
Generalized Averaging Priniple andProper Elements for NEAsGiovanni-Federio GronhiDipartimento di Matematia, Universit�a di Pisa,Via Buonarroti 2, 56127 Pisa, ItalyAbstrat. We present a review of the results onerning a generalization of thelassial averaging priniple suitable to deal with orbit rossings, that make singularthe Newtonian potential at the values of the anomalies orresponding to ollisions.These methods have been applied to study the seular evolution of Near EarthAsteroids and to de�ne proper elements for them, that are useful to study thepossibility of impat between these asteroids and the Earth.1 IntrodutionThe averaging priniple is a powerful tool to study the qualitative behaviorof the solutions of Ordinary Di�erential Equations. It onsists in solvingaveraged equations, obtained by an integral average of the original equationsover some angular variables; if some onditions are satis�ed the solutions ofthe averaged equations remain lose to the solutions of the original equationsfor a long time span. A review of the lassial results on averaging methodsin perturbation theory an be found in [1℄.These methods have been used to study the seular evolution of the MainBelt Asteroids (MBAs) starting from [26℄, see [11℄,[22℄,[15℄ .On the other hand in the ase of Near Earth Asteroids (NEAs) the inter-setions between the orbits of the asteroid and those of the planets generatesingularities in the Newtonian potential orresponding to the ollision valuesof the phases on their orbits: in this ase the averaged equations have nomeaning.In 1998 Gronhi and Milani [8℄ have de�ned pieewise di�erentiable solu-tions that an be regarded as solutions of the averaged equations in a weaksense: they solve slightly modi�ed averaged equations in whih an inversionof the integral and di�erential operators ours. These equations orrespondto the lassial averaged equations when there are no rossings between theorbits.The eentriity and the inlination of the Solar System planets are notonsidered in this framework: this simpli�ation gives rise to some nie prop-erties, like the periodiity of the solutions of the averaged equations withrespet to the perihelion argument, and it allows to prove a stability prop-erty [9℄.



2 Giovanni-Federio GronhiUsing the generalized averaging priniple Gronhi and Milani [10℄ om-puted proper elements and proper frequenies for all the known NEAs usingthe NEODyS database of orbits (http://newton.dm.unipi.it/neodys/).The related atalog is ontinuously updated aording to the disovery ofnew asteroids and to the hanges in the orbits of the known ones: it an befound at the web addresshttp://newton.dm.unipi.it/neodys/propneo/atalog.tot .The reliability of these solutions has been tested by a omparison withthe outputs of pure numerial integrations [7℄ and the results are quite satis-fatory.Reently this generalized averaging theory has been extended to the e-entri/inlined ase for the planets [5℄; this will allow to de�ne more reliablerossing times between the orbits, that are useful to detet the possibility ofollisions.In this paper we shall review the lassial averaging priniple for nonrossing orbits and we shall desribe in all details the generalization of thepriniple when a rossing ours in the ase with the planets on irular opla-nar orbits. Then we shall present an appliation of the generalized prinipleto ompute the seular evolution of NEAs and proper elements for them.Finally two short setions are devoted to disussions on the reliability of theaveraged orbits and to the reent work that extends the averaging theoryinluding the eentriity and inlination of the planets.2 The lassial averaging prinipleFirst we shall write anonial equations of motion to ompute the time evolu-tion of the orbit of an asteroid. Then we shall desribe the averaged equationsfor the evolution of asteroids that do not ross the orbits of the planets.2.1 The full equations of motionLet us onsider a Solar System model with the Sun, N � 2 planets and anasteroid: we assume that the mass of the asteroid is negligible, so that wehave a restrited problem. We also suppose that the masses of the planets aresmall if ompared with the mass of the Sun, so that we have N � 2 smallperturbative parameters �i; i = 1 : : :N � 2, orresponding to the ratio of themass of eah planet with the mass of the Sun.We assume that the motion of the planets is ompletely determined andthat there are no ollisions among them or with the Sun. With these assump-tions we write the full equations of motion for the asteroid in Hamiltonianform.We use helioentri Delaunay's variables for the asteroid, de�ned by8<:L = kpaG = kpa(1� e2)Z = kpa(1� e2) os I ( ` = n(t� t0)g = !z = 




