most general coordinates of this sort are
canonicul tlansformatioﬁ as it was

related to x,y by a

discussed in Section 4,

Zn and that

Proof: We may assume that w is a 2-form on M = R
p corresponds to x = 0. By a linear change of coordinates
we can achieve that this 2-form is in normal form at the

origin, i.e. .
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This is precisely the same as the statement that any
nondcgenerate skew symmetric bilinear form can be brought
into normal form (see Section 3). With w, we shall

denote the constant 2-form ) dy. A dxj on Rzn. The aim

J
is teo find a local diffeomorphism ¢ in a neighborhood cf 0

leaving the origin fixed such that
*
¢ w = Wy -

We shall solve this equation using a deformation argument.

We interpolate w and @y by a family wy of forms defined by

(7.14} we = wy + tlu-wg) 0<t<l,
such that W, = wo for t = 0 and wy T ow, and look for a
differentiable family ¢t of diffeomorphisms satisfying
$% = id ana

t *
{7.15} {(¢7) w,_ = wo 0<t=<1.

t

The diffeomorphism ¢° for t = 1 will then be the solution
to our problem. In order to find ¢t we shall construct a

t-dependent vector field X, generating ¢t. Differentiating

t
(7.15) such a vector field X has to satisfy the following
identity,

d t, t, > a
0= 3¢ {¢7) w, = (47 {Lx e * JE mt} .
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Using Cartant‘s identity (7.10) now .und dut = 0 we find

by (7.14)

(=]
[

T, * -
(¢ ) {d(1 ) two—ow } .
xt t 0

hence xt has to be a solution of the linear eguation
(7.16) d(lxtmt) + w - wy = 0.

In order to solve this equation we observe that o - wy is
closed hence locally exact by the Poincaré Lemma, and

there is a l-form A such that
W= w, = da and AU) =0 .

Since wt(O) = g . the 2~forms w, , 0 <t < 1, are nondegenerate

t
in an open neighborhood of the origin and hence there is a

unique vector field X determined by

(7.17} i, w

= w, (X _,*) - - X,
+ £t 't

t
]

0 < £ <1, which then solves the equation (7.16}. One has to

keep in mind that X_ is not uniquely determined by (7.16},

t

but the choice of ) makes xt unigquely determined by (7.17).

Since we normalized A(0) = 0 we have X (0) = 0 and there is
an open neighborhood of the origin on which the flow ¢t of

Xy exists for all t in 0 < t - 1. It satisfies ¢D = id and
¢t(0) = (. We can follow our arguments backward: by construc-

tion this family ¢t of 3iffeomorphisms satisfies

g (5 %) =0, o<t<l,
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hence (¢t) w, = (¢°) wg = wy for 0 < t <1 as we wanted

to prove.

From Darboux's theorem we conclude that any two symplectic
manifolds having the same dimension are leocally indistinguish-
able; symplectic manifolds do not possess any local symplectic
invariants other than the dimension. This is in sharp contrast
to Riemannian manifolds: two different metrics generally are
not locally isometric, e.g., the Gaussian curvature is an

invariant.

{e) Symplectic maps

Next we introduce the general analogue of canonical

maps considered in Section 3. A differentiable map

f: M, - M

1 2

between two symplectic manifolds lMl,wl) ahd (Mz,wz) is called

symplectic {or canonical} if the pull back maps wy into Wy

i.e, if
* =
(7.18)} f wy T Wy o
In other words wl(x,Y) = wz(df(x), daf(y¥)}, X,y € Tle.

As is nondegenerate, the tangent map df must be injective
at every point and hence dim My > dim Ml . hence a canonical
map is an immersion. If dim M, = dim M, then f is a local

diffeomorphism.

ST

ry -



In the special case that f mans a symplectic manifold
{M,n} into itself the condition (7.18) for £ to be canonical

becomes

(7.19) fws=w

i.e. f preserves the Qifferential form w.
- * . .
We can express the condition f w = w 1N symplectic

coordinates at f and at f(p). It is simply

n n
£ 7 dny Adgj = Y dy, 4 dxj ’
j:l i =
which is in agreement with the definition of canonical maps

in Rzn given in Section 3.

Te illustrate this concept we consider a map

- *
£ (R0 x RY, as) » (B g1, ae))

n n _ .
with 8 = ] vy, dx, and &, = ; y, dx, . It is defined by
k=1 v=0 .
f(x,y) = (£.n):
2
EO = lﬂ_ﬁi’- ’ r]o = <X,¥Y>
+ 1 :
(7.20) £: x|
2x 2
k b + 1
£y = ——3 T« n = Y, = SH.YPX
k lxl + 1 k Kk k

where k = 1,2,...,n. 0ne readily verifies that <n,dr>
= <y,dx>, i.e.
* =
f 61 L]

and therefore f£' ds, = d6 ..e. £ is a symplectic map.
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The image points cof £, i.e. {£,n) = f{x,y) satisfy

|2 =1 and

IE, <g,n> = 0 ,

and one verifies easily that f waps the cotangent bundle

* .
R" x R® one to one onto r*s" , the cotangent bundle of

the n-dimensional unit sphere |£|2 =1 in Rn+1 punctured
at the north pole E* = (:,0,...,0). Moreover f maps fibers
linearly into fibers.

We describe another example. As in the case r? x R"
of Section 4, every diffeomorphism ¢: N + N of an n-dimensional
manifold N can be extended to a symplectic diffeomorphism
£: T*N + T*N of the cotangent bundle of N, which is a

symplectic 'manifold with respect to the symplectic structure

w = d8. This diffeomorphism. f is defined by the formula
- ¥
(7.21) £la) = (6(p), (@™ a ) € TN

if a = (p,ap) is an element of T*N, This mapping maps fibers

onto fibers and one verifies readily that

f*e =0 ,

hence £* d6 = d8 and f is indeed symplectic, Conversely it
can be shown that every diffeomorphism on T*N leaving the
one form § invariant is given by the formula (7.21) for some
diffeomorphism ¢ of N.

If (M,w), w = do is an exact symplectic manifold we call

a map f exact symplectic if
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f*a - ¢ is exact, i.e. = dF,

where F is a function on M. O©Of cou 'se, every exact
. . . . *
symplectic mapping is also symplectic since f o = a + dF

implies
' = £ da = (%) = da = w.

The converse, however 1is not true in general., Indeed from

f*w =y, we conclude that d(f*ax - o) = 0, i.e. f*a - a

is a closed one form, which need not be exact. But for simply
connected, exact symplectic manifolds the two concepts
coincide. We illustrate the difference of the two concepts

in the plane, which is an exact symplectic manifold with

a = ¥y dx and the corresponding two form w = da = dy A dx is
the area element. Any mapping whose Jacobian is identically =1

is symplectic. But in the non-simply-connected domain

Rr? V{0} the mapping f: (x,y) + (x),¥,) given by 1
(21172 L2172
Xy =x[l+—2—-—-2-]' ' ¥y '_‘Y[l + ]
xT+y X +y

is symplectic, but not exact symplectic for any ¢ # 0, as
one easily verifies. In geometrical terms an exact symplectic
mapping in the plane does not only preserve the area element

w but also the line integral I o over any closed curve,
C
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Similarly in higher dimensions: & symplectic diffeo-

morphism f on (M,w} preserves the area

[m = f'u=[m

f(o)

for every compact two dimensional

if f is exact symplectic

every closed curve (3

£i{c)

then we
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surface 0. If w = do and

have, in addition,for

]
Y
=]

W

py -
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8. Hamiltonian vector fields on symplectic manifolds,

{a}) Hamiltonian vector fields.

wWe have seen that a Riemannian structure defines an
isomorphism between tangent veoctors and cotangent
vectors and therefore gives :ise to an isomorphism between
vector fields and l-forms.

manifold, the symplectic structure w being noflpegenerate

defines an isomorphism

a— a =+ v

L . a
- N
N

between ten l-forms a and the vector fields X by the following

R
formula ;

(8.1) a = m(xu,-) =iy w .

a

We therefore have two distinguished subspaces in the space of

vector ficlds corresponding to the closed and to the exact
1-forms under this isomorphism, which leads to the following

]
definition:

pefinition.

/ff the form

is closed, i.e., da = 0.

A vector field X = xu i, called Hamiltonian.)

o = wlX,*)

Sirnce dw = 0, we obtain by formula
{7.10) da = Lyw and hence this is equivalent to L.w = 0.

The vector field is called exact Hamiltonian if the l-form a

is not only a closed but an exact l-form, i.e. a = di for a

function I on M.

S‘milarly if (M,w) is a symplectic

b

L7\ )

A43

Clearly every exact Hamiltonian vector field is a
Hamiltonian vector field and in view of Poincaré's lemma
the converse also holds true locally, but in general
not globally, unless the manifold is simply connected.
For example, on the symplectic manifeld " x g .

n

T = Rn/in with the symplectic form w = ) d%fl\ dxj

N <

{x mod 1), the form
)
a = a, dx
k=1 k k '
as= (al,...,an) e r" , is closed but not exact if a # 0.

Only in the covering space kn x R™ we have ;f= dH with
H = <a,x> . The corresponding Hamiltonian vectorfield
is given by
; =0, ; = a )

and it is not an exact Hamiltonian vectorfield.

In order to relate the Hamiltonian vectorfields de-
fined here to the Hamiltonian equations on R2n introduced
in section 2, we describe the definition in symplectic

coordinates, where f = E d%ﬁ\h dﬁj\' If xu is the vector-
field

AN n 3
X = ¥ (Qﬂ —_— o+ b"——fd
@ §a1 A )
and o the corresponding l-form locally described by

a=~dH = =
3

| e300

(H, ax. + H_ dy. ) ,
1 xj J Yj J

then

}

/e

At
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X

n
\-/\ 3=l

Hence, since i w =

()il

}__-
J__.__—

vectorfields in Rzn.

Xu =

a . we Fgaa&ad* aj = “Y

n

!

3=1

Ay

n
X . = b.dx.
(1y7%5) dy Xlt Xy

]

£Find

3 2
J

3

o= — H vres
(Hy. ax3 x; y3d ) /

which corresponds to our old definition of Hamiltonian

We emprasize, that this representation

holds in symplectic coordins: 28 only where the symplectic .

form w is given by (7.13), in other coordinates the vector-

field can look completely differently, as we will see in

examples of Chapter III.

We remark that the space of Hamiltonian vectorfields is

a4 subalgebra of the Lije Algebra of all vectorfields on the

manifold. In fact the commutator of two Hamiltonian vector-

fields xu and

xB is not only a Hamiltonian but an exact

Hamiltonian vectorfield.

More preciscly we shall prove thaE

{6.2) i[xn' xs] w=gaf , £ = m(xa, Xa)

if the l-forms a and B are closed, i.e. d}[u 0 and 48 = 0. /O

In fact using the formula (7.11) we have

i w =L
[xn . xBl X

since by assumption da = L

L ]

(i,
XB -3 a

(7.10) for the derivative th.s is equal to

L

1e—

——

C.-';l Ce

“\§?f°L4<T€\

w) - ix (Lx w)

L, (i

a g .
__-——"‘“"“'y(:;—v’

xu\= 0. By means of &ha formula
a

™,

1495

d(ix ix w} + ix dtix w})

. a "B a B

The second term vanishes, since by assumption dg = d(ix w) = 0

Therefore i[xa' Xalu = d(ix“ ixa w) = d(m(xa ' xn)) proving

the claim (8.2).

The following statement is the global version of

Theorem 3.1,

Theorem 8.1
A vectorfield X with flow ¢t is a Hamiltonian vector-

field if and only if ¢% is symplectic for every t.

Proocf 2 'Assume X to be Hamiltonian, i.e. wa = 0, <thise '”'l(",q'

t

a tt *
e b v =9 (wa) = 0 ,

*
t .
hence ¢~ ¢y = $" %y = w, and reversing the arguments the

converse follows,

In the following we shall denote the exact Hamiltonian

vectorfield x)defined by w(X,:) = -dx, by

X= XH .

The function H, determined only up to a constant by X if
the manifold is connected, is an integral of the vectorfield

xH. In fact, if ¢t is its flow, then

o metix)y = dH(x,)  ¢%(x)

= relXy oo X e 0% =

ey =

o =

g -
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integrand is equal to

for every X € M as w is antisymmetric. The next theorem .
. s * s, % .
is the global version of the result i section 2d. {(¢7) Lya = (¢7) (lxdu + d 1xa)
I3 &*
Theorem 8.2 j &\ a (¢7) (- dH + do(X}) Py X .
e ®
s Assume (M., w.) and (M., w,} are’ : two symplectic . - d(¢s).(~ﬂ + ald) ) !
\\/ - s Sl 2 *2 KP4 r
manifolds andvM; =~ M, is a d.ffeomorphism. Then ¢ is//_ﬁ__ — = d({~H + al(X)] « ¢5)
o ] ‘ . . N
symplectic if and only if ’ L) \\ proving our claim with
- 1 —k AN
X - X = 7 t
\th" H o= Xg where K = Hey [ q' H b . £, = J (~H + o(X) ) ° ¢s ds . N
\ P ® £ PR S ‘
for all functions H on M. : —— T 0 j_ N
&« : . ot . ‘
Proof: Assume ¢ to be symplectic, i.c. ¢ w, = w, and set (b}  The Poisson bracket with respect rg-#/$y!‘nplectl.c étructure. "f
X=X then . -
H ' We consider first a nondegenerate two form w on a
* * N
d{H e ¢y = ¢ (dH} = =y (1}(\! “"2) A manifold M which is not assumed to be a closed form. The
. - e o - .
- : : ( - Y —-1__/ B manifold M must, of course, have even dimensions. If F is
N vex Y1 Y
e i . _‘_‘_’__r,,_.-——'""" a function, we shall denote by XF the unique vectorfield
N *Y = TTmhe donver i imi
and therefore y*X XH°¢ . he converse is proved similarly. X = XF satisfying wi(X,+*} = - dF.
Finally we observe that in case {M,w}) is an exact s pefinition: The Poisson bracket for two functions F, G is
symplectic manifold i.e. w = ¢a , the. the flow ot of . . defined as ’“’\J— AFVI'MC':, by
an exact Hamiltonian vectorfield X = ¥, consists of exact .vc"b‘..n-' {F, G} = =~ widy XG} .
symplectic maps, i.e. ": By the antisymmetry of w,
*
(5 a-a = d(f) '
t {F|G}=‘{G1F}:
£ i . ° =i
or some function ft In fact, as ¢ id and the nondegeneracey of w implies that
- t : ' { e
5 a -a-= I 45" o as . -
ds if{F,G}=o@c,then dF = 0 .

0

In view of (7.10), and since by definition ix“’ = -dH, the

_[jor C\“
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) Since u(xF ¢ *) = -dF, we get {F,G} - dE‘(XG) = XG(F) / - In order to verify the second indentity we make use of
and by antisymmetry this agrees with -dG(Xp) = -X,(G). formula (7.12) for the d-operator:
We record:

d r = H

“’(xpl xpz' xF3) xFl(u(sz' XF3) } + cycl. perm, i

{(8.3) {r,Gg} = - Xp(G) = XG{F) . .

- e - wilx X X - . . :

In order to study the closedness of w in terms of _,ﬁ_,(, ‘o188 (t Fl‘ le' 1'-‘3) cycl. pemm 4"5

t‘(\'—ﬁﬁ:.("_@ we introduce for three fuanctions ¥1 + F, , Fy the / Using the definition wlXps X5) = -{F,G} and (8.3) we find
. L
-7 expression dm(xF ’ xF

» Xp ) = J(F,F.,F.) - w([X X. 1. X

y j\ 0 1 Fpt TR, 1772773 F17 TR TR,
= 7 - V Il
) J(FI,FZ,FB) = {Fl'{Fz'F3” + {FZ{F:’,Al}} + {F3,{F1.F2}}/ ‘ + cycl. perm. s h

) ol

Next, usi i inition ) = - o ‘
and shall prove §ing yhe definition wlXg,+) dF  we get/a .
ﬁl([ X = =
'}——. Lemma 8.1 Ty le' xFa) dF3(““‘1' xpzl) [xpl, T, )

L s X 1 (P = % (F.} + J(F, ,F.,,F.) - :
N r, (B3 tr,, F H1Fs 1°F2:F3) F), {7y, #3011 4 (Fy.(Fy, )0},

_ N
— '"

. on
(i) (dw) (%p » X, Xp ) = - 3(F, F,, Fy) . and by cyclic permutatj ( this contributes -23 to the
1 2 3 .
‘ above J, as ywe wanted to show. !
Proof ! To prove the first formula w. simpl insert the H
;—f——- Py 2 From Lemma B.1 we deduce the following characterization
efinitions and use (8.3).
N ) . . . of the closedness of a nondegenerate two form.
[xrl‘ XFJ#(FI!) = X ‘sz(Pg ) - xrz(xplu":s’ ) L-{ f Theorem 8.3:
Aiade B —
. {Fl ' [F2 ' F3I} ) {F2 IS{Fl ' Fs}} If wis a nondegenerate two form on M then the condition b
| de = 0 is oquivalent to each of the following conditions : . L:i
SR Ry B r, Ry, Ry ) ‘ ()
- i =
P Xp + Xgd = X6 ) ! ;
Adding the identity (Fy, G} - X_ F. = 0 with G = (F.F.,} C h
. ? ¢ w2 G R, (6,H)) + (K, (F,6)) + (e, (u,F)) = o /35 ok '
we obtain the result, T TR o 7

o T H:\ : : \
\\“e’ '{T") ?;_ } |



As50

or every pair F,G respectively for every triple of / {1

functions F,G,H on M, The relation {i:) is called Jacobi-

identity.

Incidentally, Jaceobi used this ic-ntity to derive
from two integrals F, G of a i"'miltonian system a new
one, namely (F,G} and so on. ‘iowever, .n many cases the

new integrals could be constants or fur~tions of the old ones.

If (M,w) is a symplectic wmanifcld, then we can associate .‘ .

to the symplectic structure a Poisson bracket by means of the
. + N . { ’ ., -
above definition. Since dw = 0 in thi: case we conclude from
— e e
the thecorem that the map F -+ xF from the space of functions
into the algebra of the exact ‘lamiltoni in vectorfields is a
Lie-Algebra homeomorphism with the neguiive Poisson bracket as

Lie Algebra structure,

We show how the Po':son-hracket is expressed in local

coordinates Xyr ++er X3, . The 2-form w is given by

x

w = Y aﬁ(!‘) dxi rodx, a" *
<3 3 d

wlere the matrix A = (7{;tx) Y is Sﬁ(}{symmetric. Then

for the vectorfield Sl Q.. (x)
2n

3
x=3 £ 2, £=f
j=1 I %)

we have

wlX,*}) = <Af, dx>» |,

hence the relation w(XF, *) = -dF yield-

//f/; A lygr

where VF is the vector with components Fx . The Poisson-

b
bracket m 'é‘CC St

[

{F,6} = <2 lvr , Vo> @

If w is a symplectic form, we have in symplectic coerdinates

0 I \ -
A ﬂJ"-I 0 _ Lt ‘,_r—hn‘_(c;:--"’*._

which yields the old definition cof the Poissohﬁracket. {

(c} Special submanifolds of a symplectic manifold.

HWe can generalize in a natural way the different
concepts of subspaces of a symplectic vectorspace intro-
duced in Section 3. If N CM is a submanifold of a
symplectic manifold (M,w} of dim M = 2n , then a tangent-

space
TN C© TM, x €N
x X

is a subspace of the symplectic vectorspace TxM which posses$ég
the symplectic structure w_. If L, cTM is any linear
subspace then we denote by in its symplectic orthogonal

complement, i.e.

Ly =(xeTM|wlix, v)=0forall YyeL]} ..

The submanifold N is called

- - - "'
isotropic if TxN C TxN
1
coisotropic if TxN 3 TxN
. ES
Lagrange if TxN = TxN
N ;
. . A -
symplectic if TN TN [0}/
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for every x € N.

g““/ - . : . .
© To put it differently we introdice by j: N'+ M the

\_,}nculsiuq map. Thus j*w, the restrictive of w onto TN,
is a two form on N, which is closed since d(j*m) = 0.
The ceondition TN ¢ TNl requires w{X,Y) = 0 for all
X, Y € TN, therefore a submarifold N is isotropic
precisely if j*m = 0. %ﬂ N is maximally isotropic, i.e,
has half the dimension of M, then N is a Lagrangian sub-
manifold. On the other hand, the concdition T N N T N = {0}
is equivalent to the condition that TN C T M is a symplectlc
subspace, i.e. 3j m(x} is nondegenerate, as we have seen in
section 1, Therefore N is a symplectic submanifolad precisely

if (N, j m) is a symplectic manifold,
If N is locally given by
(8.4) {xIF(x)=0 k=1,2,..., m} Y,
v

/ggr m fun%E:ons Floeou) F f with linearly 1ndependent o a

/¢
®

ar,, sz': ) “the tangentspace is f.¢_ art

oy .
TN ={ye¢ TM | arF, (Y) =((xrk +¥) =0 k=1,2,..,m

J
|_' . ‘\,\
and therefore ii;{' = —ex( .. \
s - e ] 1 -
TN = span{xF R R ip )
1 2 m
so that
(8.5) TN - {x )
.5) x = span Pt e xF -

L.
: 4 .
Therefore the condition TxN c T,l- requires the vectors

XF seosiy xP to be tangent to N and we find that N given

by (8.4) is coisotropic precisely if the functions

F

w(X ’
Fy

1+ ---¢ Fp satisfy

X = {Fi ’ Fk} =0 on N,

)
Fy

This can occur, of course, only if m fn, i.e, dim N > n.

Indeed,

. .
dim TxN + dim TxN = dim T M = 2n

as we saw in section 3, and therefore, as T N crT N

2 dim T Ni f n, i.e. dim TN > n,

Incidentally,

coisotropiec.

every submanifold of codimension 1 is

We now assume that the submanifold N defined by (8. #) is

symplectic. Then the subspace T NCrT M is symplectic which

is equivalent to the condition TN N Txﬁ5’= {0}, which in

s - = L 3
turn is equivalent to the condition, that TN C T, M is

symplectic, as we saw in section 3. This means that the

restriction of the symplectic form w onto T N,} is non-

degenerate, which in view of (8.5} is the case Precisely if

(8.6) Det w {xF » Xg ) = Detl{F;, FL}) # 0 on Nf—.:.
N

ﬁ has to be even in this case. Thus the submanifold N is a

symplectic submanifold 1f and only if (8.6) holds.

IA

;ﬂ{i
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In order to give an example, we take the symplectic manifolds of the same dimension we can define the product

manifeld M = (R" x Rn', d8) and define the submanifold B manifold M = M) X My. It carries the symplectic structure
N by . |g! 1l defined by
.‘1 - - Q - *
— = -
N: Fi(g,n) = |gf - 1= o/,/d,,‘ . T oWy - Wy wy
P T T where m, @ M, X M, + M, t j i i
Fz(E.n) = <E,m> = 9 i 1 2 i are the projection maps. We claim
— e that a map f: M} + M, is symplectic if and only if the sub- 637(
L - . .
i ] x r v . - o —
Clearly dF; and dF, are independent on N, and manifold N = {(r, f(#)) | f € Ml) is a Lagrangian sub- "~ }2 ’J
{Fl . Fy) = 2 |E|2 « 2 on N . ~ v manifold of M. In fact, let j: N - M denote the inclusion SA
p
* map, then we have for the tangents T N at i -
Therefore N is a symplectic submanifo’d of M, and (N, ]\Lde) . . ! Ll pace q at some point e
. . . * {n-1) . q= (%rf( )) EN . e T T
is a symplectic manifold. Evidently, R = T35 is the e e e T T T T
L -
cotangent bundle of the unit sphere and we ask whether its TN = {2 = (X, dfX) | XeET Ml}
q -
"natural” s lectic structure dé defined by its l1-form (\&mﬁ_ﬂtf/
ymp 0 - Y liuwie and therefore o
90 agrees with the symplectir structure j df. This is I S « T
. j (X, Y) = wl(X,Y) - mz(dfx , dfY) = (ml -f wz) (x,Y) , :
indeed the case, we even have j 6 = 8,. This follows from e R - -
(EhorTISTe> 570 = 0 if and only if w, = £ ho—naved
our discussion of the example in section 7d. } | wp 2as
claimed.
If N is the n-dimensional submanifold N = {(x,g(x)) &
. o n . ‘ (d) Special canonical coordinates.
M=R xR ] x € R’} then N is a Lagrange sutmanifold 3
® . The aim is to generalize our considerations én section Ll

if and only if

glx) = 33 Gix) . 4b. We consider on the symplectic manifold (M,w) with
dim M = 2n, s functions F vv.s F s < n with the properti
for some function G. 1In fact, if j: N + M is the inclusion ’ 1 TS - properties
that

map, thus Jllﬂ‘b
(1) dFl,..., dFs are linearly independent

& L
j (as) = a{j @) = @ <qg,dx> , (8.7) and

OAY

R . (ii) (., P} =0, 1< i,3<s .
hence j d® = ¢ if and only if <g,dx> is closed, hence exact. r - -

We finally give another characterization of a map to be There cannot be more than n such functions. Indeed, by {i)

symplectic. If (Ml, ml) and (Mz, wz) are two symplectic
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the vectors X are linearly indepenuent, and from (ii)

Fj

we conclude recalling the def¢n1tlons »f the Poissonbracket

and theorem 7.4, that m(xF ) = 0. Therefore

.'xF.

b] i
} is an isotropic sibspace of TM of

s

dimension s and therefore must have dinension £ n, as we saw

span {xFl...., Xp

in section 3a. oOur aim is to prove the following statement

which will be useful later on,

Theorem 8.4

If Fj are 8 < n functions satisfying (i) and (ii}, then
every point p M lies in a symplect.c coordinate chart
l .
(U, ¥) such that ailu- \P
* n
Yw= ] dy Adx, and F o ¥ = vf <s .
k=1 k= Tk -

Proof: We first prove the theorem for the case s = n. By

]

| Darboux s theorem (Theorem 7.1) every p01nt R&E M has

symplectlc coordinates (U, ¢) with ¢ y = Z dyk A dxk

and Fio = f, are n functions with {‘., £,} = 0 and dfj\

linearly 1ndependent By the »results in 4b we can find a

*
canonical transformation X. i e. yx Wy = W such that

4]]

fj e X = yj + Thus § = ¢ o x gives th~ assertion. To prove

the general case s < n we shall make use of the following
due
result which is dowe to Fpg \# . | S o

Theorem 8.5

Let M be any manifold of dim n and let xl,.,.,xk be

= gn

Then

-

vectorfields Spanning at every point x of M a k~dimensional

subspace {(x) c;!;M of the tangentspace, {.e.
span {Xl, .y xk} = S5(x) .

hssume that for every x € M

(x. + X.1 (%)
P

. e -
anq every poiét‘gz M has a neighborhood U and local
coordinates (U,¢) , ¢ (Tlc-"Tk P ¥preeea¥p ) > U
such that
* k
: d
¢ (x.}) = ] a3 == a.

J s=] lls ars , ds
where ajs = ajS(r,y) are (differentiable) functions. In the
special case that the vectorfields commute, i.e. [xi, le = 0‘
we can achieve that

_ 9
‘ (xj) = a‘,j ) L4
Proof: The statement being local we may assume M = R" and
X = 0. We pick a (n-k}-dimensional subspace E C:Rn through
the point 3 = 0 which is transversal te 5(0) = span{x feee Xy }
at X =0 knﬂﬂ# that R" = S(O) ® E, and we denoéévy (yl,...,y

the coordinates in E. If

field xj we define the map
Ja

Tk-—l 1T . A 1
" k-1 e 0, 1," "

LA I ] Tk [ 4 er .. Y —k)eR
Clearly ¢(0,y) =y and d¢(0)

Tk
¢lt,y) = *y (0,y)
for (t,y)} = (T

of zero. maps the vectors

€ s . &H&_‘

¢j3 denotes the flow of the vector-

in a neighborhoog

=

v -
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Tasiy?
as (2 =
] \ﬁtj

5%— Therefore d4{(0) is .urjective and hence
b

¢ defines a local diffeomorpaism in a neighborhood of the

into X.(0}.
into J( }

origin. In order to prove the statement we shall show that

(xs o ¢)

Js

a0lr.y) 2 = 1 b
T,y) () = .
Y arj s=1 ! {

i.e. a linear combination of the vectors xl,..., xk.

It then follows that

3 n -1 n pe "
— = Pl d n = b- x
31j szl bjs (d¢) xs ¢ szl is ¢ | s) .

as is claimed in the statement. We observe

3,k

T
ATy (52 = 520X . Llie 05 oen e 8, 0.y} ] ;
3 .

s =1
l\ 7 3
. In the special case where the vectorfields xj and hence their

flows ¢; commute(§§?:é can rut ¢§ into the first spot and

find
3
d¢(§?§) xj e ¢

|
and therefore bf‘ "I’LL ."._U.m.

3 = =1 - ¥
e (de) xj 1,!- $ (xj) f"

J -
‘Nv’ .
hence the last statementjis proved. In the general case,

if the flows do not commute,we find by the chain rule

7
T T, T, r
ae STt et xg 07 e eyt 0.

1
d¢kk

*_] .oo=1
Recalling the notation of the pull back, ¥ l(x) = dy X e ¢ .

we can write:

341 ) xj e . .

3L T
d¢(5?31 = (@k )} e.en o (¢

In order to prove that this vector is a linear combination of

xl ° ¢, ~ta g, xk # ¢ it suffices to prove that the vectors
'
wh fx
L

for Tj small are such linear combinations. Let ¢t denote

the flow of the vectorfield X = xj. Then we have by the
assumption of the theorem
j
[X, X.1 = A, X
i gn] 188
with functions Ais Therefore
(8.8) a4 .t = ¢
N ac @ X = 7 (X, X4]
k
= t *
_V (¢ szl Ais xs
k *
= 10t ehx,
;ﬁua v/ s=1

ﬂhcre we have used (7.8) . Denoting by A the matrix function
~

A ”k})is) we define A(t) as the fundamental solution of the

. 0] (4§{rt )

P

| -

linear eguation

d . t & -
(8.9) g AE) = (A e 0Ty AlE) , A(N)AL T .
1f uij(t) are the matrix elements of A(t) we introduce the
tangentvectors
k
tt
Y.(t) = (¢7) x, =~ a, (t) X
3 RN LR
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1 <3 < k. It then follows from (8.8) and (8.9) that the

Yj(t}'s are solutions of the linear equations

X
d
a‘EYj‘t’ sgi Aigle) Y (e ., 0 -3 2k

with initial conditions Yj(O) = 0, and therefore Yj(t} = 0,
X &

hence
: X. = § a,

(5"

as we wanted to prove.

Lemma §.2

Let M be a symplectic manifold, dim M = 2n. Assume

+ 1 £3 < s for some s < n have the

properties (8.7) (i) and (ii). Then every point/J has

a neighbo;hood U, and there are functions Fs+l Peany Fn

defined on U, such that the functions Fl,..., Fn satisfy ( '

the properties (8.7) (i) and (ii) on u. S

M e e i a  ————

Proof ; -

2n

;;</The statement being local we assume M = R and

.

(:)= 0. By the last statement in Frobenius's theorem there

A
avaey Ts 'Y#,-..'yzn-s)'
hot necessarjly symplectic)such that

are local coordinates (11,

3 T
X a £ l<j<s,
IS T,
) s S
He seek a function P = G, . J;ai; IR (f
s+1 s .
) J e
(8.10) (F), G = e, (6 = 3%; =0, 1c<jcs,

(:TT) N AT 1 s st rf—:ﬁ/;rL
Then S C s (Fhere t is the orthogonal complemen o
- .

161

and such that, in addition, Fl,..., F., +» G are linearly

independent. Let § = span{xF TR } at the origin. !

i 4 . :
the symplectic structure;) but 5 # § since dim § = g < n)

and Hence there is a

F Firamat
vector ¥ & 5 and Y% s¢)

SO0 S is not maximally isotropic.

3 2n—s
F

§
Y = A
=) 39t

1 k i= p‘

/

l,) ’ Y
N
k's vanish, e.g. 7{%# 0. We then define

I

and moreover Fj' G are

where not all the

Gl{t,y}) = yj‘ﬁl .

=

such that fFj,G} =0 by (8.10)

linearly independent. In fact at the origin we have dfj (Y)

# 0. Proceedlngtendfrecttyf
mduc{;r—:ﬁ\‘]

= w tx » ¥} = 0, but dG(y) = uJ

the ﬁemna follows.

~

In order to finish the proof of theorem 7.5 we simply
remark that by the Lemma we ¢an assume s = n, and in this

case we have already proved the statement.

(e) A global symplectic invariant.

-

We concluded from Darbaux's theorem that

looallx there

are no symplectic invariants other than the dimension. This

is globally not the Case as we shall show,

We consider compact, connected and oriented manifolds

M of dimension two, i.e. surfaces. The orientation will be

given by a volume form, Say w. This 2-form vanishes nowhere B

hence ;is nondegenerate:’it is clearly alsc a closed Fawm
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Therefore (M,w) is a symplectic manifol!d with the volume

form as symplectic structure.

Assume now that (Ml.wl) and (Mz,wz) are two such
symplectic manifolds of dimension two. 1f f£: M; - Mz

if/‘idiffeomorphism which respects the orientations then

M{ f*oﬁ - n{ ,,}’p_] //.

Mroaoe
Imd-‘mfervfcr%'rf £,

®
(8.11} 4 wy T wy

o,

cﬂnU
-

in addition, is symplectic ¥

r

which in 2 dimensions is the same as volume preserving, we

find

“~ A My M,

16

r's

- symplectic invariant.

The total volume therefore has to be the same; it is a

- A

Our aim is to prove the converse. We shall show

that if two compact, connecte? and oriented surfaces

M l) and (Mz.wz) are diffeomorphic (which is the case

1Y

their Fa&e characteristics are equal) and if in addition

their total volume is the same, i.e. {B.12) holds, then there
' ; ®

is a symplectic diffeomorphism £: M, = lel.e. fw, = wy oo !

This gives a classification of compact, connected two-dimen-

sional symplectic manifolds acceording to thelﬁn&axlcharac—

R £

AL3

ey

teristic and the total volume.

More generally we prove the following statement for

volume preserv{s' diffeomorphisms.

\'\\3

Assume M is a compact, connected and orientable manifold

Theorem 8.6

of dimension n without boundary.

If « and B are two
volume forms such that their total volume is the same, i.e.
(8.13) I a_ o r,____IﬁB_ v
. M M

*
then there is a diffeomcrphism £ of M with £f 8 = a .

Hence the total volume is the only invariant of volume-

preserving diffeomorphisms.

Proof

[e

__We proceed as in the proof of Darb{ux's theorem and use

a deformation argument. We define the family of volume forms

e

ap = (l-tla+tB , 0<t<l

M___>{
S )

These forms a, are indeed volume forms, since they are

locally represented by ¢ = a dxl A LA dxn and
B=o5Lb dxl Ao A dxn with two nonvanishing functions a and b
which by (8.13) must have the same sign.
We construct a family of diffeomorphisms ¢t satisfying cs
* ~ e T
8.14) (6" o = o ., q{"j=@,f5t51. fere

8]
+{———The diffeomorphism f = ¢1 will solve’our problem. Since

id
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1é5
M is compact, connected and orientable, we conclude from
CHAPTER 2
f (B - 0:) = 0 R ey
M
that 8 - a = dy for some (n-1) - form Y- This is a special :
1. Poincaré's Perturbation Theory of Periodic Orbits.

case of the de Rham theorem. Since a, is a volume form, there

is a unique time dependent vactorfiels x. solving the equation (a) Flogquet Multipliers and Section Maps,

t
(B.15) ix (I\ut = -y , 0<t<1. In this section we treat the local perturbation theory
€v of periodic orbits, which goes back to Poincaré. We
I i a
n fact, a veolume form o is locally represented by . . consider a family of autonomous vector fields on R or more
G ™ alx) dx; A... A dx . ' generally on an n-dimensional manifeld M
- - < = -
for some function a(x) # 0, aud hf X = (xl""'xn’ is a vector- /L (1.1} x = £{x;p) .
field one has P / We assume that if w = 0, the "unperturbed" system X = £(x,0)
n R —
e T« T . . . :
ix“ = 121 {-1) a X; dxl AR dxi Ao..A ax . - ~ possesses the periodic solution
from which it is evident, that {8.15) has a unique solution (,) pi{t) = p(t + T) with period T > 0 ,
t . *__‘,_.T_...-f.. e el el e embem e, e R T /
Xe + Let ¢, with ¢(2 = id, be the fiow of this vectorfield (,{0 s0 that
20,
Xy- It exists for all 0 ft=<1onM since M is compact. ’ ‘
fip(t),0 t€RrR,
Since do, = 0 we find using formula (7.10) ! (p(t},00 £ 0,
a ' eo d 1 (t) of
t,* * . The aim is to construct periodic solutions near of the
aE®) a = whH' ¢ Ly a +a} . : ? i
t system (1.1} for small values of u. In this section we
- (¢t)' { d(ix °t.) + (8 ~ a)} , consider vector fields on manifolds but soon will reduce.
t
; : ; : the problem to a local one. But before this reduction
which is equal to 0 since d(ix at) + B - = d(ix a, +y)} = 0 p
J, t \L’ \Lt t we will use the notation of caleulus on manifolds (Chapter I, §8).
by our choice of the vectorfield X,. Hence (8.14) holds true If ¢"(x;u) denotes the flow of {1.1), the condition for am
and the proof is finished. ) orbit to be closed is

{1.2) ¢T(x;u) =x, some T >0 .

-

ry®o
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As ¢T(p:0) = p for p € p(t}, one is tempted to apply the
implicit function theorem, in order to solve (1.2) keeping
the period 1 = T fixed. Howe 'er, the relevant linearized

at p.

T
d¢- - I
¢P

is singular; where 4 stands for the linearization of ¢T at
the point p. This is due to the autonomous character of the
vector field. In fact, if f is any vector field with flow

¢t, we .find by differentiating ¢t e ¢s = ¢s ° ¢t in s

ast £{6%00) = £0 6" 50 )

which applied to our situation, settingp =0, 8 =0, t =T,
gives

T

(1.3) asT £(p;0) = £(¢Tp,0)) = £(p,0)

for p € plt). Hence (1) is an eigenvalue of d¢; with eigeng
vector f(p,0). In fact, in general such a periodic solution

with a fixed poriod T = T does not exist; see Exercise 1.

Therefore we allow the period T to be variable, which gives us
an additional independent variable. We describe the geometrical

situation effectively by corstruction of the so-called section

map. Ve intersect the periodlc orbit p(t} at p with an (n-1)-

dimensional hypersurface, i.c. a submanifold T € M of

codimension 1, to whicn the vector field fi{x;u) is not tangent __

i.e. T,I and £ = f(x,u) span TM:

67

{(1.4) T I+ <Eix;u)> xezx, M

]
]
=

T
If y=0, then ¢ (p,0) = p € L , hence, as the flow depends
differentiably on x and u, we can define a local map
¥: L - I near p via
(1.5) vixow = ¢T W g,

xel,

where 1 = 1(x;u) is close to T and uniquely determined so

that ¢ (x,u) € E.

.

™y . :
<v> stands for the cone-dimensional vector space spanned by v.



ALE

Obviously if p = 0, then 1(p,0) = T and p(p,0) = p, i.e.

p is a fixed point of the map for u = 0, The map ¢, which is
for small y a local diffeomorphism of [ is called Poincareé's
map or a section map. It reduces the global study of the flow
in a neighborhood of a periodic orbit to the local study of a
map y: I + I in a neighborhood of a fixed point, if p = 0.
Clearly fixed points of y are initial data for pericdic orbits
of the system (1.1) having periods close to T, and periodic

v ) = 9, 4 € L

orbits of period close to nT.

points of y i.e. correspond to periodic
In order to find fixed roints of ¢ for .small y by means
of the implicit function theorem it is important to know the

eigenvalues of the linearized rap dwp for p = 0;
1. ay_ . L
(1.6) wp '1‘p + TPE '

where p = y(p} € p(t) is the fixed point for p = 0. These
eigenvalues are fundamental fos our purposes and they are
independent of the particular section map chosen. Indeed, if I
and I, are two transversal sections at p and q respectively
with corresponding section maps wl and wz ¢ then there is a

local diffeomorphism:
X3 El - 22 '
such that locally
X® ¥y =9y °x .,

and therefore at p

Lemma 1.1,

where we have abbreviated £(f) = {dt)e.

A 69

dx - dy; = dy, - dy .

If p# q the map x is simply defined by following a peint in I
along the flow to the next intersection with 22.

The relation of these eigenvalues to those of

(1.7) ¢ = d¢3= TM - TM,

W =0, is given by the following

¢ has 1 as an eigenvalue with eigenvector £(p),

and the remaining eigenvalues agree with those of d¢p . f.e,

det(h -~ @) = (A - 1) det(r - d¢p) .

Proof: We have already proved the first part of the statement,
see (1.3). Differentiating (1.5) at P gives for £ € sz y
g o= (ahe+gpet| v ¢

= ¢ & - xe) - £(p) .,

Therefore, with

respect to the splitting

T M = <f(p)> :
P (p)> + Tp:

the linear map ¢ has the representation

f , L

0 a '
| e

o

ry =
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For the computation of the lin.ur map $ it is not
necessary to know the flow ¢t but it suffices to integrate .a
linear system of differential aquations, as we show in case

M = R®. In this case the lincariied system in question is
(1.8) d y = £ (plt)y
dt X Y

which is called the variational system of p(t). The general

solution of this system is given by

yit) = ¢(t) y(0) ‘

where ¢(t) = d¢t(p(0)). as ore proves readily by differenti-
ation of

4 t - t
act = ° ¢ -

Thus ¢(t) is the fundamental aplution of (B} with ¢(0}) = I
and therefore is determined by the solutions of (1.8)
I1f A is an eigenvalue of ¢ = ¢(T) then there exists

a solution y(t) # 0 of (1.8) with

ylt + T = A y(t) , |

and conversely. Therefore the eigenvalues of ¢ are called
Floquet multipliers of {1.8}. They are associated with the
periodic orbit p(t) and we will refer to them as Floguet
multipliers of p(t}. In later examples we will use this

remark to compute these eigecavalues.

PEE

Theorem 1.1. Suppose the autonomous system

x = fFixsud

has for w = 0 the periocdic solution p(t) of period T > 0.
If 1 is a simple Floquet multiplier of this periodic solution,
then for small u there is up to a time-shift a unigue

periodic solution p(t,u) for (1.1) having period
T{y) cleose to T ,

such that plt,u) + p(t) and T(u} + T as u + 0. Moreover

plt,n) is as smooth as f.

Proof: The proof is an easy application of the implicit
function theorem. Let I C M be a transversal section of f at
p € pi{t), with section map ¢(y,u)s I -~ L. We may choose the
local coordinates y = (Yl""'yn—l) such that p corresponds
to y = 0 ; hence ¢(0,u) =0 if p = 0, By assumption and

Lemma 1,

% ¥(0,0) - I

is not singular and therefore there is a unigue smooth function

y{u) such that y(0) = 0, and
gly ) ,u) = yud

hence we have found the initial data of the recuired pericdic
solution.

It is clear from the implicit function theorem, that
for u fixed, the periodic solutions p(t,u) are isclated among

the periodic solutions having periods close to T. There may

7
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of course exist other periodic soluticns near p{t,u} of

longer periods, close to nT, n > 2. They correspond to

. : n
periodic points of the sectior map, i.e. to fixed points of y .

{b) Example,

We shall illustrate this method by the following

simple example.
; + sin x = p f(t,x,i,u) ’

where f£(t + T, =x, i) = f(t,x,;) for some T > 0. We are 1ook—
ing for T-pericdic solutions of this equation near x = 0

and x = . This eguation is nonautonomous and our coasidera-
tion seems not to be applicable. But if we introduce

Xg = t + const., X =X, X = ; we can write it as the

autonomous system

Xy = 1
=X
Xy = - sin X Fu f(xo,xl,xz) .

The plane *5 = 0 (mod T} is a transversal section of the
vector field, and if u = 0 then xo = t, xl(t) =0, T,

¥5(t) = 0 is a periodic selution:

A 3

t=T7

The variational equations for p = 0 along these reference

solutions
Yo o, Y1 =¥ Yy = 2 Y -
have the fundamental solution
‘1 o 0 1 0 0
$(t) = 0 cos t -sin t or 0 cosh t sinh t
0 sin t cos t 0 sinh t cosh t

and the eigenvalues of ¢ = ¢(T) are
{1, Ty or {1, 7y .

Therefore if we exclude the resonances, i.e. if

I% # integer ,
in the first case, T # 0 in the second, there is a unigue

periodic solution x = p(t,u} for small y having period T,

- " Y ” -
which continues the reference soluticn.
9

W

Ty W
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(c) Degenerate Cases, Integr '1ls.

Theorem 1 is not applicable to & system possessing
an integral, because as we shall show buelow such an integral
gives rise to a second Flogquet multiplier equal to 1. More

generally, we shall assume that the vector field £(x).

with flow ¢t possesses T independent integrals Ga € Cl, i.e.