Generalized Averaging Priniple and Proper Elements for NEAs 3where fa; e; I; !;
; `g is the set of the Keplerian elements, k is Gauss's on-stant, n is the mean motion and t0 is the time of passage at perihelion.Delaunay's variables, like the Keplerian elements, desribe the evolutionof the osulating orbit of the asteroid, that is of the trajetory that theasteroid would desribe in a helioentri referene frame, given its positionand veloity at a time t, if only the Sun were present. For negative valuesof the Keplerian energy of the asteroid the osulating orbits are ellipses; weshall onsider only suh ases.The Hamiltonian an be written asH = � k22L2 �Rwhere �k2=(2L2) is the unperturbed term, desribing the two body motion ofthe asteroid around the Sun, and R is the perturbing funtion de�ned byR = N�2Xi=1 �iRi ; Ri = k2� 1jx� xij � < x; xi >jxij3 � ; i = 1 : : :N � 2 (1)in whih h ; i is the Eulidean salar produt and x and xi are the positionvetors of the asteroid and of all the planets in a helioentri referene frame.Note that eah Ri is the sum of a diret term k2=jx � xij, due to thediret interation between the planet i and the asteroid, and an indiret term�k2 < x; xi > =jxij3, representing the e�ets on the motion of the asteroidaused by the interation between the Sun and the planet i.If we set ED = (L;G;Z; `; g; z) we an write Hamilton's equations as_ED = J (rEDH) t (2)where the dot means derivative with respet to time, J is the 6� 6 matrix� O �I3I3 O �omposed by 3� 3 zero and identity matrixes, and(rEDH) t = � �H�ED�tis the transposed vetor of the partial derivatives of the Hamiltonian H withrespet to ED.2.2 The averaged equationsThe lassial averaging priniple onsists in solving equations obtained bythe integral average of the right hand side of (2) over the mean anomalies`; `1; ::; `N�2 of the asteroid and the planets.



4 Giovanni-Federio GronhiThis method an be applied to study the qualitative behavior of the orbitsof the MBAs, that do not ross the orbits of the Solar System planets duringtheir evolution, assuming that no mean motion resonanes with low orderour between the asteroid and the planets in the model. This means thatthere exists � > 0 not too small and a positive integer M not too largesuh that for eah pair (a(t); ai(t)), omposed by the semimajor axes of theosulating orbits of the asteroid and the planet i (i = 1 : : :N � 2) we have��� p [a(t)℄3=2 � q [ai(t)℄3=2 ��� > �for eah pair of positive integers p; q � M and for eah t in the onsideredtime span.Remark 1. As our purpose is not a study of the struture of the mean motionresonanes we shall not give further details or any estimates on the size of �and M .In the expression of the perturbing funtion (1) the e�et of eah planetis independently taken into aount: eah Ri is a funtion of the oordinatesand the masses of the asteroid and one planet only. We shall study the ase ofonly one perturbing planet and we shall use a prime for the quantities relatedto this planet: the perturbation of all the planets, up to the �rst order in theperturbing masses �i, will be obtained by the sum of the ontribution of eahplanet.If we onsider the redued set of Delaunay's variables ED = (G;Z; g; z)the averaged equations for the asteroid an be written in the following form:_eED = �J rEDR t (3)where eED = ( ~G; ~Z; eg; ez) are averaged Delaunay's variables, J is the 4 � 4matrix � O �I2I2 O �omposed by 2� 2 zero and identity matrixes, and rEDR t is the transposedvetor of the integral average over (`; `0) of the partial derivatives of theperturbing funtion R with respet to EDrEDR = 1(2�)2 Z ��� Z ���rEDRd` d`0 ; rEDR = �R�ED :Remark 2. As we are onsidering non{rossing orbits, the derivatives of Rwith respet to Delaunay's variables are regular funtions and we an usethe theorem of di�erentiation under the integral sign [3℄ to exhange thederivatives and the integrals in (3); then the averaged equations take theform _eED = �J (rEDR) t (4)



Generalized Averaging Priniple and Proper Elements for NEAs 5where R = 1(2�)2 Z ��� Z ��� Rd` d`0 = 1(2�)2 Z ��� Z ��� �k2jx� x0j d` d`0 (5)(� is the ratio between the mass of the planet and the mass of the Sun)beause the average of the indiret term of the perturbing funtion is zero(see [26℄).Remark 3. We shall skip the `tilde' over the averaged variables in the follow-ing to avoid the use of heavy notations.We stress that the solutions of (3) are representative of the solutions ofthe full equations of motion only if there are no mean motion resonanes withlow order between the asteroid and the planet.2.3 DiÆulties arising with rossing orbitsWe say that an asteroid is planet rossing if its orbit rosses the orbit of someplanet during its seular evolution.When we onsider a planet rossing asteroid at the time of intersetionof the orbits, the averaged perturbing funtion R is the integral of an un-bounded funtion that is onvergent beause 1=jx�x0j has a �rst order polarsingularity in the values `; `0 orresponding to a ollision. The derivatives atthe right hand side of (3) have seond order polar singularities in `; `0, heneequations (3) do not make sense in this ase beause the integrals over `; `0of these derivatives are divergent and the lassial averaging priniple annotbe applied.3 Generalized averaging priniple in the irularoplanar aseWe present the ideas of the generalization of the averaging priniple to thease of rossing orbits, assuming that all the planets in the model have irularand oplanar orbits (see [13℄) and that no low order mean motion resonanesare present.The natural hoie for a helioentri referene frame is then a systemOxyz with the (x; y)-plane orresponding to the ommon orbital plane of allthe planets, oriented in suh a way that the planets have positive z omponentof the angular momentum with respet to the origin O.3.1 Geometry of the node rossingWe assume that the inlination between the osulating orbit of the asteroidwith respet to the orbital plane of the planets is di�erent from zero during its



6 Giovanni-Federio Gronhiwhole evolution; then it is possible to de�ne, for all times, the mutual nodalline, representing the intersetion of the two orbital planes of the asteroidand the planets.Let us onsider one planet at a time: we give the followingDe�nition 1. We all mutual node eah pair of points on the mutual nodalline, one belonging to the orbit of the asteroid and the other to the one ofthe planet, that lie on the same side of the mutual nodal line with respetto the ommon fous of the two onis. For eah planet in this model thereare two mutual nodes, the asending and the desending one: they di�er inthe hange of sign of the z omponent along the asteroid orbit (negative topositive in the �rst ase and vie-versa in the seond).We say that an asending (resp. desending) node rossing ours whenthe orbit of the asteroid intersets the orbit of a planet at the asending (resp.desending) mutual node, that in this ase beomes a set of two oinidingpoints.Unless the inlination of the asteroid never vanishes, the only way tohave orbital intersetion is a node rossing. In the following we give a de-sription of the possible geometri on�gurations of node rossings in theplane (e os!; e sin!).Reall that an asending and desending node rossing with a planetwhose orbit has semimajor axis a0i is haraterized by the vanishing of thefollowing expressions respetively:d+nod(i) = a(1� e2)1 + e os! � a0i ; d�nod(i) = a(1� e2)1� e os! � a0i (6)that are alled nodal distanes (and an be negative).In the averaged problem with the planets on irular oplanar orbits wehave three integrals of motions: the semimajor axis a, the Kozai integralH = H0 � R (that is the averaged Hamiltonian) and the z-omponent ofthe angular momentum Z = kpa(1� e2) os I . The Z integral allows todetermine the evolution of I(t) if we know e(t); if we also know !(t) we andetermine 
(t) by a simple quadrature of �R=�Z, that does not depend on
. From the expression of the integral Z we dedue the maximum value ofthe averaged inlination and eentriity:Imax =I��e=0= aros Zkpa ; emax =e��I=0= pk2a� Z2kpa :For a given value of the semimajor axis a we an represent the level linesof the averaged Hamiltonian, on whih the averaged solutions evolve, in theplane (�; �) := (e os!; e sin!). We de�ne the Kozai domainW = f(�; �) : �2 + �2 � e2maxg ;where the averaged dynamis is on�ned.
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Fig. 1. The Kozai domain f(e os!; e sin!) : 0 � e � emax; ! 2 Rg is representedin the �gure by the set W . We plot also the four irles orresponding to asendingand desending node rossing with two planets (they have their enters shiftedrespetively on the left and on the right). An additional exterior irle orrespondingto the boundary for losed orbits (e = 1) is drawn.In the (�; �) referene plane the node rossing lines with the planets areirles: they are de�ned by�+(i) = f(�; �) : d+nod(i) = 0g ; ��(i) = f(�; �) : d�nod(i) = 0gwhere i is the index of the planet.At the asending node rossing with the planet i the equation to be on-sidered is 1� �2 � �2 = a0ia (1 + �) :After the oordinate hange X = � + a0i=(2a); Y = � we obtainX2 + Y 2 = �1� a0i2a�2 ;that is, in the (�; �)-plane, the equation of a irle of radius R+i = 1�a0i=(2a),with enter in (�+; �+) = ��a0i=(2a); 0� (see Figure 1).By the previous alulations we have8<: d+nod(i) > 0 inside �+(i)d+nod(i) < 0 outside �+(i) :



8 Giovanni-Federio GronhiIn a similar way we an prove that the equation d�nod(i) = 0 repre-sents a irle of radius R�i = R+i = 1 � a0i=(2a), with enter in (��; ��) =�+a0i=(2a); 0�.De�nition 2. A double (node) rossing is a rossing between the orbit ofthe asteroid and the orbit of a planet at both the asending and desendingnode.By the symmetry of the irles fd+nod(i) = 0g and fd�nod(i) = 0g, for eahindex i, we an dedue that a double rossing is possible only when ! = �=2or ! = 3�=2 (see Figure 1). We obtain the following ondition on the ratioof the semimajor axes a; a0i:� a0i2a � �12 that is a � a0i ; (7)and in partiular we obtain that there annot exist Aten asteroids (see theartile by A. Celletti, Chapter????) that have a double rossing with the Earth.De�nition 3. A simultaneous rossing is a rossing of the orbit of the as-teroid and the orbits of two planets at the same time.We note that if we all a01; a02 the semimajor axes of the orbits of twodi�erent planets, we annot have a simultaneous rossing at the asendingnode of both planets (this would imply a01 = a02 in this model). By a similarargument we annot have a simultaneous rossing at the desending node ofboth planets. On the other hand we an have a simultaneous rossing at theasending node with one planet and at desending node with the other oneif a01 = a(1� e2)1 + e os! and a02 = a(1� e2)1� e os! ;that is if a01a02 = 1� e os!1 + e os! :In this framework we annot have rossings of di�erent type from the onespresented above (like triple rossing, et.).3.2 Desription of the osulating orbitsWe onsider a model with three bodies only: Sun, planet, asteroid. We setthe x axis along the line of the nodes, pointing towards the asending mutualnode. The equations de�ning the osulating orbits P (u) = (p1(u); p2(u); p3(u))and P 0(u0) = (p01(u0); p02(u0); p03(u0)) of the asteroid and the planet are8<: p1 = a[(osu� e) os! � � sinu sin!℄p2 = a[(osu� e) sin! + � sinu os!℄ os Ip3 = a[(osu� e) sin! + � sinu os!℄ sin I 8<: p01 = a0 osu0p02 = a0 sinu0p03 = 0 (8)