6 (a5 tx)) = 6 1x) @ =1,2,...,1
such that . .
dGa(x) . a=1,2,...,Y

are linearly independent for x in a neighborhood of the

periodic solution plt) of peried T. The integral surfaces

s =5, = {x eM | G x) =¢cy = 1,2,...,:},

with ¢ = (cl,...,cr) € RS , are then invariant vnder the flow

and have tangent spaces
s = {£ € T™ | dGa(E) =0, a =1,2,++,r}. . .
In particular,f(x) € T,S5, X € M,and if ¢ = 66: , p € plt), we have
dG (e£) = aG_(&)
for every £ € TpM and therefore
${(T 8) = T S
p°) p
S being the integral surface of the periodic orbit pit).

in order to compute the eigenvalues of ¢, we choose in a R

neighborhood of "pl0) local coordinates Xy.X ,....%, such that

415

Ga(x)

a = 1,2,000,C =«

If we split x = (xl,...,xn) into x' = (xl,...,xr),

x" = (xr+1....,xn)

Thus we find for the linearized map ¢

(1.9)

then the map ¢T is expressed by

3
ot (x) = x* ‘
$*{x}

T
=d
¢P

Ir10

| 3

where & = @lTpS is the restriction of ¢ to the tangent

space Tps. We now proceed as

considering the flow ¢t

and choosing a transversal section

in the proof of Lemma 1.1

restricted to S. Clearly,

% £ip) = £(p)

g € § in the integral

surface 5, we find with respect to the gplitting

T
P

(1.10)

where ¢: o + 0 is the section map. S

by (1.9) and {1.10):

<f{ > + T O
_P) p ’

11

ummarizing we have proved
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Lemma 1.2. If the system (1.1} possesses an independent @ =1,2,...,r. Moreover p(t,c,u) + p(t) and T(c,u) + T
integral then r+l Floquet-multipliers are equal to 1. as ¢~ 0, u+ 0, and p(t,c,u) is as smooth as £ and G .
' . a

The remaining Floquet multiplicrs are the eigenvalues of dy_ .,
: P Proof. Clearly we can introduce coordinates Xyreoe % in

where ¥ is a section map of a section o C S, i.e,
the neighborhood of p(0) so that Gu(x,u) =X, ., o= 1,2,...r

holds for all . = i 1
det (A - @) = (& - 1)1':-!»1 det (A - d¢p} . olds a U near 0 and so that X, 0 defines the section

E. In these local coordinates the section map is expressed

To prove a continuation theorem for such degenerate cases, by
we assume that the vector fields x! VGt = ox' )
r
- LJ L}
x = £(x;q) x " (x, 1)
o for » r linearly independent jintegrals
possess, for every u , in Y pende g where x' = (xl,xz,...,xr)) but here x" = (xr+l""'xn-1)'
GG(X:N) R a=1,2,...,r, In order to find fixed peints of ¥ we only have to solve
3 the n-r-1 equations '
Gu € C We denote the invariant integral surfaces by
P x,p)} = x"
s = {x €M | G (x3p) =c¢ a=1,2,...,x}.
CiH l a ! a’ rer ! since the first r equations
We assume that f(x;0)} possesses the periodic orbit p(t) of Vrix,u) = x*
period T which lies on the integral surface for p = 0, M .
are automatically satisfied. To the first equation the
with ¢ = 0, say. QP

implicit function theorem is applicable, since

Theorem 1.2, If the system (1.1} has r independent inteqrals

hear the periodic orbit p(t) and if p’t) has exactly r+l Ir l 0
dy_ =
Flogquet multipliers equal to 1, then there exists for small u p * l 3%“ (1
a unigue smooth r-parameter family p(t,c,u) of periodic orbits
: and by assumption and Lemma 1

for the system (1.1}, having periods T(c,u) close to T and lying

. 3 " _
on the integral-surfaces Sc,u i.e. FrLh -1

Gylplt,c v} =, is nonsingular, therefore there is a unique map (x',p) — x*

= x"(x',u) solving the equation, Thus x' = ¢, x"= x"(c,u} are

12 -
13

o

P
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the initial values of the de~ired solutions.

{ii) clearly in our proof of Theorem 1.2 the dependence

on one or on several parameters u is irrelevant. We could

Setting p = 0 in the thiurem we observe that the

original periodic orbit also lies in an r-parameter family

of periodic solutions p(t,c,0) with periods close to T, consider any set of vector fields f with integrals G,...G,

close to the vector field f(O) #ith independent integrals

(0) (0

1 ,...,Gr , where f(o) pessesses the periodic solution

and hence is not isolated. Thcse periodic solutions corres-

pond to different values of the integrals i.e. G

p,{t) of period T,. With the same argument as above we can
Gy (p(tsc,0),0) = €5 0 0 -
show that for every ¢ > 0 there exist § = &(e) such that for

a=1,2,...,r and on these integral surfaces the periedic any vector field of our set satisfying
solutions are indeed isolated among those with periods close o O 01 r

. £ - £ |l+I|Gu-Gg|1<6(e)
to T. c a=1 o

there exists a periodic solution p{t} having period T,
(d) Remarks. (i) Geometrica.ly the periodic soluticns

such that
plt,c,u) of period T{c,u) £i1l out for fixed u an r+l
dimensional embedded cylinder st x B, + where Ip(t)-po(t)lcl + 0T - Tpl < e
B, = {c € RF | |e] < v} for some ¥y > 0. In fact, the embedding (e) Hamiltonian Case.
is simply given by We consider a Hamiltonian vector field xH an a

symplectic.2n—dimensional manifold M with symplectic
{S:C) — P(ST;CfU) €M, 1
structure w. The periodic orbit p{t) lies on the invariant

1 and T = T{c,u) "' "

where s {mod 1) € 57, ¢€ € B

energy surface

s ={x € M| Hix} = H{p(E)}}.

15
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A transversal section I C $§ of xH in the

energy surface is a symplectic manifold of dimension 2n-2

Theorem 1.3.

with the symplectic structure m[z. MdreOVer the secticn map

¢: I ~ I is a canonical map.

Proof; If j: I + M denotes the injection map, we conclude

from the formula

d{j*w) = j*(dw)

together with dw = ¢ that j*w = m|z is a closed two form on
L, and it remains to prove that it is nondegenerate. As

dH(g) = - w(xH,E), the tangent spaces at S are
TS = {E € TM | w(x,§) = O}.

The two form w is nondegenerat:, and therefore every

v € sz which is orthogonal to sz is proportiocnal to Ky

i.e. v = c'xH. Assume now wi{v,u) = 0 for gsome v € sz and

for all u € Txr we have to show v = 0. Sirce [ is a transveysal

section, we have A )
sz = <xH(x)> + sz N

Hence wiv,£) = 0 for all £ € TxS, and by the above observatiun

v =g XH , and so v =10,

To prove that §: L -~ £ is canonical we recall

from the proof of Lemma 1.1

(1.11) ap® £ = ay £+ 0(E) Xy,

LTy

for every £ € Txr . where 1T = T(x). We use that @T 1s canonical,

‘hence

16
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wlE,n) = w(dd® £, 4% n) ,

for a pair £,n € TXZ. "Imserting (l1.11} into the right-hand
side, and observing m(xH, dy £) = N(XH' dy n) = 0 as

dw{TxE) = Txﬂ = sz , we find
w(E,n) = w(dy £, Ay n) ,

proving that ¢ is canonical with respect to “[E'

(f£) Further Degenerations.,

As a side remark we observe that for Hamiltonian systems
an additional integral of xH frequently gives rise to two ‘
Floguet multipliers equal to 1 not just one. In this case

we have no general existence proof for periodic orbits.

Lemma 1.3. Suppose Xy has r integrals Hn ra=1,2,,..,r,
1
i.es
{Hl,HaJ = 0

and dHG independent. Assume, in addition, that at p € plt}

(1.12) {Harﬂg}(P) =0, for o=1,2,,..r and B =1,2,,..5s.

Then the periodic orbit p(t) has r+s Floguet multipliers

equal to 1.

Proof: Introducing locally in p the integrals as coordaintes,

we have in the notation previous to Lemma 1.2

17
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1. | o )
r
¢ = |- =
* L
where 3 = ¢1Tps , S being the integral surface of p{t} with

tangent space at p:

TpS = {g € TpM | m(xHu,E) =0, a = 1.2,..-,r}

It suffices to prove that $ has s eigenvalues 1 belonging . .

to the eigenvectors XH , &= 1,2,,..,5. Since
a

{ lx]=x =0
xHCI Hy {n, .1}

we have (Exercise 3 I §l)

t s

¢t e w t

=95 o ¢

where ¢t is the flow of XH and ws that of XH . Differentiat-
1 a
ing in s at s = 0, gives

1
]

hence for t

¢ X, (py = xHu(p) , p € plt) .,

a

for every a = 1,2,...,r. It remains to prove that xH {p) €58,

P
for 8 = 1,2,...,5. But this is precisely our assumption (1.12),

since at p;:

wlXy Xy ) = {Ha,HB} =0 . -
] g
We observe that, as
. i
TPS = <x“1,...,xHr> P

1
the case r=s occurs precisely if Tps_ c TpS hence Tps < TPM

ie - readentranics sithenare.

&3

Exercise 1 Show that the system

x=(1+ uly + (1 - x2 - yz)x

y =~ {1+ u)lx + (1 - x2 - yz)y

possesses only one periodic solution aside from the equilibrium
solution; show that its period depends on u.

Exercise 2 Let Xj r j = 1,2 be vector fields on Mj having
the periodic orbits pj(t). Show that if these vector fields
are Ck—equivalent {in the extended sense) locally in open
neighborhoods of the periodic orbits, where 1 < k < =, or
k = w, then the section maps wj r 3 =1,2 of pj(t) are
Ck—conjugate locally near their fixed points.

Remark: The converse is also true in the differentiable case.

1%
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2. ‘A Theorem by Liapunov
{a} Formulation of the theorem.
We shall use Poincaré's perturbation method in order
to find periodic solutions of a Cl—vector field near an

equilibrium point. We study in R?

(2.1) ' x= £, tech
with £(0) = 0 and
g_’fz (0} = A nensingular,
s0 that
(2.2) =2 x

is the linearized system. Clearly the presence of purely
imaginary eigenvalues of A is necessary to find periodic

sclutions of (2.2) in a2 small neighborhood of 0. If A has

the eigenvalues

al,uzu..,u r

n

not necessarily distinct from each other, we shall assume

a) = iw Oy = = iw

is a pair of simple imaginarv eigenvalues, with eigenvector

(2.3) A(e1 + ie,) = iu(el + iez)
such that (2.2) has the faﬁily of periodic solutions

x{t) = Re {c(e1+ ie,) ei“t} of period ..2.':"’_ ,

filling out the plane E = span (el,ez). We want to find a

21
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family of pericdic solutions for the system (2.1) close to
these. However, in general, :'ich nericdic solutions need

not exist as the system

L 2

xl = —x2 + xl

o = 2 2_ .2 2
Xy = Xy + Xy r= xl + X5

shows. Indeed for every solution x(t) we have

d 1 2 4
T3 IxT = %l

and therefore, if x{t) is a periodic scolution of period T,

one has
T
4
0 = IX(t)i dt i

0
hence x(t) = 0 is the only periodic solution.

In order to find periodin orbits the class of vector
fields uvnder consideration has therefore to be restricted.

We shall assume the existence nf an integral G € Cz, i.e.

(2.4) <Gx'f> =0 ,

with
G|E having a ncnvanishing Hessian at x = 0 .

Another possible restriction would be the class of reversible

vector fields (see paragrarh 5). We first examine the form
of such an integral. Differentiating (2.4) we find for every
EeRr"

{2.5) <GxxE,f(x[> + <Gx(x}, fx(x)£> = 0,

1 8%

hence, as f(0) = 0, the equation (2.5) implies <le0),AE> = 0
for all £, and therefore Gx(O) = 0 as A is nonsingular.

Next, let

Q=0 =6 _(0)

2 -
(d%6) (£) = <QE,&>, x

be the Hessian of G at x = 0, we can differentiate (2.5)
at x = 0 and find
<QE,AE> = 0

¥

for every £ € R® or ATQ + QA = 0 . Restricting the form to E,

by setting £ = Elel + Ezez we comphte

0 = <Qf,AL>

2 2
w{~£7<Qey ,ey> + 51E21<Qe1.e1>~<0e2.e2>1 + £5<0ey,ey7)
i.e. <Qel,e2> = 0 and <Qel,e1> = <Qe2,e2> = p and therefore,
with £ = Elel + 52e2 € E ,

(2.6) <QE,£> = p(E2 + £3)

go that by assumption p ¥ 0. Thus d2G|E is either positive

or negative definite.

Tpeorem 2.1. Let a; = iw, o, = -iw # 0 be a pair of imaginary
eigenvalues of A and E the real eigenspace belonging to a;,0,.
If the other eigenvalues of A, Oy k= 3,...,n, satisfy

%k
EI # integer ,

and if G is a C’-inteqral with a%G}. # 0, e.g. vositive definite,

then for every small € > 0 there exists a u-.ique periodic solu-
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tion x = p(t,e) near E of period near 2n/w, lying on
G(x) - G(d) = 2,
We observe that the nonresonance condition ak/al #

integer, k > 3 requires that the plane E contains all

periodic solutions of x = Ax having period T = 2n/uw.

{b) Proof

We write (2.1) in the form

x=ax+ 20, L fo)=o,

and stretcn the variables, x = ey, e > 0, so that

.

y = a—lf(ey) = Ay + e'lftsy)
{2.7)
= Ay + gly,c)} ,

where

max [|g| + |g ]] —+ 0 as g+ 0 .
c Y

lyl<
This allows us to consider the vector field in the fixed domain
]
iyl < ¢ for some ¢ > 0. We will apply Theorem 2.1 where ¢ plays

the role of p., The system (2.7) has the integral

Fly,e} = ¢ %(Gley) - 6(0))

1 -
= 5 <Qy.y> + Fly.e} ,
where on |y| < ¢, |§(e)! 2 tends to zero as € + 3, where
CL
E(c)(y) = E(y,e). Ye now apply Poincaré's continuation rethod
Aescribed by Theorer 1.2 to the fixed integral value

F{y,e} = 1 ,
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which corresponds to G(x) - G(0) = 52. As reférence

solution for € = (0 we take

y(t) = Re (c(el + ie,) eiut]

with period T = 2w/w, where ¢ > 0 is unigquely determined such

that F{y(t),0) = 1. Alsoc on E, ife=19

Fy = Qy = RyQe; + nyCe, ¢ 0

if y = Mye;tn,e, # 0 as follows from (2.68). Next we check
the Floguet multipliers, which by Lemma 1.1 are determined

as the eigenvalues of

2ra, /uw 2rin, /o
A o= e k = e k" "1

k e k=1,2,...,n.

Thus under our assumptions A, = 12 =1, but Ak #1 for k > 3,
hence there are precisely two Floguet multipliers equal to 1
and Thereem 1.2 is applicable, Tt defines a unique different-
iable l-parameter family of periodic orbits ylt,e}) , e >0

on F(y,e) = 1 of periods near 2n/w, moreover y(t,e) - yit)

= yl(t,0) as € + 0;. We therefore find the periodic

solutions x(t,c) =‘sy(t,e) on G(X) - G(0) = ez as we have

claimed,

{c) Remarks.
In case there are s distinct pairs of purely imaginary
eigenvalues

u.=j_iw- r j“lazr---tsc

yoi
[

e

R
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we find s distinct families of periodic solutions having
periods close to 2n/mj provided the nonresonance conditions
a

EE # integer
B

hold for all k # j and j = 1,2,...,5. These families are
indeed distinct as fol ows from the local uniqueness state-
ment of Theorem 1.2. Also, if the purely imaginary eigen-
values of A are merely distinct from each other, the theorem
gives always one family of perjodic orbits, namely the one
corresponding to max {lajl, aj + &j = 0}, ire. the one with
shortest period. The other families need not exist as

the following example for n = 4 shows:

i -1
zy = 1(]21 + 22)

. . . .
Z, = 1(-z2 +3 2y 7y Y} o J = 2,3,.--

r
where in complex notation z, = x, + iyk . The functicn
. 2 2
G = lell - |22|
is an int -ral with dzc nondegenerate. Morecver

29-2

d ) 2 .2 2
aE Im (z; 2%) = [|22| + Izli ] lzzl > 0,

so that periodic solutions have z, = 0, and therefore
zy =¢ eijt z, = 0 gives tle shor. period solutions.

If the nonresonance conditions are violated, no periodic
solutions except the equilibrium point need exist. An example
is giv n by the Hamiltonian system, with the complex nota-

tion z = X + iy

26

A 31

- = 1 2 2 -2 2
H{z,,2,:2y,2) = 3 (1z,51%- fz;1 } o+ 1z 17+ [z,]“JRe(z)2) .

For the corresponding Hamiltonian equations X = Hy v

. k
y, = -H , or in complex notation
k Xy
2, = ~2i 2
k 3z
k

one computes’ readily

d
- 3 Im (z1 22)

2 2
2 2
2(re (2, 20} + 212,117,017 (12117 12,1%)

v

2 2
4(Re (zl 22)} + (lzllz + |2212] v

and since the right-hand side is positive for (zl,zz) # (0,0),
we conclude that Z) = 2y 0 is the only periodic solution

of this sysfem. We remark that the Hessian of R at 0 is
indefinite in this example. In contrast, a recent thecrem

*)
due to A. Weinstein states that if the Hamiltonian function

on Rzn is definite at the eguilibrium point, e.g. positive‘

definite,_then on every energy surface H(z) - H(0) = £2 >0
there are n periodic solutions with periods close to the
periods of the linearized system. No nonresonance conditions
are required, but instead Hxx(ﬂ) is required to be definite.
The proof of Theorem 2.1 shows that the periodic solu-
tions x = plt,e) having periods T = T(¢) fill out a two
dimensional continuously embedded disc, where 0 < € £ €4
plays the role of a radius, and where p(t,0) = 0 corresponds

to the equilibrium point. This embedding, giwven by

{s,e) — p(sT,c) E ",

A. Weinstein, Normal Modes for nonlinear Hamiltonian systems,
Inv. Math, 20, 1973, 47-57,
27
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1 » 02 € X € and T = T(c} is Cl‘for any annulus

€y £ ey, if €, > 0. But the differentiability at ¢ = 0
1 -"="0 1

s (mod 1) € §

is not assured sgince s,c play the role of polar coordinates.

i one can show ti.t the periodic solutions

Actually, if f € crt
found fit together into a two dimenscional embedded invariant
manifold M which is c¥ also a: the origin x = 0, and which is

tangent to E at x = 0 , if r > 1.

:

In case f and the integral G are analytic, the embedding
of M is even analytic, represented by convergent power series,

as was shown by C. L. Siegel. (1)

(1) C. L. Siegel and J. K. M. er: Lectures on Celestial Mechanics,
Springer, 1971, p. 104-1i..

28
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3. A Theorem by E. Hopf,

(a) Statement of the Theorem,
We consider a family of vector fields in RP

x = £(x,n) , £fec?,

depending on a parameter u, |u| < Y and defined on an open
neighborhood of a common equilibrium point, x = 0, such

that
(3.1} X = Alwx + £(x,u) ,
with £{0,u) = 0 and %I flo,u) =~ o .

We shall assume R" = g + F, with dim E = 2, such that
X = X+ *p o and require that for p = 0, a(0) leaves this

splitting invariant, i.e.

[ Ag(o) o ]
A(0) =
0 A (D)

Ve assume that AE(O) has a pair of imaginary eigenvalues
a) {0} ,a,00) = -a, (@),
wy(0) = i 8oy , B(o) >0,

such that the plane E is filled with periodic solutions
having period T = E%%T for the system ; = A(0)x. For the
eigenvalues a3(0),...,an(0) of AF(O) we reguire
(3.2} () # integer

51737 ger, k > 3,

The eigenvalues ay (u),ay(p) = uliuJ being simple depend

29
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differentiably on u, and we r~juire in addition

dul
— (N
Re an (r) #0

i.e. the pair ay .0y of complex conjugate eigenvalues of Alu)

crosses the imaginary axis at w = 0 from the right or the

left.
i
o) tu .
\\\\\er 3
—
Qs i
- a
ay + 3 x
Summarizing the conditions op N

oy (u) = aly) + iBG:) a,B real,

we reguire

al0) =0, B(0) # 0

(3.3)
a'(0) #0,

39
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Theorem 3.1 Under the assumptions (3.2} and (3.3) there
exists a continuous fanily of periodic solutions in the

{x,u) space near E

x = ult,e) , p = vie) ,

0<e <gy having periods T = T(e) near 2n/g(0) and
satisfying u{t,e} + u{t,0) = 0, vie) ~ v(0) = 0 and

T(s) + T(0) = 2n/B(0) as € + 0. This family of periodic
soclutions is C1 for 0 < € < £4 and fills out an embedded

two dimensional disc through (0,0) in the {x,u)-space.

We explain the role of the auxiliary parameter e.
since a;,a; = El are simple eigenvalues, there is a
differentiable splitting R" = E(u) + F(u) which is left
invariant by A{(p), and we can achieve by a linear coordinate
transformation depending on the parameter u, that

Elu) = E(0) = E and F(p) = F{0) = F, such that

A () o
0 A k) J )

(3.4} Alu}

Morecover, by another change of coordinates in E, depending

differentiably on u, we can achieve

[ af{y)
| e

-8y ]

(3.5)‘ AE(]J) = o) J r

where alp) + iB(w) = al(u) . With respect to these coordinates
in R" = E + F we shall show that the auxiliary parameter €
agrees with

3l
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(3.8) uE(O,E) = {(g,0) ,

and it will follow from the p:-0of that with this normalization

of the parameter ¢ the solution is vniguae,

v A
ufo ,e)
(/” -Hirrb(/"///
P I
d s r
uE(O,e)

Postponing the proof we first look at the simple model case

in R?

flz,m = (i 4y - 2|8z,

n

[
-+

where al(u) = U, or in real notation z = x + iy,

2 2
X =pux -y - (x° + y9)x

= X +uy - (x2 + yz)y .

For 1 > 0 we find the periodic selution on !z| = /7 with
period 27 given by

z{t) = ¢u eit .

3'1

437

For y < 0 the equilibrium point z = 0 is an attractor and
there are no periodic solutions, while as y increases past 0,
an attracting periodic orbit |z] = /f appears. The periodic
orbits fill out a smooth two dimensional surface M in the

{x,u)~space tangent to the p = 0@ plane at z = 0 .

ru <o

IL =0

. ™

-

4
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Changing the sign in front ol |z|2 in the equation leads

to an jinvariant surface in u - 0.

(b) Proof of Theorem 3.1,

We assume that in Rn = % 4+ F, A{uy) is already in the
torm (3.4} and {3.5), Setting x = ¢y , ¢ > 0, the system

becomes

Yy = A(u)y + g(y.erll) r

where 9. {y,u) = gly,e,u) satisfies

Ige’cl +0 as € =+ 0

on |y] < 2 and jul < LA From now on we will denote any
such function of y, € and ¢ as ml(c). Next we introduce
polar coordinates r, 8 in E und abbreviate w = Yp- On

the domain D given by % <r < % , 0 < B < 2r and [uw| <

B b

the system is then given by

r = qr + ml(e)
6 =8 + ml(s)
W =

Bw + ml(E) '

with & = alu), B = 8{(w) an.l B = A {u). Since B(0) # 0,
the plane # = 0 is a transversal section of the vector
ficld in D for p and e sufficiently small. The aim is to
find fixed points of the section man. Introducing the
angle variable 98 as independent var’ible and integrating

the nonautonomous system

34

A9

dr a _

ag = grtule
d

E% = % Bw + ml(c)

from 6 = 0 to 8 = 27, we find for the section map:

2n

292
[r [e Br + wl{r;)
l w J l e-FB w o+ wl(z} J

and it remains to solve the following two equations:

2ﬂ%

Fi(r,w,e,u} = e21T r-r +_wl(c) =0 ,
5 B

Fz(r,w,e,u) = e W - wl+ wl(:) =0 .

We shall first solve the second equation and observe that

the eigenvalues of

2n
e“E ?
are, for u'= o,
, a, (0}
\ - FOOT %0 _ :"i &, 10T .

k > 3, due to the nonresonance assumption (3.2). Therefore
gﬁ'FZ is nonsingular and there is a unigue solution
= h{r,e,u) of the second equation, such that h = 0 for
€ = 0. We now set
r=1

and insert w = h({l,t,p) into Fl ¢ giving Fltl,h,e,u) = dle,u).

Since

a5



200

D 42 p . ogp 802
T TR T (A

if £ = 0 and u = 0, due to th: assumption (3.3), we can s0lve

the first equation wuniguely for u = v{e) with v(0) = O.

From

§%= B+ ulte)

we finally find the periods

T(e) = gqgy * oL

as we wanted to prove.

(c) Liapunov's fheorem.

It may happen that the whole fumily of periodic solutions
in Theorem 3.1 is contained in the y = 0 plane. Indeed, if
x = f(x) is a system satisfying the assumptions of Liapunov's

theorem with the integral G € C2 , we define the family

(3.7 o= £(x) + u G (x) .

One verifies readily that this system meets the assumptions

{3.2) and {3.3) of Theorem 3.1l. We therefore have a family
of periocdic solutions x = ult,e) and u = vig) for (3.7}.
We claim that v{e) = 0, such that the family belongs to
; = f£(x). In fact, along a periodic solution of period T of
(3.7},

4 G = <60 +uled? = uigl?,

_since <Gx,f> = 0 as G is an integral of f£. Thus

36

T
0=y I Ilez dt
0

and thercfore p = 0, since G, # 0 along a nontrivial periedic
solution. This shows that Liapunov's theorem can be viewed

as a special case of Hopf's theorem.

e B

re ™
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q. The restricted three boiv problem

(a} The three body problem.
We apply the ideas of th: previous sections to construct
periodic solutions for the thrve pody problem. Historically
these methods were developed b Poincaré for just this
application.
If meor k = 1,2,3 are thc masses and x_ € R3 the
k
positions of the three mass points, then the differential . .

equations are given by

a’x, U ’ ™"y
—5 - - ——, -U(x) = - r3J ..
™ ax 9% 14593 [xgmx]

or, dividing by m,

o dzxk ) m (X, - xk)
( . _,__2,_.. = _-.d.-_l.————— k=1 2,3
, .\ 3 r r r -
at j#k |xj - xkl
In the planar three body problum we reguire Xy € R2 , 1.es
%, to be two vectors. 1
The above system is a Hamiltonian system with . .
2
. % Iy ) -
= L 4 outx L= mLX.
j=1 ij ' Y5 1]

and the phase space has 18 or 12 dimensions, in the spacial

or planar case.

{b) The restricted three body problem is a limit case

of the planar three body problen in which we assume
one of the masses to be zero, £.g. my = 0 in (4.1). Then

the first two equations become independent of Xq:

a0

703

d xl X, = xl '
7 - M
dt |xy = xll
{4.2)
2
a Xy - X - Xy
2 1
dt Ixy = x2]

and describe the motion of the two body problem. Its orbits are
the well known conic sections; we require, however, that
Xy o X,y mave on circles about their center of gravity.
fThus the restricted three body problem is characterized by
the two requirements (i) my = 0 and (ii) the mass points
*) X, move on circular orbits. The prcblem is to describe
the motion of x,.
To deiive the egquation it is handy to use complex nota-

2

. . 1.2 : :
tion: If X, = (xk'xk) & R® we will set

to describé the position of the kth mass point. Moreover, we
normalize the total mass of the system to be one and set
m, = 1 -u my=u with 0 <y < 1..
rrom (4.2) we find for the center of mass

zg = M2yt MI)

the eguation ;D = 0 and we may assume that

zg = myz) + mpzy; = 0 .
Then the metion of zl,z2 {5 described by T = z, - z) which

satisfies
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The assumption that xl,xz move on circles amounts to taking In real notation

the solutions w=u+iv

_ . _iat ' 2.3 _
t=ae . o a 1 these eguations become
. s : . i . .
of this equation, or equivalently U - 20 v - azu - v,
iat - iat - -
2 =W e, Zp =Wy e, (4.5) { v+mu-odv = v
where
V=I L +’1-u' r
(4.3) wvy=-ua, wy = (1 - wa . ® o ‘ Wa T Wl ey -w
Here o # 0 and a = a"2/3 0. Usually one normalizes also which are the differential equations of the restricted three
a= |22 - 21[ to be one so that o = + 1, but we prefer to boedy problem. The phase space is 4 dimensional and the
show the dependence on a and therefore forego this normali=- system is independent of t. The system can also be written
zation. in Hamiltonian form

The differential equation for the third mass peint

described by z3is t-dependent since it involves the distance

N ~ . < '
of zg frgm the circling z; = zltt), z, —-zz(t). But in a {4.6} H(x:y,u) = 3 |y| + u(xzy1 - x1Y2) - Vix,u},
rotating coordinate system given by
', where
= iat ' N
2= we 0 —_— vy = -y,
these mass points will be at rest and the differential equa- X =V ¥ = v +ou

tions become {c) Periodic Solutions of the First Kind,

(4.4) w+ 2 ia & _ azw - 5 Wav + (1-p) b S , We will construct periodic solutions of the system {4.4)
|wy=w} fwy-w] for small values of p which we write in the form
where Wi.W, are given by {4.3). .
' (4.7) w + 2iaw - alw + “I = Flw, @, ),
W

where F is a complex valued function vanishing for y = 0:

Fiw,w,0) = 0 .

40
41
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Moreover F is an analytic function of u,v except at the
points 'u +1iv = Wye Vg

In the application in astrcnomy one usually takes
the mass point (m;) to be the sun, (m,} Jupiter and (m,) an
asteroid whose mass can be nealected. Moreover, the mass
parameter p is for this application 0.954 x 1073, and can be
viewed as smail.

For u = 0 the system (4.7} describes the Kepler problem
in a rotating coordinate system. Therefore elliptical orbits

generally give rise to nonperiodic orbits but precessing

ellipses:

On the other hand circular orbits always give rise to periodic

orbits
(4.8) ) w=r elBt
of (4.5) if

3

(4.9 B+am23=1, BFO.

47
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Their period is T = 2r8”l,  since w, =0, w, = 0 2’3 for u =0

we avoid collisions if we require

(B + a)2 # 02
or

B # 0, =20 ,
From (4.9) we also have B # -o, 50 that
B ¥ 0, -0, —2a .

We shall apply the results of Section 1 to find periodic
solutions of (4.7) for small values pf p. The resulting
solutions correspond to closed orbits in the rotating coordi-
nate system only énd not in the original system. In that
system we can assert only that the triangle formed by the
three mass points will be congruent for time values tl' t,y
differing by a period.

We also observe that the perturbation theory will not
succeed for arbitrary perturbations F = F(w,ﬁ,é,;,u) in (4.7}
vanishing for u = 0. Indeed if F = 1 ; then one finds

a (1,52 _ o 2 -1 "2
L M L R T

Hence for a periodic orbit of period T we would have

T
Oﬂuflﬁlz-
0
This implies w = const. and leads only to uninteresting stationary

-3
solutions which by (4.7) 1lie on the circle lwl = «? and

correspond to the exciuded value B = 0 in (4.8).

43
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Thus we need additionol Properties of F io ¢nsure the
existence of periodic solutiuns. In our case such a property
is given in the existence of an integral, Since our system
can be written in Hamilton’an form we have an integral

H given by (4.6). It can be rewritten as
2
1 ,°,2 a
H=3wl®- = [v|2-v
and becomes for y = ¢
1 ,°.2 '12 2 -1
(4'10) Ho = f ,WI = T [H’l = |Wl .

The gradient of this functic.. is certainly not zero if ; #0.
Let us consider the integral surface l-I0 = - % C {C is

called the Jacobi constant) and determine the reference

solutions (4.8) on it. For this purpose we compute the

value of C for the solution (4.8}, By (4.9) we have

B+a=+ /2

and hence

2_2

C=-21, =~ 822 ¢ & ¢ + 2!

r2(~Bj +a? 4 2(B+a)? }

)

28 + a) (8 + 3a)

rz[{ﬂ ray? 4208 4 a) e

= p?(c? i 2ar'3/2)

= ¢t * 2arl/2.

The function r-l - 2mr1/2 is monotone decreasing for g > 0

44
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1/2

and r’ 1 + 2ar is decreasing for 0 < r < oa~%/3 ona increas-

ing for r > “_2/3'

c

3a2/3

Hence for all C there exists at least one periodic solution
{4.8) on 'the energy surface and for C » 30473 there are
three. For C = 332/3 we have two periodic orbits one of
which is excluded by (4.10) since it corresponds to a
collision orbit. '

The solutions so obtained are called periodic solutions
of the first kind. They are characterized by the property
that they tend to circular orbits for y = 0, while periodic

solutions of the second kind issue from elliptic orbits,

45
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Theorem 4.1. Let

w = p(L,CO)
be the periodic solution (4.9} wit.

B #0, -on, =20

and
{4.11) % # integer .

Then for sufficiently small u and C near Co there exists a

unique periodic solution
w = pl(&,C,u)

of the restricted three bodv prchlem on the energy surface
H= - %—C continuously depending on the parameters and

tending to p(t,Co) as g+ 0 and C ~» CO'

Proof: We apply Theorem 1.2 and use that di # 0 for u = 0
and on the reference orbits w = p(t,Co). For this purpose,
we have to compute the Flogret multipliers of the reference
solution. The variational e.juation of (4.4) for u = 0 along

the solution (4.8) are given by

2

(4120 mo+20ih-ain = 3 @e e+ 37PN

.

in complex notation. The eigunvalues of the fundamental
matrix solution at £t =T = Evﬂ_l can be computed to be

2nia/8 - 2nia/B
lllre € -

Hence 1 is a double eigenvalue precisely if (4.11) holds.

Under this assumption Theorem 1.2 yields the statement.

(d) Discussion.
The above sclutions are periodic only in the rotating
coordinate system but not in the original coordinate system

if p # 0. For p = 0 this is the case only if

% is rational.

To get a clearer picture of the motion in the resting coordi-

nate system we set

a, =a oy =@ + B,

.

so0 that the unpertnrbed orbits are

1uzt 1uzt iuat

(4.13) =z, = wl e r Ty = Wy e , Zo, =TI & ’

1
and a, oy are the freguencies of the two “planets” Z,, Zq
in resting coordinates,

The condition (4.11) reads
%2 .
(4.14) E;:EE # integer.

It can be interpreted as the condition that the solution (4.13)

.in the resting conrdinate svstem snould not have the

period

[ Qq=ay

of the solution in the rotating system.
" We constructed a one parameter family of periedic orbits,
depending on the parameter C. The period T = T{C,u) of this

orbit depends on € and it is possible to prescribe the period

47



of the orbit, provided . .
{4.15) SLro fein=o0.

We can then solve the equatiowu

T(C,u) = T(CO’O) =Ty

for € = C{u) near C, and obtaip a periodic solution with

6
fixed period To. From the dcnoendence of C on r and from
(4.9} the inequality (4.15) ij; easily read off under our .
restrictions on 8.

We give a short list of *erms. used in astronomy: The
fixed coordinate system is cailed the "sidereal" system
and the rotating one the “synodic" system. Usually a,
is taken positive and then the orbit of z4 is called "direct"
if a3 > 0 and "retrograde” if a3 < 0. For retrograde orbits
we have a3/a2 < 0 and hence the gquotient

a -

E;:é; = (as/az - 1) ! ,
lies between -1 and 0 so that (4.14) is automatically satisfied.
for retrograde orbits. But in astronomy only the direct orbits
are of interest and for these orbits (4.14) constitutes a
real condition.

This approach is not applicable to the elliptical orbits
of {4.7) for u = 0, since in that case all four Floquet multi-
Pliers are equal to 1. This is due to the fact that for
‘v = 0 the system (4.7} has not only the energy integral HO
given by (4.10} but also the angular momentum u ; - ﬁ v = Im(ﬁ,&).

48
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On the circular erbits the gradients of these two integrals

are linearly dependent but on the elliptical one these

integrals are independent. (See Exercise 1.} Even though

this approach fails to establish periodic solutions near

the elliptic orbits

later;

they are

they do exist and will be discussed

called pericdic orbits of the second kind.

49
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5. Reversible Svstems

Exercise 1 Show that for w # 0, th.: gradients of Hy given

by (4.10) and of Im (w w) »ve linecarly dependent if and (a) Systems admitting a reflection.

only if ) In this section we shall describe a similar perturbation
. - method for periedic luti 551 tai s
w = i, 3 = IWI 3 _ a2 . periedic sclutions possessing a certain sy etry

property. This method which alse goes back to Poincaré

Interpret these points as iuitial ronditions for circular may be applicable in a situation when that of Section 2

orbits. ' fails.
The systems

Exercise ? Determine Floguet multipliers for the system (4.12). . n

(5.1) x = £(x) , x € R

Hint: The substitution

considered are required to admit a reflection p, which

- et ¢ _ , o .
n=e¢e is a linear map of R satisfying .
transforms (4.12) into a sy-tem with constant coefficients: ] . p2 =T .
T+ 2i(a+Bl L - (u+B)2r = % (n+3)2(; + 30) . Thus p has the eigenvalues +1 and -1 and we require that
. they have the same multiplicity. Thus, if E, . E_ are

Determine the four characteristic exponents of this system the eigenspaces of the eigenvalues +1, -1 of p we can

as 0, 0, *{a+B}. represent any x € R" in the form

s
. . x=x, +x_, x, €E_, x_€&E_ .
and

Since dim E, = dim E_ the dimension n must be even.

We call the system (5.1) reversible with respect to p if
{5.2) fipx) = - p £(x) .

In other words the svstem is invariant under the transformation

o 79
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{t,x) — (t* = -t, x* = px) . Lemma 5.1, A symmetric solution x{t} has the period 21 if
Condition {5.2) is equivalent to and only if
{5.3) ¢top =5 ¢'t : ylt) = x{t + 1)
for the flow ¢% of (5.1). is also a symmetric solution,
Any second order syster a = F.u) which does not contain 4 Proof: If y is symmetric, i.e. y(t) = p y{~t) then
U is an example of a revers.ble sy.tem. Indeed, if we write X(t + 1) = p x(~t + 1} .,
fu) u ) u ]
X = [ . R f = px = On the other hand, by the symmetry of x(t) we have
u F(u} J - J
® o Xt =) =px(-t+1),

This system takes the form (5.1} which satisfies (5.2).
hence

Alsc the restricred three body problem {4.5) admits such

t

x{t + 1) x{t - 1) ,
a symmetry. If we set

i.e. x(t} has period 2r. Conversely if the symmetric solution

(5.4) plu,v,u,v) = (u,~v,-u,v) has period 21 then the last equation holds hence by the
then the system (4.5), if converted into a first order system, symuetry of x(t)
is reversible with respect to p. Here it is important that x(t + 1) = x{t - 1) =g x{~ t + 1} ,

%

t int i.e. iti £fi t bodi
he points Wy v W, (i.e. the positions of the first two bo ies} which shows that y(t) = x(t + 1) is s etric.

are on the real axis, 4.

. . in other words a symmetric solution (of period 2t} is
(b) Symmetric Selutions,

characterized by

From (5.3) it is clear that with x = x(t) = ¢5(x(0))
{5.7) x(0) € E, and x(1) € E .
also px(-t) is a solution of our system. We call a solution

symmetric (with respect to p} if We interpret this condition for the example of a second order

system in the plane

(5.5) : x(t) = p x(~-t) .
u = fl{u,v,u,v)
In view of (5.3) symmetric solutions are characterized by ‘ (5.8)
the condition v = g(u,v,&,c) .
(5.6} x{0) = p x{03} or x(0) € E . which is reversible with respect to p given by {5.4) if

10 81
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£lu,-v,-u,v) = E(U'V'Y'Y) : For this purpose we have to determine the initial values
glu,mvemav) = = gl v so that (5.7) holds. Let ¢t(x,u) be the flow of £ = £(x,u)
The condition (5.7) means in this example that for t = 0 and . and
t = 1 the orbit intersccts the u-axis ot a right angle, o - dot.

since E+ is given by points {u,v,u,v) satisfying.

Then ¢ maps the tangent space at x{0) into that at ¢T(x(0)).

v=20, uw=0.
The splitting

v I\

The condition (5.7) requires finding x = x+(B) € E  s0 that

! S
\L " . or

For u = 0 this condition holds for x_ = x*(0}. The implicit

¢ ix,.m) € By

(¢T(x+|u)]_ = 0 . ' .

it is clear from the figqure that reflection gives rise to a, ' '
function theorem is applicable if

periodic orbit, which is symmetric. . .

rhe restricted three body problem is an example of (5.8). (5.10) ‘ det (¢_

RN
and yives a symmetric periodic solution of period 2t for small

(c) Perturbation theory for symmotric periedic orbits. |ul. At this point we have to require that dim E_ = dim E_

We consider a reversible system depending on a parameter L: so that the number of unknowns and cquations match.

- We can interpret condition (5.10): The two subspaces E, and
(5.9} x = £(x,10) . +
d¢TE+ must be transversal at the point x* (1} for u = 0,

where we assume for simplicity that p is independent of u. \
i.e. they must span R . Thus we have the followinag

* : . : . .
We assume, moreover, that x = X (t) is a symmetric periodic

orbit of (5.9) for py =20 and ask for a symmetric periodic

83
solution of (5.9) for small values of u. .
82
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Theorem 5.1. If x = x"(t) = x*(t + 21) is a symmetric periodic

solution of (5.9) for y = 0 and if

E+ and d¢TE+ are t: nsversal

*
at x (1) for y = 0 then the syst u (5.9) possess.s a unigue
symmetric periodic solution of the same period 21, which

depends continuously on u and agrec: with x*{t) for = 0 .

(d} Symmetric Orbits of the Restricted Three;Body Problem.

We apply this theorem to the r:stricted three Y oady
problem (4.5) with the reflection p jiven bé (5.4). The
circular orbits {4.8) are clearl& symmetric sclutions for
M =0 and thus Ehe above theorem is applicable provided

E, and dszE+ are transversal, or e ivalently if

det (¢_,} £ 0 for t - m g7l

The transversality condition has to be checked for p = 0, in

which case the system reduces to th. Kepler problem in a 1

rotating coordinate system, The solutions are known explicitly
and therefore it is in principle trivial to determine when
the transversality condition holds. Nevertheless we will
carry out the calculation. One mav expect that det (¢_+}

can be determined from the Floguet multipliers but this

is not the case since ¢_+ represenis a map from E+ at
w(O),;(D) to E_ at a different pcint, and therefore

“det (#_,} is not invariantly defincd. Only the vanishing

84

of this determinant has an invariant meaning. One can intro-
duce different coordinates at these two points and thus

replace ¢_+ by

T, ¢ T

1l -+ "2 7

where Tl ' T2 are the Jacobians of these coordinate trans-
formations. We make use of this remark and introduce in E+
instead of the coordinates u, G the semimajor axis a and
the eccentricity ¢ which parametrize the relevant ellipses.
Namcly using exercise 4 of I §1 we can write the symmetric

solutions in terxrms of the eccentric anomaly ¢ as

utivs=ws=a e_i“t(e +cos ¢ + i/l-¢® sin y)

Iw|] = a(l + ¢ cos y)

t a3/2

{w + £ sin w] .
The reference solution (4.8) with the half period 1 = mg -1
correosponds to

a=r, e =0,

One verifies easily that for t = 0, if ¢ = 0

(5.10) v, 1 20,
2({a,e) 2/a

and thus a, £ can indeed be used as coordinates in E In

o
the image space of ¢T, T = thl, we shall use instead of

(v,u) different coordinates for E_ , namely A = arg w and

‘B = R. This is motivated by the fact that for a point in E,

85
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one has corthogonal crossing, given Lv R =0, on the

negative u-axis, given by A = 7. Trom

v = R sin A

uw=Rcos A- AR sin A

one sees that, if A = 7w,

* R cos A 0
(5.11) VW o ger [ | . R cos®A = {w| > 0 .
J(Aa,B) l * cos A J

Thus A, B can be used as ceordinates in E_. It remains

to determine . .

CALYED
dla,e) °
Since
A =-at + yp + Ole)
d d {dt]_l -a £ sin ¥
B =3S- |l = 52 (wl-{53 =
t ay av a3/2(1+c cos Y)
we have %; B=20 for ¢ = 0, hence if ¢ = 0
3(A,B) _ - _ . . i
m,_ﬁ)_—AﬂBE ¢va351nw. . .
In order to determine wa we Observe that for £t =1 = nB_l the

Kepler eguation
= aa/z[w + & sin ¢}
determines

-3/2

¢ = pla,e) = 1a + ole)

from which we get

for ¢ = 0 .

223

Summarizing we find for € = 0 and a = r
ata,By _ 3 -3/2 . 3 .
{5.12) —ET—fET = 31r / sin gy = 3 ¢ sin ¢ ,

where on account of (4.9)

r—3/2 - o+B

= P(r,0) =1 T =g .

We conclude that E+ and d¢TE+ are transversal precisely if

% # integer ,

which agrees with (4.11}.
In this case Theorem 5.1 is applicable and system (4.5)
possesses a unique symmetric periodic solution plt,u) of

fixed period T = 2r = 2np” "

which depends continuously on

v and which agrees with the reference solution (4.8) for u = 0.
Theseperiodic solutions having the fixed period TD of

the circular reference solution belong to the family

pi{t,C,u) of Theorem 4.1 by local uniqueness. We saw at the

end of the previous paragraph how to choose the integral

surface H = - % € carrying the periodic solutions having

a fixed period for all small u. By local uniqueness we

conclude that the solutions of the restricted three body

problem obtained in Section 4 are automatically symmetric.

Aalthough it is irrelevant we can compute det ¢_,  ,

combining (5.10), (5.11) and (5.12):

det o, = a{vin),u(x))

Y a(uro),vio})

3{A,B) '
= le a(tales [2'/;) ’

87
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and at a = r, € = 0

(5.13)  det ¢__ = 31 sin v =1 ?

’

wvhich is, expressed in the fregiencies G, = g, uy = a+f of

the two planets in the resting coordinate system, equal to

a
. 3
3T sin 7 .
u.~a
L 2

(e) Periodic solutione near a stationary point in the reversible case

We consider again, as in Section 2, the system in R":
x=f(x)=hx+f(x).

with E(O) = Ex(O) = 0, A having a pair of imaginary eigen-

values
“(5,14) a, = iw, oy = = 1w, w >0,

which the other eigenvalues Gyreesely of A satisfy

o
{5.15) L 4 integer , § > 3. 3
oy Z

But instead of assuming the existence of an integral we require

that x = £(x) is reversible with respect to p, i.e,

{5.16) p £(x) = -srpx) ,

where p is a linear map with ?2 = id. We shall show that
also in this case a fanily of periodic solutions exists.
We shall apply the same trick as in Section 3 and consider
the modified system

(5.17y - X = f(x) + px = Alu)x + E(x) '

85

-

!