Generalized Averaging Priniple and Proper Elements for NEAs 9where u; u0 are the eentri anomalies and � = p1� e2. These orbits arerespetively an ellipse and a irle.The distane between a point on an orbit and a point on the other one,appearing at the denominator of the diret term of the perturbing funtion,is de�ned by its square asD2(u; u0) = (p1 � p01)2 + (p2 � p02)2 + (p3 � p03)2 =a2(1� e osu)2 + a02 � 2aa0�osu0[(osu� e) os! � � sinu sin!℄ ++ sinu0 os I [(osu� e) sin! + � sinu os!℄	 :We introdue the funtion D(`; `0), whih is impliitly de�ned byD (`(u); `0(u0)) = D(u; u0) (9)and by Kepler's equations` = u� e sinu ; `0 = u0 (10)for the asteroid and the planet (the latter has a simpler form beause theorbit of the planet is irular).We de�ne the values of the anomalies u; u0 orresponding to the mutualasending node: we immediately notie that u0 = 0, while froma(1� e osu) = a�21 + e os! (11)we obtain osu = os! + e(1 + e os!) ; sinu = � � sin!(1 + e os!)(the sign of sinu has been hosen in suh a way that it is opposite to the signof sin!).The equations de�ning the anomalies u1; u01, orresponding to the mutualdesending node, areu01 = � ; osu1 = e� os!(1� e os!) ; sinu1 = � sin!(1� e os!) :In the following we shall study only asending node rossings, but thesame methods are suitable to deal also with the desending ones and evenwith double rossings (see [6℄,[10℄).3.3 Weak averaged solutionsThe idea of the generalization of the averaging priniple omes from Remark2: if there are no rossings between the orbits, then the averaged equationsof motion (3) are equivalent to equations (4).



10 Giovanni-Federio GronhiWe write equations (4) in a more expliit form:8>><>>: _eG = �R�g_eZ = �R�z = 0 8>><>>: _~g = ��R�G_~z = ��R�Z ; (12)the equation _eZ = 0 holds beause the equations of the orbits do not dependon the longitude of the node 
.We shall prove that when the orbits interset eah other it is possible tode�ne pieewise smooth solutions of equations (12), that we all weak aver-aged solutions, and we shall see that the loss of regularity orresponds exatlyto the rossing on�gurations of the orbits: in fat we shall give a twofoldmeaning to the right hand sides of (12) at the node rossing, orrespondingto the two limit values of the derivatives oming from inside and outside theirle representing the asending node rossing with the planet in the plane(�; �).Note that the weak averaged solutions orrespond to the lassial averagedsolutions as far as their trajetories in the redued phase spae (�; �) do notpass through a node rossing line.We also observe that the exhange of the di�erential and integral operatorsin (12) is not essential for a theoretial de�nition of the weak solutions (theyould anyway be de�ned as the limits of the solutions of (3) oming fromboth sides of the node rossing lines) but, as we shall see, this operation isneessary to obtain analyti formulas for the disontinuity of the average ofthe derivatives of R, that are not de�ned on the node rossing lines, and tode�ne the semianalyti proedure to ompute the weak solutions.3.4 The Wetherill funtionLet fP (u); P 0(u0)g be the asending mutual node. We onsider the two straightlines r(`) and r0(`0), tangent in P (u) and P 0(u0) to the orbits of the aster-oid and of the planet (see Figure 2); they an be parametrized by the meananomalies `; `0 so that P (u(t)) and r(`(t)) have the same veloities (deriva-tives with respet to t) in P (u) and P 0(u0(t)) and r0(`0(t)) have the sameveloities in P 0(u0):8<: r1 = x�F(`� `)r2 = y + G os I(`� `)r3 = z + G sin I(`� `) 8<: r01 = x0r02 = y0 + a0(`0 � `0)r03 = z0 (13)where `; `0 are the values of the mean anomalies orresponding to u; u0 (sothat `0 = 0). We have used the following notationsF = ae sin!� ; G = a(1 + e os!)�
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Fig. 2. The straight lines r; r0 represent Wetherill's approximation at the asendingnode for the two osulating orbits of the asteroid and the planet.and x = a�21 + e os! ; x0 = a0; y = z = y0 = z0 = 0 :De�nition 4. We all Wetherill funtion the approximated distane fun-tion d, whose square is de�ned byd2(`; `0) = (r1 � r01)2 + (r2 � r02)2 + (r3 � r03)2 == a02k02 + a2(1 + 2e os! + e2)�2 k2 � 2kk0[Ga0 os I ℄� 2d+nodFk + (d+nod)2with k = `� `; k0 = `0.Note that d2 is a quadrati form in the variables k; k0: it is homogeneouswhen there is a rossing at the asending node. We an write it more oniselyas d2(`; `0) = d2(�) = �tA�+Bt�+ (d+nod)2where� = (k0; k) ; B = 2(B1; B2) ; A = �A11 A12A21 A22 � ;with omponents�B1 = 0B2 = �d+nodF 8<:A11 = a02A12 = A21 = �Ga0 os IA22 = [F2 + G2℄ :



12 Giovanni-Federio GronhiFor later use we de�ne d2(u; u0) = d2(`(u); `0(u0)) :The geometry of Wetherill's straight lines is stritly related to the degen-eray of the matrix A, in fat we haveLemma 1. The matrix A is always positive de�nite if I > 0. If I = 0 wehave degeneray of A if and only if the straight lines r; r0 are parallel: in thisase A is positive semi-de�nite.Proof. A is a symmetri 2 � 2 matrix and it is positive de�nite if and onlyif its prinipal invariants, the trae tr(A) and the determinant det(A), arepositive. By a diret omputation we have8>><>>: tr(A) = a02 + a2 (1 + 2e os! + e2)1� e2det(A) = a2a02(1� e2)�(1 + e os!)2 sin2 I + e2 sin2 !� :From the above expressions we dedue that tr(A) > 0 (we are onsideringonly bounded orbits, so that 0 � e < 1); furthermoredet(A) = 0 () � I = 0e sin! = 0 ;that orresponds to the straight lines r; r0 being parallel.De�nition 5. We all tangent rossings the rossing orbital on�gurationsfor whih det(A) = 0.The assumption that the inlination I of the asteroid is di�erent fromzero during its whole time evolution implies that no tangent rossings our.3.5 Kantorovih's methodWe shall desribe Kantorovih's method of singularity extration (see [2℄) thatallows to improve the stability of the numerial omputation of the integralswhen the integrand funtion f1(x) is unbounded in the neighborhood of oneor more points.Kantorovih's method onsists in searhing for a funtion f2(x) whoseprimitive has an analyti expression in terms of elementary funtions andsuh that the di�erene f1(x)�f2(x) is more regular than f1(x) (for exampleit is bounded or even ontinuous).It is then onvenient to split the omputation as followsZ f1(x) dx = Z [f1(x) � f2(x)℄ dx + Z f2(x) dx



Generalized Averaging Priniple and Proper Elements for NEAs 13so that the singularity has moved to the seond term, that an be betterhandled.This method an help us to study the regularity properties of the aver-aged perturbing funtion R de�ned in (5); we shall use the inverse of theWetherill funtion 1=d to extrat the prinipal part from the diret term ofthe perturbing funtion.The funtion D is 2�-periodi in both variables `; `0 and this property anbe used to shift the integration domainT2 = f(`; `0) : �� � ` � �;�� � `0 � �gin a suitable way, so that the rossing values (`; 0) will be always internalpoints of this domain.We shall prove that in omputing the derivatives of R with respet to thevariables ED, for instane the G-derivative, we an use the deomposition(2�)2�k2 ��GR = ZT2 ��G � 1D � 1d� d` d`0 + ��G ZT2 � 1d� d` d`0; (14)namely we shall prove the validity of the hypotheses of the theorem of dif-ferentiation under the integral sign to exhange the symbols of integral andderivative in front of the remainder funtion 1=D� 1=d . The average of theremainder funtion is then di�erentiable as it is derivable with ontinuitywith respet to all the variables ED. Therefore we shall need only to studythe regularity properties of the last term of the sum in (14), whih is easierto handle.Note that we use Kantorovih's method of singularity extration in awider extent: the derivatives of the remainder funtion still have a polarsingularity in (`; 0), but it is of order one, so that the integrals over `; `0 ofthese derivatives are onvergent.3.6 Integration of 1=dWe shall disuss the analyti method to integrate 1=d over the unshifteddomain T2 = f(`; `0) : �� � ` � �;�� � `0 � �g, assuming that (`; 0) is aninternal point of this domain.We move the asending node rossing point (`; 0) to the origin of thereferene system by the variable hange�`;0 : (`; `0) �! (k; k0) (15)and we set T2 = �`;0 �T2� = f(`� `; `0) : (`; `0) 2 T2g :Then we perform another variable hange to eliminate the linear terms inthe quadrati form d2(�) de�ned by (14). The inverse of the transformationused for this purpose is ��1 :  �! � = T  + S (16)