~

225

+

where the vector field g(x) = x is invariant under p, i.e.

p gi{x) = glpx) . i

We choose in the eigenspace E of the eigenvalues Gpedy = ay
the basis el,92 such that
{5.18) A(el + i ez) = jw (el + i ez) .
[
Thus we can write with respect to the splitting A" = F + F i
I'AE(“) 0 ! 1
AGp) = [ J
Q Ap (W)
where '
(v
AE(u) = .
| o b
It is clear that the system (5.17) satisfies the assump-
tions of Theorem 3.1, and we conclude that there is a i¥
unique family of periodic solutions ’
X = ult,e) , w=vie), 0<€exey, '
of (5.17) having periods c¢lose to 2w/w and satisfying the
normalization condition:
up{0,e) = ee; ..
Now we shall prove that v{c) = 0 , Since our system (5.17) ‘
goes into itself under the transformation (t,x,u) + (-t,px,=-p) &
¥

we see that
x" = pu(-t,e) , B = - vie) "

is also a family of periodic solutions of (5.17}, which in

addition satisfies
89 »
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(5.19) (pulEto,e) T E €y

as we shall show below. Ther:fore, by the unigueness of

Theorem 3.1 we conclude

uit,e) = pu(-t,e) and vi{ie} = = vie) .

and thus v(g) = 0. Therefore = u(t )} are solutions of
x = f£(x) and the modification was not necessary at all.
Moreover these solutions are rymuetr:o.

In oder to prove (5.19) w> note that from (5.16)

we have

n
=]
-

pA + Ap
which implies

pE = E .

Moreover one verifies easily (Exercise 1) that

{5.20) pey = e and pe, = —&, .

Therefore

(ou)E(O.E) = pEuE(o,c) = oE(s.D) {e,0) = ee; .

as we wanted to show. We thus have proved the following

modification of Liapunov's theorem:

90
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Theorem 5.2 Under the assumptions (5.14)-(5.16), the

system x = f(x) has a unique family of symmetric periodic

solutions

x = uf{t,<) 0 <e £ €9 R
near E having periods near 2n/w and satisfying

UE(O.E) =€e; .

The family is continuous for 0 < e < £, and differentiable

for 0 < £ < Eg *

g1
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Exercise 1

. , Ex ise 3
Show that under the ass..ptions of Theorem 5.2 the xgreise 2

Let p: R2n - Rzn be a diffeomorphism. Show that

basis €)r€y of A defined by (5.18) catisfies p e = e
and p e, = - e, . {Fop, Gopl=-(rceop
for all functions F, G, if and only if

Exercise 2 -1

p e exp(tXH) °p = exp(—txHo }

Show that all solutions near the origin of the planar P
for all functions H, i.e, a Hamiltonian system with Hamiltonian

vector field

H = H(x) is transformed Ey x + x* = px into a system with
x = flxy) Hamiltonian .
y = gix,y) ® 0 HO(x7) = -H{px) .
are periodic, provided
f(xl‘-y) = ~f{x,vy}) , Q(xl-}') = g(x,y)
f£(0,0) = g(0,0) =0 {The t{ansformation p is canonical in the generalizzd sense
and with multiplier -1.) The reflection p(xl,xz,yl,yz) =
3(f,q) - ‘ = (%) =%,,-y,,¥,) is an example.
. .
H. Poincaré: "Sur les courbes &éfinis par les équations .
différentielles”, Journal de r.thématique pures et appliquées, . )
Ser. 4, vol. 1, 1893, p. 167-244; in particular see p, 153,
93
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6. The Plane Three

and Four Body Froblem.

(a) Elimination of th

We shall apply the containuation method described in

the previous paraqraph

(6.1} —
at

where xj € Rz deseribes the position of the particle
with mass mk. 1n contrast to the restricted
problem we do not assume that onc of the particles has

2erc mass, but assume instead that the masses of the two

bodies m,

The interaction between m, and m, is then small and vanishes

in the limit m, = my =

. two body.problems. We

with

the center of mass is

Xy

and we introduce the relative coordinates of the second and

third particle with respect to the center of mass

so that with my = 1,

e Cent.r of Mass.

to tho plane 3-body problem:

and my are small ¢-mpared to the first my -

0, so that we obtain two decoupled

shall normalize

= 1
ml i

i
M = m,
k1 K

e Lo

i
m, X
k=1 KK

.

X3 = Xy - X

94

k =1,2,3.

three body

z 31
Xp ™ g T MpXp = MgXy
Xo = Xo + xz
x3 = xo + x3,

and we then obtain the e

xo =0

x -—
- _ - _ 1
Xy = %, =

1% -

¥ -
. _ . _ l
X3 = x3 = Ex -

1

The first equation
moves on a straight line

equations can with

»
™
t
x
—
]

be written as

»
13

2 - l

o
I

3—']

X X - X

2 S+ my 3 2 5
xz[ |x3'x2|
X X - X

3 5 +m, 3
] [%, = X5l

3 2 3

expresses that the center

and can be ignored. The

X, - X

2 3
xz + m2x2 + m3X3

X3 + m2X2 + m3x3

-3
x2[ X, + 0(m)

-3
%3] 7 %5 + 0(m)

of mass_xD

other two

where 0(m) stands for functions which vanish for m, = m, = 2.

We turn to complex notation and describe xj for j = 2,3

by the complex numbers

in the form

zj . Then our system can be written

- 2 -
22 - —‘—‘"'_—3" I + Fl(zrzlm)
z
(6.2) 2
- Zy _
z, = - 3 + Fz(z,z,m)
N
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where z = (z,,2,}, m = (m,,m;). The functions Fy o= Fj(z,E,m)

{3 = 2,3) have the following preoerties

(i} Fj(z,E,OJ =0

(6.3) (ii) Fj(nz,ﬁz,ml = n Pj(z.i.m) for |n| =1

(1ii) Fj(?,z,m) = Fj(z,i,m) .

Property (i), which was established already, expresses
that the equations (6.2) reduce “o two uncoupled Kepler
problems for M, = my = 0 . Proprrties (ii) and (iii) express

iy
+ e vz,

] ’

These properties are

that the {6.2) is invariant under rotations zj
and undex the reflections zg > ij.
verified most easily for the original system (6.1) and

that way deduced for (6.2).

{b) Periodic Solutions of the First Kind.

We search for orbits of (6.2) for small My, my close to

the circular orbits

ia.t
3

Z. =r. e B a?rg =1, for 3§ = 2,3,

These are clearly solutions of (6.2) for m = 0, but generally

not periodic! But in rotating coordinates wi

zj - wjelat .

introduced by
a« = a,
the above orbits become
, i(aa-az)t
(6.4) Wy =X, , wy = r, e
which are always periodic of pericd T = Zn(u3~u2)“l. The

differential equations become

- 96

232
. L. 2 Y9 _ omiat 7, jat . _~iat~
Wy Zluwj %y - —T;%Tj = e Fite'™w,e W, m)
. J -
(6.5} = Fj(w,w,m).

In the last equation we used (6.3} (ii).

Theorem 6.1, 1If o # + a, andg

a3

————— # integer
a; = a,

then for small m,, my the system (6.5) possesses a unigque
periodic solution wj = pj(t,m) cf period Zn(m3-a2)-1 satisfy~

ing the symmetry condition
Pj(-t.m) = pj(t,m)

and tending to the circular solution (6.4} for m -+ 0.

Remark. This statement holds for any system {6.5) where
the perturbation forces satisfy (6.3) and not only for those
derived for the three body problem. For this result the
Hamiltonian character of the system is unessential. As a

matter of fact the perturbation method of Section 1 does not

apply since A =1 is a Floguet multiplier of multiplicity four;

and we do not have three integrals of the system to make

that method applicable,

Proof:
wj, ;j (3 = 2,3) and observe that the resulting system is
reversible with respect to the reflection

97

We write the system (6.5) as a first order system for

e

vy = -

=
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p: (wj,;j) — (W ,~w.)

) J

or using real coordinates by Wy maag ot iv

p: (uj,vj,uj,vj) — (uj,hvj,—uj,v for 3 = 2,3 .

The reference solution (6.4) is clearly symmetric with respect
to p with half-period

n

(6.6) T = —
ay - oy
Thus we can apply Theorem 5.1 provided the nondegeneracy
condition holds. Since E_ is given by vj = uj = 0 we have

to determine the initial condition

{ uj(O)lUlnlvj(o) }
so that Vj(T) = uj(r) = 0. T!:s recuires the nonvanishing

.of the 4 by 4 determinant

2(v(1), uln)
a{ul{0), v(u))

for m =10

det ¢_+ =

where u = (ul,uz), v = (vl,vz). Since for m = 0 the system
{6.5) decouples into two Keplnr problems in rotating cooxrdi-

nates we have

(2) {3}
det ¢_+ = det ¢_+ det ¢_+
where .
(3 v (1), u.(1))
det ¢_+ = J J .

3ty (0), Gjm)

We can use the computation (5.13) of the previous section

and find
98
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_ 2 . .
det ¢_+ = (31} sin T, sin Tag

with 1 given by (6.6). The condition det ¢_, # 0 is
therefore equivalent to the assumption

a

—— # integer
937%2

of the theorem, since CaT = 0,T + T,
Thus Theorem 5.1 yields the desired symmetrie periodic

sclutions wj = pj(t,m) = pjit,m).

Conversely this condition characterizes symmetric solutions,

for which one has pj(-t,m)

sc that also their uniqueness follows from Theorem 5.1.

We repeat again that the solutjions obtained are periodic
only in a rotating coordinate system. We illustrate the
configuration for m = 0 in the two figures below: For t = 0
‘hoth zz(D}, 23(0) lie on the positive real axis (the planets
are in conjunction) and for t=r the points 22(1), 23(1) lie

on opposite sides of a line through the origin (the planets

are in opposition).

(:> 2, (1) (:)

0

z,(0) z,(0) vl w4 (0) Wy (0)=w, (1)

z3(r)

99
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3
two points on the same side of a line through 0 and will for

For My, W small ot zero the orbits will again start with

t = 1 have 2z,(1), z5(1) on tlLe opposite sides of another line.
The orbits will intersect these lines at right angles. These
statements are merely geometri.al interpretations of the symmetry
of the orbits.

According to Poincaré on: speaks of periodic solutions
of the first kind of the 3- or n-body problem if they issue

from circular and not elliptic orbits, ——y

(¢} The four body problem

For the four body problem there is a similar periodic
solution, 1If My ey, Mg, m, are the four masses we take
again m = 1 and consider the other masses small, After
'eliminati;g the center of mass we get again a system of
differential egquations for Z5024,2, which in rotating coordi-

nates WorWa W, .

Z. = w,e »o& =a, , jo=2,3,4
~
again take the form (6.5) wher:. j = 2,3,4, The reference

solutions becone

i(uj-uz)t

(6.7) W, = r.e ,---,u%r; =1, j =2,3,4

which are periodic if and only if ay-a, and ay-o, are
rationally dependent. This iz equivalent to the requirement
that there exists three integers j2,j3,j4, not all zero,

such that

100
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4
(6.8) I dpa, =0,
k=2 Kk ’

We may and will assume that the j2,j3,j4 have no commnon
factor and that Ohrtqg,0, are distinct. The half period Tt
for these orbits is calculated as

L P LR nj4 .

(6-9) T = - = — =
0.3 04 (14 0.2 32—33

The equality of these expressions follows from the relations
(6.8). The same argument as before succeeds if
(3}

4 : 4
det ¢_, = %=£ det ¢, = (30)°3 g=£ sinf{a, 1) # 0

which requircs that none of the ukrﬂ'l is an integer,

But since, by (6.9), the differences

~1 . -1 .
(u3-a2)1n i PR (a4-a2)Tﬂ = 35 .

are integers it suffices to require only one of the numbers

not be an integer. This leads to

Theorem 6,2, Let ug, ui, uf be distinct numbers satisfying
{(6.8) and the conditions

ayt s # integer ,
where 1 is defined by (6.9). Then for small My, My, m, the
system {6.5) for j = 2,3,4 with Fj satisfying (6.3) has a
unique periodic solution vy = pj(t,m) = §§T:€TET of period 2t
tend to the circular reference solution (6.7).

which for m - 0

101
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(1)

This result is of interest in astronomy. When Laplace i.e. (6.8) holds to remarkable accuracy on the other hand
B . 1]

developed his perturbation theory he obscrved that the if we check the nondegeneracy condition we find that
frequencies o,,a,,1 of throe of the Galilean moons of

2r%37% oyt a,
Jupiter (namely Iu, Europe and Gany ede) satisfy the rela- = = i3-a, =4 - 0.0145

tion (6.8) with j., =1, j, = -3, j, = +2 to a high degree of
1 v J3 ¢ Jg e 9 is rather close to an integer, but compared to the high

accuracy. Poincaré (2} used this example to derive the . .
approximation of q2-3u3+204 = 0, it is markedly different

periodic solution~ of the four body problem which are given .
C from an integer. Clearly to see whether these orbits are

by Thecrem 6.2, l.oter de Sitter (3 determined the values of
of significance for this astronomical situation requires

Wy 0y, to high accuracy and gave the values .

2rOgrly g Y an. g ‘ . . quantitative estimates and numerical calculations. In any

event one would not expect these three moons to perform a
203°. 488 955 28

a = 5 : : : .
2 periodic motion but possibly oscillate about such an orbit.
ay = 101°. 374 723 96 We illustrate the circular motion of the reference

@, = 50°. 317 6"8 33 orbits {6.7) for j, =1, i3 = -3, j, = 2 between t = 0

and t = T in the resting and the rotating coordinate

which are the angl~ of advance measuv~d in degrees per day.
R systems in the figure below.

From these values one finds

-g.®
- + = .
o, 3a3 2a4 {6+10 °) .,
’
11}~ marquis de la Lar eze: Traité de mécanique céléste, tome 4,
livres huitiéme !.néorie des satell.tes de Jupiter de Saturne . .

et d'Uranus) Imprimerie Royale, Paris, 1845.
{2} H. Poinc -é, Les “‘cthodes Nouvelles de la méchanigue cél@éste,
val., 1, .rt. 50, Gauthiers Villars, Paris, 1892,

(3} W. de Sitter, Proc. Acad., Sci., Amsterdam, Vols. 10, 11,
1908, 1909.
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7. Poincard-Birkhoff Fixed Point Theorem

{a) Formulation

While our previous results on pveriodic solutions were

based on perturbation methods and ultimately depended on
the implicit function theorem we turn now to a topological
result. We will state and prove an old theorem to which
Poincaré was led in his studies of the restricted three body
problem. In 1813 G. D. Birkhoff gave a surprising but
simple proof. The theorem asserts the existence of fixed
points of an area-preserving mapping of an annulus in the
plane into itself., Such a fixed point theorem can be used

to establish the existence of periodic solutions of differ-
ential equations, as we shall see in the following sections.
This connection is similar to that of periodic orbits of a
vector field and the fixed points of a section map as it

‘.
was discussed in Section 1. vt

After formulating the theorem we present essentially
Birkhoff's original proof (c) and then discuss the proofs
under relaxed assumptions {(d}. In Section 8 we shall give much
simpler proofs but under additional hypotheses; they have

the advantage that they can be generalized to higher dimensions.

Consider an annulus
A a < uw? + v? b

in the u,v-plane and a homeomorphism ¢ of A into itself,

77
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We require that ¥ maps the inuaer boundary into itself as

well as the outer boundary into itself, This does not mean
that the individual points a.e fixed under the map . We
will require that the two bondary circles are turned in
opposite directions under ¢ and refer to this as the

"twist condition". wWe will nwve a precise formulation below.

Finally we require that the L~besgue measure

4
IJ du s dv = II du a dv
E + (B}

is preserved for any open se* E C A. Under these assumptions

the Poincare-Birkhoff fixed roint theorem asserts the existence

of two fixed points of ¢ in the interior of A.
To formulate this condition more precisely we intro-

duce "polar coordinates" by p: (x,y) — (u,v) by

u=Jy -os x
(7.1} r afy<hb.
v = Yy sin z
]
Here we choose y = u2 + ve 23 the radial variable so that
1 5 {u,
dua dv = 7 dy A dx ar 5%%75% = % .

Therefore the mapping corresmnding to ¥ in the x,y-variables

will again preserve the Lebes.:ue measure

[! dy A dx .
E

Now it is important to note that the homeomorphism

Vv: (u,v) — (ul,vl) of A does not determine uniguely a mapping

19

2493

91 (x,y) — (xl,yl)

of the strip

(7.2) 5=1{x,y | acy < b, x € R},

since u, v determines x only up to an integer multiple of 2r,
Denoting the map (7.1} by p we require that ¢ be a homeo-

morphism of S into itself such that
(7.3} Ped¢=yop,

Clearly such a map exists. Moreover, if

s: {X,¥) — (x + 27, y)

then snn¢ also is a map satisfying (7.2), since P es =p.
As a matter of fact, the most general homeomorphism of (7.2)
is of this form. It is clear also that a fixed point of ¢
gives rise to a fixed point of ¥ but not conversely. 1In
the following we will make assertions about fixed points of
¢ in S, which are stronger than assertions about V.

We write the mapping ¢ in the form
{7.4) ¢: {x,y) — [fix,v),9ix,v)) , -
where f,g are continuous functions in the strip (7.2}. Since

the points (x,y) and s(x,y) = (x + 27, y) have equivalent

image points we conclude that

b}

fix+2n,y) - flx,y) 21k

]
=]

gix+2m,y) - gix,y}

79
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for some integer k. 1In other words, 4 o s = sk e ¢, Or
£ix,y) - kx , glx,y)

have period 27 in x. For the inverse nap ¢-1 we find a similar
integer k' and the identity ¢ o ¢! - id shows that k-k' = 1,
i.e. k = + 1. We will require that ; is also corientation

preserving so that k = + 1 and

f(x,y) - x, gi{x,y)

are continuous functions in S of per.cd 21 in x, i.e.
(7.5) $ o585 = 5 o ¢ .

A homeomorphism ¢ of S which belongs to a homeomorphism ¢ of A
is characterized by the following pruperties: The functions
£ - x, g defined by (7.4) arr contintous and of period 2Zm and
the corresponding functions for ¢-1 heve the same properties.
If ¢ is one such homeomorphism belorying to ¢ the most
general one is given by s" s 9.

The requirement that the two boundary circles are

preserved under ¢ amounts to

{7.6) gi(x,a) = a , gi(x,b} = Db,
and the "twist condition™ becumes

(7.7 (f(x,a) - x}({fix,b) - x} < 0.

Finally we require that for any open set E the Lebesgue measure

m{E} = II dy A ux
E
80

is preserved. We will call such a mapping "area-preserving® if

in addition it preserves the orientation., For a diffeomorphism

this would mean that its Jacobian is +1.

Thearem 7,1. An area-preserving homeomorphism ¢ of §
into itself satisfying (7.5), (7.6) and (7.7) possesses at
least two fixed points Fl,F2 which are not equivalent, i.e.

sJFl # F, for all integers j.

(b) Infinitely many periodic orbits of %.

As a consequence of Theorem 7.1 one can construct infinitely

many periodic points for an annulus mapping y. Here we will

call a point P € A periodic if wN(P) = P for some integer N > 1;

the smallest such N is called its primitive period, For any

point P € A we call the set
{wj(p), j= 0,11,12,...}

the orbit through P. For a periodic point its orbit consists
of only finitely many points.
Assume that the map ¢: S + S5 belongs to y and is repre-

sented by (7.4}. Let c;,c, be two real constants such that

(7.8) f(x,b) - x < c) < ¢y £ flx,a) - x, x € R,

and let p/gq be any rational number such that

B
{7.9) cy < 2n g <cy -

-

8l

™

-

s
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penoting ¢9 by (x,y) — (fq,gﬂ) it 1s clear that the map s F¢d In the above fixed point theorem the area-preserving

satisfies the "twist conditicun® &ince property cannot be dropped, as the following simple example

shows: If a = a(y), B = R{y) are continuous in a £y <hb
£ (x,b) - 21p - x < qe; - 2t < 0 < qe, = 2mp < f_{x,a)-2np-x.
q - q and Bly) strictly monotonically increasing with
Therefore for any p/q satisfy'ng (7.9' there exist fixed B{a) = a, B(b) = b then

points F with
¢: (X,y) = (x + aly), B{y))
s Ped(ry = 1,
defines a homeomorphism of S onto itself, If afa) < 0, aib) > 0

If p'/q9' is anotler rational pumber in the interval (7.9) . . . .
. . then the twist condition holds, but if Bly) # 0 ina < y < b

and F' a fixed point with . .
then ¢ has no fixed point.

5-p'¢q"F') =F*, On the other hand, one can replace the condition that
then F' and F are not equivalent, i.e. P! # sj(F) for all ¢ is area-preserving by a weaker topclogical assumption:
integers j. Indeed since 5 commutes with ¢ we would conclude We require that for no open set E of the annulus A one has
from F' = sj(F) and the last relation proper containment Y(E) € E or E C y(E). For an area-—

. . preserving mapping this assumption is obviously true. We
q' = Joaq (p1y) = =3P gy = P
¢ (F) =5 Jegp” (F') = s (F*) = 8" (F) , . .
will not present the proof under this more general assump-
*
hence tion but refer to the original paper by G. D. Birkhoff. )

Incidentally, it is, of course, inessential that the

L] L 1]
#9017y = s (p) = T P(py , o ©
annulus A is bounded by concentriec circles and it is also

by symmetry in p/ '/g'. Therefore we would have
Y Y brd. /9 valid for an annulus bounded by two continuous curves which

L
qp' = q'p or ET = g - are "starlike" with respect to some point. If we take this

We have proven point as the origin then it means that each ray issuing from

. the origin meets each of these curves in precisely one point,
Theorem 7.2, If an area-preserving map ¢ of the annulus
: X - . . i.e. these curves can be represented jn the polar coordinates
A gives rise to a mapping ¢ of the strip § satisfying
L of (7.1) by
conditions (7.5), (7.6) and (7.8) then ¢y possesses infinitely
. : . - . Y = p;ix) 0 < py(x) < p,{x}
many different periodic orbit. in the interior of A. ] ' 1 2 ‘

{*) G. D. Birkhoff, An extension of Poincaré's last geometric
theorem, Acta Math. 47, 1925, 297-311,

82 B3
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where pj(x) are continuous “.nctions of period 2m., It is

easily shown (see Exercise 1} that the annulus
pPpix) £ v £ pyix}
can be mapped by an area-pres:rving homeomorphism into an

annulus a < y < b bounded by concentric circles., Therefore

Theorems 7.1 and 7.2 are valid also for the above annulus.

{c) Proof of Theorem 1.

First we prove the existence of a gingle fixed point
of ¢. We assume ¢ to have no fixed peint in S and will bring
this assumption to a contradiction. We replace the twist

condition {(7.7) by

(7.10) f{x,a) - x>0, f(x,b} - x< 0.

If this condition is violated it will hold after replacing
(x,¥) by (-x,y).

We introduce the concept of an index. Let
a(P) = ary(P,¢(P))

denote the angle between the vector from P to (P} and the
positive x-axis. 1t is defined only module 27 but, since ¢
has no fixed point it can be defined as a continuous function
in 8. It is well defined if ve normalize it by reguiring

that a(P) = 0 for P on y = a. Then the required index is

jl$) = a(p)
y=b
i.e. the value of a at the upper boundary. One could also

define
gr
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Ielt) = f da
C
as the increase of a along a curve C in 8. This number is

the same for two homotopic curves with the same end points
Therefore the index defined above agrees with jc(¢) where C
is any curve going from y = a to y = b, In other words jc(u)
is independent of the choice of the curve C, connecting
y=aand y = b. This expression jc(¢} is meaningful also

without the normalization (7.10) of the twist.

Proposition 1. For any fixed point free area-preserving
map satisfying our conditions including (7.10) j(¢) 1is
independent of ¢, in fact,

Ji¢) = n .

The verification of this claim is the main burden of
the proof and we postpone it. PFirst we show that it leads
to a contradiction — and hence to the existence of a fixed
point of ¢.

Define the reflection

pr (%,y) = {(-x,¥) .

Then p—1¢ p is also a mapping satisfying all conditions

of Theorem 7.1 and it is fixed point free if ¢ is.
Proposition 2. For a fixed point free ¢ we have

jte~le o) = - 3(&)
ju™h = S .

a5

-

wy W

sy ™
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Proof: Let C be the curve t - {x =0, y = t) fora < t < b,
s0 that pC = C. If we replacec ¢ by p-1¢ p then the angle

o is replaced by m - a and

to™l¢ o) = I d(r - a) = - [ do = - 3.(9) .
C c
Similarly, if C is any curve going from y = a to y = b so is

I

${C) such a curve and

. -1, _ .

since the angle a at P € C i; to be replaced 1w + a

at ¢(P) € ¢{(C)} (see Figure).

This proves Propusition 2.

Note if ¢ satisfies (7.10) then so does p Y¢ Yp, but

by Proposition 2 we have

which contradicts Proposition 1.

It remains to prove Preposition 1. For this purpose

we extend ¢ to a homeomorphism of the plane by setting

ué

E(x,y) = f£{x,a) for vy < a
= £(x,b} for y>b,
gix,y} =y for y <aandy > b .

With the area-preserving shift

(7-1)3 : Tt (X,y) = (x,y+e) ?éfi:

we define

¢E = TE°¢ -

If 0 < g < dist{P,¢{P}) for all P then ¢E is also fixed
point free and we will define j(¢s) =1 (mod 21) by the
requirement
. "
(7.12) l f da, - J(o)) <3
(4

where

a_(P) = arg[P.¢€(P)]

and where C is any curve going from y fatoy >h., By

the same argqument as before j(¢€) is independent of C and ¢.
It suffices to show that j(¢e) = m and for this purpose
we select a particular curve T going fromy = a to y > b

and prove
(7.13) | [ da_ - 7| < % .
r
which by (7.12} proves j(¢E) = w and hence the Proposition 1.

e7



We define and construct a continuous curve t -+ Y(t) by taking

.t t o
Dy = lix,y) | acy<an=+cel, YOy =g P+ (1 -p, for 0<tc<e :
and define and setting
D, = ¢)(D,) . j
3 0 y(t+e1)=¢£-y(t] for Of_tic,

for all integers j. For j < 0 we have

and j = 1,2,...,N41.Thus y(t) is defined for 0 < t < T = (N+2}e
Dj = {ix,y) | a + je Sy <a+ (j+l)el) and connects the points
¥(0) = p . YiT) = p =Q .
which are disjoint strips. As images under a homeomorphism . . 0’ N+2 _
L oa s . . . i
all the Dj are disjoint. Sinc: ¢ commutes with the shift s, Moreover, by construction of Q the entire curve lies in the ¢
also the Dj are invariant under the shift s and can be strip between the parallels to the x-axis through PD and
regarded as annuli, mod 2m. T zir areas are equal as ¢ and T Py = Q.
hence ¢e. s Praeserves the area. Therefore
h
w{D,) = m(D,) = 2me > 0 . { J
j 0
The Dj for j > 0 lie in the half plane y > a and not all can |
lie in the strip 5 since the scrip, modulo 2%, has finite arega I
¥y~
21(b - a). Let N be the integer such that . . ‘ [
DysDyreeesDy 3 €S, Do F S, .
and pick @ as the point of maximal y-component in Dy41- Then [
1
Q€ 3DN+1 as ¢&: is a homeomorphism. One verifies that 3= aeg
Q= qs"”wo) . o >
€
x

where P, lies in y = a. We define

r

Poo=¢d(B) . PL,m0 . 0<3<Ne2,

3

' ™=

89
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The cu-ve y ha. ne selfintersection

Proposition 3,

for 0 < t < T, i.e.

y{t} # y{s, for 0 < ¢t <s5 < T,

Proof: We observe that

ytr) | 3 =t < (3+41)e}

lies in Dj and since the D0 DL""'DN are disjoint we can
have y{t) = y(s) only if t,s hoth lie in an interval je <t
<8 < (j+l)e. But this'part cf y(t) is the image of the
straight line from Po to Pl urnder the homeomorphism ¢e and
therefore certinaly free from selfintersections, proving

Proposition 3.

Finally, taking for T th2 curve y = y(t), 0 £t < T-g,

just constructed we verify (7.13) using an idea which goes

*
back to H. Hopf ) in a similar situwation. For this purpose

we define

Blt,s) = arg(y(t),y(s)] for 0 <t < s <T,

which is defined moed 2n, as ¥ is free of selfintersection.

Moreover

GC(Y(t)) = B(t,t+e) (mod 2m)

and

H. Hopf, Ubar die Drehung der Tangenten und Sehnen
ebener Kurven, Comp. Math. 2, 1935, 50-62,

Gr,

where I is the lines
Since the triangle
bounded by I, II, III

is simply connected

we have
[as = [ as.
1 II+IIX

}

I dac = f dg
r I

=t+e, 0<t < T-e, in the t,s-plane.

S 4 —
i T s
, d

To estimate the 'last integral we observe that for any

{t,s) € IT + III the
upper half plane. 1In
from y(0) to vy(s) is
minimal y coordinate,

to ¥(T) = Q is again

y-coordinate of Q = vy

that of y(t} for 0 <t <,

vector from y(t) to y(s) lies in the
fact either t = 0 and the vector

in the upper half plane, since ¥{(0} has
or ; = T and the vector from y(t)

in the upper half plane, since the

{T}) is by our construction larger than

Hence 0 < B < 7 on II + III, or

< f dg < 7 .,
IT+III

91



Since by assumption a(P) = 7 (mod 27} for P on the

boundary ¥y = b, also uC(P) = (2k + 1)7 + w(e), where w(e)
deanotes any function tending to 2ze-o as € tends to zero. -
Therefore
(2k + 1)7 + wile) = I due = ( dB = I dg ,
r i IL+III

which by the previous estimate of the right-hand side implies
Xk = 0. This proves (7.13) and thus Proposition 1, and
therefore the existence of one fixed point in Theorem 7.1

is established.

(a) Modifications

We still have to establiish the existence of the second
fixed point. This can be done by a slight modification of #
the above argument which we indicate beloﬁ under more
relaxed assumptions. They will be important for the applica-
tion in the next section, It is not necessary that the map
¢ maps S into itself but it suffices that only one of the
boundary circles, say y = a is preserved. Then the iterates
of ¢ need not be defined in 5 and we will assume that ¢ and ¢2

are defined as homeomorphisms in a neighborhood U(S) of §.

92
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For example, in the application ¢ will be a homeomorphism

in a wider strip
S;a<y<c, ¢ >b,
and we assume that
(7.14) ¢: S+ 5 .
We still require that the boundary y = a is preserved:
(7.15) g{x,a) = a

and the twist condition is replaced by

(7.16) f£(x,a)-x > 0, £(x,y}-x <0 for ({(x,v) €8 -5 .

Theorem 7.3: An area preserving homeomorphism ¢ satis-
fying the above conditions (7.14«16) possess at least

two nonequivalent fixed points in S,

The proof proceeds along the same lines as before and
we indicate the necessary modification. We assume that the map-

ping has at most one fixed point F_, in the rectangle

0
T <X <A, a<y<b
and we can translate it so that it lies on the linex = -mw.

We will replace the translation T of (7.11) by

T (x,y) - (er+€P(X))

where p(x) is a continuous function of period 2m satisfying

93
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0 < pix}t <1 [p(x)dx‘—'o IJd“e'jc”’e”‘%'
o c
This index remains again unchanged under deformation

and
of the curves C avoiding the fixed points and connecting

pi(x) = 0 for % < X - e B
- y=aand b <y <c. One shows that any such curve can be

for definitions we take deformed to one of the equivalent lines

plx) » 0 in [x] < % . x=0{mod 2m) , y=¢t, as<ts<b,
e A and therefore
O o0
0 (6,0 = 3ol8,)
-7 [1] n
is independent of the curve. {This would, of course, not

be true any longer if we had two inequivalent fixed points.)

Also
Since ¢ has no fixed point in the rectangle

x| < % , a<y<h jl¢} = J(¢E)
for £ sufficiently small and it remains to show that j{¢) is

we can again choose ¢ so small that 4 =1  »© ¢ has no other . . . Lo
E € independent of the choice of ¢, 1.e. proposition 1 holds true,

fixed point than ¢ does. ) ] o
Then the previous argument gives a contradiction.

Next we define the change cf the argument

. . To prove Proposition 1 in this case we construct again a
l d"e a nonselfintersecting curve T connecting the bottom to the
where c top, avoiding the fixed point and along which the index
can be evaluated as n. We define the domain
a, (P) = arg[P,¢L(P)]
Dy = {x,y ] 0 2y < eptx)}
and € is any nonselfintersect:ng curve in § starting from a and
peint on ¥y = a to a point in ; - § which avoids the fixed (7.17) Dj - ¢2(DO) for § = 1,2,...,N+41 ,

points sJF By assumption {7.16) there exists an odd

0°

. where N is the maximal index such that DN—I c S,
multiple of m which we call the index jc(¢e) such that
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To show that N < » we chscrvoe that Tee hence ¢c , is

area-preserving and therefor~ the D. have the same positive

2T
arca (mod 2m), namely ¢ f p(~.) dx . Next we verifw that
0

the interiorsof Dj are disjoint wh_ch implies N < = as before.

We define Dj also for j < 0 by (7.1 ; using the extension

¢: (x.y) » (f(x,a),y}] for y < a.

had . -
To show that the interiorsnj are disjoint, or

-

of D
J

Bjn5k=¢, 0<j<ks<N#,

it suffices to verify

D, 0D,=9g for i=k-350.
-1i 0
Since 5_1 + and similarly D jfori>1, lies iny < a the
last assertion is evident.
Having established N < » we note that Dy = ¢.(Dyy )
DN+l = ¢§(DN~1) are well defined if € » 0 is sufficiently

small since DN-l € & , hence ¢(DN_1) cs where, by assump-.
tion, ¢ is still defined,

Now we choose a point of @ € BN+1 of maximal y-coordinate
and construct the curve y(t) just as previously, by construct-

ing preimages pO’Pl"" of @ with PO = DO n {y = ¢},

connecting Po and ¢E(P0) = Py by a straight line segment Low(t).

0 <t <e and extending this curve by ¢2(L0) = Lj' Now
the Lj will generally no longer lie in Dj and we have to verify

that Lj AL, =g for 0 £ j <k < N+l, Again this is done by

96
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defining Lj for j 2 -1, We observe that for J £ =1 the arc

L. lies in
3

(7.18) X,

< X < x
h

j#1 ¢ Y Z A,

where the xj are defined implicitly by

Xj41 = f(xj,a) for j < -1
and (xG,O) = Po. Since the above regions (7.18) are disjoint
the same holds for the Lj and the curve y(t} is free from
selfintersections. From the fact that ¢E has the same fixed
point sjPo as ¢ it is clear that the curve Y(t) avoids

these fixed points. The rest of the argument is unchanged.
The use of the modified mapping T, is due to M, Browﬁ

and W. D. Neumann.(*)
We shall apply Theorems 7.1-7.3 in Sections 9, 10 and 13
in order to establish the existence of perjodic solutions,

<

=
(*} M. Brown and W.D. Neumann, Proof of the Poincaré-Birkhoff

fixed point theorem, Michigan Math. Journ., 24, 1977, 21-31.
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CHAPTER 2 - SECTION 7 ~ EXERCISE

1. Let pj(x} ba two continivous functions of period 2w
satisfying
0 < p () < pylx)
consider

With the "polar coordin.ves" x,y of (7.1}

the starlike annulus
pl(x) Ly 2 py(x) .
Show that there exists an arca-preserving homeonorphism

h: (x,y) + (x",¥"} tak.ng the above annulus inte the

concentric one

a, < y' fa, .

Hint: The mapping can he found in the form
x' = A(x)
y' = B(x) + (A'(x)]"ly .
Setting '
27
=1 . - =2
ay = 77 J pj(x) Ax pj(x) 3 = ax Pj(x)
1}
with periodic P.(x) one finds
P, {x)-P, (x) Ps-P
x' = A(x} = 1 + 2 — i . = 2_ 1.9 R
.7 274
. (py(x)-yra; + v - Py (X118,

P, (X1~ g (x)

2¢3

58. Variations on the fixed point theorems

There are related fixed point theorems with much
simpler proofs. From a mathematical point of view
they are less interesting but they are frequently easier
to be applied.- More importantly they can be generalized
to higher dimensional canonical maps which has not been
For this reason we discuss

possible for theorem 7.1.

these results here.

a) Simple fixed point thecorems
We usec the same notation as in section 7 for a measure pre-.
serving map § of the annulus A and its lifted map ¢ on

the strip 5 :
fix,y)
gqix,y} !

a<y<b and f-x, g periodic in x.

-
———
L
[T
+
o
[
1 I

% (mod 2n} ., We shall

assume that ¢ satisfies the assuwptions (7.5), (7.6) and

also the twist condition (7.7), i.e.
(8.1) (f({x,a) - %) (f({x,B) - %) < 0O .

First we provide simpler proofs of theoren 7.1 under the

additional assumption that the function f({x,y) is strictly

monotone (i) either in y or (ii} im x.

(i) 1f v » fix,y) is strictly monctone then also the

function y + f£{x,y) - x has this property and, by the twist-

condition (£.1) has oppesite signs for y=a and y=b. Therefore
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for every x there exists a unicue value y = g{x) for which

£(x,y) - x = 0. Hence glx + 27) = gi{x) and y = q(x) defines
a continuous closed curve C in the annulus A, which under
the map ¢ is mapped “radially"™. The inner boundary of this

annulus, denoted by Co: y=a, ¢ ¢ x < 271 , is by assumption

invariant under y. Since § is measure preserving the image

curve y(C} and the boundary €, enclose the same area as the

curves C and CO, and therefore € and y(C) intersect in at

least two points which are the desired fixed points of y .

(ii) Assume now ¢ to be differentiable and -?;—;i (x,y} > 0

for (x,y}) 8. Then x ~ f(x,y} is strictly monotone in x ,
and we can solve the equation X = f(x,y) uniquely for x

and Wwrite the mapping ¢ implicitly in the form

x=ulxy , ¥yt ¥y = V(xl ..y)
for two functions wu, v. The a.ea preserving property of ¢

implies the existence of a generating function {(see Chap, 1

1u0

s
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section 4) W(xl ; ¥) such that

X = Wy ’ Yl = le '

and one verifies that

W(xl ’ Y) = w{xn Py - xly
has period 27 in ¥y + Therefore a critical point of w
gives rise to a fixed point of ¢ . The twist condition
implies that

x—x1= wy(xl . ¥}

has opposite signs for Y = a and y = b, hence that the
inner normal derivation of w has the same sign on the two
bounding circles y = a and Yy = b. If this sign, say, is
positive then w cannot have a ﬁaximum on the boundary and
its maximum lies in the interior of § proving the existence

of a fixed point of ¢ . We remark that one would find a

second fixed point of ¢ corresponding to a saddle point of W.

It turns out that in these arguments it isg quite un-
essential that the boundaries are preserved pravided one

requires that the line integral

I ydx

over cvery closed curve y = p(x) > 0, 0 £ X < 21 is pre-

served. Notice, if the inner boundary is denoted by

Co P y=a, 0 £ x < 21, then

#*

o

W

-y B

e
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jydx - Jydx .
C

C
0

equals the area en~losed between ¢ and C0 {mod 27}
and therefore for a mapping ¢ which preserves C0 and
the area also the above line integral is preserved.
We have defined a differentiable mapping ¢ as "exact
a = ydx

symplectic® if for the l-form

¢* a - a =dv ,

is exact, with Vv = V(x,y) a function on § i.e. periodic

.in x. This then implies

¢"1 () o C
for any closed curve {mod 2mw). Every exact symplectic
map is, of course, area preserving since

* *

¢ (da) -~ da - di{p o - o) = d{av) = 0
and da = dy A dx. But the converse does not hold. The
mapping

T (x,y} + (x, ¥y + €)

is a typical counter- example. 1n any simply connected
domain the concepts area-presciviny and exact symplectie

are identical.

2¢7

b} Generalizations to higher dimensions

We generalize the discussion to a 2n-dimensicnal space and

consider a symplectic map ¢ defined on ok x D mapping this

. . n n n oo, . .
domain into T x R where T is the n-dimensional vorus

Rn/‘zn and where DcR® is a compact region which we assume
to be convex with smooth boundary. We parameterize TO
by vectors x € r" and identify x, x' € RY if (x-x')/2n
is an integer vector. With y€D, the lifted map ¢ takes

the form

( X fix,y)
(8.2) ¢ : - .
\y gix,y)

Since ¢ maps equivalent points into equivalent points one
can show (Exercise 1) that there is an n by n matrix A
having integer coefficients and det A = 1 1, such that
the functions

fi{x,y}) - Ax and g{x,y)
have pericd 2w in xj » 1 <3 < n. We shall study only
the case where A = I .

We then call the map ¢ exact symplectic if

*
¢ a - a = dav ,

for a function V defined on T x D , where

Theorem 8.1: Let (8.2) define an exact symplectic diffco-
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; . n n
morphism with A = I mapping " x D into ™ x R" . Assume

that ¢ satisfies

(8.3 <f(x,y) = x, y-c> > ¢, (x,y) e ™ x ap ,

for some peint ¢ € int D. If, in addition,

T

either (i) %5 + (%5)
: T

or (ii) ia (:é)

is positive definite at all peints (x,y) € ™ x D , then

. the map ¢ has at least one fixed point in ™ x D.

The condition (8.3) on thc boundary of D generalizes
the twist condition. The other condition requires £ = f{x,y)

to be monotone with respect to y or with respect to x.

Proof. (i) We shall use the following fact from topology,
which is proved with the help of the degree of a map (see n.g.
Lloyd "Degree theory" Cambridgc University Press, p. 25).

1£fpcR" is a compact region and F: D ~ R® a contin-
uwous map which “points outwards at the boundary 3D of D“,

more precisely, which satisfies:

<F(£), £-c> > 0 , for all £ & 3D ,

*
with some ¢ € int D , then there is a peint £ € int D where

F vanishes, i.e. F(E*) = ¢.
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By assumption {8.3) we can apply this result to the
map y + Fly) = f{x,y}) - x for every x to find a solution
y of the equation f(x,y) = x. Due to the monotonicity

assumption we have
Eeoy) - £ly") Ly -y'> >0, v,y €0, yAy' |,

from which we conclude that this solution is unique; we
denote it by y = q(x):

flx,y) = x , Y = gix) .
By the implicit function theorem the map X +~ (x,q{(x)} is

*
differcntiable and defines an embedded torus T : y = g(x)

in ™ x b. Since ¢ is exact symplectic there exists a
scalar function V = Vi{x,y) on Ll X D with
*
¢ a-a =
]

* *
where x = f{x,y) and Y = glx,y}). We restrict this l-form

Ll 1]

{ * 4 * dx.) av
S Tt TR E T Ul ‘

L] *
to the torus T : y = g{x) on which we have x - x = fix,q(x))-x

and hence

j21(Y; - yj) dxj = dF , F(x) Vix,q(x) ) ,

or

LR
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*

Yy 7 b4 F{x) .

- 98
i 93
Therefore, the maximum and the minimum of the function F defined
on T" provide two distinct fixed pcints proving the theorem

under the hypothesis {i).

We observe that as in the two-Jimensional case, we have found

the fixed points as the points of intersection of two manifolds namely

*
T' and ¢(T }, i.e. as the points
* *
T n¢({T ) ,
which agree with the critical :oints of the function
* :
F(x) = Vix.gix on T . It is known that a function
defined on an n-dimensional toirus has at least n+} distinct
critical points and actually we oFtain at least n+l fixed

points of ¢.

(ii} Since fix,y) = % + f(x,y) with sgplfl < &

* *
the function x + F (x) = £{x,¥) - x for x° € R" ,
y € D fixed, satisfies
2 * s
P M I PR R R E P Y ,
X
which is » 0 , if |x] = R is sufficiently large. We can

therefore apply the above topological result to large

|
£

spheres to find a solution x of the eguations f(x,y)

*
for given x € R"™ and y € D . Thereiore the map
x +» f£{x,vy)
. . i n
is, for y € D fixed, a surjective muj from R onto R . By

the monotonicity assumption we have

n
<f (2,y) - flxp,y) o % - x> 7 0, x, ;€ R, X Xy

06

. where w[x*,y)

2

and the map is one to one and hence a diffeomorphism by

the implicit function theorem. Solving the equation

*
x = f(x,y} for x we can represent the mapping ¢ with a
generating function w(x‘,y) = <x',y> + WCX*:Y) as
X, = W = x, + W
3 Yj Yj
* Wk
X535 %, 7Y + wxj ’

is a function defined on " % D. It suffices

to find critical points of w. Notice that by assumption (8.3)

for {x,y) € T" x 2D
*
<flx,y) - x, y-¢> = <x -¥, ¥y = ¢€?

-=—<wy,y—c> > 0 ’

i.e. the derivative of w in the direction of y-c is negative.
Since y~-c points outwards w cannot have a maximum at the

boundary " x 3b. TIts maximum lies in the interior of

n

™ x b and gives rise to a fixed point of ¢ This finishes

the proof.

The advantage of this theorem 7.1 is tha£ it does not
require that the boundary 7" % 5D is preserved, a condition
which is hard to verify in applications. On the other hand
the disadvantage of this last theorem is that it imposes
conditions {monotonicity) in the interior , which would not
be wvalid for higher iterates oj . Therefore we cannot use

an argument as in theorem 7.2 in order to obtain infinitely

many pericdic roints without checking these conditions for
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higher iterates.

(c} Remark 1

1) The idea to construet an auxiliary function

whose critical points give rire to fived points of a map

1)

goes back to Poincaré We rhall b..:fly recall his idea

for a symplectic map ¢ on R2n given -

{x (xl = f{x, )
- $ 3 -+ ’
\Y) 1 = g{x :')) . .
which satisfies

¢'u o= <y, dx1> ~ <y, dx> = dF ,

for a function F(x,y). Here <y,dx> -5 an abbreviation

n . -
for ) Y dxj = o . Poincaré constructed in place of
J=1

<y1 ' dx1> = <v, dx> the l-form

(8-4) B = <Yl - Y, dx1> = <xl‘ - X, dy>.l

which is equal to <Yy s dxl> - <y, dx> + d{<x - Xy y>), 1

hence also . .
B = dc

is an exact l-form, with G(x,y) = F + <x - X3+ ¥>. It has
the added advantage that at the criti.al points of the

function G, i.e. at the points whexc [ = dC = ¢ one has

(X-Y) = {xl ’ Y1) ’ i.e.

1) K. Poincaré : Méthodes nouvellcs de la lMécanique céléste
Volume 3, Gauthiers Villars, Paris 1899 Chap. 28
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{x,y) = 4(x,y)
is a fixed point of ¢ , provided that the differentials P
dxl and dy are linearly independed therae. Since
dx1 = fdx + fy dy this happens precisely if !

det(fx) 0

which is for instance the case if the given map ¢ is

close to the identity map in the Cl—sense.