14 Giovanni-Federio Gronhiwhere S = (S1; S2) 2 R2 ;  = (y0; y) 2 R2 are the new variables and T is a2� 2 real-valued invertible matrix.Setting to zero the oeÆients of the linear terms of the quadrati formin the new variables  we obtain the equations2 AS +B = 0 (17)whose solutions areS1 = B2A12det(A) ; S2 = �B2A11det(A) :We an hoose the matrix T suh thatT tAT = I2(I2 is the 2� 2 identity matrix) by settingT = � 1=� ��=��0 1=� �with � =pA11; � =sdet(A)A11 ; � = A12r 1A11 :The oordinate hange � : � �!  = R [�� S℄ ; (18)where R = T �1 = � � �0 �� ;brings d2(�) into the formd2 ���1( )� = y2 + y02 + (d+min)2in the new variables  , withd+min = jd+nodj�1� a02F2det(A)�1=2 : (19)The domain T2 is transformed into a parallelogram with two sides parallelto the y0 axis (see Figure 3).Remark 4. Note that d+min is the minimal distane between the straight linesr and r0.
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1Fig. 4. We show the deomposition of the integration domain used to ompute thelast integral in (20) in polar oordinatesy03 = �3(y2) = �(� � `� S2)� �(� + S1)y04 = �1(y1) = ��(� + `+ S2) + �(� � S1)y05 = �1(0) = �(� � S1)y06 = �1(y2) = �(� � `� S2) + �(� � S1)where �1(y) = (�=�)y + �(� � S1) and �3(y) = (�=�)y � �(� + S1).We an then deompose the domain T into four parts (see Figure 4)T = 4[j=1�(r; �) 2 R2 : �j � � � �j+1 and 0 � r � rj(�)	where rj(�), with j = 1 : : : 4, represent the lines rj delimiting �[T2℄ in polaroordinates:r1(�) = ��(� � S1)� os � � � sin � ; r2(�) = �(� � `� S2)sin � ;r3(�) = ���(� + S1)� os � � � sin � ; r4(�) = ��(� + `+ S2)sin � ;while �1 = �5 � 2� and �l, with l = 2 : : : 5, are the ounter-lokwise anglesbetween the y0 axis and the vertexes vl seen from the origin of the axes (seeFigure 4): 0 < �2 < �3 < � < �4 < �5 < 2� ;tan �2 = �(� � `� S2)�(� � `� S2) + �(� � S1) ; tan �3 = �(� � `� S2)�(� � `� S2)� �(� + S1) ;tan �4 = �(� + `+ S2)�(� + `+ S2) + �(� + S1) ; tan �5 = �(� + `+ S2)�(� + `+ S2)� �(� � S1) :



Generalized Averaging Priniple and Proper Elements for NEAs 17Using the previous deomposition for T and integrating in the r variablethe last expression in (20) we obtainZT2 1d d` d`0 = 1pdet(A) �8<: 4Xj=1 Z �j+1�j q(d+min)2 + r2j (�) d� � 2�d+min9=; :(21)Note that the integrals in (21) are ellipti and the integrand funtionsare bounded so that these integrals are di�erentiable funtions of the orbitalelements. We shall see that the loss of regularity of the averaged perturbingfuntion is due only to the term d+min.3.7 Boundedness of the remainder funtionWhen there is a rossing at the asending node, then from the equationsof the orbits (8) and from Kepler's equations (10) we dedue that Taylor'sdevelopment of D2(�) = D2(`; `0) in a neighborhood of � = (0; 0) is given byD2(�) = d2(�) +O(j�j3) (22)where O(j�j3) is an in�nitesimal of the same order as j�j3 for j�j ! 0. Weprove the followingLemma 2. If there is an asending node rossing between the orbits, thereexist a neighborhood U0 of � = (0; 0) and two positive onstants B1; B2 suhthat B1d2(�) � D2(�) � B2d2(�) 8� 2 U0:Proof. First we notie that for d+nod = 0 we have d2(�) = �tA�, where A ispositive de�nite, hene there exist two positive onstants C1; C2 suh thatC1j�j2 � �tA� � C2j�j2 8� 2 R2 : (23)Using the relations (22) and (23) we obtainlimj�j!0 D2(�)d2(�) = 1 ;that implies the existene of the neighborhood U0 and of the onstants B1; B2as in the statement of the lemma.We prove the following result:Proposition 1. The remainder funtion 1=D� 1=d is bounded even if thereis an asending node rossing.



18 Giovanni-Federio GronhiProof. If there are no rossings between the orbits the remainder funtion istrivially bounded, in fat D(`; `0) > 0 for eah (`; `0) 2 T2 and the minimumvalue of d(`; `0) is d+min that, for I 6= 0, an be zero only if d+nod = 0 (seeequation (19)).If there is a rossing at the asending node we have to investigate the loalbehavior of the remainder funtion in a neighborhood of (`; `0) = (`; 0), whereboth D and d an vanish. The boundedness of the remainder funtion an beshown using the previous lemma: we know that there exists a neighborhoodU0 and a positive onstant B1 suh that the relationD(�) �pB1d(�)holds for eah � 2 U0. It follows that in this neighborhood the remainderfuntion an be bounded in the following way:���� 1D(�) � 1d(�) ���� = jd2(�)�D2(�)jd(�)D(�)[d(�) +D(�)℄ �� 1pB1[1 +pB1℄ � jd2(�)�D2(�)jj�j3 � j�j3d3(�) :We observe that jd2(�)�D2(�)j = O(j�j3) and that by (23) there is a positiveonstant C1 suh that d2(�) � C1j�j2, so that there exists a onstant L > 0suh that ���� 1D(�) � 1d(�) ���� � L 8� 2 U0 :Remark 5. Although the remainder funtion 1=D� 1=d is bounded, it is notontinuous in (`; `0) = (`; 0) when there is a rossing at the asending node.3.8 The derivatives of the averaged perturbing funtion RKantorovih's method is used to desribe the singularities of the derivativesof the averaged perturbing funtion with respet to Delaunay's variables ap-pearing in equations (12).Note that by the hain rule we an write�R�ED = �R�EK �EK�EDwhere EK = fe; I; !;
g is a subset of the Keplerian elements of the asteroidand �EK�ED = �M OO I2 �in whih I2 and O are the 2� 2 identity and zero matrixes, andM = � 1kpa � �=e 0�otanI=� 1=(� sin I)� :



Generalized Averaging Priniple and Proper Elements for NEAs 19Hene we an do the omputation using the derivatives of R with respet tothe Keplerian elements e; I; ! (R does not depend on 
).We shall not need to perform the splitting of Kantorovih's method toompute the derivative with respet to the inlination I ; in fat the derivativeof 1=D with respet to I an be bounded by a funtion with a �rst order polarsingularity in u; u0, so it is Lebesgue integrable over T2.In the following we shall �rst prove that the derivatives of the remainderfuntion 1=D � 1=d are always Lebesgue integrable over T2, even if the twoorbits interset eah other, so that the average of the remainder funtionis di�erentiable: indeed its derivatives an be omputed by exhanging theposition of the integral and di�erential operators as in (14). Then we shallsee that if there is an asending node rossing, then a disontinuous termappears in the derivatives of the average of 1=d and this is responsible of thedisontinuity of the derivatives of R. These derivatives admit two limit valuesat rossings (oming from the regions de�ned by d+nod > 0 and d+nod < 0).As the properties we intend to prove are invariant by oordinate hanges,we shall show them using the oordinates (u; u0) instead of (`; `0).The derivatives of the remainder funtion 1=D� 1=d.Let us set � = (u; u0) and � = (v; v0) = (u�u; u0�u0). We apply Taylor'sformula with the integral remainder to the vetor funtions P (u); P 0(u0):8>>><>>>:P (u) = P (u) + Pu(u) v + Z uu (u� s)Pss(s) dsP 0(u0) = P 0(u0) + P 0u0 (u0) v0 + Z u0u0 (u0 � t)P 0tt(t) dt :The funtions de�ning the straight lines r(u) = r(`(u)) and r0(u0) =r0(`0(u0)) have the same Taylor's development, up to the �rst order in j�j =pv2 + v02, as P (u) and P 0(u0) respetively, so that we an write8>>><>>>: r(u) = P (u) + Pu(u) v + Z uu (u� s)rss(s) dsr0(u0) = P 0(u0) + P 0u0(u0) v0 + Z u0u0 (u0 � t)r0tt(t) dt :We prove the followingTheorem 1. If there is an asending node rossing at (u; u0) = (u; u0), thederivatives of the remainder funtion 1=D � 1=d with respet to e; ! an bebounded by funtions having a �rst order polar singularity in u; u0, so theyare Lebesgue integrable over T2.Proof. We shall onsider only the derivatives with respet to e: the proof forthe other derivatives is similar. First we note that��e � 1D(�)� = � 12D3(�) ��e �D2(�)� ; ��e � 1d(�)� = � 12d3(�) ��e �d2(�)� :