Similarly one can consider the alternate l-form

{8.5) 2y = Y - Y d(xl + x}> - Xy~ X, d(yl +y)> , ,
I
which is egual to <Yy dxl> = <y, dx> + %d (<x—x1 ' y+y1>),
such that also @
Yy = ds

is in exact form, with the function S({x,y) =F + %<x—x1, y+y1>.
Again the critical points of & correspond to fixed points
of the map ¢ if at these points d(xl + x) and d(yl + y)} are

linecarly independent, which is the case if there
{8.6) det(d¢ + 1) #£ 0 , ’

i.e. if -1 is not an eigenvalue of d¢ at these points. 1In

py

fact, with the symplectic structure

o I
J = '
-I 0
and abbreviating z = (x,y) and z; = $(z}) we can write (8.5)

as

1na
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Yz = ke -2 L a s>

hence, applied to a vector V ¢ RZn :

v(z) ()= datetz) - 20 . @erz) - 1) v

and the claim follows.

2} Fixed points of symplectic waps can geometrically
be viewed as intersection points of L.grangian manifolds as
we shall explain.

If (M, w is a symplectic manifol, then also (M x M, @)

is a symplectic manifold with ihe 2-fcem @ given by

* *
Q = Tu = T '
LN and 7, being the projections M x M + M. To every

map ¢ 3+ M-+ M we can associa e its "yraph map" ¢ : M+ M x M

by setting
¢ (z) = (z, ¢(2) } , 7 S M.
if

G { etz | z €M '

i

¢
we know from section 8, chapter 1 thet ¢ is symplectic if and
only if G¢ is a Lagrangian manifold & (M x M, @). In
particular for ¢ = id, the "diagonal & in M x M, i.e.

A = L tz,z) | 2 EM )
is a Lagrange manifold. We nooice th:t the fixed points

4(z) = z of ¢ are the points ol the nterscction of Gy

with & , i.e. B8 N G¢ .
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We shall show in the special case M = Rzn that these

points are critical points of a function on M. We shall

define a symplectic diffeomorphism
L
p: MxM~+ TA

onto the cotangent bundle of the diagonal 4. By means of
the map (z,z} » 2z we can identify & with M, such that

L
T 4 = R® . Denoting its coordinates by (£,n) € R2n X RZn

. *
the symplectic structure on T A is do with

2n
6 = <n, 4f> = n, df. -
j£1 J J
The map Yy is then defined by
.\ £, = & (x; + X,)
/ 1 \ 1 2 1 2
1
( ¥y | €, = 5ty + ¥y
)_ .
b = -
\xz nl Y2 Yl
\Yz n, = X - X%,

e - - ifies
Abbreviating z, (x1 ' yl) and z, (x2 ' yz) one verifie
readily that

* ! + a
ve = 3 <Jl{z, - 7). dz, z5” ‘
hence
* * * _ ﬂ
b (de} = muw - mw = ’

and ¢ is indeed symplectic. The diffeomorphism ¢ maps the

*
diagonal & C M x M onto the zere seclions of T & :
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v: (2,2 ~ (z,) € T4,
L
and ¢ 8 vanishes on A.

[f L is any Lagrange mani‘old ir M x M, then its image

* . P
gLy €T A is also a Lagrange mani:iold since ¢ is

symplectic, and the points A " L are napped onto the points where

A

(L) intersects the zero secti>n in 7 4 ., We denote by

*
pP: T A+ A [l (Cen} -+ ¢
the projection map. If the restricted map p : p(L) + &
is injective we can represent the m..ifold ¢(L}) as a

*
section in T A , i.e. as

YL = {(£ , w(E) ) €A, E€a).

Since ¢{L) is a Lagrange manifcld we have

u(g) = % 5(£)

for some function S defined on A 2 M, In fact if j: (L)~ T*A
is the inclusion map we conclude fror j*de = d(j-B)'= 0

that j*e = ds , and with j*e = <uff), dg> the claim follows_.
Wle therefore find that the critical jnints of § are precisely
the points where ¢ (L) intersects the =ero section of T*A , and

working backwards these points corre.nwond to 4 N L under the

diffeomorphism .

If the Lagrange manifold L = G¢ is the graph of a sym-
plectic map ¢, then p : w(G¢) + A is injective precisely
if the condition (8.6) holds true, .s one readily verifies ,
and the points G¢ N A correspend to .he critical points of the

function s on M.
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{(d) Remark 2

Although there is no geﬁuine generalization of Peincaré-
Birkheff's fixed point theorem to higher dimensions, the
above formal ideas have frequently been used to establish
fixed point theorems for symplectic maps in higher dimen-
sions. We mention without proof the following perturbation

theorem due to A. Wéinsteinl).

If (M,w) is a compact and simply connected symplectic
manifold, then every symplectic diffeomorphism ¢ of M has at
least two fixed points provided it is sufficiently close to

the identity map in the Cl-sense.

In the special case of a d-dimensional sphere this state-

ment holds true globally, i.e. without the above proviso, for

every measure preserving  diffeomorphism 3)

although an
arbitrary orientation preserving diffeocmorphism may have only
one single fixed point. As for a generalization of the above
perturbation theorem with various applications in mechanics

2)

we refer to the paper®’ .

L A. Weinstein: "Lectures on symplectic maaifolds® Regional

Conference Series in Mathematies, vol. 29 A.M.S. Providence,
R.I. (1977).

2)
J. Moser: "A fixed point theorem in symplectic geometry

Acta mathematica, vol. 141 {1978), 17-34

3} See C.P. Simon: " A bound for the fixed point index gf

an arca Preserving map with applications to mechanics"
Inventicnes Mathematicae 26 (1974)'187—200 and 32 (1976), 1l01.
r

and Nikishin, N: "Fixed points of diffeomorphisms on the two-

sphere that preserve area" Funkcional Anal.: bPrelozen 8, B4-85 (1979)
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Exercise 1. Show: If :

¢ @ (x,¥) + (E{x,¥) . gix,¥) )
is a homeomorphism of ™ x D into T x D1 then there
matrix A {i.e. A& matrix with

exists a

integer coefficients and det A = Il. such that
fix,y) - Ax; . g(x,y)

have period 2= in the Xys Xgr cens X,

Remark: The matrix A defines the mapping on the

first homology group of 7" x D incduced by ¢.

2 74

§9, The Billiard Ball Problem

{a) The Problem

We apply the Poincaré - Birkhoff fixed point theorem
to two simple geometrical problems. The first is the
"billiard ball problem" which can be stated as follows:
Consider a bounded, strictly convex region D 1in the
plane, with closed C1 - boundary curve. We study the

motion of a point which moves along straight lines inside

and is reflected at the boundary under egqual angles.

The orbits of this motion can be very complicated for most
regions D although the case of a rectangle corresponding to
a conventional billiard table has an easily understood
motion. But this case is excluded since the boundary of D

is assumed to be continuously differentiable.

One can view this problem as the limit case of the
geodesic flow on a convex two-dimensional surface which is
flattened into the doubled plane domain DP. The gecadesics

become straight lines in this limit and when the orbit passes
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from the upper shcet to the l.wer one it obeys the above
reflection law. This follows *‘rom the well-known fact of
optics, that the snortest péth conney .ing two points P,Q
close to each other and to the bound.ry and passing the
boundary D is a broken line forming cqual angles with the

tangent at the boundary point.

(b) Result

We are inter:sted only in closed orbits, which are
represented by po:ygons which may have self-intersections.
It may be consid. -ed as a limit case ¢f the problem of
c¢losed geodesics This application is due to G. D. Birkhoff.

He showed

Theorem 9.1 ©On & strictly convex billiard table D there

exist infinitely many distin.t periodic orbits.

To prove th'5 result we associate with this billiard
problem an area-preserving annulus mapping whose periodic
points correspond to the peri.dic orbits of the billiard
problem. This m.pping will take a given oriented line

segment joining two points on the boundary of D into the

116
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one obtained by reflection at its end point.

To describe this mapping more precisely we introduce
coordinates: Let s be a parameter along the oriented
boundary of b, proportionally to the arc length, the factor
being so chosen that one revolution corresponds to 2.

The angle which a line segment forms with the positively
oriented tangent to the boundary at the initial point of

the segment (see figure) will be dencted by t.

The initial states form an open strip
R= {s,t )] 0<t<an}
which becomes an annulvs if {s,t) is identified with (s',t)
for (s' - s)/?1 € 2. on this strip we define the mapping
¢ : (s,t) - (sl'tl) or
Sl=5+f(5,t) . t1=g(slt) ’
where I tl correspond to the coordinates of the reflected

line segment issuing from the endpoint (see figure),

117
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In this mapping f£(s,t) is defined only up to an sint dt A ds = rdr A a4

integer multiple of 2m which we chall now fix. The above is the standard area - element. Evidently the two bound-

mapping can be extended to a homeuxorphism of R. As aries of this annulus are invariant under the map and we

t + 0 the line segments from (s,t} to 'sl,tl) becone can apply the fixed point Theorem 7.2 : Given any rational

shorter and we can set number p/q in

- B
f(s,0) = 0 , gis,0) = u. 0<g<l
This choice fixes £(s,t). We observe that for t -+ 7 one has there exists a fixed peoint of p-p¢q where p: (s,t} + (s + 2n,t)

also £{s,t) tend to an integer multiple of 2= but this ) .
. . Clearly these fixed points correspond to closed orbits

integer is not zerc. In fact, if the crientation of the o .
° ' of the billiard problem with q bounces per period. Notice

curve is chosen as above one has ] )
that these orbits are oriented and the orbit of opposite

£{s,m) = 27 » gls,m) =0 - orientation obtained by the reflection (s,t) *+ (s, m-t}
This is readily proven by keej-ing s fixed and letting t and corresponding to p/q goes into one corresponding to
increase from 0 to 7 . Then the image print (sy ty) will 1 - p/fg .
travel once around the boundary of 2w. In fact, introducing the map 1: R = R by

secondly, we observe tha’' this mapping ¢ preserves the T: (s,t) » {s, w-t)

area-element : we notice that N
T ¢=p " ¢ ° T
sin t, dt. A dsl = sgin t dth ds . . ’

1 . hence, since Tz = id «

{see exercise 9.1). Hence if we .ntroduce polar coordinates . .
r. 8 by ol T 0T
a : . . s . .
12 ] If now ¢ (m) = pp(m) i.e. m is a periodic point with
2y = ¢ - ces t y B = 8 with ¢ > 1
2 rotation number g" we have to show that tm is also a

the annulus becomes Lo . . .
) _““ periodic point of the same period g with rotation number

JIlc-) < r < Y2 {ctl) ' 1 - g . For this purpose we multiply ¢q(m) = pp(m) by
and ¢ 3 e p"P from the left to get
¢ 9m = o Pm '

and since the left hand side is equal to T o9 e 49 e g

1148
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we find
¢q{1m) = pq p{rm).
Therefore in order to avoid counting orbits with different
orientation doubly we restrict ocurselves to
1

0 < g <3 -

Since orbits with different values of g are different we
have indeed infinitely many closed polygons which are billiard

orbits, proving the theorem 9.1. .

It is instructive to interjret the geometrical meaning
of the numbers p,g where we assume that pP.,q are positive and
‘relatively prime. In the figure below we illustrate the

cases p/q = 1/5, p/q = 2/5 for a circular billjard D.

p=21q=5

Actually Theorem 7.2 gives a stronger statement: Given

p=1l,9g=5

any rational number p/gq in (0, %) there exist at least

2 closed polygons representing billiard orbits with g
bounces. In particular for pP=1, g= 2 there exist two
different two-gons which are billiard orbits. Clearly
these are given by a line segment which is perpendicular to
the boundary curves at both its end points. An example are

the two major axis of an ellip:ical billiard table D.

2 &5

These orbits of period 2 can be found also in a different
way: Let B{a) be the distance of two parallel tangent lines
of D which form an angle a with a fixed direction. Thus B(a),
the breadth in this direction, is a pericdic function of a
and, unless B{a) is a constant, it has at least one maximum
and one minimum. For these values of a the segment connecting
the points of contact of the two tangents provides the desired
two-~gon, as one easily shows,

Also, the other closed billiard paths are extrema of a

function, namely just the length 2(I) of a polygon

I' = r(Pl, P2' cens Pq) connecting q arbitrary points Pl' Pz,...Pq

on the boundary of D. Thus ¢ is defined on a torus T". However,
this approach can not so easily be turned into an existence proof
since we have to avoid that two of the points coalesce and we

do not follow this thought.
&

(c) Elliptical billiard

We discuss the special case where the boundary of D is an
ellipse E which is.especially simple. 1In particular, we will
show that for g > 2 the closed billiard paths of period q form
4 one parameter family. This corresponds to the "integrable
case" which we will discuss in the next chapter. The paths of

period 2 are the two major axis; they do not belong to a family.

We begin with an orbit through one of the focal points,
which we assume to be distinet, i.e. we exclude the case of a

circle. We use a wellknown geometrical result: For any point

121
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P on the ellipse e draw the .o lines to the focal points

F. . F2. Then tte angle formed by the two lines is halfed

1
by the normal to rhe ellipse at P. This fact is closely
related to the string coastruction of an ellipse. In our
context it implies that a line seument through one of the
focal point Fl is reflected to a line segment through F2
giving rise to a upilliard path going altefnately through Fy
and Fy . If we exclude the major-axis these orbits are not

closed and one convinces oneself easily that they approach
asymptotically the major axis as one follows these orbits fo;—
ward or backwards to infinity. This makes the major axis an
unstable periodic orbit, since we can find arbirarily close
line segments through which tl.. orbits move far away. We will
see that the minor-axis of the ellipsc represents a stable

periodic orbit.

There is a generalizationr of the above gecmetrical theofem:
Let E' be a confo-al ellipse of E inside of E and P a point on
E. ‘Then the angle formed by the two tangents from P to the
confocal ellipse E' is halfed by the normal to the ellipse at
P. This fact, which can be reduced to the earlier result by
elementary geometric, though ncn-obvicus arguments, will not be
proven here., It is related to another string construction of
the ellipse: If on loops a clesed string about E' and pulls it
taught with a pencil then the nencil will describe a confocal

ellipse of E' outside of E'.
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in our context it means that billiard orbits inside E
can be constructed by drawing successive tangents to a

confocal ellipse El

These orbits are in general not periodic. However, if

E' is chosen so that one of its tangents gives rise to a

closed billiard path then every of its tangents will be closed
with the same period. We may call such E' "periodic”. For
such periodic E' there is a one parameter family of closed
billiard paths - a very exceptional property of the elliptical

region D.

The above geometrical theorem allows the construction of
those orbits starting with a line segment outside the line seg-—
ment from ry to F2 , since it is tangent to a confocal ellipse
inside E. How about the orbits crossing this line segment
FI?; ? They are tangent to the two branches of confocal hyper-
bolag. If we draw two tangents from PEE to a confocal hyper-
bola then the angle by these tangents at P is again halfed by the

normal at P.

Thus there are three types of orbits. Those tangent to
confocal ellipses, those tangent to confocal hyperbolas and

those passing through the focal points. We describe the mapping

123
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in the annulus
{s,t | 0 <t <, (. mod 2n)}
- where those s,t corresponding ‘o tangents to a confocal
ellipse E1 form curves invariunt under the mapping ¢.
Similarly those scgments tangent to a confocal hyperbola

form a closed invariant curve.

bl
The fixed points Al’ Az of ¢ correspond to the major axis

and Bl' 32 to the minor axis. The heavily drawn curves through

124
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Al P Az represent the orbits through the focal peints. The
region II between these curves correspond to orbits tangent

to confocal hyperpolae.

The points Bl A 32 appear as stable fixed points which
can also be seen in the other representation. Orbits starting
with line segments close to the minor axis remain close to
the minor axis since they are squeezed between two close

confocal hyperbolae.

. —— e e

This presents a rather clear picture of the special situation
where the billiard table is an ellipse. If it is an oval the
erbit structure is by no means as simple even if the oval is
close to an ellipse. In this sense, the above example is

misleading.
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{d) A second geon:trical problzm

We begin agafﬁ with a str ctly convex domain D in the
plane with a closed C1 - boundury curve I'. In the outside
reqgion D0 = complement of D we define the following mapping:
We consider T oriented and draw from a point P€ D0 the
positively oriented tangent and denote by Pl the other point
on this tangent which has the same distance d from the point
of contact with ' as P has. fThen P =+ P1 = ¢(P) defines a
homeonmorphism of DO into itself which takes I' pointwise into
jtself. This mapping has clea.ly no fixed points in DO -T
but we claim '

Theorem 9.2: The above mappi: y has infinitely many different-

periodic orbits in Dy - r.

Proof: We sketch the argumert. First it is easy to prove
that this mapping preserves ti = area-clement dx A dy 1in the,
plane. The @ifficulty in appl ing the fixed point theorem is
that we have no second invarinnt curve. However, for a suf-
ficiently large circle the ma,pinyg is close to a rotation by
180° . Therefore we can apply the generalized form of the

theorem 7.2 to the annulus bor'nded by T' and a large circle.

The large circle is not invariant but rotated by approximately

180° while I' is kept pointwise fixed. Therefore for any rational

number p/q in

ra:y

p. .1l
0 < g < 3

there is a periecdic orbit of period g for which the orbit
circles p times the curve T. Since different values of

p/d give different orbits the theorem is proven.

-
Y
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Exercise 9.1

problem preserves

Hint:

oriented tangent to the boundary curve at the point s

82

sin t dt £ ds.

Prove that the :.:apping ¢ of the billiard

Let 1is) denote the angle between the positively

direction, say th. horizontal and let

From the fiéure below show

and, for fixed a :-

triangles

or

and a fixed

a = kg + T(s).

t + 1(8) = —tl + .\sl) = a
t + 1({s) ,derive from the sin - law for .
_ 98 sine
da sin tl
sin t ds = - sin tl dsl .

For variable o get

sin t ds A da =

The statement follows from

/

do = dt + t' (s} ds =

N
‘(35,4:) Iy

/
/

/
s

)

).
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-sin tl dsl A. da

r
- dt1 + T (sl)ds1

233 )

Exercise 9.,2: Let ¢ be an area preserving mapping
in a planar region D and G a function satisfying .

G®"¢=G , dG # 0 . ,
Show: If a level line {G = ¢} is connected and contains N

one fixed point of ¢ then every point of {G = ¢} is a

s

fixed point.
ds
larad 6|

Hint: Use that

is an invariant length element on each level curve G = const.

Exercise 9.3; Let N C Rzn be a connected and compact *

Lagrange manifold defined by Fj =0 ,1<3j< n with

'dF linearly independent on N. Assume ¢ is a symplectic

'y

diffeomorphism satisfying Fj ° = Fj + 1 <3 <n.

Show: If N contains a fixed point of ¢, then every point

of N is a fixed point.

Hint: If ¢; denotes the flow of xF , the action of R"
t t

(Byoemert) > %% 9 " {2), 2 N

I

is transitive on N and commutes with ¢ .

Y

Exercise 9.4: Show that on the ellipse there
are periodic billiard orbits of period 6 of the type indi-

tated by the figure below.
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Hint: Use that confocal hyperbnlae of E intersett 10. A Theorem by Jacobowitz and Hartman.
E orthogonally {a} Result
As an application ofthe Birkhoff fixed point thecrem
we consider a nonlinear second order differential equation
2
a’x
(10‘1) -—2‘ + f(t,x) = 0 P
dt
/_ where f is periodic in the t-variable, and we establish
{
. ® the existence of infinitely many periodic solutions. More
precisely we shall prove:
Theorem 10,1. Let £(t,x) € Cl(Rz) satisfy the three
conditions
What is its rotation number? (i) f(t+l,x) = £{t,x)

(ii) £(t,0) = 0
(iii) giﬁlfl + o ag x -+ * » yniformly in t.
Then the differential equatjon {10.1) has infinitely many
" periodic solutions of period 1, More precisely, there
exists an integer NG such that for any integer N > No
equation qﬁ.l) has a solution of period 1 ard with exactly
2N zerces in [0,1). If ng is the number of zeroces of a
nontrivial soluticn y(t) of ; + fx(t,O)y = 0 in (0,1) then
one can take N, as the smallest integer > no/z + 1.
The same method of proof will also allow us to find

"subharmonic” solutions. These are periodic solutions of a

chriod g, g being an integer > 2, i.e. a multiple of the

period of the forcing term.
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Theorem 10.2. uUnder the assumntiouns of Theorem ' 10.1 and for Indeed, multiplying (10,2) by x and integrating we have
any two positive integers p,y with P2 Noq there exists 1 2
. . : , . . {10.3) zx*+rx) =c,
a periodic¢ solution of (10.1) or seriod q which has 2p zeros
in the interval [0,q). Moreovor solutions belonging to where ¢ is a constant for each solution {energy conservation).
different ratios p/q are diffrrent functions. Since F"(x) > 0 the above function is convex and (10, 3)

Remark 1. If p,q are relatively prime then the solution defines closed convex curves in the x-xX~plane. These

belonging to p,q has q as the smrllest period. are the solution curves,

Remark 2, This is a special tuse of a theorem due to . .

P. Hartman,tl) which was prec.ded by a theorem by Jacobowitz,(z) \ /
I

who had to impose the additional restriction x £(t,x) > 0.

-

Here we follow essentially Haitman's approach.

We .give some simple exa. .les illustrating the above

theorems and their limitations.

Example 1.

For the t-independent differercial equation

X+ ax+8x>=0 ' a,B > 0, ', y

actually all solutions are peciodic., More generally the . . -le ;‘2 + F(x) = ¢

same is true for ’ (//""_"‘f\\\
= 0 : \\\Hxhqwd~‘/// .

(10.2) X+ f(x) =

with £(0) = 0 , £ continuously differentiable, £'(x} > 0

and

x
F{x} = I f(s) ds + + » as x -+ t @ ,
0

(h P. Hartman: On boundary value problems for superlinear second

order differential equations, Jour. Diff. Eq. 26, 37-53, 1977. \

(2) H. Jacobowitz: Periodic solutions of x" + f(t,x} = 0 wvia the ’ 133

Poincaré Birkhoff fixed point theorem, Jour. Diff. Eq. 20,
37-52, 1976. 132
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Their period is -iven by

B
Tie) = /3 | G ,
J /ESFX)

where a < b are the two solutions of F(a) = Fi(b) = c.
1f x'lf(x) + +® ag x + t =, one verifies (Exercise 1)

that T(c) + 0 as ¢ + =, so th:t wo find ¢ solving the

equation
_1
T(c) = N
for sufficiently '»rge integer N. The corresponding solu-
tion x(t} descrites the closed curve in the time T{c} = N-l,

and thus has alsc *he period M Ti{c) = 1 during which time
it runs N times monotonically thfough the closed curve.
The zeros of x(t) correspond to the passage of the ;-axis.
puring N resoluticns 2N such passages will take place.
This examplc is, of cours:, trivial. A nontrivial
example is the pcriodically forced Buffing equation 1
Xt oax + Bx3 = y sin {(2nt)

»

with f > 0. Thec -m 10.1 implies the existence of orbits of
period 1 with an arbitrary large number of zeros. Theorem
10.” implies the --xistence of periodic solutions with an
arbiirary long (integer) periocd.

1f f = f(t,y,i) depends on ; also the above theorems
fail in general — the equation hus to be dissipationless

as the fellowing xample shows.

1234
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* Example 2. Let

£{x,%) = h(x) + g(x)

where h{0) = 0, s:gls} > 0 for s # 0, g(i) representing

the "dissipation term"., Then the only periocdic sclution of
x + £(x,x) =0

is the trivial solution x = 0, no mattcr how small g is.

To prove this we set

X
H{x} = I h{s) ds .
0

Then, along any solution we have

=7

1 - . . .
TGP rum) = x(x+pm) = - x g .
For a nontrivial periodic solution of peried T > 0 we

find by integration

. T T
0 = —%— + H(x)| = - J x g(x) dt < 0
0 0

which is a contradiction.

(b} o©Outline of proof,

For the proof we shall consider the mapping ¢ of the
initial values =x{0) = x4 . ;(0) =Yg of a solution x(t)
of (10.1) into the point (xl,yl) where x; = x(1); ¥y = ;(1).
This mapping preserves the area-element. This follows,
for cxample, from the fact that (10.1) can be written as a
Hamiltonian system
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*

. . linearly, but is unchanged for [*] < B. Then the so modified
x = ny(t,x,y) ; ¥ = - H (t,x,y) -

Lth equation has solutions for all t, i.e. the mapping ¢ for
w

this equation is well defined, and the periodic solution can

x
B =5y 4Pt vt - [ £(t,u} du
0 be constructed in the indicated manner. But since the a-priori
. .. bound assures us that these periodic solutions lie in the
(see the corollary to I. Theorem 3.1). Also, ¢ has the origin peri

. . . . . . regicon |x] < B where the modified and the original one agree
as a fixed point, since x z 0 1s a solution. We consider,

. they are actuall solutions to (10.1). This device of usin
in polar coordinates, the orijin as the inner boundary Y Y s b g

. "a priori" estimates is a frequent and useful device in
of an annulus, The outer bou:dary will be taken as a large

2 . . the theory of ordinary and partial differential equations.

circle x° + yz = &; this cuter houndary will not be mapped

The proof of Theor W1 .rat intrica X 1 £
into itself but the argument of x + iy will be advanced P M 10.1 is a.rather intricate e anple o

this technique, The difficult tems from t fact tha
arbitrarily much if a is large enough, so that the 1 Y s s @ he t we

L . . impose conditions only on large values of |x| while the
Poincaré-Birkhof: fixed Polnt theorem becomes applicable. e ¥ 9 [«

. solutions pass again and a ain through x = ¢,
The main dif iculty in this program is that the mapping P g g 9
¢ is not defined in all of R2 » since we are not assured

(c) A priori estimates

that the solutior.- of (10.1) oxist for the time interval

We will define a class F of functions h(t,x) which
b<t<1. In fact, Coffmann and Ulrich(l) give an example (e,x) .

will be chosen so that
of a positive but only contirvous function g{t) € CDIO,ll )

(i) F contains fit,x) of (10.1) (Lemma 10.1),

such that & + g(t‘)x3 = 0 has 2 solution which does not . .
(ii) if h € F then also h
exist on the whol. intr, .al [0,1]. To avoid this problem 1f o’
: hit,x) for |x| < ¢
we derive (follow g Hartman) an "apriori estimate" for
hy(t,x) = h(t,e) for x > ¢

those solutions h~ving at most n zeros. This gives us an

upper bound x2 + x2 < B2

D% ax

: hit,-c} for x <-c
for the sought periodiec solutions ;

bel to F £ fficj 7 .
with prescribed number of zeros. Then we will modify elongs to or sulfficiently large ¢ {Lemma 10 2),

, (iii) for every h € F we have an a priori estimate for
the function f£(t,x} for |x] > 2B so that it grows at most o P )

the solutions of

W, V. Coffmann and D. F. Ulrich, On the continuation of solu- ' X + hit,x) = 0
tions of certain aonlinear diiferential equations, Monatshefte .
Math. 71, 385-3%2 (1967). Possessing at most n zeros (Lemma10.4).
. 137
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pefinition. F = F is defined in terms of positive

T
constants T, a, b, M, m satisfying
(10.4) 0 < 2a < b, 0~-M<b,

and a positive function g(s) € Cla,=) for which gi(s)/s is

monotone and tends to = as s + ®, Aas follows:

F consists of all h(t,x) € ¢([0,T} x R) which are Lipschitz

continuous in x and satisfy

- t

(10.5a) [nit,x) | < M for |x| < a
(10.5b) xIhit,x) > 4 for |x| > a
(10.5¢) Ihit,x}| < g(lxf} for |x| > a
-1 2
(10.54) x "hit,x) 2> m for |x| > b .
Lemma 10.1. Let f be gi~vn as in Theorem 10.1. Then

given an integer n > 1 and a ~ositive T > 0, the parameters

of F can be chosen such that .
(10.6) f € FT

and

(10.7) 1

m > 2inT — .

Proof: Choose m SO large that (10.7) holds, then a

so large that (10.5b) holds for h = f. This is possible
xﬁlf(t,x) + @ Next define

since by assumption for |x]| = =.

138
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gls) = s[l +  max lxl'llf(t,x)| ],
0< t <T

a<|x|<s

so that s-lg(s) is monotonic increasing and tends to infinity

as 5 =+ =, Moreover

[£(t,x}| ij—)s(lg(s) < g(s) for a< |x} <s,

hence (10,5¢) holds for h = f. Finally, set

M = max
0<t<T

[x]za

Leit,x) ]

and pick b so large that xLE(t,x) > m? for |x] > b .

Lemma 10,2, If £ belongs to FT ., so does the function f0

defined by
f(t,x) for x| <«
fo(t,x) = g f(t,c) for x >c
- é f(t,~c) for X < -c
for any c > b. Moreover, the function
f,(t,x)
(10.8) L
1+ |x|

is bounded on [0,T] % R.

Proof: Clearly {10.5b) and (10.5d} are satisfied since
L

these conditions impose only lower bounds. Formula (10.5c)
follows from the monotonicity of s—lg(s), while the
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boundedness of (10.8) is immediate.

Lemma 10,3, Assume f € FT ¢ such that mT > 2mn for

an integer n > 0. Then there cxists a positive number ln .

depending on n and FT only, such tuat every solution x(t)

of (10.1) with initial condition

%02 + x(0)2

. 2
2%, for t=0,

possesses at least n zeros on its interval of existence

in (0,7T].

We postpone the lengthy but elementary proof.

Lemma 10,3 gives an a-priori estimate for the solutions

of (10.) having at most n “ercs. Namely we have . -

Lemma 310.4. Assume f € Fzr ¢ with mT > 21tn  for an

integer n > 0. Let x(t) be a solution ef X + £(t,x}) = 0

defined on the interval [0,2T] where it has at most n-1 zeros,

Then one has :

(10.9) x4+ x0? - 22 for o<t < 2

Proof: Otherwise one wou'd have

x2 + ;2 > 212
o n

for some t = t0 € [0,2T). 1f ¢ < t0 < T we apply Lemma 10 3

to f(t +t,x) € F on the inte:ival [0,T] to get there at

least n zeros and hence a contradiction, If 7 < t0 < 2T
we apply the same argument to f(-to+t,x) € FT ¢

proving Lemma 10,4,
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(@) Proof of Theorem 10.1.

We search for periodic solutions of peried 1 having 2N

Zeros in {o,l). Applying Lemma 10.4 with 27 = 1l and n = 2n+1
We get  for any such periodic solution the a-priori estimate
(10.9). We therefore may replace f by a function £y which

has only linear growth and which agrees with £ for |x|< /7 Ay

by applying Lemma 10.2 with ¢ = 2#5 We may assume, of

course, that ¢ » b, The solutions of the modified eqguation

X + £,(t,%) = 0 exist for all time and we can study the

2 2

map ¢; R° — R® defined by

x{0)
[ . —
x(0)

which is area Preserving asg

[ |
[ x|

was noticed above., We shall

describe this map in symplectic polar coordinates

X = Y2R sin @ . ﬁ = v2R ¢os @ ’

for which we have ) -
dx A dx = do A dr ,

1,2 -2 Lo
and R = 7 (7 + x%). The differential equations are transformed
into

8 = P(t,0,R) = cosZ8 + x'lfo sinZe .

(10,10}

R = Q(t,0,R) = R{1 - x'lfo; sin 20 ,

where we have to insert x = /7R sin 8 in x-lfo(t,x).

We consider the map ¢ in the punctured dise
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or

and define it in the above polar coordinates as follows:

(10.11)  (8,,Rp) — (6,,R)) = (8tl) - 27N,R{1))

where 8(t), R(t) is the solutuion of (10.10) with initial
condition 8(0) = GO , RLO} = Po' This map is area preserv-
ing and leaves R = 0 invariart since x = ; =0 is a fixed
point. The other boundary, R + An , is, of course, not
preserved. In order to apply the fixed point theorem
we have to show that (10.11) is a "twist"-map in the

sense that

=]
1
@D
v
o
5
[ai
3
1
b

(10.12)

This follows from Lemma 10.3: Ainy solution with Ry > AL has '
at least n zeros ty,t,,...,t in (0,1) so that n'lB(tk) is

an integer. By (10.10) we have é(tk} = 1 so that 6{t) crosses
at least n of the lines & = jn increcasingly, hence

(1) - 8(0) » {n - 1)7 = 2Nm, which proves the first inequality
of (10.12). At the inner boundary, R = 0, we have from (10.10)

{10.13) 8 = cos’6 + £, (t,0) sinZe ,

since fOx(t'o) = fx(t,o). If ng is the number of zeros of
a nontrivial solution of § + fx(t,O)y = 0 in [0,1), we

conclude as above, that for a solution of (10.13).

8(1) - 8(0) < (ny + 1)m. Thorefore, if we choose 2N > ng+ 1

0
the other inequality of (10.12) follows.

The Poincare-Birkhoff fixed point theorem (Thecrem 7,3)
is applicable and guarantees a fixed point (BO,RO) of ¢ in

0 < R < An' Since 81 = Bo we conclude from

8(1;6,,R)) = 6, + 2NT ,

and from the fact that the lines 8 = jm are crossed increas-
ingly, that the solution has precisely 2N zeros in its period
0 < t <1, By the a-priori estimate (Lemma 10.4) the

solution lies in 0 < R < An and is therefore a solution of’
the originallequation ¥ + £f(t,x) = 0. This proves Theorem 10.1

aside from Lemma (0.3,

Remark. We note that the number of zeros, 2N, is related
to the rotation number of the periodic solution. During
every increase of & by 2n one passes twice the plane x = 0

(see figure).
.
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The proof of Theorem 10.2 proceeds along the same lines
and is ieft as an exercise. In this cuase 5 is the
rati> of revolutions of the solution about the t-axis and
the increase of t, or analytically,

8(t)

2 = i
lim 2rt

q trw

This makes it evident that different ratios pP/dq correspond

to different solutions.

{e) Proocf of Lemma 10.3.

We shall estimate the time a solution spends in the
various regions |x| < a, |x| > a and |x| > b and estimate
x in the process, We extend f(t,x) to all real t by setting
I{t,x) = £(T,x} for t > T and flt,x) = £{0,x) for t < 0,

but in the end these ranges will actually not be needed.

(i) Passage through |x| < a ;

If A > max (2M,4a) and - a 2 xlty) < a, i(to) > A,

then there exists a tl > t0 such that

L

x(tlJ = a, ;(tili

A similar estimate holds for x(tl) = = a, if -a < x(tol < a

and i(tol < -A.

{(ii) Passage from x = a to a local maximums:
(3]

1f A2 > 2 I g(s) ds and x(to) 2 a, i(to) > x>0,
0 =

then there exists a tl > t0 with

y "
x(t)) =0, =x(t;) > 2» and -ty .

144
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(iii) Passage from a local maximum to X = a:

-

If x{ty) > A > 2b, x(t)) = 0 then there exists

a least £ 2 t0 satisfying

= x - - r
()} = a, x(t)) £ -2 and G-ty < g~

(iv) Passage from large x-values to x = a:

We drop the condition é(to) = 0 in the last case and

assume only x(to) > 4 > 2b. Then there exists a tl > t0 with

sl¥

x(t)} = a, x(t)) < -2 and t)- tg <

We prove these claims, ad (i) Suppos« t is chosen in

0 < <1 £ A/2M such that -a < x(t) < a for to f£tx t0+1.

Then we conclude from (10.5a) % 2 -M, hence x(t) > Q(to)—u(t-to)

2 X =~ Mt > /2, and by integration x(tg+t) > -a + (A/2)7.
Thus if 1t > 4a)A we obtain x(t°+ t) > a and a contradiction
to our assumptoin on 1. Hence T £ 4a/A £ 1, and if 1 is
chzsen maximally we have x(t0+T) ; a and 1 < da/x, i.e.

tl = t0 + T. '

ad {1i): By (1&5b) we have, as long as x(t) >a >0, the
inequality X < -4x. Therefore by a Sturm comparison
argument a maximum of x(t) must occur within an interval of
length n/4, 1Indeed, assume the opposite, then x(to) > a,
x(t) > 0 for to <t < to + 1/4 = 1. Hence x(t) > a and

¥ < ~4x in this interval. Let Yy = sin 2{t - to} be a

solution of ¥ + 4y = 0 over this interval, then

Ry - §x = (- flt,x)+ ax)y < 0,
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but integration from t0

. oy T
Xy - xy
%

a contradiction. To get a h tter estimate for this maximum

we use the Liapunov function

x
vty = 3 x2 +6x . G = [ gls) as
a
so that by (10.5c)
av _ ee
gt = xB+am) 20

as long as x > a , X

1w

t = tl > t0 we have

2

It is convenient to introducc the inverse function x

= xt1) + 2x{tg) > 0,

3% s viey) < vie)) = a{xttp) .

to T of the left-hand side gives

p. If the first maximum cccurs at

of y = G(x). Since g{s) > 0 in x > a and g{s) 2 mzs for

large s by (10.5d} we have G(x) = as x + « and G is

monotone. Thus ¢(y) is a monctone function

d({y) + = as y -+ ® ., With our assumption

12 2b

> > I g(s) ds, the last incquality then
0

x(6)) 2 o6 2% > 2b .

To get an improved estirate for t1 -

following trick: x(t) is con.ave since by
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on [0,») and

reads

t. we use the

0
(10,5b)

X <0,

2(y)

411

.1
80 that.for T=3 (tl + to)

x() > 5 [x(e) + x(ty)) > b .

X A /“‘

26
xt)y 1~

¢ !

<%

4. t 4,

Thus x(t) > x(1} > b on [1,t;] vhere we have X < - mx by

(10.5d) . Therefore by a Sturm comparison argument we find

1 _ LS
F Uty —tg) = (- 1) <

proving claim (ii).

ad (iii); Let t be the smallest number > t

1

x[tl) = a and define the auxiliary function

Wit} = ;2 + 4(x2 - az) .

Then on [to,tll
e 2xl(~ £ + 4x) > 0,

since x < 0 and £ > 4x by (10.5H. Hence

0

with
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c2 _ _ 2 _ .2 2 2 ‘
xT(t)) = Wle)} > Wity = 4(x"(ty) - a%) > 3Ix {tg) > A $ay) > 2b,
1 o . .
as a < b <5 x(%}. The time intervil can be estimated as then if A > Ay we have A > 2M, 4a, ¥2G{ZB], 2b since by
above, ’ assumption M < b and 2a < b. The assumption {10.14) implies

|x(t0)| >\ or Ix(to)[ > XA, In the first case we apply (iv)

ad (iv): If ;t(to) > 0 +he claim follows from (ii) } and reach Ix(tl)l = a in a time t - i:D € 25/m with
and (iii). The case ;;(to) < 0 can be reduced to (iii) by [x(t,)] > A. Using then (i) we find a zero for t, > t; where
: : N . . 4a : . 1 : *2 1.2 2
decreasing t; until x vanishes. ‘ t, - t; < -y and |x(t2)| >z hod.e. xT{ty) 2 3 A% 2 2000

. 2n 4a 2 4 a . .
and t, - t_ < = ¥ € = as claimed in {10.16)
We shall combine the above estimates (i) - (iv) in . . 2 0-"m" X -"m Ve ¢ TN
- and (10.15).
the following

if ];(to)l > A we consider the cases |x(ty)| < a and 2 a

- Lemma 10.5, There exists a monotone iucreasing function ¢, separately. If Ix(to)l < a we find either (a} a zero
¢(s) + = as s + » and two puritive constants A, and ¢, t) < t, + da/} with I;(t1)| > % X or (8) reach [x(tl)l = a
such that for A > AO the follewing holds true: if x(t) is ' with |i(t1)1 > % A in the time < 4¢a/). In case (o) we
a sclution of (10.1) satisfying are finished and case (B) reduces to the following and last’
2 3 case. |x(t0)| > a, Ix(tO)I > % A , where we replaced A by
{10.14) x° + x" > 2% for t = ty « 1
3 A, Using {ii) and (iii) we return to ]x(tl)l = a for

11\2]

then there exists a zero of x(t) at time t), > to with some t1 > to with tl - to < 2r/m and have |x(tl)| > ¢(5(§)

> /8 ¢{3). Then one reaches by (i) a zero at t, for x(t) in

(10.15) x(e)) =0, x(t)) > 2003 cen 1 1 ol)2 5 /3
and a time t, - t;< (1//B¢(}))4a with Ixtt 3] > 5 oz A‘) > e{A).
21 " a Adding these contributions we reach a zero in a time
(10.156) by -ty <+ T -
2% 4a 4a 2n a
SISt Sy —— < Tt e YOV

Proof: Define m A oz A4 — m ¢

1 o s2 with ¢ = y8 , and ;c(tz)2 > 2@(1)2 at this point, as we

$({s) = —— min lS. °(—§—)} ’

] : have claimed.

clearly ¢(s) - » as s + =, Pick 10 50 large that We shall now apply the above lemma repeatedly, replacing

A by ¢()) and so on, and define therefore ¢0(s) = g, ¢l($) = ¢ (s}

lag : : 149
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as in t?e lemma, and ¢j+l(s) - $ o ¢j(s). Clearly ¢j(s) is
monotone increasing and ¢j(s) + e as s +~ =. For a given

n < mT/2n1 we can choose & = An so large that

1

(M) < T,
¢J( }

t-=3

n
2n a _ 2=n
L [—m*‘cm = S tca

] J j=1

For Xn sufficiently lar;je we therefore conclude applying
Lemma 10.5 n times, that a solution of (10.1) with £ € F,, and

2 has at least

with initial conditions x(0V° + x{(0) 2 2%,
n zeros in 0 < t < T. This tinishes the proof of the crucial

Lemma 10.3.

Remark 1.We observe that it is not necessary to assume
£{t,x) € Cl(Rz) in Theorem 10.1 and 10.2. Indeed the

proof remains the same if £ = C(Rz). f locally Lipschitz-
continuous in x and %% (t,0) —ontinuous. We merely have to

check that the local flow ¢t of ¥ + f(t,x} = 0 is measure

preserving, i.e.

{io.lz) f c{¢t(x)) g = [ r(x) dx

for every smooth function ¢ ''ith compact support. As we have
seen we cah write the eguaticn.as a Hamiltonian system with
a Cl-Hamiltonian fupction H. Approximating this Hamiltonian
by smoother‘ones H (10.17 holds true for the corresponding

flows ¢ﬁ and hence (10.12) fullows in the limit.
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Remark 2. As already pointed ocut one difficulty in our proof
is that it is not known whether the solutions of the differential
equation (10.1) are bounded. For example, Littlewood posed the

problem of deciding whether all solutions of the eguation
x + g(x) = plt)

are bounded, if g{x)/x + 4= as [x| + = and p(t) is periodic
(see J. E. Littlewood 1), In the special case of g{x) = %2

G. R. Morris 2 confirmed this conjecture. One has to expect
that for the boundedness more assumptions have to be imposed
than we regquired for Theorem 10.1. One could conjecture that

the methcd which we shall develop in Chapter 5 allows us to

establish boundedness of all solutions of (10,1} if

2p+1

f{t,x}) = x + gl(t,x) (p > O, integer)

where ¢ has period 1 in t and glt,x) with derivatives in x

behaves like a polynomial of degree < 2p as x ~ + =,

1 J. E. Littlewood, Unbounded solutions of an equation

y + glyl = plt), with plt) periedic and bounded, and
gly)/y =« as y >+ = J. London Math. Soc. 41, 1960, 497-507.

2G. R. Morris, A case of boundedness in Littlewood's problem

on oscillatory differential equations, Bull. Australian Math.
Soc., 14, 1976,pp. 71-83.
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Exercise 1
SAEICISE

Let

3ie

£ be continuously Jifferegrntiable with £(0) = 0,

£'(x) > 0 and x Yf(x) » » a, |x}] + =. Then every solution

1 "2
of ¥ + £(x) = 0 lies on a clrred cu've 3 X + F(x) = ¢,

r4
F(x) = f
0

£{s) ds, and is pe-iodic with period T(c).

Prove that T(c) » 0 as ¢ + =,

Hint., Break up the integral Ior T(c) in Section (a) represent-

ing the period into .
b b¢ b
[« [+] -
o 0 b/2
similarly for a, and use
i b
Flb) - F(x) > f£(,)(b-x) on {3 . b]
b
F(b) - F(x) > 5 v on [0, 81, .

which grows faster than b®.

Remark.

2
1

The stutement T(c) - 0 holds actually without the

monotenicity of £, as a conscguence of Lemma 10.3.

Exercise
ZRerclise 2

2

Prove Thecrem 10.2,
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11.

Closed Geodesics on a Riemannian Manifold

In the last sections of this chapter we shall establish

the existence of periodic solutions of Hamiltonian systems

by "direct methods of calculus of variations", i,e., by

minimizing a functional. The best known example is

that of closed geodesics on a compact Riemannian manifold

without boundary. If this manifold is not simply connected,

€e.q.

a torus,

we Ccan consider the family of closed curves

in a homotopy class and obtain a closed geodesic by

constructing the curve of shortest length. We need not

take the length as the functional to be minimized, but

any functional whose minimum gives rise to a geodesic,

Technically this approach requires that the functional

attains its minimum, a pProblem which was clearly seen and

attacked by D, Hilbert, 1 Actually the thrust of Hilbert's

contribution

was aimed at the Dirichlet problem and

partial differential equations but his ideag have important

consequences also for the simpler problems of ordinary

differential equations,

D. Hilbert, "Uber das Dirichlet'sche Prinzip",
Jahresbericht der Deutschen Mathematiker-Vereinigung,
VIIX, Erstes Heft 1900, p. 184-188.
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We give a proof of the above statement, namely that in
every noptrivial homotopy clz2ss of closed curves (i.e. of

curves) or. a compact Riemannian manifold

noncontractible
there exists at least one ciused 7eodesic. Intuitively we

may think of shrinking a rubber band which is slung around

a torus to its minimum lenyth position -— in which case

it will represent a closed geodesic. Our arqument is based

1

on an idea of G. D. Birkhoff.

It has to be said tha* the more difficult and more
interesting results about closed geodesics refer to simply
connected manifolds {on which our rubber band slips off).
However, it is still possible to find nontrivial closed

geodesics which are not char.cterized as minima but as

saddle points, or extrema of the length functional.
By constrﬁctinq appropriate Zamilies of closed curves
these closed gendesics are constructed as minimaxima,
i,e, the minima «f the maxin on certain families,

Tthis leads us into topology and Morse theory. We will not
follow this linc since it reguires a whole book in itself.

We merely mention that the Morse theory which gives assertions
function on a

about the numbe: of c¢ritical points of a Cl

manifold in terms of its topological properties arose out of

this quest for closed geodesics on a sphere, 1In this case

the manifold in guestion is «¢n infinitely dimensional space

3t3

the length functional. Roughly simultaneously with Morse

another theory was developed by Lyusternik and Schnirelman
who were the first to prove that on every smooth convex
at least 3 different

2-dimensicnal manifold there exist

closed geodesics without selfintersection. For these

developments see Klingenberg.
In more recent times "direct methods of calculus of

variations" have been used to establish periodic orbits

of Hamiltonian systems which do not arise from geodesic

problems. We will prove two such results after our brief

discussion of the geodesic problem. 1In particular we will

show that a Hamiltonian system in R2n with a strictly convex,

2n

compact enérgy surface M C R without boundary has .at least

one closed orbit on M.
{a} Statement
We first introduce some notation. The metric tensor

g on a Riemannian manifold M defines a scalar product in

every trangent space, which we denote by

<v,w> = gx(v,w) ' v,w € TXM '

similarly we shall write for the length of a vector v € TxM

lv] = <v,v>1/2,

of closed curves, the loop space, and the function on it is 1

G. D. Birkhoff, "Dynamical systems with two degrees of freedom,

Trans. Amer. Matn. Soc. 1917 Vol. 18 p. 1%9-300
{in particular pp. 219-220),
154

"Lectures on Closed Geodesics,"
1978.

W. Klingenberg,
Springer-Verlag,
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Locally geodesics can be desciibed as curves c on M of
minimal are length I 1e{e); dt . Alternatively viewing
the yeodesic mechanically we can describe it as minimizing

the energy

E(c) = % I ) [ 2ae

in which case the [arameter - plays the role of the time.

We prefer the latter approach since it provides a distinguished . .

Parameter (proportional to the arc iength) on the geodesics,
while the length integral is ipvariant under parameter changes,
Our aim is to find a geodesic on M which is a closed curve.

We shall prove

Theorem 11.1, On every compact Riemannian wanifold M which is
not simply conn.cted, i.e. ul(M) # 0, there exists at least

one closed geodes.c (in every homotopy class).

Since M is not simply ccunected there is a closed curvé
ct S1 + M, which cannot be defurmed into a constant map.
We shall denote by F the class of piecewise differentiable
closed curves on M which are homotopic to this
curve, i.e, which can be deformed into c. The main point is
to prove that

1
. : - 1 . 2
{(11.1) inf E{c}) = yu, E(c) = 3 j lc(t)l dt
0

cEF
is taken on by a curve in F which turns ocut to be the desired
closed geodesic.

158
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{b) Local Geodesics

The proof of the theorem will be based on the following local

characterization of geodesics.

Lemma 11.1.

(i) Every point on M lies in an open neighborhood

U which contains an open V € U such that two points p.g €V

can be

cpq{o)

£

depends differentiably on p and q.

that

joined by a unigue geodesic cpq‘ [0,1] ~ v with

= p and cpq(l) = g. Moreover the energy

1
: _ 21 s 2
Elp,q) = E(cpq 5 I |cpq(t)] de

(Notice

we parametrize the geodesics proportional to

arc length.)

(ii) The geodesic cpq minimizes the energy; in

other words,if ¢: [0,1] + M is any piecewise differentiable

curve

{11.2}

with (0} = p and c{l) = g, then

Ele, ) < Ele} ,

and the equality sign holds only for ¢ = ¢,

Proof:

M= R

Pa

(i} Working in local coordinates we may assume that

with the metric being given by

157
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i n
[.0 vw x €E R,

where v,w € R'. We have secen in Section 2 of Chapter I
that a geodesic x(t) = (xl(L},xz(t),...,xn(t)] satisfies

the Euler equations

- - j . .
(11.3) %5 sik Topfart)) X %,
’
with F;k the Christoffel syrnbols of g. We also recall

that for a geodesic x(t), th function
- . . W - 2
<x(t),x(t): = |x(t}]

is independent of t. This ca.. also be seen directly; namely

d . 2 - . .o
qe Ixwi® = 2 iik EATR T S § ik 3 %
r ¥ r

Using the formulae from Exercise 3, Chapter 1, Section 2,

we can write the second term in the form 1

« . » 2 e s s
) {9, 4+ g, . - g, . JX.x.%, =27 g.. ' X.x.x
1,5,k 1kxj ijx, kj 773"k it T3k itk
which is indeed zero due to (l11.3). Writing the Euler
equations as a system of first order equations we find that
a geodesic {x(t),x(t) = v{t)} is an orbit of the following

vector field on TM

158
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x = Yk

(11.4)'

n
Vo= =3 R viVvS ., ok =1,2,...,n.
rs
X,5=

5=1

We shall dencte by ¢t the flow of this vector field:

o5 (x, vy b (v V), x (x,t)).

We try to find a solution connecting two given
points x,y. We claim that the equation y = ¢j (x,v) has
a unique solution v for y near x. It then follows that the

curve
Cuy(t) = v x,v) 0 <t <1

is the desired geodesic joining the point x = cxy(ﬁl with
the point y = cxy(l).

To prove the claim we first observe that the system
{11.4) has the special property of being invariant under

t* = At , v‘ = A—lv.To put it differently, the flow satisfies

hd ¢t = ¢At o “A ] ux(xrv) = (an—lv).

For the first component of the flow we conclude in particular

¢t(xrvi = ¢l(X.tV) ’

and differentiating in t we have

| =4 f -
it:o = at ¢t(x' V) =V ,

Py (%, tV) femo

&lﬂ
=
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and thercfore
3 v x,0) = id .
dv 17"

Consequently by ihe implicit function theorem there is a

unique differentiable functic.. v = v{x,y)} such that
y = Wlfxcv) ang vix,0) = 0Q

for y near x, proving our claim.

Moreover, since <x,x> is an integral of the geodesic . .

flow ¢t, we s5ee that the fun-tion

1

1

E{x,y) = 5[ lf:‘xy(t) 1% at 1
0

¥ lsz

2
= % fvix,y) |
is differentiable in x and Yy and we have proved the first part

of the lemma.

For x fixed, the map

v - wl(x,v) = expx(v)

is a diffeomorphism of a neighborhood of 0 onto an open . .
neighborhood U of x. This map is called the exponential map,
it satisfies expx(O) = X. The curves t v~ expx(tv) are
the local geodesics issuing from the point x. We point out
that this exponential map sh.uld not be " confused
t

with our notation exp tX = ~° for the flow of a vector field

X introduced in Section 1 of Chapter I.

160
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(ii) Although the second statement of the lemma is also
well known in calculus of variations we outline a proof
and introduce first the so called "extremal integral®.
We have seen in the first part of the lemma that given two i,
distinct points £ and x sufficiently close and given t > ty
then there is a unique local geodesic x{s} issuing from £ at

EEad

§ =t, and arriving at the point x at s = ¢. It is given by

s=t
x{s}) = expE[E:Eg v], if x = expE(v) .

If we write x(s) = x(s:t,x,to,ﬁo) then we have:

x(s;t,x,to,ﬁ) x if g = ¢

{11.5)

x(s;t,x,to,g) £ if g = to .

g =

By integrating

(11.6) F(x,;t) = % <g(x);c.;t>

along the above extremals we define the function §,

t
sttxrt.) = [ pixte), () as
to i

This is the so called extremal integral. The derivatives of

ry T

this function can easily be computed as (we suppress the

variable to in the notation)

= . 9% ..
Slenx.8) = F xisit, by, 3% (s,t.x,65)|s=t
(11.7)
SE(t,x,E) = -F.{x(s;t,x,E), -g—:- (s;t,x.E))I
.o x s=t0

11
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(11.8) St = - H(x.sx) ’

where H is the corresponding :amilton-function given by

% tg—l(x)y,y> -

Hi{x,y)

Hore y is related to x, x by the Legondre transformation:

-

y=F (x,x) = g(x)% , X
3

Hy (X,y) = g'l(x)y
{11.9)

<Y X> .

F(x,;) + Hix,y)

To prove the above identities {11.7) and (11.8) we denote by
a any of the components of » or £ and find by differentia-~

tion of the extremal integral

t
%g = I %: Fi{x,x) ds
t
and 0
2 F = <F_,Xx_> 4+ <F d_ X_> '
EEY x'"a ' ds Ta

x ds ds a

= <, - (F 3, x> + cp x>,
*

Since the extremals satisfy -.ae Euler equations, the first

bracket vanishes, and therefore the integration gives

5=t
x 5=t0
12
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from which in view of (}1.5) the relations (11.7) follow.
To prove (11.8) we proceed similarly and find
. Bx 5=t

s, = Flx,x) + <F _, > .
X b_t S=t0

Using {11.7) and (11.5) and the definition of the Hamilton-
function (11.9) we obtain (11.8).
If we fix the initial point E and the initial parameter-

value t then § becomes a function of t,x alone, and the

0 r
extremals issuing from the point £ form a family of curves
satisfying a first order differentiai equation. Indeed if

x(s), x(s) is a solution of the Euler equations, then x(s),

yi{s) derined by (11.9) is a solution of Hamilton's eguations,

and for s = t, the first equation of (11.7}) amounts to

y = sx(t,x) '

and therefore we find by (11.9)

; = Hy(x, Sx(t,x)) .
Abbreviating the function
(11.10) m{t,x} = ”y(x' Sx(t.X)) '
the extremals issuing from § satisfy the differential eguation
; = m{t,x) .

(11.11}
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In order to show that the extremal Cy t) = co(t),
0%1
Xy = CO(O) and x = co(lj

in a sufficiently small neighl .rhood V minimizes the energy,

0 £t <1, connecting two poiats

we choose a larger neighborho~d U containing V so that any
curve connecting Xgr¥Xy but also containing points outside of
U has a larger energy than €p + SO that we have to consider
curves in U only. ©On the other hand we choose V and U so
small that for a point £ on av, lying on the extension of the

extremal to the boundary 53U, the extremals

<o through Xgr¥y
issuing from £ cover U simply i.e. there is a unique extremal

in U connecting £ and any peint in U.

Hence S = S(t,x}) is a function on R x U. 1In particular

1
B(CO) = S(l.xl) - S(O.xoi = [ (St + <Sx.x>) dt .
i}

164
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1f c(t) = z(t), U 2t <1, is any other curve in U connecting

Xy and kl + then its energy is given by

Elc) = | F(z,z) dat ,

Ot e

where z(0) = Xy and z(1) = ¥X)- To compare E(c) with E(co)
we rewrite E(co) as an integral over the curve <, which
allows us to compare the integrands. For this purpose we

note that the line-integral
das = I (St + <Sx,x>} dt

clearly is independent of the path in U and depends on the

Therefore E(co) can be written as

1
El{cy) = f (St + <5 _.x>) dt = f as = I ds ,
0 Co c
i.e. as an integral over the curve c. Using (11.8) and (11.8) we

have with (11.10} the identity

Sy + <S..x> = - H{x,sx) + <8 ,x> = Fix,m} + <x~m, Fi(x,m)>,

whgre m = m{t,x). We therefore find:
1 .

E(c) = E(col = I (Ftz,z} -~ F(z,m) - <%X-m, F_(x,m)>]dt f
0 x

where m = m(t, z(t)). Since F(x,i) is quadratic in ;,
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(see (11.6)) this can be rewritten as
1 1

E{c) - Elcy) = [ Flz, z-m) ot = % J <g(z) (z-m}, (z-m)> dt
0 0

which is > 0 and equal to zero only if ; = m, In the latter
case we must have c = Cq -« siuce the only solution of this
differential equation with z{0} = Xn is the extremal € in
view of (11.11}. This proves the s cond part of Lemma 11.1.
® o
Remarks. (1) We mention that the difrerential equation {(11.8)
is called the time dependent Hamilten-Jacobi equation., Since
in our case the integrand t = F(x,;) is independent of ¢t
it is easy to make the t-depcndence of S(t,x) explicit,
we find (with t, = 0}

0

s{e,x) = =1 s(1,% .

Therefore the function s'(x) = &(1,x) satisfies the partial.

differential eguation . .
* . *
5 (x) J(x,sx) .

(2} We also notice that the relations (11.7), rewritten
as sx(t,x,g) = y and SE(t,x,E) = -n express the fact that
thg function S(t,%,£) is a generatin; function of the flow
(E,n}) ~» ¢t(£,n) = {x,v) belinging tc the Hamiltonian
o

vector field H, with initial conditior ¢ = id.

lue
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(c) Proof of the theorem.
Going back to the procf of the theorem we 'pick a
minimizing sequence cer , n=1,2,..., of our

functional (11.1) such that

lim E(cn) = inf E(c) = pu .
n-e ceF
If we define an equidistant partition of Sl: 0 = to
< tl € ea. € tN = 1 by setting tj = j/N, then there is an

N which is independent of n such that two consecutive

n
j+l

points pg = c"(tj} and p

= N n

= c (tj+l) on the curve ¢
beleng to an open set V on which the above lemma applies,
In fact this follows from the compactness of M and from the

following estimate of the arc length of c" between p;_and

n.
pj+1'
el 172 '
I [c”] at < ltie -ty /2E(c™)
. b}
i
¢ Loy,
¥N

for some constant K which is independent of n. We can use

Lemma 11.1 to define another minimizing sequence which we

denote by ¢" and which we define for’ by St < by,
- -

n

and p.

P5

LT N 3 ]

as the unique geocdesic joining the two points p 41 !

the parameters being proportional to arc length,
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It then follows that c¢" € F, E(c™) < E(c¢™ and lim £(&%) = u.
n+w

We have used here the second p.rt of tie lemma. Since M is

compact, there is by Weierstrass' theorem a subsequence

of (N-tuples of) points p? which does converge:

pg +ptenm, j=1,2,...,N.

3

By the first part of the lemmu E(p,q) is a continuous function

]
of its endpoints, hence .

. n n . *
b(pj,pj+l) -+ L(pj,pj+l)

and therefore
(11.12) p = E{c") ,

where ¢” € F is the closed carve of broken geodesics joining

p} with Pi,; + and we have shuwn that the minimum is taken

] ]

on. This curve c* is our sought closed geodesic, In fact

. * _ %
if p=c¢ {t;) and g =c¢ {t,)
les

. *
are any two points on ¢

3z

g =

which are sufficiently close they can be joined by a unigue

gecdesic yit), t; <t < t, which agrees with c*(t) on this
interval, Indeed otherwise we replace e’ by the different
curve ¢"* € F which coincides with c* outside the interval
[tl,tzl and with vy on this interval and by (11.2)

E(c**) < E{c*} which contradicts {11.12),

=

C.!,

The closed curve c¢* is, of course, not a constant since
it belongs to F.

It is an interesting fact that, at least if M is a
two dimensiocnal surface, the minimal closed geodesics . i

constructed in the theorem have real Floguet multipliers

t 3
if considered as periodic orbits of the geodesic vector- B

field (11.4) on TM. If one ignores the possibilities +1

this means that they are unstable periodic orbits (Exercise 1).

ey =
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Exer :ises functions ¢,¢ in C*(R).
Prove that if on a Riemann manifold M with dim{M)=2 one has (3) Show that the linearized differential equation for
a closed geodesic whick minimizes the energy integral the geodesic flow along our periodic reference orbit
then its Floquet multip.iers are real. agrees with the Euler equation of J, , i.e. with

2

If we ignore the degencrate casc where all eigenvalues . .
) . . ¢ =0, v+ Kty =0
are equal to one this Implies that minimizing ¢losed

geodesics are unstable {see H. Poincaré, Les Mé&thodes Hence the Floguet multipliers are (l,l,x,l_l) where
Nouvelles) de la mécaniqgue céldste, Tome I1I, Chap. 29, A,A-l are the Flogquet multipliers of the so-called
No. 355). . . Jacobi equation

Hint: (1) Near the cl-.ed geodzsic one can introduce (*) o+ X{tly = 0 .

local coordinates u,v 30 that
(4) Set ¢ = 0 and show: If the Floguet multiplier

d52 = E(u, v} du2 + dv2 : E(u,0) =1, Ev(u,O) = ( ) is not real, then there exists a periodic function ¢

in Cl with J2(0,¢) < 0. For this purpose, show
and the closed gcodesic is given by v = 0. .
(i) If X is not real, then [A] = 1, i.e. XA = &%,
Normalizing the length of this gecdesic to be 1 we have
. a real, 7o # integer (sce Chapter 4},
E(u+l,v} = E(u,v} and the energy integral of a curve
(ii) ‘There exists a nontrivial solution
c(t) = (ult),v(t)], is given by

1 x{t} = Re (eiut pit))
Ifu,vl = %J‘ (E(u,viu- + v2) at . ® 0

0 .
{2} For the reference solution 1 = t, v = 0 one has

" where p(t) is complex valued, 2 0 and of period 1,

(iii) x has infinitely many zeros. Let tl,t2 be two

1 1 -
1= 7 rand for any nearby closed curve c{t) = ({(u{t),v{t}) consecutive zeros with x(t) > 0 in €, <t < t, and set
with u{t+l} = u(t)+1l, vi{t+l) = v(t) one has T i_%—since
the reference solution is minimal. In particular, the o (€) = { x{t} in tl < t < t2
0 - . N
second variation at the reference orbit u =t and v = 0: o otherwise
1 Show that the function
2 .
3,069 = (392 Thusee,viep)| = I 62 +p?-k(0)v?) at ,
e={ 0 Yplt) = sup xo(t+n)
1 nez

with K(u} = - 7 Ruv(u,OL must be > 0 for all periodic has period 1 and satisfies

172 171



33¢

3,400 <0,

by using the formuala

1 1
I (4% - xtt)v?) at = - J v ke ae
0 0

+ g [wctj+u:—w(t1—011¢{;j)

where ¢ is piecewise differentiable and where ty are the
discontinuities uf ${t). ' . .
{Show that wo(tj+u) - Wo(tj-ﬂ) < 0.)

{iv) By rounding off the corners of wo construct a
c'-function ¥(t) of period 1 with 3,(0,0) < 0,

Give a direct proof of the minimizing property of extremals
{see Lemma ll.l} avoiding the extremal function S and using

geodesic polar coordinaces.

Hint: Denote by ¢ (t) = exp,_ (tv), 0 <t <1 the
—— X - -

XaX
(1
unique geodesic joining X with %) * exp, (v) so thafy
o
_1 2 . . . ,
E(cxoxl) =5 fvl® . Ifeft), 0 <t <1, is any piecewise ‘ .
differentiable curve in the domain of the exponential map

joining X5 with Xy define w(t) by
clt) = exp, (wir}},
0

with w(0} = 0 and w(l) = v, Write w(t) in the form
wit) = r(t)v(t), with the scalar r(t) = |w(t}|]v|™! and

vit) = w(t:)|v|[\\v(t)_|ml as long as wit) # 0.

172
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1f t, is the smallest number such that w(t) # 0 in

to < t <1 then: :
h -
1 -
1. . 2 1 1 2
E(c) > > lim I le(t) | at > = Iv|® .
=2 o = Ity 2 !
tgt €

To prove this introduce f(r,t) = exp, {rv(t))
0

such that c(t) = f{r(t),t), hence
c = frr + ft .

and prove that
g = |vi?

e ® -

(2) <fr'ft> =

{3) ft = 0 if and only if wv(t) =0 ,
where < , > is the scalar product given by the
Riemannian metric,

Clearly E(e) > % |v]2 . If E{c) = % ]v]z . show that
ty = 0 and v(t) = v(l) = v is independent of t,

hence w(t) = r(t)v with a piecewise differentiable

PR S

function ri{t) and

1 1
E(c) = 3 [ leter|? = 1 vi? J 2 ae .
0 0
Show that r(t) = t. T

IF) .-~ There is a direct construction of a minimizing sequence
- :

in a given homotopy class which we describe now. We begin :

™=

173
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with an arbitrary clozed curve clt) (0 <t < 1) in a
nontrivial homotopy c..ss of a compact manifold M. Then one shows readily that

Choose a large integer N and construct a closed curve
{(11.13) Efc,) 2 E(cl)
c{t) (0 < t < 1} in a nontrivial homotopy class of a

compact manifold M. Choose a )arge integer N and Repeating the construction and defining a sequence

construct a closed curve by joining the points “n by “ne1 © D(Cn) one gets a sequence of closed

Pj = c(jN"l), Pj+1 = c((j+l)N':) for 3 = 1,2,..., N-1 curves, which are broken gecdesics.
and PN P by minimizing geodesics. By introducing . .

{ s . P he i i . h
a parametur preportionil to arc lengths and so that EXERCISE 3 rove the inequality (11.13) and show that the

above sequence ¢ has a subsequence c converging

the period is 1 we obtain the ciosed curve cltt) with 3
<t ‘< 1 to a closed ext%ffsl cr(t). r—4VL

cl(tj) =P, 3 =1,2,..., N, 0=¢t; <ty ... -

J 1 -

: t E i i
Now we construct a new closed curve cz(t) = D(cl(t)) Hint Use tha (Cl) depends continuously on the points

Pj and that c* does not have any "corners".

by connecting the midpoints Qj =<y

tN + tl-l

( t. + t*fl)
2

j=1,2,...,N-1 and QN =cy ( } by

2
gecdesics and paramterizing this curve again proportipnal

to arc lengths so that its period is 1 {see fioure} . .
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/zPserve that the vector field X oon M is)up to multiplication /

390

12, Periodic Orbits on a Convex Encrgy-Surface

{a) Flow on an Energy Surf.ce »
We consider a Hamiltonian vector field XH . HE Cztnzn)’
on the symplectic manifold hhn with the symplectic structure
w o= f dqj A dpj - The functicn H is an integral and the
vector field Xy is tangential to any level surface (energy

surface)

M={x | nix) = c},

c € R, .

and hence defines a vector f:elda on M. We shall assume that

¢ is not a critical value, i.e. dH(x) # 0 for every point
X € M. Then M is a cz-submanjfold and the vector field XH

does not vanish on M. It is crucial for the following to

with a scalar function X # 0 on M determined by M and the i

- . e e

,55?5{:7ic symplectic form w, i.e. we can approach a direction.as).. . . or

—

a line to each int on ). _.ndeed, if F is another defining
pe ]

function for M, i.e.: k"'h .

M= {x|H(x =c}={x| Flx) = ¢'}

with dH, dF # 0 on M, then dF(x) = Alx} dH(x) at every point

X € M, with M(x) ? 0, and thoerefore

A#FO0 on M.

Xp = A% .
It then follows that xﬁ_and xP have the same orbits on M

although their parametrization will be different in general,

14 7

In fact if ¢t is the flow of xﬁ on M, then the flow ws of X

on M is given by the formula

¢ ix) = ¢t{x) . t =¢t(s,x) ,

where the function t ig defined by

/!
dfds = 2ot 0), t(0,x) =0 ,

Rz
for x € M. In particular, XH has a periodic solution on M if
and only if XF has one. For example, if Xﬁ has the energy
surface M = {x € r2P | % lez = R > 0}, then all the solutions
of XH on M are periodic since the flow of XF ¢ With the

th and

Hamiltonian given by F(x) = 1 Ix]2 . is ¢t(x) = e
hence periodic,

This remark that a direction field on the manifold M is
determined by the symplectic structure can also be seen this way:
Let j: M + 2D define the inclusion map, and j**the restric-
tion of w onto M. Then this form j*u is skew ézgmetric
and bilinear on the (2n-1)-dimensional tangent spaces TM and
is of rank (2n-2). Therefore there exists an X # 0 € TM such

that

3%0(X,¥) =0 for all ye mu [

and this vector is unique up to scalar multiplication, i.e, X
spans the nu;l space of j*w and defines a direction or a line
AX € TM at every point of M. This line agrees with the
direction field defined above. Indeed assume xH has M as

energy surface, then every tangent vector Y € TM satisfies

ey W -
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dH{Y) = w(X,,¥) = 0 and therefore 3Me XYy = 0.
We have seen that the vector fxeld XH on M is defined

Jf A dgﬁ The purpose of- £;;3F J

rsd ot /._“
is to prove the following surprising result—’

up to a factor by M {and w /ff
by t

subsection b

with the help of direct metheds of calculus of variations.

2
If M is a compact strictly convex C -surface

Theorem 12.1.
—_— vy

in (R2n w} ther any vector .ield Xy with H € Cz(Rzn) *ad{

having M as energy surface, i.e.

2n L Hx) =

= {x € R cl, dH # 0 on M,

has at least one periodic or-it cn M.

This result is due to :. Rabinowitz 1 and A. wginstein.2

The proof we shall give below is based on an idea due to

F. Clark'.3

-
e - Postponing the proof we first mention an application,

In the case of Liapunov's theorem we needed a nonresonance
1
condition in order to guarantce a periodic solution on the

;,//? energy surface Hix) = ¢, for ¢ small. However if the largest
4 . : .
‘ frequency is multiple, e.g., if
——
\ 1 P.|ARabinowitz, "Periodic sciutions of Hamiltonian systemﬁﬂy

Comm. Pure Appl. Math. 31 (1% .8} pp. 157-184.

2 A. Weinstein, "Periodic orbits for convex Hamiltonian systeman

3

Ann. of Math. 108 (1978} pp. 507-518.
F. H. Clarke, "A classical variational principle for periecdic
Hamiltoni trajectoriesy”

nian jec ﬁ\j Z

; |
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n
(12.1) H MO ELE> = o 521 Py (a + EJ+n r o #0
with pj = + 1, then the result is not applicable, But in case

x(0] is a definite matrix, which in the above example

means that all pj are of the same sign, then we conclude from

Theorem 12,1 that every energy surface H{x) £ carries a

periodic solution provided € is sufficiently small, If the

signs of Dj in (12.1) are different this statement is not

true as we have seen at the end of Section 2 in Chapter II.

(b}

Convex Energy Surfaces, o
' Iz .l’ 7.1
/// In order to prove Theorem 10:2 we shall introduce a
* , ; . ; . . ' TPt it
;/ particular Hamiltoaian function H which is homogeneous of /
e

=1}.

EJ "““n

degree 2 and which describes M by M {x € Rznlﬁtx)

Here M is a compact strlctly convex Cz-surface in R

e wreon dhe "Hakhua. H
Ff‘géalu;r F:ua&has—uaxdq if M is represented locally in U by a

T e}
g function £ with 4f # 0 as

2n

MNU={xe€pcR" | £ix) 0}

)

S5 peaste
NI . .
,"f then the Hessian f . on M restricted to the tangent space of M

I.u’ Al ipon ,‘L} .
is positive definite, i.e,

(rL2.2) <f x(x)£,£> >0, X EMNU

2n satisfying

for every £ # 0 € R
. <f¥(x),g> =0 .

This is the case if the sectional curvatures of M are positive,



3 4y | | 3¢5

— B
e — —— :
1 o in R2 Since M is assumed to be strictly convex, we conclude by the )
i boundary of a compact strictly convex region i o N
M is the y e tai the- : homogeneity of F,. t.hat-the Hesszan P (x) > 0 is positive for 1S
which we denote by C. We may assume that C con ains ' .
' Iy X # 0.]| We would like to descrzbe M in terms of a strictly
. . ; : . 5 from the eorigin
origin in its interior. Then each ray issuing . - ‘
convex funtion W = H(x) as {x H{x) =1}, i.e. a function
meets M in exactly one point nontangentially. Thus if x # 0 ) | ’ -
-1 40 M whose Hessian Hxx(x) > 0 is positive definite at every point
: . 3 i i = A on -
1s given, then there is a unigue point £ A Tx, . ‘ . '
g ) X ¢ 0. since F is homogeneous of degree 1 it is obviously
never strictly convex. Indeed differentiating <E‘x,x> =P
"/'I 8'11(\( gives Fex* = 0. We therefore define the function S
® o 2 |
H{x} = (F(x))
! ! '

which is strictly convex Precisely if M is strictly convex

as one proves without difficulty,

Summarizing we have shown that every strictly convex

Cz-submanifold M containing the origin in the interior can be
L
If we define the function F on KZn by represented as
. -1 . F : 2n +
{12.3) Fix) =2 if [ =2"'xem (12.4) M= {xer" | yix) = 1}
for x # 0 and F(0) = 0, then *the manifold M is represented by, with H € c2(g?" \ {o}}, H(0) = 0, where H has positive definite
v . . Hessian at every point . x #0 and satisfies
% M= {x| F(x) =1} .
Y S— i ~rmm (12.5) Hlox) = p®H(x) for >0,
Moreover, F € C"(R“" \{0)) and dF # 0 on M, since tha rays-meet-— ' -
b)) M nontangentially. It alse is clear that M«-ﬂ“‘" i.e. is homogeneous of degree 2,
'.-) ~ e Although we do not need it we briefly discuss the
AN Flpx} = p F(x) fOY‘F,&--Z“O / : ! 1
‘\g e situation for 4 C -manifold M, which is called strictly convex
=3 ’
G" i.e. F.is homogencous of degree 1. Differentiation with respect if the region ¢ it bour'lds is strictly convex, i.e. c contains\!\nU'L 2
- also
%( to p at p =1 g.wes ‘the Euler relation two points x,y € ¢ amd ‘ax + {l-a)y, 0 < & <1 and this
/ <F_(x) ;x> = Fix) . J Point is an interior point ff X# Yy and 0 < g < 1. We shall c:
x .

gy -
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show that the function F defined by (12.3) is a convex

function in the sense that

{12.6) Flax + By) Sa ix) +8 1(y)

if a,8 > 0 and a+f = 1 for any two points x,y € R2n_

We will have equality only if x,y lie on the same ray through
0. Since C is convex, we have for any “wo points £, € M

that the points uf+Bn also lie in C i, a,B >0 and a+8 = 1,

i.e.
Flaf + gy < 1 -

If x,y # 0 are any two points we can represent them as

X =X and y = yn , AU > 0 with £,n € M. Therefore
Flax + 8y) = F(adf + Bun) 7

and setting

we find by the horogeneity of F
Flox + By) = {aX + 8u) Flat + bn}
ok + 8y =a Fix) + 8 F(y)

proving (12.6) for XY #0, If x = 0 .or Y = 0 it is a conse-
quence of the homogeneity of F. The function H(x) = (F(xj)z
is then strictly convex in the sense that in (12.6) the

inequality holds if o > 0 and B.>0 and x # y,

3yq

(c) Proof of Theorem 12.1.

In view of our discussion in Sections (a) and (b)
it suffices to prove the thecrem for a Hamiltonian vector
field XH with a homogeneous strictly convex function H
satisfying (12.4) and (12.5). We have to show that there

is a periodic solution of

X = JHx on M,

Normalizing the period we can ask for a pericdic solution

of perxod 21 on M for the equation

(12. 41 X = A JH_ for some A %0 .

For instance the variational principle

27 2n
min I H(x(t)) dt under L I <Ix,x> dt = 1,
0 0

where the functions x(t) are assumed to be 27 periodic, has

the above equations as Euler equations. But one shows easily
(Exercise 1) that neither the infimum nor the supremum is
taken on, even if H(x) = % lx|2 + The trick now is to use an
alternate variational principle having the same differential

equations for which however the infimum is taken on. We shall

form the Legendre transfoq{ftlon of H but this time with respect

to all variables in contrast to the definition in Section 2.6
of Chapter I.
The function G(y) related to H(x) by a Legendre trans-

formation can be defined by

Bl

e ~J

ey
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To be more precise, we define the following function space F
(12.8}) Gly) = max (<£,y> - H{§)) = «<x,y> - H{x) .
gcnzn . ri'ﬂ' e b = of periodic functions z(t) = z{t + 2r} having mean value O)
L-\‘)( € s ) b rm in order to fix the arbitrary constant in (12.11}): -
There is indeed 1 unique max. um{give. by y = H_(x}, since et s diitad s e -
* PIT-RU LV VIT VT S AL k| 2n
H is strictly convex {the Hes:.ian Hxxfx) is positive d@- 4 F = {z e Hl(sl) [ 2_1]; I z(t) dt = 0} p ,
nite for x ¥ 0) and satisfies o T

where Hl(sl) is the Hilbert space of absolutely continuous

é—]x|2_<_H{;:) <Clx!2 , xer’",
- 2n-periodic functions whose derivatives are square integrable,
for some constant C > 1. Thi. estimate is an immediate i.e, belong to Lz(Sll. By A € F we shall denote the subset
27
consequence of the homogeneit,; of H. Summarizing we have .
4 9 ! N ® O (12.12) A= {z € F | % I <Jz,z> = 1} .
e | 0
(12,9) Gly) 'lr‘H(x.‘ = Oty oo N . foc
’ Cu Following the standard procedure we will show fhherﬂ the
J —_ (,Y _ by . the
where + G(j} H H \) <"1lj ‘ 3

P t.e

functional o IG( J:(‘!":) ) /

{12.10) Y v H_(x) and " .:.-c?}j’(;)"f" T m )
: I{z) = J G(z(t$) dt
o :
Clearly G(CG) = 0, G € Cz(Rzn “{0}) and G is homogeneous of ' Hm{: e 4 0 N .
: 5 (24 ts ]
degree 2. Since T ) (i) Gounded from below on A / r—
' < .
(ii)'ttakeﬁ on its minimum on A, i.e. there exists aH -—:,f?
Hxx(x)-ny(y) =T, x#0, . o~ —
€ g3 n
® o r‘(ff_ A with o e & - an elep ep-
G is also strictly convex if y # 0. (For an alternate proof LT N
2% w
of this fact for cl-functions we refer to Exercise 4.) ! G(;,) dt = inf ] G(;) dt = .
0 ZEA f

We now consider the following alternate variational

principle for 2n-periodic functions z: (iii) « satisfies the Euler egquations

s S— 2n i
— . - f 1 - P -
{12.11) min I G(z) df under ¥ l <Jz,z> =1 , /T’_ VG(z,) = a Jz, + B
~ .
which we shall sclve by the standard direct variational methods. with some constants a,B, a # 0.
. ’

N
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o

(iv) z, belongs to ¢? and satisfies
2z, = VH(adz, + B) ,}\
and x = c{aJz, + B8) is :he desired solution. )
—
Ad (i}. We need some estimarcs., Since every z belonging

t6 F has the'mean value zero, the Poincaré inequality

(12.13) lz) <121 z€F

/

holds where 1 1 denotes the Lz—norm

2t
1212 = I Iz(t-.)i2 Gt .
0

This follows simpiy from the Youriey series. For z € A we
A e e e .
then have by Holder's inequality)-‘ﬂ._s:znnau—
s, W )

12.14) 7« £<Jz,;> at <zl bzt 1z1?, zea

The function G being strictly convex and homogeneous of degre;‘

-
2 satisfies the estimate

Flylf e cxp?, y € R®"

for some constant K > 1. Therefore, by means of (12.14}) we

find for z € A
2n
G(z) at > ¢ 121? >

{12.15) §> 0,

i.e. the functional is bounded from telow by a positive constant,

in partieular u > 0.

Ad (ii). We pick a minimizing sequence zj € A such that

"<zn

lim I G(;j) dt = u,

ey

By (12.15) and (12.14) there is a constant M > 0 with

2 < l;.l <M,
S GM“A 50
- -"‘-‘—-—_—-.-
By (12.14) we obtain Iz 8 > 212171 _>_~'é,\by (12.13}

2

(12.16) bzl < /M,

J

R

In particular zj is a bhounded sequence in the Hilbert
space Hltsl) and therefore a subsequence, alsc denoted by zj/

converges weakly in Hltsl) to an element z, € HI(S }:

(12.17) zj —> z, weakly in Hltsll .

In addition

{12.18) sup lzj(t) -z, ()] »0,
t

i.e. zj converges uniformly to z,. For the first statement
we used the fact that the closed unit ball of a Hilbeﬁt space
the textbook

is weakly compact (see e.q.

p. 173).

"™Real Variables" by

Royden, The second statement follows from the

estimates

T
]zj(t) - zj(T)I <1 I z4(s) ds]
t

< {t-1|1/2|;j| < |e-1|¥2m

!;:y Mt g 6/; Asco0ll ¢ dheoven ,
( . 2 " v .

TETY -

T

g W=

ey B

ey W
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2n /’/, 2

I 4(2,) dt < 1i
We shall now sho: that z, € A. By :(12,18)

im
. -in
2 and we have proved that @—_—ﬁ
ki W

2n
1 ¢ .
0= [zj(t) dt o g | oz,(8) ac }; ; 2
o «

G(zj) dt = p ,

[ 1

o
[}

L3
. \ a (12.19) [ Glz,) dt = 3 ,
\?50, 0
P P P - where
2= [ oy - J“”“’j‘z*"‘j’ * I“”*'zj’ (= . LT
0 0 0 = min IG(Z} dt under 3 [ <Jz,z> dt = 1 .
€
- - - LI = o :
The first term ¢n the right~hand si’- tends to zero by (12.18)
since l;jl < #M , and the second term converges by (12,17); ] ad (iii). Since 1z, is a minimum,
hence ) 2%
2 ' {12.20) I <VG({z,),E> dt = 0
n . f )
CTZ, e q> = 2 )
0 for every test function g € F satisfying
and therefore 2z, € A, We naxt pruve that this 2z, is indeead . 27 : j 46“(‘,(
the minimum. Fron the converity of % we deduce (see Exercise 2) (12,21) I ch*’g)v dc =0 . .
o _M__ﬁ¢¢-*’ffj .
that A e
1 \g e
: We choose §, in particular,} so that
‘GY(Yl)-YZ'Yf < Glyy) - Glyy) - <Gy(y2).y2~yl> ' . . .
which applied to v, = ;* and y, = ;J gives ¢ = vG({z,) - a« Jz, - B.
2n 2% 2r In erder that ¢ 1is periodic we pick £ so that the mean
G{z,) dt - I ((zj) dt < <Gy(i,),z,-zj> at ¢/ value of ¢ is zero:
N
U - (] 0
-~ Observing that GJ’ being homo-jrneous ¢l degree 1 satisfies the 2n 2n
estimate |Gy(y)| <clyl, ye R%" for some positive constant C, I L dt = [ 9G(z,) dat ~ 218 = 0 ,
. 0 0.
we conclude that indeed Gy(z,,) € L, and hence the right-hand side
tends to zero since ;‘ - zj -2 0 weakly in L2‘ Thus and then determine the constant a such that {(12,.21) holds true.

Using again that z, has mean value zero, we find that
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[,— 2r 2n 2 i It i that z, belongs to C°. In fact
l . I . [ 3z, 32> S Ad (iv), 15 easy to see that z, belongs .
= < > = <Jz_ ,VG{.,})>» - a T . .
“0 !, TZaet o . * o v : '\ ’ remembering that x = VG(y) is inverted by y = VH(x) Pointwise

- ‘we find from {12.22)
bas a unique solution @, since by (12.16)

(12.23) %o (t) = VH(adz, (t) + 8) .
2% 2n 1
] <Jz,,Jdz,> I €2,,72,> = Iz 12 >0 The right-hand side is continuous and we conclude that zZ, €C
a2, = nréy = » .
0 0 and inserting it into the right-hand side we get z, € Cz.
With this test function L+ the condition (12.20) becomes Finally, setting
2 2n . . x(t) = cladz, (t) + B) ‘ c =‘/_._E: >0 '
. - X 2 P
I lclz - [96(z,) - « Jz, - 8% at S
i ,F( we obtain from (12,23) using the homogeneity of VH
0 o -\, 0. ,
2n 21 j/'n L .
- [ <VG(£,),E> -a I <Jz,.L> - <8, I >=10, ' . X = cad VH{a Jz,+ B) = aJ VH(x) ,
, ~_ o |
1] 0 IR P
. g and, since H is of degree 2
and we conclude, that Z, satisfies the FoHuri-m{Euler equa~ .
. : - 2w 27 2n .
. - - .
tlons ) & L(;:-r" . 1 IH(XJ =-;* I<VH(x).x> = %— c?a [<z,,Jz*> = ¢
. . 0 0 0
(12.22) VG(z,) = a Jz, + 8 //

. wﬁich is equal to 2r, Therefore x(t) ig a 2n Periodic solution
for constants a and s)as was of course to be expected. The o ‘ .

~— of the egquation x = @JVH{x) which lies on the energy surface
he following interpretation: '\_._.__\ T s T - . ' Lo
Wiﬁ%m i N H = 1, Consequently yit) = x{a J‘t) is the sought periodic
a=y, solution of x = JVH(x) on H = 1, which has the period

. T = 2ra. But this is rather arbitrary since the period of
hence ¢ » 0. 1In fact, using the Euler eqguations and the

. " the periodic solution on M depends on our choice of the
homogeneity of G we have

N .
Hamilton f function H, "
2n 27 2% . - AL
2 = 2 I G{z,) = I VG(z,),2,> = a <TZysZa> = 2a - . oy TS
{ » ”Q'-}Hffﬂ]']cl«wic [N 2%

N ——————— —

e

ey =
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C:;/’ (d}  Remarks. Recalling the transformation properties of Exercises. Ch. II, Sec. 12 :

/ A
- ~._ Hamiltonian vector fields one concludes from Theorem 10.2 1. Assume H{x) < c:|x|2 s X € n2"> for some constant ¢ > 0.

thaE'Qn;f;ZE\every regular e'- rgy surface which is symplecti=- {a) Show that

cally diffeomorphic to a sti.ctly convex one carries a 2

inf I H(z(t}) dt = 0 ,
periodic solution. Such a si:nation is however hard to zEA o 12 2
recognize. Since the convex’ .y property is generally lost where A is defined by E;D{fS).
. . . . ) . C-i /

under a symplecti~ diffeomorphism it would be interesting to Hint: #bnstruct a minimizing sequence of the form z,

find invariant conditions on an energy surface guaranteeing a zn(t) = A 1 cos nt + B 1 sin nt .

periodic solution. For instance it is not known whether an . . n h

: . . s inimizi r Lz 1 - - .
energy surface diffeomorphic tu a sphere carries a periodic (k) Prove for any minimizing sequence: . lz, b (LZ norm)

solution. In this connection cne has to keep in mind that

2. Let Fe CI(Rn). Prove that F is convex if and only if
there are vector fields on od; dimensional spheres having no
periodic orbits (see [1] and !-]) and most likely such vector - Fx) = Fly) > <;;(y),x-yi//j\\\ 1:
fields do exist in the more r.stricted class of measure énd F is strictly convex if and only if the inequality
: - " f e
preserving vector fields, . : holds if x # y. (Here a ¢! function is called convex
We point out that the convexity requirement in Theorem 10.2 1f Flax + By) < a F(x) + & F(y), where u,B > 0 and a+8 = 1;
- - ’ LA = Li
can be relaxed, it is suffici-nt to require the surface to bf it is called strictly convex if the inequality holds for
starlike with respect to an interior oint. This was proved
\,‘I L1 P .4 L ] @B > 0and x ¥ y.)
by an entirely different metlsi, buit usiﬁgﬁfunctional analytic H .
[} St e p VAN 3. Assume G{y) is the Legendre transformation of H(x) such
techniques by P, Rabinowitz -ited above. \\\ A3
kLt that
Gly) + H(x) = <x,y>
lllP. A. Schﬁ@tzer, "Counterexanples to the Seifert .conjecture f/DP"a;nd ¥y = HxIX)' x = Gy(y)‘
and opening closed leaves of faliations," Annals of Math. 100 Prove that H is strictly convex if and only if ¢ is

(1974), 386-400.
T. W. Wilson, "On the minimal sets of nonsingular vector fields,"
Annals of Math. B4 (1966) S529-536,

[2]) strictly convex.

Hint: Use Exercise 2.
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e

A map g: R" » R" is called monotonkd increasing if

.%g{x} - g{y}, x-y> > 0, and it is called strictly

monoton?d increasing it the inequality holds for x # y.
Prove that F € cltkn) i5 (strictly) convex if and only

if V£ is (strictly) ‘nonotonhd increasing.

L=
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13. Periodic Orbits Having Prescribed Periods.

{a) Statement

In the previocus section we established the existence of

pericdic solutions on a given energy surface. We shall now

y

apply the same method in order to find periodic solutions with
prescribed period. We consider a time dependent Hamiltonian
vector field with H{t,x) = H(t+T,x), i.e., H is pericdic in
time of period T > 0, and look for T-periodic sclutions

of the time dependent Hamiltonian equations

X = JHx(t,x}.

The following result is due to F. Clarke and I. Ekeland.

=

Theorem 13.1. Let H € C2 be periodic in time of period T > 0,

and assume H is strictly convex in x having a minimum at the
origin, H{t,0} = 0 and Hx(t.ﬁ) = 0, moreover assume that H

satisfies

$xI? - meme,x <8 x? +m

for all t and x € Rzn, and

Ty W

Hit,x) 2 2 jx)?

for all t and |x| < ¢, for some € > 0, where a,b,c and M are ,
positive constants. Then, if a > b there is a nonconstant

periodic solution having period T provided

F. H. Clarke and I. Ekeland, "Hamiltonian trajectories having
prescribed minimal period,"™
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b < 2% < &

In particular this solution is different from the trivial
solution x = 0.

One might wonder whether the condition a » b is
compatible with the convexity of H. Here is an example of

such a function

2H(x) = b[x|2 + #1+c[x[2 for . >a-b>0,

{b) Proof.

With G(t,y) we denote the Leger jre transformation of
H(t,x) defined by
Glt,y) = max (~9,y> -~ H(t,E)) .
§€R2n
One verifies easily that Git,0) = 0, that G is strictly convex

and that it satisfies the estimates

(13.1) 1,% ]y|2 - M < Git,y) < ;,_—i |Y[2 + M .

for y € Rzn, and
1 2
(13.2) Gle,y) > == |y
if |y| £ 6 for some § > 0. We consider the variational principle
min #(z) ,
zEF

where ¢ is defined by

263

T
¥(z) = [ [G(t,;) - ,} <Jz,;>] dt ,
0

and where F is the following space of periodic functions having

period T and mean value 0

F={zEHl(51)modT|%,-szt=0} .
0
We proceed in principle as before. The functional ¢ is bounded

from below. 1In fact, if z € F we conclude from Poincara's

inequality 1zl < 35 lzl, that
T
f <Jz,z> < E% IEI2 .
0

and therefore by (13.1)

22) >3 (£ -3 1202 - 1y ,

but by assumption 1/b > T/2n. As G is convex one finds from
{13.1) the estimate |VG(y) ]| <c(lyl +1), ye r?™ for some
constant C (see Exercise 1l). We can therefore proceed as

in the proof of Theorem 11.1 to show that a minimizing sequence

converges weakly to some z, € F satisfying

¥ =min ¢{z) = ¢(2,) .,

2€F
and hence
T
! <VGit,z,) - Jz,,z> = 0
5 R

for every test function f € F , Consequently z, solves the
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Euler equations

ve(t,z,) - Jz, = B

for some constant B € R”, and so ;, = VH(t,Jz, + B). There-
fore x = Jz, + B is periodic with period T and satisfies

the equations ; = Jé* = JYH(t,x}). It remains to show that x
hence z, is not a constant solution. But this follows from

a > 25/T as follows. We define the test function z by

2 2n

W= —= g A ER

z(t} = A cos wt + JA s8in wt , T

lying in F, and substitute it into ¢, One verifies readily

using (13.2) that

T a2 X
oz) < z’lal® (-39

if |A| is sufficiently smal). The expression on the right-hand

side is negative, hence p = ¢(z,) < ¢fz) < 0 and therefore 2z,

cannot be zero. This finishes the proof of the theorem. .

{c) Relation to the Poincare-Birkhoff Theorem.

We shall show that for n = 1 periodic sclutions can be

established without the convexity assumption., We consider in

R2 a Hamiltonian system H(t,x) = H{t+T,x) which satisfies

alx +ol|x]) as |x} ~ 0

JHx(t,x)

JH, (t,x) = bIx '+ o(|x]) as |x| ~= ,

I

uniformly in t for two constants a and b. This system has 0
as an equilibrium point and is asymptotically linear. The
linear systems given by aJx and bJx represent two harmonic
oscillators.

We claim that the system ; = JHx(t,x) has a nontrivial

periodic solution of period T provided there is a j € Z such

{13.3) a<ij 3% <b

or b < j 3% < a, This condition is satisfied for every

T » 0 if a and b have different signs. We shall prove this
claim by means of the Poincare-Birkhoff fixed point theorem.
Proceeding as in the proof of Theorem 9.1 we introduce
symplectic polar coordinates x; + ix2 = /38 e1® such that

the systém becomes

8 = Hy(t,0,R)
R = -Hg(t,8,R)

with ﬁ(t,B,R) = H{t,x). We define a measure preserving

homomorphism of an annulus by
(8y,Ry) + (8,,Ry) = (8(T) - 2v), R(T)) ,

where 8(t} and R(t) are the solutions of the equations having
the initial conditions 6(0) = Bo and R{Q) = Ro. The inner

boundary R, = 0 remains invariant and on R

B

Ty ™=

ry =



364

. T .
8; - BO = Ta - 2nj - Zn[a T 3] <0

by (13.3). Similarly, if R0 is sufficiently large we find:

. 1
8) = 85 = Tb - 27j o(—ﬁa) > 0,

Therefore the twist conditien required in Theorem 7.3 is
met and we conclude two fixec points for the map which by
construction gives rise to noaconstant periodic solutions
having period T.

Incidentally the last rt-tement can be generalized
to higher dimensisns, that is to systems H{t,x) = H{t+T,x)

satisfying

i

JH_ (t,x) JAX + a{lx|) as |x] + o

JH Lt %) = JBx + o(|x]) as |x] + =

uniformly in t for two Symmetric and time independent matrices

A and B. There i an integer ind(A,B,T) € 2 depending

only on T and the purely imaganary eigenvalues of JA and JB with. .

the property that if

pPossesses a nontr vial periodic solution of peried T. This

integer does not vanish for instance if A< 0 <BorB <o < A.

In dimension two the condition ind(4,B,T) # 0 is precisely

the condition (13.3) if gJa and JB have the imaginary eigen-

values ia and ib respectively. The proof of this generaljza-

tion uses as topological tool the generalized Morse theory

developed by C. Conley, we refer to the paper {1].

{1}

H. Amann and E, “ehnder, "No:trivial solutions for a class of
nonrescnance problems and applicatioin: to nonlinear differential

equations,* Ann. Sc. norm, su;.. di Pisa, 1980.

indA,B,T) # 0 the Hamiltonian system
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We discussed the above results because of their
intrinsic interest and the use of calculus of variations
to establish the existence of pPeriodic orbits but actual
applications of these results are not yet available. As
for the comparison with the Poincare-Birkhoff fixed point
theorems it is to be said that 4 genuine generaljzation
of this theorem to symplectic mappings of higher dimensions
has not been found., of course, if additional assumptions
are imposed in the interior such results do exist as we
have seen in Section 8 but have the drawback of not
being applicable to higher iterates. It isg one of the main
strengths of the Poincare-Birkhoff fixed point theorem to
yield at on&e infinitely many periodic orbits. This cannot

be said about the results discussed in this section.
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1.

(a)

(b)
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Hint: Argue by contradiction and assume that z, has

period n~IT for some integer n > 2. Show that the
fah < satisfi t e

Assume G € C (R) is couvex and satisfies test function z(6) = n z,(%) catisfies

Gi{x) = Clxl2 + M, x € R", Prove that 9G is linearly

T
bounded i.e. [VG{x)| hl c' (=] +1). ¢(z} = n ¢{z,) - (n-1) I GlE ;,} dac .
0

Hint: G(x + €y} - G(x) . <VG(x),ey>, € » 0. Prove /
" —

[veix)| < -‘23- {c([x| + g]z + M}.

N2 é(l*\
Let x{t) be the T-pericdic solution found in Theorem 10,3 . . v
for the case that H is independent of t and let

H(x(t)} = h.

Prove o
T*h=-u+ % I <Jz*,;,> dat ,
0
where x = Jz_ + B and u = ¢(;,‘ are as in the proof £

of Thecrem 10,3
Deduce the following estimate relating the energy h

and the period T of this per.cdic solution:

h ir‘ﬂn—';!r e
b~ oW
Hint: Integrate G(y) + H{x) = <x,y> for x{(t) and
yi{t) = ;*(L) and wuse the estimates in the proof
of Theorem 10.3
Assume H is as in Theorewm 10.3 but independent of t.
Then the theorem guarantees a nonconstant periodic solution

z, for every given period T in the interval b < 2%/T < a,

Prove that this period i1s minimal.,

.

ey
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CHAPTER TI1. INTEGRABLE [IAMILYOMIKN SYSTEMS

1, A Theorem of Arnold and cst

{a} Definition and Examples

In this chapter we consider a pirticularly simple
class of Hamiltonian systems, the so-called integrable ones.
They are characterized by the propert- of having sufficiently
many integrals such that the task of colving {or "inteqgrating)
the differential equations bec :mes cr entially trivial,
For a gencral system of differvntial quations in R™ this
would require m - 1 integrals but f- . Hamiltonian systems
in R2n this requires only n integralr,

Before givi: g the formal definilion we recall that

n
w= § dy. A dxj defines a rvaplectic structure in R2n with

j=1 )
Poisson brackets

n o
R k- I '
i=1 33 ¥y
) . 2 o . . 2n
For any function H € C"{D}), wlhere D is a domain in R we
define
T (am M
L R il -l o
3=1 ] b 373
so that
X;F = - {H,F} .
1

A function F € C (D) is called an integral of the vector

field X, if X.¥ = 0, but dF # O in D.

" ' Thus F is constant

along the orbits of XH.

32

Definition. A Hamiltonian vector field XH is called
integrable in D if it possesses n integrals Fj € CZ(D) with

the following propertiess

(1) ar,,dF,,...,dF_ are linearly independent in D
1 2 n Y
(1.1) (ii) {H,Fj} =0 in D

(iii) {Fj,Fk} =0 in D .

It is not difficult te generalize this concept to
symplectic manifolds M with a symplectic 2-form w. In this

case we defined {sec Chapter 1, Section 7) x" by
*) = - dH

for any H € CZ(M) and

{r,g} = w(xF,XG).

Then we call x} integrable on ({M,w) if the conditions (1.1)

{

hold with D replaced by M. 1In most applications it suffices

to work in a domain D in Rzn.
In the above definition it is essential that we require
the existence of the integrals Fj "in the large”, since
locally, i.e. in the neighborhood of a point p € M which is
not a stationary point any Hamiltonian system is integrable.
Indeed by Theorem 4.2 of Chapter I we can introduce loc.tl
coordinates such that H = ¥, so that Fj= yj define the irtegrals,
As a rule we will require that the domain D or the

manifold M are invariant under the flow ¢t of X,  , i.e.

H

¢t(D) =D, t €R .
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A simple example of an ‘ntegrable system is given by

Example 1: If
H = H( v} € c4(p,) p, ¢ r"
. Yyeer=alpy 27 2

is independent of the xj then Fj =Yy define n

integrals satisfying (1.1) in 0 = R" x DZ'

Example 2: The motion of n L.rmonic oscillators is given by
n
B o= % I pt o+ m?q?) P w, >0
j=1 173 J
in R2n; This system is integruble with

§ (5= 1,2,000,m),

2 2
Fj (prq) = I’j + qu
but we have to restrict ourselves to the set
D = {p,q | Fi+F, «o+ F # 0}

where the dFj are linearlv indcupendent.
: : Lo
Actually Example 2 is a special case of Example 1 since
the symplectic tronsformation

e

g. = /—" COS X,
J "' wj J
(1.2}
.= V2 . gin X,
Py wi¥y SERRy

L
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and Fj into ijyj . and this is a special case of Example 1.

But in this case the xj are to be identified modulo 2r. Since
the xj—variables do not occur in Example 1 we can egually

well consider

Example 3: Set

Ho= Hlyy,eoeoyy) € c*tw, , D, €R

and consider the flow xH on the manifold

where ™ = rR"/z" is the torus obtained by identifying
X,x' € R® if x - x' has integer coordinates, i.e. X - x' € Zn,
the lattice of vectors with integer coefficients. This system

is again integrable. It has the property that the manifolds

P S

fxoy | yy = 5}

are tori and hence compact. It is a typical example and we
shall show that many integrable systems can be brought into
this form, if the variables are introduced in.an appropriate
way. In physics or mechanics these variables are often
called action-angle-variables:

The xj are the angle variables

and the yj are the action variables. The last term is related

LR

to the action

for a closed curve Y. For example if we take y to be the

ellipse
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2 2 2 0 .
py + iy = a) s P: % P s q. =g, for 32>2,
then the above action is equal te

2n

4}

El
|2
[

-

b

if x,y are defined by {1.2). Hence the yj are obtained as
“action integrals” by differecunt curves on the manifolds

Fj = cj. incidentally, integrable Mamiltonian systems played
a role in the old guantum the ry of Bohr-Sommerfeld where

the values of the action intecrals were guantized. One

major shortceming of that thecry is that it is only applicable

to integrable systems which ccnstitutes a very restrictive,

even axceptional class of Hamiltonian systems.

(b} Sstatement of the theoren

Since the Fj are constant along the orbits of X,

jt is natural to consider the "level sets™
= [ . = . i = 2,400
NC {m 8| | thm) C]r ] 1.2, nt,

vhich are n-dimensional submanifolds of M. It follows from
(1.1} (i) and (iii) that Xp ¥, s.-- X span the tangent
Fl bz F

n
space of N, since they arc linearly independent and

X, F = {I‘j,Fk} =0 ,
Giwmilarly, by (1.1} (ii) we rove

X, F

WP = [ F ) =0

which shows that X, is tangential to N, and defines a vector
field on Nc , the restriction of x" to Nc. Moreover, the
manifolds NC are Lagrange manifolds which means that
; k)= {Fj,Fk} =0 .

We note that the choice of the individual integrals is
rather unimportant and they can be replaced by functicns of

the Fj , say uk(F), where F = (Fl'FE""'Fn)‘ Since

(o € ()} ) ? g Mg }
o (F)u, {F ) i {F.,F.
K 3 i5=1 atF FyY i)
these uk(F} are ;lso in involution, and if uw = (pl,uz,...un)

has a nonvanishing Jacobian then the duk(F) are also lincarly
independent. Of course the level sets Nc are up to the para-
meter choice independent of u. We will reserve the freedom
to replace the vector function I = {Fl,Fz,...,Fn) by v o F.
The following theorem will show that if one of the
manifolds N which we take Lo be Nj is compact and conrccted,
then it is an n-diunensional torus, and in a neighborhood of
this torus the vector field X, can be written in the form
of Example 3 if appropriate coordinates are introduced,
i.c. we can introduce action-angle voriables., Ve describe
the statement on a symplectic manifcld (M,w} of

dimension 2n.

*x
Theorem 1.1, Let o= (Tl,F?,...,Fn} be a Cz—ngtor—

function on a symplectic manifold (M,w), where dim M = 2n,

T his Ciicorem 1s due to Arnold for the special case M = r%0
however, he requircd an additional assumption which was
removed by R. Jost who progod it in the general case.

r
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and assume that F satisfies (..1) (i) and (iii). Moreover,
assume that the n-dimensional submanilold N: = F_1(0) M
is compact and connected. Then
{a) N = F_l(O) is an emb2dded n-dimensional torus Tn,
(b) in addition there is an open  neighborhood U(N) € M
which can be descrihed by coordinates xj,yj in
the following manner:

If = = (xl,xz,...,xn) are variables on the torus

1]

T o= Rn/zn and y = (yl,...,yn) € D, where D, and D, are

some domains of RD containing y = 0 then there exist diffeo-

morphisms
g 7" X D) ~ U{N} .
H: Dy > Dy, wu(o) =o ,
such that
(1.3) WeF»* y=y ’
N n
(1.4) Yw o= F ay. podx, . s
j=l J ]
In particular, ¢ maps the torus ™ x {0} onto N = F—l(ﬂi

0
and the torus T x {y} onto N. N U uhere v = p(e).

Coroilary to Theorem 1. Any inteyrable Hamiltonian
system given by H with integrals Fj is by the symplectic
diffeomorphism y transformed iuto the following system

n *
on T x D¢

Hoey = h(yl.---,yn) '

377

where xj,yj are cancnical coordinates and x € T" angular

variables mod 1. In particular on U(N) the Hamiltonian

is a funciion of the integrals Fl,...,Fn.

Proof c¢f Corollary: Fj e ¢ and therefore by (1.3)

the coordinate functions yj are integrals, therefore

0= (H oy, yj}={h,yj}=£?_~h,
j

and hence h does not depend on x.
Thus near a compact connected level surface F'l(O)

the flow is extremely simple:

< -
3 Tayy e ¥ 70

-1t is easily "integrated" with the solutions

ah o
1.5 x.(t) = = ) 3 = 3 i

hence the name integrable system, In more geometric terms

t

every torus T" x {y} 1is invariant under the flow ¢~ of h,

and the restriction of the flow onto such a torus is lincar:

{1.6) ¢t|Tn * {yl: (x,y) #> (x + tw, b2 I
where w = wiy) = g? hiy) € ™ are the so-called frequencies,

If the inteyrable Hamiltonian system is nondegenerate in

the sense that

(1.7) Det ["—} (y)] #0, yebp,
3y
then the freqguencies wly}) = %E {y) vary from torus to torus,
8

Ty ®

iy

Yy
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We can distinguish tori on which the wy,wy... w, Aare

rationally independent and those where there exists a

nontrivial relation jlwl + + je, = 0 with integer

coefficients jk' in the f{irst casc each orbit is dense

on the torus, as is well known by a tneorem of Kronecker.
In the sccond case the closur~ of cach orhit lies on a lower

dimensional torus. Such a relaticon jl“l + +cv + 3w =0

nn

is called a resonance condition. For some tori one will
have sevceral resonance conditions and in the case one has

n-1 linecar indepcndent relati ns one has w,. = Cdp with

integers g, and o » 0. fthen a2ll orbits ave periodic of ¥

pariod c_l. Tn view of Lemma 1.3 of Chapter 1T all Flojuet
multipliers of these periodic solutions are L and under small
perturbations of H such tori of periodic orbits will generally
be destroyed. This tact can be used te showy that near an
integrable system there are Hamiltonian systems which are
not integrable. 1n other words integrable systems are guite
excoptional.

We remark, that if M iz a domain in Rzn, the above
wolutions in U(K® are in the original p,q coordinates

represented by trigonometrical series in t. Inleed

- Z211<9 b
(poa) = wle,y) = T as T

3w

and therefore we find by mearns of (1.6)

279

voo ot oy Hpaqr = ¥ oo ¢y

- 3 a. ty) e2Hi<j,x+tm>
Lon T

cri<i,weet

= 7 b.{x,y) e
jezt 3
bj(x.y) - aj(y} E2ﬂi<j,x>

where w = wi{y) = %Y hiy) -

although the solutiers of integrahle systems have
simple behavior it is by no means ecasy to recoqgnize whether
a given Hamiltonian system is integrable or not. This
reguires finding the integrals and then the action and
angle variables whose existence is guaranteed by the above
theorem once the integrals arc found. In principle, this
latter step requires just the integration ef functions, or
a "quadrature" as it is expressed in the older literature.
In the later sections we shall describe such uncrpected
integrable systems ond methods of finding action-anygle
variables.

We mention that the action angle-variables x,¥ of
Theorenr 1.1 are fived to a large exlent. TIn case x',y!
is another set of such variables with the same properties

as in that theorem then there exist a scalar function

wiy) , @ uvaimoduler matrix M ard constants c € P
such that
(1.8} x' = Mi{x + %gd ] yho= (MT)Fly +c

provided (1.7) holds.
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Indeed under the assumpt sn (1.7) there are nany tori
with dense orbits from which o e concludes that y' = f£(y)
holds. Since the mapping (x,y}! = (x',y') is canonical

it follows from pr-vious considerations that

T _ aw
fy(y)x' = x + W

is the most gener 'L extension of y' = f{y) to a canonical map.
Finally since thi. mapping must preserve the lattice 2" the
matrix Ey must h -e integer coefficients as well as its
inverse, hence it is unimodular proving (1.8).

Thus on earh fixed torus the angle-variables are
fixed up to & phi "u-shift wy end up to a change of basis of
the fundamental gioup on TV, uviver, by M. But straight lines

on ™ are mapped :.to straight lines under (1.8).

{c) Proof of Th »rem 1.1.

The proof proceeds in three steps: First we show that
Ny ic a torus. Oc.ond, we introduce coordinates X,y local];
near some point [ on N0 (see l+-mma 1.2) which is essentially
contained in our ;.evicus considerations in Chapter I, Third, we
extend these coorw.inates to a reighborhood of the torus.

The normalizition of the periods requires zn wdditiocnal
change of variables (Lemma 1.3} which concludes the proof.
Ta proﬁe statement {(a} of the theorem we recall that

the vector fields XF. span the tangent spuace of N = B

Since [XFj,an?
is a Hamiltonian *ector field with the Hamiltonian {Fj'Fk} = 0,

t. ]
Let ¢j3 denote the flow associated with xF_.

1.
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) t.
the vector fields commute, hence the flows ij also
commute, and we set

t b3 ty

4 = ¢ e P57 o cus o B t = (tl""'tn)'

n r

wherever it is defined. For PEN the flow ¢t(p)

leaving N invariant is defined for all t € R" as M is
by assumption compact. This follows from standard existence
theorems of ordinary differential equations. Hence we can

define an action of R" on N by

{1.9) t - ¢Tip)

for p&€ N ., Clearly we have

t

¢7e ¢%(p) = ¢**S(p)y , pen

n . .
for t,s € R'. HNow we fix the point p € N and observe that

(1.9) maps R" into N. It is an immersion, which means that
t ., : . .
d¢” is an isomorphism; this follows from the fact that the
vectors
tr 3 d t
d¢ (3;7} =5 ¢ (p} = XF'(¢t‘p))
] 3 ]

are linearly independent, The mapping (1.9) is onto N since
its imaye is both closed and open in N. fTherefore we can

use t = (tl,tz,...,tn) as local coordinates con N,

We denote the isotropy group of p under (1.9) by

r={ter" | ¢%p) =p}.

12

Kd

ol

Ty ™

Ly B

Ty -
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I is a discrete suhgroup of R™, i.e. o lattice, and therefore

it is generated by vectors v, Vg,....Vg € R which are
linearly independ:nt over R. Tvery (loment y 8 T 1is of the

form

with integers Ty - Since the map {1.79) takes t+y into

AT A ) ®
it gives rise to a diffcomorph-sm

¢U: I{n/.' + N .

. . n -
Since N is compact, hence alsn R /T compact we have d =n i.e. the
lattice is n-dimersional and so N is a torus,

For the sec~nd step we 1ned the consivuction of Toaal

coordinates near the point p € N which we kecp fixed.

Lems 1030 If Fj arc n functiong on a symplectic

point p has a neighborhood U :1d a diffeomorphism wo of a neighbor-

manifold (I,w) satisfying (1.1} (i) and {iid, Lincn every

2
hood VvV o©f the origin in r°" onto U such that ¢0(D,O) = P,

n
(L.10) ¢am = El dyk A dxk and Fj oy = Y. o
k=

- . c 2
where (x,y) are the coordinat.s in V € R n.
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Propf: By Darboux's theorem (sce Chapter T, Section B) tLhere

exists a diffeomorphism ¢ of V' € Rzn onto U such that

n
*
bow = _E dpj A dqj where Pyeqy are the variables in V'.

i=1
If we set fj = Fj o ¢ then we have by assumption

{fj,fk} =0 and dfj linearly independent.

By the consideration of I 84 (b) one can construct

functions gj(p,q) such that

{g_]'fk] = §. ’ {qj;gk] =0 .

jk
so that xj = gj(p,q), yj = fj(p,qj'defines a canonical map
¥: {p.g) — (x,y) of v' =~ V such that fj ° x“l = Yj‘
Thus ¢ = ¢ o x-l is the desired mepping.

0

Remirk. Any other coordinates x',y" with the properties

of (1.10}) arc reloted te x,y by

20
X' = X 4+ 3= L
Iy ! Y Y
whore Q = Q{y) is & scalar functien. This i an evident

consequence of the canonical character of the map
(x,y} — (x',y'} and the relation y' = y.
Third step: With the fixed poiut p € N we intrcduce

the coordinates x,y by the map

wo: Vo= 1u

of Lomaa 1.3 whoee U is a noiglbsrio d of p and VvV os toxiv.0on®
s

1

is an open sct containing the origin., In these coordinates
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’ t.
Pj a ¢0 =y, and therefore the flows Pal o $.3 o wo are This relation allows us to extend the mapping ¥y to
t t t
given by (x,y) + {x + tj.ej' 3 and ¢t = ¢ L, ¢22 ° +-r o ¢nn a mupping 0 defined by
1
by x
(1.12) B: ({x,¥y) ~+ ¢ » b (O,yd
- t
¢01 ST e by av) = Ixdt,y)
Geometrically (1.,12) says that we apply the flow
. : : t t t
if |t] is small erough, i.e. ¢t = ¢ll o ¢22 6 vee ® ¢n“ to a transversal section
{1.11) 6" a ¢0(X.y) - wo(x+t-y) . 8§ = wo(o,vz) of the vector fields xFl,....an , where

5 is a n-dimensional Lagrange-manifold. Setting x = 0
in (1.11) we find 0 (x,y) = wo(x,y) for (x,y) near (0,0}.
Since ¢t{0,0) is defincd for all t € R® it follows
from the standard theorems in differential eguations that
for any compact ball X aktout 0 in K" there exists a
neighberhood DZ(K) of 0 in R" such that ¢t(0,y) is
defined for t € K, y € DZ(K)' Thus the ﬁap 8 can be
defined ac a map taking X x DZ(K) into M. We will choose K

50 large that it contains the periods + Vi in its interior.

Lemma 1.4, The mapping 8: K x D2{K) + M defined by (1.12)

sutisfics

Proof: For (x,y) necar (0,0) we have 8({x,y) = wofx,y
and the statement follows from (1.10).
To prove the statement for all x € K we note that

C{x,y}) satisfies '
r

8{x,y) = ¢% o B(x-s5,y)

if x, x-s ¢ K, y € DZ(K). Heunce if x is near the arbitrary
15 , 16

ry ™

™

g W
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point s € K we have
0% = (45e8_ ) 'w = 0l (0

where G_S designates the mapp ng (X,y) » B(x-s5,¥} = wo(x—s.y).

Hence we have
n n
= = 1y . .—-5,} = dy, A dx.
8w 6w j£1 (y] A d(:-c__i 5]) jz y]

proving our claim.

Next we determine the points {x,y) which are mapped
into the same poiits in 17 under 6. For y ncar 0 wo determine

wk(y) € Rn such that

#
<

C(L.13) O(WP{y),y) = 0(0,v) . wk(U)

where v, are the 1-:sis vectors of T for y = 0.

To selve the equation (1.13) we consider the mapping
-1
p: (£, » {x,y) = g7 @ €lv, +E,n} '

which is well de;ined for {£,-} near {0,0) since {0,0) is a
fixed point of p. Moreover, wince Fj o ¢0(x,y) =Yy is

an intecyral we have

yj = Fj ° wotx,y) = Fj o 0{vk+£,n) = Fj o p e ¢0{E.n)
- Fj o wo(i.n) nj .
rrom Lejwa 1.4 we conclude 1hat
* n * n d
0w = jzl dyj A dxj . ﬂvkw = jil ny A dgj '

17
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where as above 8 is defined by B,(&,n) = G(v+E,n).
Hence for p = BFl o @ we have
Vi

«f D n
1y ax. = dn, A L.
o ! Yy A %5 ] E n dEJ

=1 j=1 J

Hence £,n are a set of variables which like x,y satisfy
the conditions of Lemma 1.3. By the remark following that
lemma p is of the form

30y 0,
(g, ~ [x =L+ Wy = n]. ke {0) =0 .

We return  to  the equation  (1.13]. Setting w, ly} = vy + £

we have to solve the equations

8{f+v,y) = 000,y)

if y is near 0. We have just shown that B(E+v, ,¥) = v enlL,)y)
aQ? k "0
= v, (e + 3y (y},y). On the other hand 8{0,y} = ¥g{0.y} by

definiliion. ‘Therefcre the above cquations are ecuivalent Lo

BQk
bl + g5 )] = 0y (0y)

1]

which have the unigue solutions

BOk
E"“ET (y) =0 .
an
Nence W, = Vi T iﬁﬁ ;, Or
awk .
(1.14) W, = T‘ with Wk(Y) = <ngy> - Qk(y) N

18
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This establ’ ihes the exi..ence of Wy = wk(y) as well
as the smooth depcadence on Y. The vectors wk(y) s k=1,2,...n
are linearly incependent being close  to wk(OJ = V.
The relation

X+w
¢ Foa(o,y)

(1.15) e(x+wk(y),y)

¢x°3(0.y) = B(x,y)

n

allows now the extension ® to P.nxD2 + M. This extended
map ¢ also satisfies the statecont of Lemma 1.4 and
preserves the lattice T(y) spanncd by the linear combination
of the wk(y) with inteyer coefticients. fTherefore it

gives rise to a diffeomcrphism
(1.16) 8y K/Ty) » ¥l y) numy .

One hes to convinc s oncrelf thait this 1ipping ie injective'
if y is in sonme possibly smalier  ueighborhood of 0. 1f , . .
this were not the case there would exist a sequence of pairs

of points (xv,yv), (xG,yv) with

B(Xv.yv) = U(x;.yv) . v, >0,

for which xv—xé 4 T(yu). ‘Taking a subsequence we can assume
* *
these sequences to be convorgent and .o+ u and x; > x' .
v
. N * * .
From the last relation we find 0(x",0) = B{x' ,0) , i.e.

*
x*- x'%e I'=1'(0), hence xv-x$ is close to a point in P(yv).

19

15 ‘ .

Since F(yv) is discrete with the distance between points
of P(yu) greater than a constant § > 0, uniformly in Y, o«
it follows that xv—xG belongs to F(yu) for sufficiently [
large v. This contradiction proves that (1.16) is

injective.

vy =

Finally we normalize the periods Wy by the canonical map

o: (x,¥) + {x,y) given implicitly by .

e
1]

W,
3 {y}

PEERR L
: X
k=1 K Py

wherc Wk is given by ({1.14). <This mapping is canonical since

it has the geunerating function

sy -

n
S(x,y) = § % W (y) ,
krl kK

with nonsingular S- as the wk(yJ are linearly independent.
HWe denote by u thé';agping y + ; = W(y}. Then we see that g
maps the lattice points (ej,§) into (wj,y) € T'(y) vhere

y = "1$) . Therefore the mapping

¥ =0 0: k" XD+ UN) CH

iy >

satisfics by (1.15) end by Lamma 1.4
Vixte s, 9) = W(XF)
? - -
Vi o= dy. A dx. ,
j=1 ] 3

and induces the desired coordinate map

R"/2% x D, + vy e m L

+
-5 a3

20 .
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Moreovor, g o F ol = ; and ruiabeling ;,; by X.yY we

have the statement of the thecrem.

{d) Generalizations

1If in Theor.:m 1 we drop “he assumption that the

submanifold N = le(O) is compnct, and merely assume H to be

connected, then N is not a torus anymore, bul our proof

shows that N is an embedded o -linder Tn_kxuk, for some

0 <k ¢<n, We have to requirc howoves that the flows of the

vector fields X do exist for all times on N.

F
]

For N comnack this was aulomatically the casc. The lattick

s 1 T F s,

7 is then n-k dim nsional aad we have only n~k periods.

1f, in addition, e assume the the flows of XF exist

3
manifold M, then Theorem 1

n~k 14 .
L A In Lhigs case uwe

for all times on the symplect ic

holds true with 7" repliced by T

have n-k angle variables. We shall meet such a situation

with k = n later on. N
1t can happin that a cy:vem has nere than n indopzndent

integrals, where dim M = 2n: in fact the Kepler system is an

example, as we have scch. We have to keepr in mind that lhese

integrals cannot pe all in involution, since the dironsion of

an isotropic subspace of a synplettic vector space is at most n.

1n order to generalize Theorem 1 to such a situation we consider

on a symplectic mnonifold (M), éim M = 2n, n+k functions

(0 <k < n)

el ¥ F

n-k’ P41t " otk

with the properties

(i) dr,, dF vees GF are linearly independent

~ 2t
(i) {Fi,'F‘j} =0,

(1.17} n+k

1 <i<mnkandl < ]g ntk .

j.e. the first n-k functions arc in involution and commute
with the remaining functions Fj , n=k+l < j < n+k .

This generalizes the case k = 0 considered so far.

n+k

1f F denotes the map F = (F F }: M+ R B

17" " " n+k
it follows from (1.1 that the level sets

-1

i) ¢ M for k

EERn+

are (n-k})-dimcneional submanifolds of H which are isctropic.
Theerem 2 Let F =(F1,...,Fn+k) be a c®-vector function
on the sympleotic manifold (M, w) with dim M = 2n. Assume'
the functions Fj satisfy the properties (i} and (ii)
of (1.17). Assume morecver that the (n-k)-dimensional
submonilold F—l(O) =1 € M is connected and compact. Then
(a) Yoy is an embedded (n-k)-dinensionzl torus ok,
(k) there is an open neighhorhood U(H) € M of N which
can be described by “angle and action" variables
in the follewing renner. 7Thore 15 & Glifeomorphicn
v: T x Dl* u{Ny b, © R ,

n-k : -
T x17, hovina Lhe cocrdir-bon

1 (ot 1),

SRR
Yyre--eYnox* pl,...,pk, ql,...,qk , and there are
two diffecomorphism By D2 > Dl with ul(O) = 0 and
iyt Dy - D, with pZ(O) = 0, whecre nl’hz arc open
22
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Exercises: Ch. 3, Sce. 1.

neighborhooa., of 0 in'Rnik and D3 R D4 are open

n--k
’

neighborhoods of 0 in R such that : i.

Y w0, e FLL) 0 b= (y,p,q)

By o “'1"'°’Fn—k) c Y=y

(ii) v = wy , with

n-k }}(_ 2
wy =} dy. Adx. + ¥ dp A dg. . )
0 iz S J

R . . n-k n-k

The diffeomnurphism ¢ maps T" ®*x{0} onto N and T ={g}

onte F-l(n) 7 U(N} where g = uiltr’;). . .

As a conscquence any lar:ltonian systcm XI having

1
the integrals F, satisfying (1,17 is by the

4

+ 1 <3 < urr

symplectic map ¢ transformed .nto the system

~k

n:
H e 'P = h(yl.---.yn__k) aon T x Dl -

Hence on U(N) the Hamiltonian is a function eof the integrals' 3.

n~kx

Pl""'pn—k alonc, on T D

1 the Hamiltoniun equeations . .

become
i =3 niy} v = 0 d b= g = 0
= 3y niyr Y = an P =g .

We omit the proof of Theorem 2 since it is similar to that

of Theorem 1 (see Exercise 4).

23

Assume the functiocns Fj + 1 £ 3 < n+k, satisfy (1.17).
Let N = F (o) pe compact and connected. Prove that N £

is an enbedded (n-k)-dimensional torus.

s

Hint: Proceed as in the proof of Theorem 1.

Let fl,...,fs r 8 < n be functions on a symplectic
manifold (M,w} with dim 1 = 2n such that
{1) dfl,....df linear independent,

5
(2) {f,6,0 =0, 1 <i,j<s.

Prove that every point P € M has an open neighborhood #
UCH and functions fs+1""’fn defined on U suech

that the functions fl'fz""'fn satisfy (1) and (2)

Ty

on U with s = n .
Hint: there arc local
3 .
= pe— 1(J<S-
R T - =
3 J
Assume Fl""'Fn+k satisfy {1.17). Prove that every

By the Fribenivs theoram

coordinates xl,...,x2n such that xf

point p € § = F*J{O) € II has an open neighborhood

UC M and a diffeomorphism y: v =+ U, where V is an

Gpen neighborhecod of 0 in RZn vith coordinates HireosX '

n~k

A

yl,...,yn_k . ql....,qk ' pl,...,pk s Buch that

Y(0) = p and
. n-k k
(1) pw= 7 dyg A dx; +

j=1

2 P 1 = . i
(2) r 4 yJ [ = * .
(3) F. o ¢ = fj(YrPfQJ, n-k+l < j < n+h with fj(O) = 0,

24 i
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Show that ty.p.q) = chl""'Gnik)' Gj = Fj e Y.

Hint: Use Ervcrcise 2 eénd Darboux's theorem as in
the proof of Theorem 1.

Prove Theorem 2.

Hint: Proceed as in the ~roef of Thecorem 1

using Exerciscs 1 and 3.

25 .

2. The Delaunay Variables

{a) Commuting integrals for the Kepler problem

We will introduce astion-angle variables for the Kepler

problem in ® . Tts Hamiltonian is given by

(2.1) H = lel = lal .

o

on account of its rotation symmetry it has the integrals

P 1 =i <3 £n

P.o= @; Ps -4y Py <

1]

which, however, are not in involution. In fact one computes

(2.2} {rij ' ruB} = Tia %58 " Tsa 838~ Tig Sja * Tie Sia
{(See I, %6, FExercise 2).
The guestion arises whether one can construct integrals in
involution. Such integrals are indeed provided by the
following
Lemma 2.1 The n-1 functions
2 2 2
(2.3) Gy = ¥ ri.o= 1 ta,p. - a.pd°
k 1<i<jex M <<k e

k = 2, 3, ... Ity

are in involution.

26
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Proof; From (2.2) we obtain

since Fij = = Fj. . Therefore, for «,8 <k we find

2 2
{G G} =2 i {o .,
k' l<a<p<g k
which proves the lemma.
We record : -
k
- zizl [1a PiB
k
2
= _' r
{Gk ! FuB} 1F i£1 i+ TiB
0 othe:wise,

for 1

for 1

| A

[ A

1A

| A

1352

Thus we have the n integrals in involution:

Their gradients are linerly independent in an open set

as we will show below.

(b} The flows for X5 i normalization of the periods
b

We determine the commuting flows generated by the
Hamiltonians (2.3) . Obviously it is enough to study the

flow of

2 2,2 2
2.4y F=g, = ] Cagp; - q.p)” = |q]® |p|°- ¢a.p;

since those for Gi are analogue in Rzk. The above Hamil-

tonian was discussed already in Chapter I 55 and we saw,

that for Gi > 0 all solutions are periodic of period

21 2w
(2.5) 2/F 2Gn

In general, 1f F = F(g,p) is a Hamiltonian for which
the solutions on the energy surface wp | F la,p) = E } are
periodic and have the period T = T{E) then the system with
the Hamiltonian ¢(F} has solutions of period

..1 [}
g—% T(E) on the energy surface ¢(F) = ${E) if ¢ (E) # 0.

28

r
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This follows simply from the farct that the system

3F

= J57

n-ir.'h
TN

transforms under the change of the inde :»ndent variable

£+ s = ¢ e
into the system
dz _ ¢ aF A
ds - ¢ (F) J == = J 37 (¢(F) )
with the Hamiltonia.. ¢{¥) . -
If we apply this remark *o the "amiltonian (2.4)
with ¢(E) = VE ivhken accordirg to (2.5) the period becomes
’ 20
2/F + e = 27 .
2 /F
Thus the system with the Hamiltonian “n has solutions of
period 21 , provided G, > 0
We apply the same remark to th: Hamiltonian (2.1) wher?
we restrict ourselves to negative valves of H(g,p) = E <0
w v
Then all solutions have the periods
- 3/2
2n ( - 2H) .

To normalize the period to 21 we t .he

san = (-2m /7

and set

-1/2

1/2 + 2lql™ .

{z.6) G = (-2H)" 2

n+l (= |p

an
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For definitiveness we take in (2.3) and (2.6) the square

root defining the Gk nonnegative for k > 3 , bhut set

G, = 9Py ~ Py

which can take both signs.

{c) The flows ¢ktk of X, )
- - k

We turn to the gecmetric interprctation of the flow

¢ = exp(tXG Y.
n

For this purpose we interpret the points (g,p) & R2n as
g, p in rR® . Every such pair of

pairs of vectors

independent vectors spans a {two-dimensional) plane E in rRM:

E = span { q, p JCR" .

It turns out that the pair qlt) , pl(t) defined by

{ glt), pity }» = ¢E(q,p) stays in E for all t, i.e.

E is fixed in R . Moreover, the pair gqit) ; pl{t) is ob-

tained from q(0} , p(0) by a rotation in this fixed plane

by an angle t.

To prove this fact, we apply a canonical transformition
{q,p) + (Rg, Rp} where R 1is a rotation end bring E into
the position

RE = span{el r €y }.

30
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Clearly the vector yjeld X is tangr:.t to the snbspace

G
. n

RE x RE in rZP and on this subspace

(2.7) G, =+ lgyp, - ay, )

n —

which, up to the sign, defines the di:ferential egquations

ql = - Ty Pl == pz

- ' .

9@ = 1
From this one reads off the cl.im.

Similarly, the flows

t R

(2.8) ¢, k= exp (t, ka ) k=2,3,..., n
correspond to rotations about the anc - tk in the plane
(or line or point)

Ek = “k E
obtained from E by the projection LIV R" - Rk P

k n
n = e, if = .e. .
W4 jzl 985 q jzl 4585

Finally the flow (2.8) for k - n+tl moves points
in E along the elliptical orbil at a tpeed proporticnal to

the actual time hut so normalized that one revolution cor-

3l

corresponds to an increase of

Ho 1

this parameter is called the mean anomaly.

{d) Linear independence of the de

Lemma 2.2

{2.3) and (2.6)

0

Iy

2
G,

The dG§ {j =2, ..., ntl) are linearly independent at precisely

< G

The functions

G, , G

2

A Gn+1

satisfy the n inequalities

2
3

those points where

(2.9) 0 <G

The first

convention of taking non negative roots.

. < G

2

. <Gn+l

holds.

defined by

.-

tn+1 by 2w . 1In astronomy

n~1 inequalities are evident, with ocur

equivalent to the incguality

2

(2.10} -2HG
n

This is ohvious if, Gn= 0, and if Gn > 0 we have from (2.4)

cr

with equality if and only if

<

2
- |p|

1

= {5

+

2|q|

- lpl -

<p.,g> = 0, Hence

2
< =lpl + 2

G "

n

The last one is

F

ey ™

.y -

ey =



oz

which proves (2,10}. We have equalité only if
-1

{(2.11) ° 6_>0, <p,g> =20, lp|l = G,

n
This situation correspends to -~ircular orbits of

the Kepler problem.

1f
k=1
G 7 Ck1 T j£1 €4y Py = Pyt = 0 kD0

. : . 2 2 2
or if G2 vanishes then obviously de : de-l or dG2

vanishes making the dG; linearly deperdent. Similarly

- A
G2 - G2 = 0 implies drz - qu = { as one verifies
n+l n - ‘n+l “n T
from (2.11}).
¥
The proof of the converse, nan<-"y that the dGi =
2 Gj de + hence the de are linearly independent in the
case (2.9) will follow irom the consiueration below.
Lemma 2.3 For any k =3, 4, ..., n the conditions
0 < Cry = %
1
are equivalent to
; _ - n _ k-1 | w e
dim Ek-l =7, Ek fed “k—lR = 1 ;
in other words Ey =M E is transv.rsal to
k-1 n . n
= in 1. R .
R ﬂk—l R Lk
33

4o

The proof can easily be derived from the explicit expres-

: 2 2 2 .
sions for G, _, and G Gy - Consequently the first

n-1 conditions in (2.9)imply that Ek = Ty E are planes for
k=2,3, .... n and that Ek intersects R]""'l

in a line. The last condition in (2.9) amounts to a violation

transversally

of (2.11) , i.e. it means the Kepler orbit determined by q,p

is not a cirecle.

{e} Construction of the Section S and the Delaunay Variables.

Now we apply the same construction as in Section 1 fox
the action-angle variables using as transversal section S
the Lagrange manifold

(2.12}

. 2
s = {q,p 1 pl =0, qj = U-Pj >0 for j > 2 ; ]qll |P| >11.

To motivate this choice, and at the same time give a geometrical

interpretation of § we proceed as follows: For a point (q,p}

in the domain

2 2 2
p={agmp]| 0 <G, < Gy <...< Gl 1
we choose tn+l so that
“tntl * *
$.47 @) = ta ., p)

lies at the perihelium of the cllipse, which is characterized
by

(2.13) <q ,p>=0 ., e 1 >0,

34
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* * .
(See (2.11) ). The point (g , v ) lies in the plane En which
-tn . . . . . . n-1
by ¢n *1is rotated into the line of intersection with R P
say given by q, =90, P, > 0 . Procecding in this way we

achieve that _
) u
02 o cer o (w.p) = (@ , p)

satisfies aj =0, >0 for j> : Hence by (2.13)

{(which is rotation invariant) we got 1 Bl = 0 , hencu

N

pl—D and .
w22 Y2 2 Al
el “6, = IB]

hence (E. ?:) £ S .

Thus S des:ribes the states where (d,p} lies at the
perihelium of the ellipse, thc orbit unlane is E2 and g lies

on the 9, - axis,

Lemma 2.4 : If yc " is restricted 1o the set

— n [
@={yeRrR ,0c« fy ! < v - <y} .
then the equations. .
Gpiq (uip) = ¥ (k =1, 2, ..., n)

have a unigue solution (¢,p) = Aly) 1in 5. Thus mapping

Y * Aly) defines a diffcomorphism X :Q -+ 5nD

with D being the domain of the theorc.: in section 1.

Proof: For (g,p) € S the equatiors in quection become

35
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9GPy = ¥
(2.14) layt Imy,y plo= v, for k = 2, 3, ..., n-1 .
2 = -2
- Ipl® + 2] =y

The middle eguation for k = n-1 gives the relation

|ql[ ip| = ¥n-1 VYith which we eliminate |q1[ from the last
equation
2 -1 -2
St 2lpt v o =y
or
-1 2 -2 -2
el - y0y ° = Yp-1 T ¥, >0 .

This defines two positive values for lpl . but only one with

Ie] Yp-1 > 1 which is equivalent to the requirement

iP|2[ql] > 1 in 5. This defines |p| hence Iql[ and there-

fore Pry1 @8 positive root of

,—2 2 2

(yk b Y for k=2,3,..., n-1 .,

vy = |
Prep = 19
Finally we choose the sign of Q) ®0 as to satisfy the first
equation of (2.14). The rest of the proof is clear.
Now we can verify that the de are lincarly independent
It suffices to check this at points Sn D.

at points in D,

We could use gy -« Pj ¢+ 322 as variables, but it is more

36
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convenient to use a. = 4;P..y J 7 beead, . .
J ] of variables in polar cocrdinates. This well known procedure

e, = 9, since g, # ¢ in D. In t! ~se veriables the is possibly shorter but the interpretation of the variables

Jacobian is not at all transparent.
3 G -
X In case n = 3 we seec that
—_—
daj

. Gy = 4Py = 9P
is a triangular matrix which evidently does not vanish since

s h -— 1
the a¢. = 9,p. £ 0. is the angular momentum about the g, axis and
3j 1Y5+1
Gy = lg & pl
Now we define the Delaunay vari bles X, .
Y 3’ y'J . . is the length of the total angular momentum, so that

{(j = 1,2, ..., n) like in §1 bv the & ‘ping
62 = G3 cos j
x * x
P0Gy v eyt egt T e el ) . _ . :
n where j is the inclination of the orbit plane E against

2 3
which by construction maps the follow ng domain R™ = ﬂzR . From the formulae of Chapter I we see that
2 N

Y o ™ x R+ D where T = R" /2nzy" G, = Ya , Gy = Gy 1 -¢ = /;(1-5 ]

as a canonical diffeomorphism. Moreo'.r, where a is the semi-major axis of the ellipse, and &
its eccentricity. Thus the conditiong (2.9) exclude colli-
I
= - ion - orbits, circular orbits and those with inclination zero.
Grqy @ vix,y) Yy 1 <k < n-1 . . sion
2 For those orbits one needs different cnordinate patches.
H e ¢(x,y} = -2yn

(see below)}.

(f) Interpretation_and Poincaré Varisbles.

These variables are of practicul interest only in the
case n=3 . Usually they are introduc..® by solving the Hamil-

ton-Jacobi nquations for the Kepler proilem using separation

. 37 ' kY
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(g) The Floquct multipliers for thegperiodic solutions

of the first kind.

In Chapter II, 54 we studied the three body problem
in rotating coordinates. The equations (4.7) (Chap. II) 2

become for yu = 0

[ X]
[X]
3
T

wt 2iaw - et W= -

~

which have among their solutions the circular orbits

ift 2 3
W =Yxr e , with (B + a) r = 1.

We want to use the Delaunay variables Xy r Xy ¥ 0 ¥, with

s

n = 2 to compute the Floquet multipliers of these orbits. i

For this purpose we use that the Kepler problem is

[
given by the Hamiltonian :
1
- —
2y2
and the rotation by the Hamiltonian G = Y, - Hence the
Kepler problem in the rotating coordinates is given by
} e e . 1
- - - T H=- — + ay ’ *
2
e - 2y, 1 i
- — - Bt SR, and the above circular orbits by [}

-3
= ¥yt b4 x(0) : ox, = at + x,(0).

I

|

\

|
\

|

!

|

|
!
f
e
N
1
}
®

1

e e et mmms © e s = i s s o R — . . .
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The angular variables x, » ¥X. « b4 are the angles of the

1 P 3
node from the ql—axis , the angle o° the perihelion
from the node and the mean aromaly ' ce figurel. The
traditional nota'ion in astrc.omy fe¢r these variables is
(L, G, ® , 2, g, h} for {ly; , ¥y, » ¥ Xy 0 Xy v xl)

3

in the indicated order. Incidentally, the domain D has

two components distinguished Ly the -ign of G,.

The near circular orbits of enall inclination are

described by "Poincaré variables” which are constructed as

follows: The canonical map (x,y) - (&, n) with
k Ny
£, = j£1 %y NS Y,y ¥ r KIS n-1
n
tn j£1 *3 " T 'n

into that wherce n, > 0 Now we intro-

takes tho domain D "

duce symplectic polar coordinates by

J2nk cos rk (k =1, 2, «.., D=1}

v =

X Jznk sin Lk

so that the orbits of interest have ui + vi small for

k < n~1 .

41

Near the circular crbits the Delaunay variables are to be

replaced by the poincaré variables u;, Vyr Yy 'V, where

g
=./_-——_.-.-'-A-——-‘
Uy 2(y2 Yy ) cos Xy
= - .
vl J2(y2 y1§ ein xl
W u2 = xl + x2
L
so that
1 2
yamv, = zptvy)!
and
}i————1 +a (v —L(u2+v2))
2v2 2 2 1 1 ‘
2
The circular orbit corresponds to
(2.13) u; = vy = 0: v, = Eoopo ou, = la b vy )t 4+ u,(0)
with period T = 27 {a + T -3/2 )_1 = 2un/B .

Now it is casy to dctermine the Ploguet multipliers.

The full differential egquations are

42
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ul = - o Vl
J vy= aw

t -3

Uy, =t v,

v, = 0

\_
After we linearize these equatic.s on ,2.15) we obtain the
+ a7

Floguet multipliers 1, 1, e~ . which is evident
from the first two equations. Jince T = 2n/f this agrees . .

with the statement below (4.12) in Chap. II This provides
a simpler computation than the cne sdggested in excercise

‘2 of Chap. II, 4.

%3

G¢3

53 Integrals via Asymptotics; the StSrmer Problem

{a} Integrals of the Stdrmer Problem

If the solutions of a Hamiltoniap system all escape
to infinity it is usually very easy to establish the
existence of integrals in inveolution. We illustrate this
Observation with the example of a charged particle in a

dipole field, which is described by the differential equations

| 2 )
| 4 4 3
%(3.1) Z 9" RAB@ , geR ,
t .
where
_ -3 a 1 2
{3.2 B = = - 2 (-3 = L .
)] (q) v (a3 r 7) 3a, (r3) g (~3q q3 * eyr’)
r
with r = |q]. -
This system has the Hamiltonian
1 9 2 9, 2 2
(3.3} H = 3l {pl ::_3 ) + (92 + ;3- +p3)

as one integral (section 2 in Chapter I) and as a second

integral the argular momentum:

2 2
9 t 9
’
3

G = apy = 9P, = 49, - 94, -

where the first term on the right hand side is the angular
momentum ordinarily encountered, while the second term is
the contribution due to the dipole. 1Is it possible to find
a third integral, or more precisely, are there 3 integrals

in involution which would make this system an integrable one?

44
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We will show that in the domair given by

(3.4) H>0 ,G>20

there exist indeed 3 integrals in invelution. On the other

hand in some regions where G < 0 one has evidence that no
such three integrals exist. This state of affairs which
seems paradox at first has a very simple explanation. We
will show that in thLe domain (3.4) all solutions escape and
have the asymptotic behavior

1

qlt) - at + b + 0(t ) as £+ = .

The vectors a, b € R3 can be vicwed as functions of the

a ¥

initial values g(0) 3

, 4(0) , and, moreover, a a

1" %2

"will turn out to be 3 integrals in involution.

On the other hand there are other open regions in the
phase space in which particles uare trapped and in which these
integrals are not defined.

One can view the situation also in another way: Locally,
in a sufficiently small domain { of a 2n-dimensional space .
one can always find n integrals in involution, say Gj(z).
Using then the fact that

t
G, z = G.{z} .
5 ¢ {z) )} J( }

one can extend their domain of definition to the region of

accessibility %¢t(9). But this may give rise to mu’ iple val-
uedness of the extended functions if the orbits through

N return to 1. I1f, however, tl .y escape to = without re-
currence then such an extensior is indeced peossible. Thus the

45

difficulties of finding integrals in the large are closely
tied to the recurrence of the orbits. The point of this

section is to show that this difficulty disappears in case
the orbits escape. This example is presented for its

instructional value; otherwise it bas little importance.

The differential equations (1.1), however, played an important

role in the study of the motion of charged particles in the
magnetic field of the earth. Early numerical studies were
made by Stérmer and therefore it is often referred to as the

StSrmer problem.

(b} Escape of the solutions

Hext we show that any solution with 6 > 0 , H > 0

satisfies
-1
{3.5) gq(t) = at + b + ot ) for £t + = -
To prove this remark we compute
1 a .2 2 s 2 _ . )
(3.6) 3 ¢t g¢ ¢ lglt = <9.d la|< = <g.qhB> + gl
By (3.2) we have .
. . - . 9449, ~ 9,49
<g,q h B> = —<q, g A B> = 2l g,ghep = 172 271
3 3 r
2
g, + g
R T
3 3
r r
s L
since
) 9, . q; .
Q=P -3 + 9 Pt 3 ¢ BT
r
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hence

. t Jq + t
1 4.2 2 -2 ¢ {z) =[4 P
7 Ge " fat? > e aw o ("

1l (2 . \
R [ 3 X st t .
and H 2 lal® . Therefore the veioc:ty is a constan denote the "free flow" corresponding to B = 0. Then (3.5)

i i H d Tt ; = l Or
and without loss ot generality we may ke lal and (3.7) can be expressed by saying that the limit
H = % . Then -t ¢
(3.8} ¢0 ° o {z) » Y(z) for £t + + =
1 da 2 | 12 > 1 ' exists and maps =z = (q,p) into the vector (b,a}.
2 l|at q kel
and by integration We will use - but not prove here - that in (3.8)
[q|2 > t2 - c lt[ -c for all t. also the derivatives of ¢-t ¢ ¢t converge to the corres-
S ® o X
With this information we g¢ into tLhe differential ponding derivatives of ¢ uniformly for z in a compact domain.
- - . -t t . .
equation (3.1). Using B(g) = 0/|q] 3, = 0(t 3) we obtain Since $o and ¢ both are canonical maps, it therefore
§ =0(t-3) which yields (3.5) by integration. We also obtain follows that alse § is a canonical map, This map {§ assigns
' the "scattering data at t =+ «" (b,a} = y(q,p) to the
- -2
(3.7) 4qi{t) = a + o(t_z) ;i plt) = a + O(t_ ). initial values {q,p) at t= ¢ of a solution. This way the
components a. , b, of a,b become differentiable functions
We remark that the solution does nel pass through q =0, J .
of q,p , moreover
since
{a. al=o0 {a. b } = -§, {b, bl =0
lq] N G . 0 J 1 k ¥ J L k Jk I J r k r
—_ 1 s
2H ) . . since y is canonical. Finally we show that
in the region H » ¢ and G > 0. Thir estimate.is a simple {3.9) T ¢S = ¢3 °y '

consequence from the formula (2.10) b...ow and the following discussion

. : t
1.2. Y maps the given flows i t
under (c). p g 9 into the free flow $g - To

Prove this we replace ¢ by t + 5 in (3.8) s0 that

We reformulate this result:* We c¢..mbine {(9.,p) to a

= 1li -(t+s t+
vector z € R® and denote the flow by z + ¢°(z). Similarly, viz) . T v e 4 ( )° 088 (2)
| ,
let = (lim -5 , ~t t 5
e fg0 (o3 0 6% (452 )
BRSNS )
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proving our claim.

Since the free flow is des: ribed Lt the Hamiltonian

on the domain H > 0 and G > 0. Furthermore, since aj are

integrals in involution of XH we have in
0

Fj(qrp) = aj o ¢ {(q,p) ) J = 1, 2, 3,

three inteqrals in involution of the yiven system. It is
also clear that dFj are linearly independent, and our claim

is proven, namely tlat (3.1} is integrable in G > 0 H > 0.

{c) Allowed region for the St& wror pr ulem

We give a rough descriptior of the cases when G < 0.

For this purpose it is useful tc introiuce cylinder-coordinates

q; = p cos 2] q, = # sir. 8, gy = % [

and extend it to a canonical tronsformntion with the gener-

ating function
W= p(pl cos 9 + p, sin 8) + pyz .

The equation

-+

=

axlat

Dli
ke

™

[}

o

NE

Pg * 38 Pp =

can be solved:

Vi3

Py
P = - Y sin 0 + pp cos 6
- P 0 '
p, = b cos + pD sin @
Py = pz .
and one finds
- P
1 2 2 ] p .2
H=3z{(p +pl+ =+ =)
2 p z loop r3
G = .
pB

Hence & does not occur explicitly in H,i.e. 6 is an ignorable
variable, which simply expresses that by = G is an integral.
If we assign G a constant value

G = 2y

the Hamiltonian system can be written as

5o - 28
Z 9p 2
ve |2 4+ £
g E)
o= - 1 av ° r
2 3z
with Hamiltonian
(3.10) =212+ 224 vipz ) .

2

As above we restrict ourselves to the domain

p(y) = {q,p | 6 =2y, H=

LT
—
.

We project this domain into the configuration space and
obtain by (3..3)
ap=l p, z | p>0,Vv<1ll;

.2 £ 2
on the boundary one has # + & =0 , For this reason

the boundary curves of 2(y) are called zero-velocity
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T ' Incidentally, for y = -1 the point of intersection

Clearly for y > ¢ only the plus siyn ¢ n occur. But (pez) = (1,0) corresponds to a circular periodic orbit
for y < 0 both signs occur ang 1{y) has two components for the original problem (3.1).

if y < -1, Below t @ allowable :egions f{y) are sketched (@) The case y < -1

in four cases vy > g ¢ocl<y <0, y = -1, Y < -1. . .
The phase space is restricted by prescribing

/ L"<J’<: the values of the integrals H, G. 1In particular, for
=

Y < =1 the domain D(y) has two components:

DY) = D) U Dy

- where Dl(y} is the bounded region and Dz(y) the unbounded

) \ja region. If we abandon the normalization of H = % the con-

dition Yy < -1 has to be replaced by vy < - v3H or g < - YH/2

. We conclude that the domain

la,ple<-vii/71=1vu 171

has two components I, II: I bounded, II unbounded,

In conclusion we show that our system is integrable

Yf<:._ ! in the unbounded component 11 while one has evidence for

‘. honexistence of such integrals in I - due to the presence of

homoclinic orbits,

In the domain II all solutions escape again and the

Previous argument is applicable. Indeed, going back to the

normalization H = % we have in IJ

(3.11) p=/q]2_+q§z—7+/-l+72_>_1+6,6>0

’

and

52
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2
1, 4 2 .
5 (g tal® = <quq s Bt [
2
=1 ey 4
3 3
r r
p ¥ o]
= = ( Ly 2 )
r3 A r}
e
D e “« 1 > =
—_ 1‘3
since
2y p
Stz >t
in IL. Hence, by {3.11})
2
1 d 2 R
Fl (a-Tc') [qf > 1 (1+,5)2

which shows again that [g| + « and g

The rest of the argument is the same.
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Exercise 1l:

Show: Given two vectors a, b€ R3 with a # 0

there exists a unique solutioen g{t) of (3.1) with

g{t) = at + b + o(t™Y) as t + + ® .

Hint: Convert (3.1} into the integral cgquation

glt) = at + b - [ (t - 1) £ (@(T), q(1) ) dT,
t

f (4, @t = a A Bl@
and apply the contraction argument with the nomm

sup t (&) + |g(e) )
£>T

for some large T where g{t) = at + b + a(t), gty = a+ gty .

Exercise 2:

Show that for the solution qlt,a,b) constructed above

F(t,a,b) - a , Dllt,a,b) - a) ., Dlg(t,a,b) -at - b)
tend to zero as t-+ » uniformly on compact domains not containing
a =0 ; here D stands for any first derivation with respect to
aj,bj.

Hint: You can go into the complex and proceed as in

Excrcise 1 and use Cauchy estimates to control the

derivatives.

54



424 _ | 425

Exercise 3: 1. The Toda Lattice

Use Exercise 2 to establish that » defined by (3.8) is (a) Particle Systems on the Line
a diffeomorphism of the region [q,p) € R defined by H > 0 We turn to the discussion of a particular integrable
and G > 0 ontc the region (b,u) € K® with a # 0. Hamiltonian system where the integrals have algebraic

character, One has to keep in mind that such systems are

Exercise 4: very exceptional.
Show that the differential equaticn for the angular The examples of this section describe the motion of mass
motion is governed by ) peints of mass ms > 0 moving on the line, which we take
. ¢e _ M _ -2, .0 , 1 . . . to be the x-~axis., If qj denotes the position of a mass point,
at ape Pl P the differential equation is given by .
 Exercise 5: ) mjéj = - qu(q) ' j=1,2,...,n,
vwhere .

Let Hl and HZ Le the Hamilirnians of two vector fields

with flows ¢; and *; respectivoly. Frove that v= 1<i§j<n vij(qi- qj) '
_ -t _ . . . .
wt(z) ¢l . ¢2t (z) Here vJ denotes the pfﬁ;ntlal function for the pair qx,qJ

which would be clqi- qji-l for Newton's law. Without
is the flow of the timedependent Hamiltonian ‘ specifying the V"‘O# m, we consider this as an n-particle
Hit,2) = (H, ~ H;} ° ¢5(z) i ’
! 2 1 1 ) . . system /n the line.
Sometimes one is interested 1in systems where not all
L1} 1 "
but only the "neighbors qj~1’qj+1 of qj exert a force on qj.
in this case the potential would be of the form
n=1
U= W.{g.~- q.
j£1 J qJ qJ"'l)
and the differential equations

m.g., = W.

N L
395 7 M5e109ye T 9g) - Wylay - gy )
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for j = 2,3,...n-1. For § = 1,n on. has to rxeplace (4.3) Gy = == dpy, =< ©F e = 0o, e =0

the undefined term hy 0. . .
N We will also consider the periodic case of the Toda

As a rule one assumes ti.t V..!-x) = V. ([ x) which . . ]
13 1] lattice where we consider the points q; on the circle

expresses that the force exert: 1 by the i-th particle on the . - .
R/PZ , i.e. we identify points x, X € R if they differ

j-th is, except for the sign, 'he same as the force exerted

th

th by a multiple of a positive constant P. This means effectively
by the j particle on the i~ . The symmetry condition

that the Hamiltonian becomes

W,{-x) = W.(x) has a similar irterpretation. However, some
] J 1 " 2 n 957994

of the examples be'ow violate ihis baric reguirement, (4.4) =5 '{l Py v X ed 3
1= =
In statistic..l mechanics one coisiders such particle .
. . where, however, (4.3) is replaced by
systems as models where, howevcr, the aumber of particles ‘
is infinite. In tnat case one spéaks »f lattices. In this (4.5} Gl T 9 + P, Pn41 = Pn

* .
way Toda studied the followi:g exaryle which we describe’ . . ‘T
It is convenient to replace P by 0 | by means of
S

“for finitely many particles. . .
the following formal consideration — losing some of the
physical interpretation. We note that (4.4) admits an

Toda Lattice .
equilibrium solution, faiply if Pj = 0 and if all q.- qj+l T

1f we take m, =1, 3 =1 2,......, and W.(x) = e * we 3
] 2 are equal and by (4.5)
get a Hamiltonian system with
P
. ) %441 -9 T n -
n -1 qg.-q.
(4.1) H=1 ) p2e ) el M, o O ,
=1 J 3=l Setting A = P/2n we have
The differential eguations take the form
qj = 422 + ¢ , pj =0,
q._1749. q.-9;
(4.2) g we ot 3L g3 M .
1 with some constant ¢, Now we subject the system to the
In order that thesc equations are valid also for 3 =1 and j = n transformation (x,y,s) + (q.p.t} = ${x.y,s) given by
we have to drop the undefined terms, which we express formally g, = x. + 2X)
] J
by the "boundary crndition” Pi.= e‘xy.
- J ]
. . t =es .
M. Toda, Wave propagation in gnharmoric lattices, Jour, Phys. (:)

Soc. Japan 23, 1967. pp. 501-504.
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This transformatiop is canonicel in th» generalized sense
+a

and the new Hamiltcnian : I (x + kn)-z = sin™? x
. ko=t
n n ox.-x.
ezxﬁ ° W‘- % f yi + jf e d i+l , then we are led to the periodic problem
I/’ i=1 =1

is of the same forn but the bov dary condition becomes {4.8) H= % ? P? + -——7—3———-—

N . j=1 3 l<i<j<n sin gy = qj)

- = - - = - 2in = @
X+l *n 9n+1 9y 2hn P ! where qj are considered modulo ¥. Notice that this potential

i.e. P is replacec by 0. Therefore we will from this is singular not only for 8§~ 93 = 0 but for q,- 9y =k,
point on consider the periocdic Toda l.ttice with the boundary i.e. when q; meets a fictitious point Q4 = km.
condition . . The above two—or four examples—are integrable

_ Hamiltonian systems, a fact which is by no means obvious.
{¢.6) 9ner T 9 Fnyp = P - . It has to be said that these examples do not have a natural

physical origin, but they can be used as approximations to
The_ Calogero system is an n-particle system, where all .
-2 2 physical systems. 1In particular, it can be shown that the Toda
Particles interact and where m. = 1, vij(x) = ax + bx
. . / lattice is the discrete analogue of a partial differential
0 that the Hamiltonian is giver by
eguation, the Korteweg-deVries equation which does have

jl ' - . 3 Y .
2 - . 2 physical significance. Here we will study the above systems
{4.7) H =§- i Py + 0 (atqq- q;) 2 bla;~ 9y %)
J-1 l<i<jzn as model problems. Since they are integrable the nature of
3
. . . . . the solution should be particularly simple, as we knhow from
In contrast to the Toda lattice this potential is symmetric: ¢ ®

Section 1. This is indeed the case and the main task is to
ViJ (_x) = vij (x’-' .
. . find the normal coordinates, or the action-angle variables
Also this syotem has a pericdic analogue, at least for

‘ ) . . .. in which the integration of the equation becomes simple. To
b = 0, but its derivation is souewhat dlfferenti;51nce all

. . . . find these variables, in particular, to find the integrals of
pParticles interact with each c¢iher one has to take into account -

. . ) these systems is not at all easy, hQsever, and it involves
all fictitious po.ticles at 24 + kP with integer P, If

surprising new aspects. 1In this secticn we will fully discuss
we take P =1 and use the well known formula
the Toda lattice {4.1) and give a complete description of the
solutions in the nonperiodic case. The periodic case can
alse be treated but requires hyperelliptic functions for its

solution which are less familiar.

s

e
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(b) Toda Latticr, Results,

The results to be proven are given in the following

Theorem 4.1. (i) The systems {4.1) «nd (4.4} (periodic case)
possess n integral- Fjy = Fj(q,p), 4=1,2,...,n which are

q,-9
polyncmials in p, ., © k Tkl

(ii) These integrals Fj(q,p) ore linearly independent :4&4

A

in inveolution:

{l’-‘j,Fk} =0
9379541
{iii) For tL- solution of the system (4.1} e ¢ Pa
-3t magt e
are given as rational functions of e s € rever® where

l1’12""'ln are distinct real numbe.s depending on the
jnitial wvalues. (. he statement (iii} does not apply to

the periodic Toda ‘ystem {4.4) but the statements (i}, (ii) do.}

ic) Iso-~spectral nefermation .

our first task (see (i)} is to find integrals of this ,
system. We will identify thesc integrals as eigenvalues of

a matrix function L. This relates onr problem to spectral

theory. The prob!cm of findin~ the integrals is replaced by
the problem of finding these mitrices.

We simplify the differerntial equations by introducing

the new variables

(1.-95,,2/2
ay = LeThn

(4.9} - j=1,2,...,n-1

so that

43

a. - -
J— -= 1 - = .1 - =T -
o ¥ (957 954! 7 Py~ Py4y! by~ Py

q.-q
e

q._1-9; .
= - %—(e 3170 L e J+1] = 2(a§-a

Hence the differential equations become

ag = ajlbs, = by} 3= 1,2,..em-1

(4.10)

by = 2(a§ - ai_l) , 5= 1,2,..0.m
where the right-hand sides are simple quadratic polynomials.

We observe that {4.9) provides a transformation of the p,
variables into the a,b variables, but we have to note that
a,b constitute only 2n-1 variables, while the phase space
has dimension 2n. However, in (4.9} as well as in (4.1) only

the differences of the qj occur and therefore they are

jnvariant under the translation

(4.11) g. * q:. + 5 . P

j j ML

b] 3

which is the flow generated by the vector field X, .

We shall therefore identify the orbits (4.11) of the g -action
with points which we call configurations, and denote the

space of configurations by

2n, 1 . _2n-1
Mon-1 R /R =R .

2
j-1

q

x
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Then the formulae (4.9) define an inv.rtible mapping of L implies reality and a, > 0 implies that the components

v: {q,p} + (a,b) of of any eigenvector can recursively be determined from

the first component, i.e. the eigenvector is uniguely
M, , +D-= {al,...,atn_l,bl,...,bn | a; > 0},

b determined up to a factor showing that the eigenvalue is
P g
It was observed by H. Flaschka that these equations simple. From this one concludes that the lj = Aj(a.b)
¢an be written in matrix form as follows: If are differentiable functions of a,b. We are going to show
L = L{a,b}), B = B{a}) are detined as the Jacobij that these functions Aj are integrals of the motion., If
matrices -— or tridiagonal matrices —- a(t}), b(t) is a solution of the equations (4.10), or equi-
. . equivalently if L(t) = L{a(t),b(t)) is a solution of (4.13),
by a0 ... 0 f 0 a, 0 ... 0] we shall deduce from the form of {4.13) that L(t) and L{0)
|
a, b2 a, . ~a; 0 a, . are similar to each other from which it then follows that
(4.12) L = ! ¢ a. - 0|, B — 0 a, [1] .. ; the spectrum of L{t) is independent of t. For this reason
- - -
sy . *. a._, : ‘e . an—l one says that (4.13) describes an "iso-spectral deformation".
l 0 0 ... a1 LnJ o o ceeoAL 0 To prove this statement, namely that the spectrum of
L(t) is fixed, we adjoin (4.12) to the equation
then the equation (4.10) can be written in the form '
. (4.14) U = su.
4L t
(4.13) af = BL - LB = (B,L] .
[l
Since B is skew-symmetriec it follows that U(t) is orthogonal,
This is easily verified. we want to .oint out that these . .

if U({0) has this property. Indeed
equations are compatible, i.e. that the right-hand side [B,L]

is also a symmetri. matrix which is tridiagonal. For this gE (UTU) - UT(BT vRU=0.

reason it is not so easy to fing Pairs of matrices B,L that From (4.13), (4.14) we obtain

depend on 2n or 2n-1 parameters for which the equations (4.13) . . .

are compatible. In any event {41.12) is such a pair, gE ‘U—IL wo=- U_lu u-lL v U—IL 0t U-IL v
We observe that the eigenvalues A = A la.b), = vl-L+ % + LBJU = o

k=1,2,...,n of the 3 obi i = i - .
. ’ acobl matrix L = L(a,b) defined by and therefore UYL U is a constant matrix. If we take the

{4.12) are real and, in addition, distinct, Indeed the Symmetry initial condition U(0) = I then

T ™

g B
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vin) " lnie) vy o= Lo,

{.e. L(t) and L{0, are similar and tce eigenvalues Aj(t)

= lj @(t)'b(t)) of n(t)} are indeed independent of t, as

we wanted to show.
The eigenvalres

+ aj defined by

_ . n n-1
det (z - L) = 2 + 0;2 +oeee 40

are integrals of th~ motion, The same holds for any other
n
functions of the e:genvalues, iike tr e } g.
j=1

Expressing these i terms of g,p we obtain

k

F lq,p) = tr L=, k=1,2,...,m,

as integrals. We compute

I )
F, = b, = = P,
1 3 3 je1 i
n-1 n n-1 q.-q._
F2=):b+2{a§=%-‘£ P?*—%Zej -1 _
3 j=1 j=1 j=1

so that = Fi, 2F2 are the momentum and energy integrals.

However,kE}F3,F4,... do not have a physical interpretation.
it is clear that F, are polynomials in agr k. but, more

J

precisely, they are polynomials in a§ P bj (Exercise 4.1).

This proves statenwnt {i} of Theorem 4.1.

lk(a,b), or their symmetric functions

k

Incidentally we see that the Fk(q.p) = Tr L have

linearly independent gradients. For this purpose it suffices

'A] |

det l——ﬂ

to show that the determinant

aAj {3,k = 1,2,...,n)

does not vanish. This is a vandermonde determinant since

F =
k
3

n
) 1%, 1t does not vanish since the Ay are distinct.
=1

In the periocdic case one proceeds in just the same way

after replacing L and B by the cyclic matrices

bl a 0 ... 0 a, 0 a, 0 ... -a,
a b2 . 0 ~a; 0 ]
0 * . 0 :
L = . , B = . .ok :
. __. 0 . .. « "o o
0 - a1 ¢ 0 a .1
2n 0 ... 0a, 4 b, ) l a, 0 ... 0 a 0

such a pair of linear operators L, B satisfying a differ-

ential equation (4.13) is called a Lax pair.
an equation for the Korteweq-deVries eguation., This apprvth
has been fruitful in a number of other cases as we

in the following sections.

Lax derived such

shall see

/%
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{d) The Fk are in involutior.

To prove (ii) we show tl..t: the eigenvalues Aj are in
n
involation, which implies that the F, = I A? are also

i=1

in invelution. The following :rgument also applies to the

periodic case but we carry it out in the nonperiodic case.

Before conputing flj,Ak} we express the Poisson bracket

4.1 = Y I F >
{ 5) {F,G} <Fq GP <Gq

P

in terms of the variables aj, bk defined by (4.9).

CJ - FOI an function ¢ = ¢(a b) we define a function
Y
| .

gz F=@ey of gq,p and 1f(:>and 3Ii=G oy

is a second function

the transformed Poisson bracket { + 1, is defined by

{¢{@}, ¢y = {P,G)
"'*-H..___ﬁ_ﬂ' ——— ,..—

™~

It is easily calculated: From ‘4.9) we fing

a 3 ] N % 3
- j-1 3a. ) ¥ 3p. T~ T I3n
i At aay %Py 3

where we have to replace the undefined terms by 0, or we

set a, = 0, a_ =0 in accordance with 4.3), Then the

n
transformed Poisson bracket is computed as

i . n
f; (4.16) {eofy}, = -1 ¢, v
v 750 2j-1 ﬂ’j

N
f/ 5";';"%["’3'%'

\\ e e e e e e 12 -
- [a’@J 33-1\” -l)Q’bJ .
It suffices to show that ——"
Dy,

which we will now do.

e T S

432

For this puprose we have to compute the derivations of
lj = Aj(a,b) with respect to ak'bk‘ To aveid subscripts we
write A in place of AJ and u for the eigenvalue Ak. Let ¢,y

be the corresponding eigenvectors of L.

(4.17) {L-2¢p=090, (L -wyp =0
which are normalized by <¢,¢> =1, <P,> =1 We then show
that
(4.18) 3a= = 2005000341 g%; = o)
J

where we denote the components of § by ¢ (j) to avoid confusion
with the subscript labeling the eigenvalues,
We prove (4.18). Indicating differentiation with respect

to aj or bj by a prime we have from (4.17)

(L' -~ x") + (L - Alg' = 0
or

<{L' - A')‘#,@) + <{L - A)¢.l¢> =0 .

Since L is symmetric the second term vanishes and, on account

of the normalization of ¢,

At = <L'4,¢>.

From
n-=1 n 2
<L, ¢> = { 2a;0(3)e(3+1) + | bie®(3)
=1 =1
the relations (4,18) follow,

Inserting these relations inte (4.16) we find

=

3

A
!

ey -
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es
Comparing this exjcession with (4.19) we obtain 2
with positive residqﬁﬂ Xy Mocreover comparision of the

< s -1 .
n coefficients of z = as |z| » = gives
- -1,.,2 .2
20y, = - T wiad ) = - Thd-wd)
» . j -1 n 0 n
j=1 T oxZ=1
z k *
This expression vrnishes in th - periodic case since wn = WO k=1
and in the nonperi.dic case since then W =0, W, = 0. From the identi;y
n x
i Ui v k. I
This proves that tii)} of Theorem 4.1 holds here. Actually, k£1 E_:_X; = <(z - L) e ,e >
in the periodiec c¢ise the eigenvalues A. can be multiple
J we read off that
and we have established {ii) only for those g,p for which
the eigenvalues of L are distinct., But this is an open set . . . X =% <4.e > =1 ¢ (n),

and since the F, zre real ana:ytic this suffices. where ¢, is the eigenvector of A . Thus for a given matrix L

we can compute the rational function f(z} which has n simple
{e) The Explicit Representat-on of the Solutions

real poles atkj with positive residual xg , since

We turn to the proof of the statement (iii) in Im f{z) > 0 for Im z > 0 . Ordering these poles according

Theorem 4.1, We introduce the function to size we can define a map Xs

(4.20) £2) = <tz - L) le e >, xt D, + A: (a%,b) + (A, %)

where e is the unit vector (0,0,0,...,0,1). Since L is which associates to every point (ag,bj), where (a,b) € D, the
i

symmetric' it follows that f{z) is an analytic function point (A,x) in the set

- = ® O
for Im z # 0 and -F(Z_) = A\—(E: ))‘ Mt efped™ n o,
. /7 A= {(A,x) IA1<)&2<---<;\nak£1 xk"""!-f xk>0}"
Im £f{c) » 0 for 1mz >0 .
We claim that this map x: D, =+ A is one to one and onto.

t 4 #t is a rational function with simple poles at the } :J Moreover x-l is a rational mapping. We shall view it later
eigenvalues lj of L and so admits the partial fraction on as a coordinate transformation and then describe the differ-
expansion ential equations (4.13) in the new variables.
2
n X

4.21 = o, .
t ) £iz) jgl =t x5 > 0
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The fact that the mappinm x has an inverse x-1= A+D

1

corresponds to the inverse metaod of spectral theory,

which in the elemerntary form dcscribed
1

here goes bhack to
Stieltjes. It is based on the fact that f{z)} can be

represented as a finite continicd fraction expansion

1

(4.22) £(2) = 5
a
=1
A-b - 0
n A—bn_l -
., af
- ":-:—5; .

where the entries aj,bj agree jrecisely with those of

L = L{a,b}.

In order to prove (4.22) we denote by L. the matrix

)
obtained from I by cancelling tie last n~j rows and columns

and accordingly set L, = L. Then the -characteristic
polynomial
. = d o= L,
AJ(z) et ( LJ)
satisfies the recu-sion formula '
(4.23) A, = (z - b,)a, . - a® 4.
i D M L3 | j=17j-2
for j = 3,4,...,n. It also holds for j = 1,2 if we set
A-l =0, Ao =1,

This can be seen by expanding the determinant with respect

to the last row. Honce the ratjo py = Aj/Aj_1 satisfies

“Oszillationsmatrizen. Oszillationskerne
mechaunischer Systeme,™ Akad. Verlag,
Anhang II,

F. Gantmacher, M, Krein,
und kleine Schwingungen
Berlin (1960), see:

®

Ly

2
. 2j-1

pj-l

pj =z - b, ’

which leads to a finite continued fraction for the rational

function
An_lfz) _ 1
An(z) a2
Z=-b = n=1
n z - bn-l -
'.. af
- E‘:‘BI

and it remains to verify that

a,_412)

fi2) S Tt

(4.24) <(z - L)-len,en>.

To show this one can use the recursion relation (4.23) to
see that the vector v with components
.
v, = Kl:l a.

ERRY W
4
4

see @y for 3j=1,2,...,n-1

n-)
n

\‘"“'—‘“‘*IE)=

solves the equation (z - Ljv = e, i.e.vs (z -1l

n
and so
An—l(z)

Anlz) ’

and we have proved (4.24) and therefore also (4.22).,

~1
< > = g - >
vn = v,en {z L) en,en =

We come to the "inverse problem" which requires that
we determine x"l. With any point {A,x) € A we associate

the function f{z} defined by (4.21)., Then Im £(z) > 0 if

2]

-

re =

wy
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Imz >0 and z £(z} » 1 as |z,;+ =, Thus

-E::—z,—nz+1\-g(21 v

where A i5 a real constant, and where g{z) is a rational
function which sacisfies

Im £{z) .

A 0 for Imz >0 .
|£¢2} |

Im g{z) = Im 2 +

Thus g(z) has only simple polcs on the real axis and their

number is n-l. One computes easily that
ca= ¥ ol z glz) » § A% - ['f sz.]z {an [al—-.).
=1 b J j=1 i3 3=1 P WO

which is > 0, since {A,x) € A. Thus g{z) =B fn_l(z) with

B>0 and 2z f _ (z) + 1 as |z{ + =. Hence

f(z) = — 1
z+P~Bfn_liz) 4

and by induction we get a unigue continued fraction of the

a2
n-1

rational function 4,21 determines ajz, bj and conversely
. ]

form (4.22) with A = - bn s B = > 0 ete. Thus the

. : 2
is determined by the aj P bj' . .

This shows that the map x maps D; one to ohe onto A and
moreover that x'l is a rational mapping.
We will express the diiferential eguations in terms of

the variables lj’ xj. Since the Aj are integrals we have

ij = 0 and it remains to determine the differential equations

for the xj , which turn out to be

uy 3

. n
{4.25) x, =~ (A, - ]
I k=1

Akxkzjxj ’ j o= 1,2,...,0.

This system is easily integ*ted if one observes that it is
obtained from the linear system
Z T

= = A
Y3 373
by setting

X, =

Y. o~
Iy

| R
Hence the solutions of (4.25) are given by

2 -2).t
xj(O)e J

-ZAkt

2
xj(t) = —=
I xl(0)e
=1
This proves the assertion (iii) of Theorem 4.1 since a§ . bj
are r%tional functions of xi . Ak and

2 9579541
2at = e - 2b. = .
j ' 3 2]
It remains to derive the differential equation (4.25).
From our considerations in {c), in particular, from
the relation

1

V(t) “Lit} U(t) = L{0)

it is clear that the eigenvectors ¢k = ¢k{t) of L{t) satisfy

¢k(t) = U{t) ¢k(0) '

hence in view of (4.14)

= Ef[lk .
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Using the form (4.12) of B we see that

. d#k(n)
Tde T ¢

an-l ¢k (n-lj .

If we combine this with the eizenvalue equation
a1 ¢k(n-1) + b ¢k(n) = lk¢k(n)

we obtain from xk =+ ¢k(n)

dxk d¢k(n)

e A U T G N P
T2
Finally, since } x° = | we have
k=1 *

Inserting this valie of bn intu the differential equations

we obtain (4.22) which completes the proof of Theorem 4.1,

(£) Scattering .

In the nonperiodic case the integrable character of the
Toda lattice is in fact trivial since one can find the neces-

sary integrals as asymptotic velocities for t + + «,

similarly as we have seen in Section 3 for the St8rmer

problem. We have proved howev.r more, namely that the

q,-q.
integrals are algelraic functions of Pj and e 1 3+l

.
This algebraic character has 4 surprising consequence for

the scattering behavior, which we describe now.

Yys

We shall show that for all solutions one has the

asymptotic behavior

+ + -5t
qj(t) ujt + Bj + Ofe )
(4.26) s
B—- N -t
qj( t) ujt + sj + 0(e ™%)

for t + 4= with some 5§ > 0. We will call u; . u;

velocities for t + + w of t » =%, Then it turns out that

(4.27) a; =- 22 al = - 2y,

n-j+1 ‘ 3
where kj are the eigenvalues of L ordered by

(4.28) A <Ay < ... <

n

In other words, the asymptotic velocities u; agree up to

the factor -2 and up to ordering with these eigenvalues)

Moreover, the relation
+ [
%-j+1 = 94

has the physical interpretation that the asymptotic velocities

for t + -= and for t -+ +» are exactly the same except for

reordering.
th . .th :

at £t = -~ = tg the n particle at t = += and the b particle

gives its velocity to the (n-—j+1)St particle, just like one

has for elastic reflection of particles,

This is a highly exceptional situation for a particle
system and this is a consequchce of the integrable character.
Indeed, from the conservation of energy H and momentum we

conclude

the asymptotic

In other words the first particle gives its velocity

-

y -

s =
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n +.2 n -2 n - .
I =1 (an*. I al = ] a. . but restrict ourselves to the proof of (4.27).
1= ST T~ S A g=1 3 je ) ‘
From Theorem 4,1 (iii} it is clear that the asymptotic
but the conservation of the ™"u.physical®™ integrags Fk for e .
behavior of aj(t), bj(t) is given by

k > 3 gives

nt n,t
n + K n -k c,e + c e R ¢ £ 0
I w@hHh™ = 1 ta)
j=1 J i} )
where the exponents n,rn, are linear combinations of the —21k
This implies that *he unorderec sets [u;}j_l n and with integer coefficients — a fact, which we will use
“dgpeeey
Y. . repeatedly. Since
{uJ)J=1'...'n agree p v
We mention without proof, that the symplectic scattering n n-1
; - =y 4+ 4 . - ‘. ‘. B= i ) b2+ a’
map taking (oa.,8.) into (g, ,B,) can be determined explicitly 2.8 J Mt ]
3’73 k'"k j=1 j=1
for the Toda lattice and is -iven by
is preserved wec see that bj(t), aj{t) are bounded, and from
+ - + - - - ; ; ;
un-j+1 = uj . Bn-j+l = Ej - ;E: W{a .-...un) the differential equations (4.10) we see that a;so
3
where t2 .
: J 2 ac f{b(t) b, (1)
- 2 a. = -
- - 7 - =2 3 1 k' "2 k' 1
W= igj (o] uj) (1o (o] uj) 1} . t k
is bounded, i.e.
One computes ' 4o
j al(t) at < = .
3 z 1 (a7 -2 - -2 ) MY )
5;; W= i og mj - uk) - jgk log (aj - ak)
. . Therefore we have
and one interprets this as follows: The "phase shift"
B:-k+1 - B; is the sum of the rhase shifts + log (u; - a;)z aj(t) + 0 for t >+
. between the jth and the Kth particle. The scattering map
™ and because of the above asymptotic behavior the decay is
¢, is the same as if the particles intcracted just pairwise! i i
exponential and in particular (4.26) follows,
’,Q\\‘we will not prove La644 statewent about the phase shift,
— e With this information we sce that the matrix L = L{t)
J. Moser, Finitely many mass points on the line ...," of (4.12) approaches a diagonal matrix L{+«), L(-=} for t + + =,

Lecture NOtes in Physics 3B, 5;ringer-Verlag, 13975,
pp- 467-4537, whose diagonal elements must be the t-independent distinct
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eigenvalues Al,lz,...,kn. Hence each bj(t) approaches

one of these eigenvalues and it remains to determine which

of them is approached, From th: first equation of ({4.10)

we conclude that

bj+1(+m) - bjf+w) <0

since otherwise aj(t) would not be bounded. Moreover, the

bj(+W) must be distinct since che set of the bj(+m)

with the spectrum of L. This shows that

bj(+w) = A“—j+1

. if the eigenvalues are ordered according to (4.28).

By the same argument we have

by(-=) = Ay .

Translating this information via (4.9} for the pj, qj we

obtain readily (4.27).

adjoins

Finally we remark that the periodic Toda lattice is of a

a different character. We may restrict ourselves to motions

where the center of gravity is at rest, i.e.

H g
el
II
o

Then the energy surface

n q.-q9. n

2 1

E = {q.PIH=% I (py+e? M)
j=]_ j=

= h, 'Zl qj = 0, qn+l = ql}

is compact and the motion bounded, in fact guasiperieodic,

YUyg

as described in Section 1, Indeed from the boundedness of

95790
e % 2h and from the boundary conditions (4.6) we have

n q;-9; q9;-9 - q9,.-9
1=T7Te? 3+ 7L Potl < (zn)" 1 .7k k+1'
3=1

and we see that all differences =y, ¢ hence the Q. . are
bounded. Since the py are also bounded E is indeed compact.

In the periodic case the solutions cannct be rationally
expressed in terms of exponential functions but are hyperelliptic
integrals, S;hb;ﬂL{ﬂ as in the problems of the next section.

We will not discuss this case here; see P, van Moerbeke.

P. van Moerbeke: The spectrum of Jacebi matrices,
Inventiones Math. 37, 1976, pp. 45=-81,

™

™

e -

oy -
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Exercises

1.
2.

¢

Show that +tr Lk are poJsvnomials in a§

Show that for even n

. X = (H
f//\/ ;j xj +1
are be rer

where H;\V to

0

H

X

j-1

Y .

3 =1,2,....n,

‘aced by 0, is

a Hamiltonian

system with respect to r!e Poisson bracket

ngl
{F.G} = (F_ G -
B e i Y

G

or the symplectic two-fcrm

With the symplectic structure of Exercise 2 the system

with the Hamiltonian H =

matrix L in (4.12) wher-

n
Let F be defined on the unit sphere J x2
i=1

1 n
F =
Z kgl

- e

n
I e
j=1

Its integrals are given as eigenvalues of the Jacobi
]

b

A

3

X .
J-

X

1

b}

=0, aj

2
1

Show that the differential cquation

X = - VF

where V denotes the gradient in the ta

unit sphere (defined by dF{v)

x./2
e J

3

ngent space of the

= <VF, v@ for any v in

the tangent space of the unit sphere) is given by

is integrable.

- - A, .
x ( 3 + F)xJ

(which is the system (4.22)).
Discuss the flow defined by the system of Exercise 4
for distinct kj' Show that every solution approaches

one of the equilibrium points + e .



5. Separation of Variables where Ax is the normal force which is required to keep the

The classical approach to establish a Hamiltonian system particle on the sphere. In analytic terms, the identity

2 .
. . x(t =1 ie
as an integrable one is to sol.e the Hamilton-Jacobi equa- [x(ty | implies

tion. by separation of variables. This approach is due to Jacobi % = 0, B>+ l;lz - 0.

who showed that way that the gcodesic flow on an ellipsoid
Inserting the differential equation into the second equation

2

n o x%

E -3 =1 . 0 € G,;%4sa% O wa finad

. a. 1 nf

=1 73

- 2 -

with different major axes is iniegrable, The main difficulty <x,Ax> + A+ [x|° =0
of this method is that it requires finding — or guessing — . . or ,
coordinates in which separation of variables is possible. (5.2) A = €Ax,x> - |;|2 .

For the Kepler problem — which is rotation invariant — one can
. Inserting (5.2) into (5.1) we have the desired differential
use polar coordinates; this is the stanuard way to get to the

equation which is nonlinear. It can be viewed as a Hamiltonian
Delaunay variables which we duscribed in Section 2. We will 2 .
system on the tangent bundle |[x|® = 1, <x,x> = 0 of the
tllustrate this aporoach with a differc.t mechanical system

. sphere which turns out to be integrable. This was shown

requiring elliptical coordinates on the sphere. The solutions 1

by C. Neumann in 1858.
are no longer expressible as -ational functions of exponentials

but are given in terms of hypurelliptic functions, which are, (ii) The geodesic flow on an ellipsoid

generalizations of elliptic functions. . . Qlx} = <A™ x, x> = 1

T . sy s :
where A = A i1s a positive symmetric matrix with distinct
{a) Two Integrable Mechanical Problems . '

eigenvalues, can also be viewed mechanically, namely as the

i) Neumann's groblem. Counsider the motion of a mass . . .
(1) F ’ motion oEYﬁartlcle on the above ellipsoid without any external

. n . .
oint on the s re | =1 in R moving under the influence . A
P <o phere |x| . g = force. Therefore the differential equations have the form

of the linear force -ix, where A = aT is a symmetric n by n
1

matrix with distinct eigenvalues LIRS TEERrL The differential (5.3} x=-}:A"x /

. — 1
equations have the fo . c. Keumann, " De problemat3~qQ§;m mechanico, quod ad primam
. integralium, ultraellipticerum classem revocatury
(5.1) e - Ax 4+ Ax , . Journ. feine Ang{j. Math. 56, 1859, 46-53,
N -
o ™~
€, T

~ T C,((Of/{a)n

e

Ty W

e W



where the right-hand side is the normal force required to

keep the particle on the ellif=oid. In this case one computes

(5.4} A = Qix) |n tx]72

!

and (5.3), {5.4) define the system in question which has to

be restricted to the tangent lLundle of “he ellipsoid:

1 1.

(5.5) aly,x> =21, A Txx =0

In this and the next section we will svow that these two

systems
o

in fact they possess integrals which can be

are integrable;

expressed as quartic polynomials in X, X as we will see.

(b) Elliptical coordinates on the sphere |xj = 1.

To describe the differen*ial equations we intreduce

coordinates on the sphere., Wc do not .se pelar coordinates

but some clliptical coordinatrs which are essential for the \.;-- oty

integration of the Hamilton~Jacobi egrations. To define them -

. . ]
we introduce the gquadratic form

(5.6) o,(x) = <(z - A Ix

x>

for z not an eigenvalue of A. e may rssune that A is diagnonal,

' Qz(x) =

n-1
TT (z - v} .

n
afz) =T [ {z - a;:) miz) =
j=1 .

are the zeros of Qz(x). Comparing

so that “1'“2""'“n—1
the asymptotic behavior for large z we see€ that
- - . . 2

[xlzz 1, o(z2] 2)‘ and (5.7) implies [x|” = 1. p
Now we consider the n-1 zeros ul,uz,...,un_l as coordinates
on the unit sphere. since

2
23
-0

n
0, (x) = j£1

Jj
4
we cah express the x§ as the residues of m/a at z = FB , i.e.
k=t n-1
) m(u;;\\ﬁi-l (Gj-uk)
(5-8) xj = = - .
L]
a (uj) T 1 (n.-ai}
i#3

This formula determines xj up to sign, For points with

£ .
xl,xzfr-xn # 0 one sees that the zeros of Qz(x) interlace
the poles SO that we can order the Uj fgﬂfhg} i 2T O
< . f
“.1‘“1 <uzc s un_lcan 'n_’.({"f

t
i

fo interpret these coorditﬁFs geometrically on the two-sphere

we take n = 3 and note that

o, brate o
Y =
= i ) o0 Q (x) = 0 ) 1= 1,2,
A = diag (u1,12....,un) . ay < oy < .. <@y . ;fUA_ uj
: e teed N represents a cone and the pj-curves on the sphere are the -

and write Qz(x), which is a rational f.nction of z, in the form !

intersections of this cone and the sphere (x| = 1.

.7 = m{z)
(5.7} Qz(%) a(z) !

wvhere
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(Za“ﬁr)::o

The Hy-curves and the ly=curves intersect orthogonally and

form a pattern similar to the faailiar confocal ellipses and

hyperbolae of the elliptic coordinates in the plane.

G453

TR

For by = G, one gets a singular cone:

8 .
x=0, 1 , "3 _,

827 9prag
defining two lines, the analogue of the focal poincs,
Also in higher dimension:‘ the ”1'"2"""":1-1 define
orthogonal coordinates as is evident from the expression
for the length element b

n n-1
® as? = J ax? I

i q. du2
=1 i=1

i i/

]

{5.9)

To prove this we deduce from (5.8)

dx. n-1 dui a

2 —1 =

*50o4E Y
hence
ds” = J dxj= I a.. du; du
with 3
—_ %
k=1 (ui-ak)(uj-ak)

For i # 5§ this eXpression agrees with

2 2
1 [ ¥ —.i -7 % ) =
g7 ([ f upmay i uj-ak} /

qu_‘}'i
fince QM (%) = 0, For i = 3 we get
i

— -
u.-ﬂj ' R

Ty



ys3

n x2 m (u))

_ =1 k — - 1l 3 Q. '¥) - - 1 i

93 T 91 T 7 1 T~ 7§ 3z te - 7 ;tjuii .
(Ui-ﬂk) z ui

Ve gsgqgégg the variational principle q§scrxqigg the
motion on the sphere in terms ~f these variables: The

kinetic energy and the potential energy become by (5.%)

-1 .
1 7,2 1" 2
T=3 [x] = 37 jzl 9445
1 n
U =5 <AX,x>= 3 jzl (aj-u ) . BT 0.

The last relation can be read .rom th. asymptotic expansion

of (5.7) for z + =t

n
(a.-u.)
2 Z 17
ﬁ‘z):z |x| + <Axix> § eee = _::_. * l_!-_.__z_-—— + e .
/ z 2 z

G

The equationyof motion are the Euler cquationg of Lagrange's
A ~
variational principle

6 [ (T(i) - utw)) dt = 0 . t

Introducing the variables “j by the Legendre transforma-

tion (Chapter I, 2b)

and the Hamiltonian

‘fw 1 n- 1 -1
(5. 10) H(T: u) =T + U T [g Tl. - u)] P =1

the’ d1ffercnt1a1 equation takcs the canonical form

L H(uﬂr)

[}
= @

p

bYs3

j = 1,2,...,“"13

on the right-hand side of (5.10) we have dropped the
n '{CFWL

. 1
unessential = ] @:.
NEEEE N

(c) The Hamilton-Jacobi Egquation. .

We seeck to introduce new variables Ej'“j (j=1,2,...,n-1)
by a cancnical transformation, such that the Hamiltonian
takes a particularly simple form, say equalj ¢(f,n) = ’L-D

- Ny A

Then the differential equation becomes

E“ela ﬂ“o/‘)\
and the flow takes place along straight lines parallel to
the El-axis.

We introduce such a canonical transformation by a generat-

ing function S = S{u,n}:

-
Ia

no=S, . &5 =S, 3=2,2,00m1

Then the new Hamiltonian &(t£,n) is related to H = H{u,m) by

H(u,su) = @(Sn.n) } Fi
—‘—F/
and in the special case ghat'w = % by
=1 ¢
{5.11) H(u,Su) =30 .

This is the Hamilton Jacobi equation for which we have
to find a complete solution S(u,n) depending besides ny on

the n-2 parametrss Ngree-+f,_ ] such that the Hesslan Sun is
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nonsingular, fThe remarkable fa:t is that this equation can
be solved by separation of vari-bles in our situation. This
was observed by C., Neumann in 1859 already, at least for n = 3.

We write the Hamilton-Jacobi equation more explicitly,

using (S5.9%-11)
sl s 42 . e
{5.12} ng W [43““:1) [‘QTJ'] } -rjsl UJ- - np o= 0. -

Here the notation is somewhat misleading: The function m'(uj) "
is not a function of uj alone but depends on all Hy - The
clue to the separation of variables is that the last two terms

.are rewritten as given by the following lemma.

Lemma 5.1, If we define

Lalet
(5.13) pla) = 2™ 40T 3, Ly "W |
then
n-1 piu,) E ’
T =n, + M.
. . 1 .
j=1 m (l-lj} j=1 ] .

provided the HysBgeeve o are distinet,

Proof; The left-hand side can be viewed as the residue sum

of the integral

1 plz)
211 I m{z, dz

taken over a large circle containing the Hy+ On the other hand

this integral agrees with

. 1 plz)=-m(z)
271 j miz az

Gel

where the numerator is a polynomial of degree n-2 with
n-1
leading cocfficient ny + M; « Therefore if we let the
i=1

radius of the circle tend to infinity we obtain the result,

ry =

Using this lemma the equation (5.12) can be rewritten as |

-~
. : 3s 1% -
j£1 m'luj) {'4a(uj)(§;;] 1“p(uj)} =0 -f~

where p(z) is the polynomial ({5.12), Now the variables are

"separated"; the above equation holds if . b

2 plu,) ;
35 3 . i
[auJ] == a :.I.j v

is satisfiea for each j = 1,2,.../n~1. But each of these I

equations depends on one variable “j only and can be solved by

. n-1 Bj 8
{5.14) S(u,n) = j£1! \/—datzi a

where the integration is to be taken over some

., , pathsg o/ the Riemannian surface given by wz = ~a{z)p(z}. L

R

The desired canonical transformation is now given bﬂf

\ (5,15 £ =8 1 nil IJ . -4—r—Tp(uk ’
u = = ———————— 2 ¥ = - .
‘ L ~a{@plzr K aluy

v, zn—k---l

{d} The Jacobi Inverse Problem.

We have reduced the solution of our problem to the B
inteqration of the n-1 integrals in (5,15), They are well

studied integrals, generalizing the elliptic integrals

ry W
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z
[_dzﬂ_
’P{z)

where P{z) is any cubic polynomial. 1In our case the
denominator contains the polynmmial a(z)p(z) of degree 2n-1.
For n = 2 we are indeed dealing with ¢lliptic integrals.

In general, one has to study the Riemann manifold R of the

algebraic function

2

w' = = a(=) plz) " "

which is called a hyperellipti . curve of genus n-1. Without

going into the extensive theory (see, e.d.. H. Weyl, Die 155{ //di
der Riemannschen Fliche, Teu.ner 1%55, or C. L. Siegel,

Topics in complex function theory IT, Wiley-Interscicnce 1971)

we mention -Lhat éj

Wy = T k=1,2,000,n-1 ; '

form a basis of the differentials of the first kind on our

Riemann surface’ and for any set of n-1 points Wyrkogresasby g . !.
one defines the mapping of this set into thejﬁ—l vectory s
with the components (P“‘)'““Cﬂma
n=1 73
s = 1 J w
k© 42 k

over appropriate paths. This defines a mapping of the symmetric
product of n-1 copies of R int» Cn-l. This mapping is not
well defined since closed paths of integration on the right-hand

side need not give the zero vector. The possible values for

e

?
the above integrayg sum (so-called Abelian sum) for closed
paths on the Riemann surface are called periods. They form,
in general, an Abelian group T with 2n-2 1linearly independent
generatorsland the above mapping actually takes the symmetric
product of n-1 copies of R into the torus Cn/F = T where
dimR T =2 dimc T = 2{n-1). This torus is called the Jacobi
variety of Fyand the Jacobi inverse problem asks for the
?nverse mapping, which has been fully solved, see the ahove
references.

In these variables s, on the Jacobi variety, we have a

k
straight line motion as follows from (5.15); indeed
Ek = % 5, up to a constant, The linear structure on the
Jacobi variety is intimately related to hbel's theorém for
hyperclliptic integrals, the generalization of the addition
theorem for elliptic functions,

We summarize: The integration of the Neumann problem

can be reduced to the above hyperelliptic integrals. As

integrals in involution we can take My NaseeesT, g
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§ 6. Constrained ectorfields
- —— Ll
In this and the following Y~oction we will give a / 5
different derivation of the intcjrable character of the
geodesic flow on the €llipsoid aund the rither example -
e
of the previous section and obtzin explicit expressions o :
for the integrals in question. For this purpose we will {r
i l n

construct matrices whose eiqﬁéva;ues(?r their symmetric
functions)are the desired integrals so that these matrices ’ )
undergo iso-spectral deformations, as it was discussed in

for the flow

Section 4. But first we extend the jprebie

5.1), (5.2} which is given on tiie 2n-2 dimensional tangent

bundle on the sphere, to a flow in Rzn, in such a way that the
extended system is algo an integrable Ha.iltonian system. We
will then construct the integrals for th. extended problem and
show that the constrained integreals are the desired integrals.

how to constrain a Hamiltonian
a

For this purpose we first discuss

system to a symplectic manifold.

{(a)

Constrained Hamiltonian Syrtems

We consider a Hamiltonian system x on a symplectic

manifold (N,w) which will be (rR2" , { dyj A dx) in our

applications. We ccnﬁ;ﬁgr a syﬁnlectxc submanlfold M in N and

to the manifold

ask for the "constrainX vectorf:elq® x" of Xy

*®
M. 1Ip pParticular, we will require that » is tangential to M

and gives rise to a Hamiltonian flow on M. One wWay to do this

4 >
Qyiifh

Y¢S

is the following: If we denote by j the so-called inclusion

*
map of M into N then jJw=w is the induced differential

M

form on M. It isg nondegenerate, since we assume M to be

symplectic. The Hamiltonian function W in N can be re-

stricted to M by H-j = Hy + and as usual defines a vector-

"
field X = x

Hy in T™™ by

= dH, .

*
w (X , ) M

M

®
This X is the desired “constrained vectorfield" of x

H *

Note that, in general, the vectorfield x is not tangent

to the submanifold M ¢ N, i.e. X, M é TM and therefaore
x" ¥ XHIM - Only in the special case,

|)=

where xH € T™™, we

have x* = X, since then j’u(x Al o 3) = w (X, , -).

For actual calculation thig defxnltlotL}s not very helpful

and we glve a different deseription - knq which leads to the

same result, It suffices to do this locally‘and we describe

the points in a neighborhood U € N by x,y and u by

dy. A dx. .
Ey %5

[ 3= d

{6.2)
N

>
where dFl, sz,.., dFs

The manifold M wil) locally be givs\by

MA L = {(x,y) ¢ U(.,'P (x,y) ...

S}

= F_ (x,y) = 0)

are assumed to be linearly independent.

Lemma g.,1 M is symplectic in u if and only if

{6.2) i-] =1, 2,

e, 8

det{lFi, Fj}) # 0/)\

[ o

y =

g

(e



bee ]

Proof: We have to check thi: E = TpM at any point
Pp={x.y)JEMANAU - which we fix - is a symplectic subspace
of (Rzn, w), i.e. that
i
E(\E ;(O}r
1
where E is the orthogonal com lement with respect to w, i.e.
1 2
E = {x ¢RY | uw(+,E) = 0} .
’Lom the symmetry < f the above condition E is symplectic !'{

x > 2 - s -
if and only if E is symplectic. Now E = TM is given by . .

E = (x €R" | ar (x) = 0,..,0dF_(x) = 0},

. ;}'\

I1f we use the definition of X N '

F_
3
w(ij. ¥Y) = dFj(YP = Y(Fj) ’
1
then we see that tlhe X belong to E, and since they are /

F.
3 : J J' 'L
linearly independent they span F' . Thus E is symplectic if

and only if the form

s

.
wl} X o 1 nx.)
i=mp UFy T g5 Ey

is nondegenerate, which is the :ume as the nondegeneracy of
the matrix

s X, ) = {F, , F.} . -

N(X€X' F. i b &

v J
This finishes the proof of the Lemma. Note that (6.2)

implies that s is even, say s = 2{~, r~

N

We use the decomposition

1
" e 1N = TM B (TM)

e

to decompose Xy into

X, =X, + X, , X

H 1 2

F 3
1 & T™, X, & (TM?

and naturally call X, the projection of X in TM. It is

- .
easily seen that X, agrees with X described before. 1In

N Y s
fact, for every Y e-TdM we have 14 o o ( Ci:
< L
= = = I
du(y) M(XH, Y) m(xl + X, Y) m(xl.Y) , y
. v
since w(xz,Y) = 0. Therefore, with Wy = i w 5 and ’
H, = H s j . hence dHM = j*dH, we have

dH(Y) = wy(X; ., Y) R

g
for every Y & TbM . and since w, is nondegenerate we con-

M

*
clude that indeed xl = X .

E
Since (TM} is SPanncd by Xp v Xp  seees Xp ‘i\we set
1 2 5

)
X, = A. X
2 .
j=1 1"j
so that
| )
X, =X, - A ¥
1 H . F.
=t 1 7j
is tangental to M, i.e.
)
0= X, (F,) = X (F.) =~ A, X (F.)
11 H i 321 h] Fj i
or
s
. = , F.1 - AL F. , F. .
{6.3) 0= {n, 7,1l 5213(3 ;)

M fecanieof €

: ULLE
These cquations uniquely define the functions I;V o

Mebet, in a smzll neighborhood of M in N, beseaosmerfeiiie=_

L o ——— = e

bre tae e €J7‘¢‘Vf1514.f {o citf;nc, e ;t; Loeant
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Therefore, we obtain an «ffective calculation of the
*
constrained vectorfield X on M as fcllows, If H is the

given Hamiltonian, and if th~ symplectic submanifold M <N

is represented by

M={zgnN | Filz) =0,..,, F {(z) =0}

with dFj linearly independent on M. then we set
" g -
(6.4) H = H-] Aij,
=1
] e
where the functious Aj are '-Miquéi.yf-uetermined by (6.3) in
4 small neighborhood of M., Then the Hamiltonian vector-
fielad Xyn defined by u(xH, *) = dli*{+), and given by
Al T

reEm I T . N

5
Xp = ¥ - I ax. - J p.x ;
* H . . . . 4
L =1 3Ry T E T Ny .
is tangen}jel to the submanifold M, and, on M, it is the

desired constrained vectorfield of X :

XH, = X = xl on M .

The function H* and the vectorfield X are not only

H*
defined on M but in a neighborhood of M, but xH, has the

desired meaning as a constrained vectorfield only on M,

It is also good to notice that H* and H agree on M

r
H* = H on M,

but not their gradients. In fact

5 B
aH* = aH - J AJAF. - ] F. dx,
jep 3 3 j=1 3 3

L

¢
~

469

P '4'71/ e £

hence if X ETEN at a point b M, then

] s / )" ]

dH* (X} = dH{X) - R AF_{X). ,--- /
__._d__jal' J-- 3J .

since Fj (ﬁﬂowever, if X lies in the tangentspace to

the submanifold M, j.e. X & T@j{: then dH*(X) = dH(X), since

ermfh(l(_

rtp(aa:{t 53

Ly B

now dF, (X} = 0. Repiaca /

Clearly outside of M one has the freedom to_rhoose-113sd

def
$e

TR

long as dﬂ*(xf‘.) = €. X., 1is tangental to M, and P
au({x) for all x < TM. — i s =z
P 2 _G—S .
If F is a function on the symplectic manifold (N = R n,w) §
-~
we denote its restriction IZ.I_;:O the symplectic submanifold ;
M, w,) by ‘l‘,‘ S
| ¥ N
Fy=F°j3 , ! :
i e .
R W
where j is the inclusion mapping M » N, We shall prove 'g* a b
= o "
Lemma 6,2 } 'g
. r §2
Let (M.mM) be a symplectic submanifold of N. Then we . g
have for two functions F, Gon N a2
(F.6€) o5 ={Fej go3) =(F, ,G.} :
! ey M LA | . !
4 , o,
if either X or xG is tangental to the submanifold M.

P

sp Gt r'uj;

Proof * Assume xF is tangential to M, XF & TM, then :
L)
XF = xFM on M. Furthermore one M we have the unigque Gpereme
1 2
XG XG + XG : P

Xeg =X, € ™, x2&mnt
G Gej 4 G *
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then ’P
Hence
{F, , F,} = |f,a\|2 > o, X
{F,G} = j = wlXg » Xe) o 3 i i
and Lemma 6.1 shows that ™) = M is a symplectic submanifold
2
= wiX , X + X = w(X s X, ) 2n
PM GM G FM GM | of (R, w) . __/
= {FM R GMbﬁa\ _ _;==l$6hH*QL‘4L;;;L We suggest to constrain the "straight line motion“given
. k- by the Hamiltonian
as we have claimed. B bded 1, .2
Homd{c.ier of i) ; H = i'y'
1f H* is m’constraxned . Elossield of H, which is
e T o =
tangential to M, we conclude from the Lemma that . . to TM.'l =M. We set
* = H - -
H H llFl A2F2

xH,(G) e j = {H*, G) o j =
and compute Al' 12 via (6.3). Using
{H* ¢ § , G ¢ 3} ={He3j, Gej} 3 -
Wy Wy ;o
{Fy , B} = <ff}, y> = F, =0 inM -

£ £ i N . B .
or every function G on ) {Fz , H} = <§§¥Y . y> _;;X
. Seg :
we obtain -
(b) Three Examples : : {F,.R} ’ - T
A, = —E = - <txxy, y> | 12-"=°' ‘P
on 1 r,.F) Nt 2 —_— X
Example 1: Consider a submanifold M, in R which is given 271 s, e T .
locally by Tl g M Cri e )( Therefore the constrained differential equations become
: g 1
e - G - - -
v = = é > =" = ; = -H =
o MNT s e =0t @ @ X —>=xcmey syswmann o g
where %if(x] # 0. Then the targent bundle of M; is given by or
. X = A -

f{x) =0 » <E (X}, ¥y> =0
This eguation describes the geodesics on Ml or’ the motion

which we consider as a submanifold of R2n ; with coordinates
5 of a particle on M, without external force. Thus we see that
. n : . . . ‘ 1

X, ¥y in R"7. It is a symplectic submanifold with respect to

constraining H = % Iyi2 to the tangent bundle of M1 gives rise

w = E dy. A dx, . Indeed, if we set
3 J to the geodesic flow on Ml with respect to the standard metric

Fo(x) = £0x) , F(x) = <E. , y> lax]?.
1(:() = X , 2 () x Y
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included this temm because then the system (6.5) is an

integrable system in (Rzn, w)} as we shall see.

Example 2: We constrain
Example 3 With a positive definite symmetric matrix A we

1 2.2 2
= - < >+ <Ax,x>)
(6.5) =35 (Ix]|"]y] Xra *e introduce the bilinear form
to the tangent bundle M of the unit sphere -
© the tang (6.7) QoY) = - <a”he,y> L 0 = otx,y)
, .
Ix|“=1 , <X,y> = 0, ) and use the Hamiltonian
We set
e - (6.8) = 31+ 000} 0ty) - 02(x,y))
= - F, = <x,y>
(6.6) Fpo= 3x|"-11 , 2 Y and the constraints

and, as above
na, ; (6.9) Fy = %(Iyl2 -1} = g, Fy = Qlx,y) = 0.
H =§H ~ llFl - A2F2 . .

The last two equations défine a s lectic submanifold since’
Then we calculate on M q ymp n sinc

. 2
{F, .1} = o, {F,,H} = -<ax,x> , {FI,FZ} = x| =1 (Fy ., FZ} = - Q{y) » 0} ,
giving We set
®
Ay = <Ax,x> , Ay= 0, . H =4 - AFy - A2F2
P?L ..X.'rhe constrained differential equations are with
AbAL . : . / . -1 ,2 - -
= H; =y, y= —H; = - Ax + (—|y|2 + Al) X (; (;A'\/"*-u ‘ 11 = |A ~y| {1 + Q(x)) Qly) 1 [A lez . 32=u .
1
or ——————— . . The constrained differential equations become

-. 2 7 i f - — . : R
R ook Iyl e TS (el eV x = K= -1+ otxiaTly - Ay

This agrees Precisely with the problem (5.1), (5.2) of the ;-“ —H; - oly) Ahlx .
previous Section. In other worcs the mechanical problem of

If we restrict ourselves to the energy surface H = ¢ then
Neumenn can be extended to the srstem with Hamiltonian (6.5) so

(6.9) implies 1 + Q(x) = 0 and so the differential equations
that constraining of (6.5) to the tangent bundle M of the sphere

simplify to
gives the desired problem. To bLe sure H is not uniguely deter-

mined by this reguirement; .for example <x,y>2 could be drbpped x = = Aly A = _lelg
. - ' 1
without harm since it vanishes with its derivative on M. But we Y = - 0(v) A lx.

P

Ty =
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%
=
I
. . ds _ A. th 3 9 are linearly independent on an open and dense set D of R2n_
Finally, if we use as new parameter s with J - M en oo+ ' . —_—
en any Hamiltonian = ' tases ong
the equations become _E ~L Th f e 1 H(F1 F2 Fn) bel s to
o and defines an integrable vectorfield X on D with
gﬁ =y , QX = AI]' o)) A-lx w v . ]
ds ds t} Fl, Fz,..., Fn as integrals., More generally any function
which agrees with the geodesi~ flow on the ellipsoid (5.3), -/ . of \;'_is an integral of xH .
5.4 tricted to th n-'.l-mt:mme-ﬁm' i [‘a——k]/ _;1'
( Vo restricte € ““{ /\__ ? /\ Now we restrict XH to a submanifold

Thus th eodesic flow on the ellipsoid is obtained from
u e g e P (6‘10)M={(x‘y)eR2nIF1=F2=...3F = 0, (;1=G2=._.G =0}

(6.8) by the restriction to (6.9) and H = 0, and reparameter-

; . . cee - . . where we assume that
ization. This extension is somewhat artificial, but we chose i -
it because we will recognize (6.8) as an integrable Hamiltonian. (i} Fyo Fz"“’ Fe € \}.
(6.11)
{c) Constraining an integrable syster: . ¥ {ii) der {F., Gj}i,j=1,...r 0 on M
If an integrable system X, is coi:strained, then the g‘l-d.cr Clearly this is a special case of the previous situation.

In fact, if we set for the moment ¢i = Fi , and ¢i+r =6, ,

constrained system is generally not ir-cgrable. Inedwder= i
. . i=1,2,... i
otherwise, as example 1 shows the geciesic flow on any manifold ! » T (note that the functions G; do not belong to \?.)

. : : . then
would be integrable. It is a very special property of a mani- : 2
. . - . . det{¢.,¢.} o= (det{F.,G.} > 0
fold for the geodesic flow to be integrable, We will give i'73 i, = 1,2....2r i ‘3 1,3 =1,2,...,r
sufficient conditions Under which the integrable character is? :
. . on M. lence the dFi 4G, , i,5 =1,2,...r are linearly in-
preserved under constraining. 3

dependent on M and by Lemma 6.1, M is a symplectic submanifold.

: : . P :
For this purpese we begin with a family CFof functions N is of dimension 2(n-r}.

F e C"(Rzn) which are in involution and are closed under compo-
i By?‘;; we shall denote the family of functions cbtained (by)
sition i.e. if F, , F ;T ' then also (F}+F,) belongs to _7-‘ ) ) .
- *) ~ by restriction of the functions in ?onto the submanifold M, i.e.
where ¢ is any C function . Moreo\.:r, we assume that J‘-
L

contains n functions, say Pl, Pz,...F“ for which dFlf F2.---. an \f‘M ={Foj = FM | Fe }-} R

where j is the inclusion mapping M - Rzn. The following Lemma
provides a . ..ple device of constraining an integrable system

* . . .
! One could consider narrower classe.: of functions like linear to obtain a new integrable system.
functions, retained functicns, rtc.
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Lemma 6.3 Let M be a symplect.c submenifold given by

(6.10} satisfying the assumptions (6.11). Then the functions

ing:M are pairwise in invelution on (M. wyl i.e.

L gne
{n =0, for ¥, 6 & .

v GM}
Yy

In particular, if H 3" + then the counstrained vectorfield

Xy has :;:M as integrals. Moreover X; is an integrable
M M -

system on (M, w,} provided M is contaiaed in D, r=whicl] the

functions Fl,..., Pn are by assvmption linearly independent.

Proof: If H (,—3., then the co..straired Eamiltonian (6.4)

takes the form

tehe

. xr L
n=n-j£lujrj+uj G ) e
where by (6.3) LT
- xr Coma, not 4.
= {H- = ; - ]
0 {'wpi} JE llj {L'lj ’ Fi } ’ o

— 3 Tk

T
since both F and F, (4 =1,2,...,r) are in F.

tion (6.11) (ii} we conclude uj = 0, so that
If
X = X = X - A, X .
H* Hy o 45 s Fy

Therefore, if G G.?-, then {H*,G) = 0 &nd by Lemma 6.2

=-{HM.G} .

0= {H*,G} « §J = (H* ¢ j, G c j}
’ Wy Ml.uM

.
If Py.evo P, Fogrre-es F. € J are linearly independent

on b, and if M D, then it follows frcm the above expressions

for the constrained vectorfields, that the vectorfields on M:

By our assump-

ved
.

‘77

X . ¢ k=1r+l,..., n

Fk. J

are lipearly independent, hence (Fk- i k= r4l,..., n

are (n-r} llnearly independent functions in}. whizh

Ml
are in involution, and the Lemma is proved.

#

¥
WA

we set S\ .

Example 4.

For a) < “2“:\"—'__: “n

1 n (x - X, )
Fk(x.y);@ + 2‘ J'k Y3 ;J Yy
% g e Y L

where the prime indicates that J=k is to be omitted in the

{6.12)

summation. We will see in the next section that

{Fk 4 Fj} = 0

e .
and we can take for J the class of functions generated by

Fi, Fy ... r}fi. b= of

"
For instance the functions

9 n
Ix]© = 1 Fy

k=1

2 2 2 n 2 n
Ix]“ 1yl® - <xy»? s+ § o, x 2 = I o F
e e ki1 %k Tk

belong to -?r. Hence the Hamiltonian (6.5) with
A= diag(ul ¢ Boraeey un) defines an integrable vectorfield
XH with the intggrffls (6.12). Clearly the dr'k are linearly

independent in a puncf&rj neighborhood of the origin, and there-
fore the sct of x and Y where one has linear dependence is

of lower dimension.

Ty

-

iy

LA
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Next we restrict this vectorfield

bundle M of the unit sphere giv:n by

r=§-([x|2—1)=o ,

., to the tangent

H

G = <x,y>=10.

Since F, H both belong to Jz—it follows: from Lemma 6.2

that the constrained vectorfield Xye

integrable and that FklM are integrals in involution for

Xga -

since
¥ 2
IoRdy = ix?e

k=1

1

on M is also

This shows that the mechanical problem (5.1},

‘'is integrable with the aboﬂe rational integrals. In partic

we see that the level manifolds

{x,y | Fy = 7%)

are algebraic manifolds.

=

0f course, these restricted fun ‘tions are dependent,

(5.2)

ule ™

A
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7. Isospectral Deformations

In this section we construct a matrix L = L{x,y}
depending on x,y € R® such that its eigenvalues remain fixed
when x,y = x travel on orbits of the problem (5.1), (5.2)
of Section 5 or on the geodesics (5.3) 2/ the ellipsoid.

Thus these matrices undergo isospectral deformations corres-
ponding to these problems — Sﬁn{fﬂlﬁjas wea saw previously for

the Toda lattice.

(af, Deformation of the Spectrum

Consider the matrix A = diag (ul,az,...,un) with

Gy <€ By < .ee < ua. For x,¥ € R n we denote the n by n
matrix (xilyj) by x ® vy , the tensor product of x and y.
f x| = 1 the matrix

(7.1) P = I-x6x

is the projection into the orthogonal complement of x.

Indeed, for any ¢ E Rn
Px¢ = ¢$ - X<X,¢>.

Tf x is not normalized we set
= i = A{ = 1-
P, =Py if x , lel

Now we consider the symmetric matrix

(7.2) L = Li(x,y) = Px(A -y ® vy Px ’
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which depends on x,y € Rn, x # 0. Clec.ly A =

0 is an

eigenvalue of L belonging to the eiyenvoctor x, The

remaining eigenvalues will be de

and
T
£ _,(2) =
n-1 =1
so that

det (z ~ L) = z

We also set

det (z ~ 3) = an¢z) =

In order to determine the spectrw of L in terms of X,y

we introduce the bilinear form
(7.3) 0 {x,y) = <{z - a)"

for z # uj and prove

Lemma 7.1. The eigenvalues Aj ¢f L are determined by the

identity
2 L (z)
B det (z-=L) _ 2 "'n-1
(7.4) 2 det (z-A) I aniz)

i.e. the eigenvalues ll""'ln—‘

function on the right-hand side of (7.4}, its poles are
the eigenvalues ul,uz,...,an of A.
Proof: If A # 0 is an eigenvalue of L and ¢ 1 x the

corresponding eigenvector then

noted oy Al,lz,
z=X,
{ J)

Lot .

n

ﬁ(?—ﬂj).

i=1

Yy 9 (0 = 0 (x,x)

are the zeros of the rational

we have Px¢ = ¢

REL S ]

and

J

2
T (1 + 0, (v)) -0, x,y))

gl

(L-2)¢ = P (A~X-y ® y]¢ = 0

or
(A-A) ¢ =~ y<y,$> = ox

Hence,

(A=A}¢ + ax + by = 0

with some constants a,b where b = -<y,¢4>. If we assume
that X # uj we see that

1

¢ = a{i-A) "x + b(A—A)’ly

and the two conditions .

<xX,¢$> = 0

<y.,$> + b = 0

give two linear equations for a,b. 1In order that a nontrivial

solution (a,b) exists Zwe need that

Q, (x) Q) (x,y) )

= 0
O xy) Ly (y) |

det

which means that the eigenvalues Al'lz""'ln-l are the
zeros of this rational function. 1Its poles are the eigenvalues
Oy elyee.. 0 of A, so that this determinant is a multiple of

ln-l(z)

: anlz) *
The coefficient is then easily'determined by the behavior as
|z] + =. This argument is valid only for those x,y for which

the Aj are distinct and different from the a . This is the case

iy W

Ty
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however on an open dense set aid th.. suffices to identify

the two raticnal functions as we will show after the proof of

the following lemma.
Lemma 7.2. The function

2
0, (x,y) =0, (x) {1 + 0 (9] - 0 (xy)

has the partial fraction expansion
nOF (x.y)

{7.5) o, = e
j=1 J

where Fj(x,y) are the functions (6.1.).

" Proof, This is a simple caicul.tion: use
-1 -1, 2....2, _
o (x,y) = I (z -ap (z-a;) [xi(l"j) X{Y%4Y5 )
1,3
and write
-1 -1 1 ’ 1
{z-a.} “(z-a.)} = [“"T“— - —:———]
j b] ay aj -y z uj

to get the result.

Now it is easy to see that the ‘j = lj(x,y) are distinct
from the o, on an open and den:ze set. Indeed otherwise the
rational function @z of 2 would haveless than n poles and at

least one of the Fj in (7.5) would vaunish. This takes place

however only on a lower dimensional set of Rzn. Also the
Aj = Aj(x,y) are distinct for ¥,y in un open and dense set
of R?", In fact, if we choose x = : and |y| small

i

then the eigenvalues Aj are close tc 0)s05,...,0. 5, hence

distjinct,

483

The basic observation is that the eigenvalues
Aperge.e-sA ) of Lix,y) together with lx[2 are in involution,
provided.they are distinct They will serve as the integrals
of the isospectral deformations of Lix,y). Actually it is
cumbersome to work with the eigenvalues of L{x,y) since they
are only algebraic functions which are not well defined if
one has multiple eigenvalues and it is more convenient to work
with their symmetric functions. From Lemmas 7.1 and 7.2
it is clear that Fl,Pz,...,Fn are expressible in terms
of symmetric functions of the eigenvalues of |x|2. Then our
statement namely that the }j are in involution is equivalent
to the previous not yet proven claim that the Fl,Fz,...,Fn
are in involution. The proof of this statement will follow

from the following consideration.

(b} Iso-spectral peformations of L(x,y)

We consider fa Hamiltonian

(7.6) H =

N =
Ity

Bj Fj(X.y)

j=1

with the above Pj defined in (6.12) and some constants

31.82,...,Bn. We claim that the vector field X, defines an

isospectral deformation of L(x,y). More precisely, we have

Theorem 7.1. The Hamiltonian system

y = -H,

with H given by (7.6) can be written in the matrix form
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(7.7) L= 8,11,

where L-is given by {4.2) and vhere
B;-8B.
(7.8) B =- [————l (x,y. - » y‘]] ;
: ity S
]
here the diagonal elements are to be set aqual to 0.

Corollary. The Fj(x,y) are in involution.

Proof of the corollary: First we note that

(7.9) x0x1? = x|%a = o,

1

which is equivalent to the fact that Xp(H) =0 for ¢ = 3 lez

'
- which is obvious, 1In fact the vector field x¢ defines
the flow (x,¥} -+ (x, y+tx} and it is evident that the Fk
and hence H are invariant under this ilow.

Second, we recall that the eigenvalues of L are
preserved under the flow for (7.7), hence by the theorem

they are preserved under the flow for the Hamiltonian

system H, therefere . .

Sot (=) = {1 (z) K = X (o1 (2)) = 0,

and hence, with (7.9}, for every z # y

3 (z) £ (z) 2
2 "n-1 _ ‘n-1 2, |x[ _
XH[|x| an(zJ) - an(z} xH(le ;o an(z) XH(En-l(Z)) =0.

By Lemma 7.1 this agrees with

“ES

xﬂ”z) = 0,

where @; = ¢_(x,y) is introduced in Lemma 7,2, By (7.5)

this yields

XH(ij = {H,Fj} = 0, j=1,2,,...,n,

or

n
1£1 Bi{Fi'Fj} =0,
for any choice of Bi , and so {Fi,Pj} =0 for i,j = 1,2,...,0.
This verifies the claim of the corollary.

Proof of Theorem 7.1: This requires a calculation.

We write out the differential equation for the Hamiltonian

{7.6)

. n B.-p
x, =H = ik

3 b £ k=1 %%

Gegyg = Xe¥3)%
or
x = Bx

Similarly we compuie
y =~-H, = - Bx + By , B = diag(Bl,Bz,...,Bn) .

X

In order to derive the matrix equation we compute

x @ x= (Bx) ® x + x & Bx

Da]ﬂu
™+

= ﬁ(x 8 x} + (x ® x) BT

and since Bl = - B

{7.10} gE X & x = [B, x 9 x}

Similarly, one computes

™

ry
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[7.11) ey =1(8B,Y89 ¥yl = Bx 2y - % ® Bx .

d_
ac ¥

We Tewrite this with the help of

(7.12) [B,A] = {(Bi-sj)(xiyj- xjyi)} . Rx @y + y ® Bx -(x88y +By8x)

-B,(x@ Y - ¥ e x)1]

as
gg yey=1[B, y®y- A] - (x & By + By @ x) .
1f we set A~ Yy 8y = Ny then wc get from (7.11}
(7.13) LN = [B,N I + X 8 By + By O X
: dat 'y Ty . .
a d . _
EE'Px = - 3% (x & x} = [B, x 8 x] lB,Px] . ¥

With these identities we can get the differential eguation

for L = PxN Px:

Yy

| _
EE’L = lB'Px]Nny + Px{B,Nerx + quy[B,Px]

in the middle term we used (7.13) and the fact that the last ,
two terms of (7.13) get _illed by the projection P_. The
last eguation can be rewritten as

dL .
Ik = [B,PxNny] = [B.L]

since the commutater acts like a derivation. This verifies
Theoro 7.).
1t is easy to generalize Theorem 7.1 to a Hamiltonian

of the form

(7.7) and (7.8)
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H = H(Fl,Fz.....Fn)

where F, are defined by (6.12). Indeed since

n
= E EF_)(
Xy sby 3y Ty

and Fj are integrals of the motion the BH/BFj are constants
along the orbit. Therefore if H = H(Fl,...,Fn), then the
vector field xH corresponds to the isospec-ral deformation

where now

{c}  Summary
Any Hamiltonian of the form H = H(Fl,Pz,...,Fn), in

particular,

ar, = 1 (x12ly1? - oup? + axoo)
y 33

U =

_1
H =3 ;

is integrable, if Fj are the functions defined by (6.12).

1f we denote by FF the family of rational functions generated
by Fl'FZ""" Fn the F is involutory. Moreover, the above
Hamiltonian as well as

=1 9
belong to F. Therefore we can apply Lemma 6.2 and see that
the vector field X, obtained from X, by constraining it

to the unit tangent bundle M:



Ix|2 =1, <X,y> = 0 (i) ¥ho Elliptical Billiard problem
is integrable and the restriction of the Fj to M form a Tho geodesic problem, the three-axial ellipsoid,
2 2 2
i . i : : be verified b x x x
set of integrals. This fact could, of course, be veri Y El + EE + 51 a1, 0« s < ay < ay
direct calculation, but we wauted to show the connection 1 2
of these integrals with the eigenvalucs of [ = Lix,y). s dnto the billiard problem on an elliptical table
*2 "§
RIRT}) x =0, a t=—==x1
1 a, ay
The geodesic flow on the ellipsoid can be treated in 1f wo let a; tend to zero. This fact was pointed out previously.
a similar fashion. We return to Example 3 of Section 5, . . N use it here to interpret the integrals
We observe that the Hamiltenian (6,8) agrees with 5 (xky'“x'yk)z
Fk(y'x’ = yk + z —--J__ul___
1 ) I S 3 T2y
H = 3 @z(Yax) = . 7 X i F.(y,X)
z=0 j=1 3 3
. f , Since X, = 0 the first integral tends to zero and we are left
where we had to exchange x anq Y. Denoting by F© the famllz*“, 1
AN vith
of polynomials generated by FJ(y,x) we see that H € F} and (x Xy )2
PN = 2 _ %o¥3 T oxyv,
also L { Ance ; Fy = Y2 a3 — a,
1 2 ) - 2 .
g lyI®-1)erd : Fo o= g2 4 523 T X3¥))
3 3 ay = a,
g0 that the vector field XyT constrained to the symplectiea 2 2
N €2 that F, + F_ = + ¥3. Since x. = Y; the sum of these
manifold (6.9) is alsg integruile, with F:[/M as integrals, . . 2 37 ¥2 3 J ]
. . . . . integrals is twice the kinetic energy which we can normalize
Thus the geodesic flow on the ellipsocid admits the integrals
to one:
Fj(y,x) when restricted to M and H = 0, and ig therefore an )
2 2
integrable system. This flow also admits an isospectral F, + Fy=ay, + ¥Y3=1.,
deformation with the matrix L = L{y,x) and By =~ 0;1- Ffnitead of F, or F; we consider the integral

. 2 2
(7.,15) 1 = azf, + a,F, = a3¥; + ayyy - (xyyy - x3y,)

L& whose interpretation wé turn.

oy W

Py

e
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2 2 Proaf: We set
Theorem 7.2. The set (x,y | Ifx,y) = const. = y; + y3 = 1}

¥y X3V

describés the locus of lines ' = . =
QA(X,YJ I + I:E; ; Q, {x) Ql(x,X)

x = ty + x(0) X = (%,,X = { } \
Y ' ( 2’ 3) ! Y ¥2:¥3 1f x* = t*y + x(0) is a point of tangency of our line with

the gquadric QA(x) +1 0 then we have

in the plane which are tangential to the confocal ellipse

x x5 7.17 x* 0 *y+1=0.
(7.16) 2 4 _i_= (7.17) Q, (x7ry) N

We used the first eguation to eliminate t* setting
for A # LPTLET
. . x' = x + t*y to get
This theorem contains tb: elementary geometrical result . .

Q, (x,y) + to,(y) =0

that two tangents of a con{ocal conic section (7.15) inter-

secting on the ellipse

Inserting this into the second equation of (7.17) we

2 2
*2 . x5 1 obtain (assuming Q,(y} # 0) that
e

0, (x) Q,(¥) = Q3 (x,¥) + Qy{y) = 0

which, after a short calculation becomes

i - oy ? 2 2
2Y3 2! Y2 . Y3 0
I Ti-az)(l-ua) A=, l—u3

e e or

' 2 2 2 2 2, _
(x2y3 - xayz) = Q3¥y < Op¥a + A(yz + y3) =0

or

2
1= Mys - y3) = A,

as we wanted to show.
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{e) Linear Dependence of the C“j

So far we assumed that the gradient of the integrals of
our system are linearly indepenc nt. 1In that case the level
manifolds turned out to be tori in the compact case and the
solutions quasiperiodic functions of t. What happens when
the gradients of the integrals became linearly dependent?

This gives rise to singularities in the foljation of tori
and also the quasiperiodic character of the solutions
get lost

We will not make a study of this question in generality
but give examples of soclutions on such singular sets. It turns
out that the more remarkable sclutions can be found on these
singular sets,

We illustrate the different behavior on level sets where
the dFj are linear dependent for the Neumann problem. This

admits n-1 integrals, say Fl'FZ""'F while Fn is determined

4

n-1
from

Y 2

F. =} xi =1,

21 ] 2 J

From the form of the functions Fj (see (6.12)) we see that
de =0 if x. =y.=0,

s0 that the gradients are linearly dependent on the subspace

Ej = {x,y j X5 =¥y = 0}

y3=z

Ly W -

All solutions are pericdic except those for which

2H = nz,al .

For 2H = a; we have a minimum, taken on for 8 = + ; {mod 2m)
which are stable equilibria.
For 24 = a, we havé saddle points at § = 0,7 (mod 2n) ;

and the curves

—r——

8 = + qu-al sin 0

The solution of this equation is not almost periodic. It is eas—

ily dintegrated if one introduces T = tan % . Then

x1 = gin @8 = —gly

1+1
1--12
X, = cos 6§ = —1
2 1+t
. 2
g{-=el—'2"r——_t/a2-alt. .

This gives for the solution
%) = cosh™" /G77a; t, x, = + tanh vaymay t

which approach (xl,xz) + ($1,0) as t + + =
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We determine the equilibriun solutions of the Neumann

problem. They are given by the points on the sphere where

the right-hand side of (5.1} vanishes with x = 0, i.e.

Ax = <Ax,x>x on |x| = 1.

These points are given by x = + e, ., k

In order to determine their stability behavior we use

=1,2,...,n.

at x = + ey the coordinates xj’yj tor 3 # k and obtain

X r ¥y from

2 _ 2 _ -1
*x j};kxj' T T 7 ¥y

)

itk 7

x¥y e

Linearization of the differential equaticns at + ey gives

J

X, = — (uj - ak)cj for j # k.

so that the characteristic exponents at + e, are

+ {uk—uj for j

[}

1i/uj—ak for j

1,2,....:k-1

k+l,...,n .

wvhere

[}

This shows that only + e) are stable eg:ilibria. Incidentally

for all other + ey {k # 1) we have asymptotic orbits connecting

e with —ey. On the eguilibrium points + e, we have

F, =1, F. =240 f(,:r]’#k,

k j

and it is interesting to investigate tt.

singular manifolds

Sy = {x-y | Py = 1, F, = 0 (5 # kI, <x,y> = o}

J

which contain not only + e but all orbits asymptotic to these.
It turns ocut that all solutions on Sk can be expressed
in terms of exponential functions.
We conclude by characterizing Sk by the spectrum of
L = L{x,y), namely Sn is characterized by the property that

the nontrivial eigenvalues of L are

A, =a, for j=1,2,...,n

3 b

Indeed, by lLemmas 7.1 and 7.2 -

n-1
[T tz-2))
5 S = L AU S Rl LA
TT ey 2% 37 ¥ F
3
1

which gives the statement
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Gy

EXLRCISES

The matrix L = L{x,y} which is i:sspectrally deforméd

by our flow is by no n.ans uniquely determined. We give
another example for sucl a matrix for the Hamiltonian (7.12).
Show that

XH(x By -ye ) =B, x®y -~y ® x] + [B,x8x]}

where § = diag(sl,Bz,...,Bn).

Using Exercise 1 and Theorem 7.1 show that the matrix

Le(x,y) =2 -c(x®y -y ®x) - 52 x ®x, €E#O0

satisfies the different al equation

d -
at Le = [BE,LEJ where BE =B +¢c B

if x = Hy ¢+ ¥y == H -~here H is given by (7.12),
Show that

det (z-L ) -
.-.—.-....._.—e-.=1-€"@ (x )
det (a-a) z %Y
where ¢z(x,y) is the same function as in Lemma 7.2.

This exercise shows that the vigenvalues of Lc are !
defined as the roots of

1
¢ (x,y) = —
z €2

while the eigenvalues of L = L0 are the zeros of Qz(x,y).
Verify directly that
) L
{Fy, ¥ = 0

for the function Fj defined in (A.12),

® O

Y37 ' d

Hint: This is lengthier to calculate, first show that

2
G = g ckj(xkyj - xjyk)

are in involution if the constants ckj satisfy

©13%3 * ©3kCik * Ski®ji = O-
which holds for iy = (e, = uj)-l. Second, show that '
2
xk + Gk

are in involution, if the cij satisfy in addition

cij + cji = 0, .
If we set ay = NI g0y j=1,2,...,n, and let £ + 0,
show that
k-1
2 2 2
O Fy j£1 oy = *x5¥}° = G = Gy

e

where Gk stands for the function defined in Section 2.

This proves again that the G  are in involution.