20 Giovanni-Federio GronhiLet us write h ; i for the Eulidean salar produt. We have��e �D2(�)� = D2e;0(�) +D2e;1(�) +D2e;2(�) (24)whereD2e;0(�) = 2� ��e [P (u)� P 0(u0)℄ ; P (u)� P 0(u0)�D2e;1(�) = 2� ��e [P (u)� P 0(u0)℄ ; Pu(u) v � P 0u0(u0) v0�D2e;2(�) = 2* ��e [P (u)� P 0(u0)℄ ; Z uu (u� s)Pss(s) ds� Z u0u0 (u0 � t)P 0tt(t) dt+and ��e �d2(�)� = d2e;0(�) + d2e;1(�) + d2e;2(�) (25)whered2e;0(�) = 2� ��e [r(u) � r0(u0)℄ ; P (u)� P 0(u0)�d2e;1(�) = 2� ��e [r(u) � r0(u0)℄ ; Pu(u) v � P 0u0 (u0) v0�d2e;2(�) = 2* ��e [r(u)� r0(u0)℄ ; Z uu (u� s)rss(s) ds� Z u0u0 (u0 � t)r0tt(t) dt+ :If we set the rossing onditions P (u) = P 0(u0) we obtainD2e;0(�) = d2e;0(�) = 0and, in partiular, the onstant terms in Taylor's developments of �D2=�eand �d2=�e vanish.The terms de�ned by D2e;2 and d2e;2 are at least in�nitesimal of the seondorder with respet to j�j as � ! (u; u0), so that the �rst order terms in j�j atrossing an be given only by D2e;1 and d2e;1.Using the theorems on the integrals depending on a parameter we obtain��e "Z uu (u� s)Pss(s)ds� Z u0u0 (u0 � t)P 0tt(t)dt# =Z uu (u� s)�Pss�e (s)ds� �u�e Puu(u) v � Z u0u0 (u0 � t)�P 0tt�e (t) dt+ �u0�e P 0u0u0(u0) v0��e "Z uu (u� s)rss(s)ds� Z u0u0 (u0 � t)r0tt(t) dt# =Z uu (u� s)�rss�e (s) ds� �u�e ruu(u) v � Z u0u0 (u0 � t)�r0tt�e (t)dt+ �u0�e r0u0u0(u0) v0



Generalized Averaging Priniple and Proper Elements for NEAs 21so that these two expressions are at least in�nitesimal of the �rst order withrespet to j�j. As these terms are multiplied by �rst order terms in the ex-pressions of D2e;1 and d2e;1, they give rise to at least seond order terms.We an onlude that the �rst order terms in the expressions (24) and(25) are equal and they are given by2� ��e [P (u)� P 0(u0)℄� ��u�ePu(u)� �u0�e P 0u0(u0)� ; Pu(u) v � P 0u0(u0) v0� ;therefore the asymptoti developments of the e-derivatives ofD2(�) and d2(�)in a neighborhood of � = (u; u0) are��e �D2(�)� = � v + � v0 + rD(�); ��e �d2(�)� = � v + � v0 + rd(�)where �; � are independent on u; u0 and rD(�), rd(�) are in�nitesimal of theseond order with respet to j�j as � ! (u; u0).Using the deomposition� 1D3 � 1d3 � = � 1D � 1d� � 1D2 + 1Dd + 1d2 � ;the boundedness of the remainder funtion 1=D�1=d and lemma 2 (that alsohold in the (u; u0) oordinates), we onlude that there exist two onstantsL1; L2 > 0 suh that���� ��e � 1D(�)�� ��e � 1d(�)����� = 12 ������ 1D3(�) � 1d3(�)� (� v + � v0) ++ 1D3(�) rD(�)� 1d3(�) rd(�)����� � L1 1j�j + L2in a neighborhood of � = (u; u0) and the theorem is proven.Singularities of the fe; !g-derivatives of the average of 1=d.As det(A) > 0 and (`; 0) is in the interior part of T2, we have d2min +r2j (�) > 0 for eah � 2 [�j ; �j+1℄ and for eah j = 1 : : : 4. Then we an useagain the theorem of di�erentiation under the integral sign and ompute, forinstane, the derivative of the average of 1=d with respet to e as��e ZT2 1d d` d`0 = ��e " 1pdet(A)# �( 4Xj=1 Z �j+1�j q(d+min)2 + r2j (�) d� � 2�d+min)++" 1pdet(A)# �8><>:12 4Xj=1 Z �j+1�j ��e [(d+min)2 + r2j (�)℄q(d+min)2 + r2j (�) d� � 2� ��ed+min9>=>; : (26)
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Fig. 5. We draw the graphi of the averaged perturbing funtion (top) and its levellines (bottom) in the plane (!; e) for the Near Earth Asteroid 2000 CO101 (! isin degrees in the �gure). The loss of regularity at the node rossing lines with theEarth is partiularly evident for this objet.



Generalized Averaging Priniple and Proper Elements for NEAs 23We have similar formulas for the derivatives with respet to !, obtainedsimply by substitution of the partial derivative operators.The disontinuities present in the terms��ed+min ; ��!d+min ;are responsible of the disontinuities in the derivatives of the averaged per-turbing funtion that produe a sort of rests in the surfaes representingthis funtion (see Figure 5) and ause the loss of regularity in its level lines,where the weak averaged solutions lie. The detailed analytial formulas forthe disontinuities in the derivatives of R an be found in [10℄, [6℄.4 Seular evolution theoryThe generalized averaging priniple has been used in [10℄ to de�ne a methodto ompute the seular evolution of the NEAs in the framework of a SolarSystem with the planets on irular oplanar orbits. We shall review thismethod in the following of this setion and we shall desribe some featuresof the seular dynamis of NEAs.First we note that the averaged Hamiltonian H is invariant under thesymmetries ! �! �!! �! � � !! �! � + ! ;this allows to draw the level lines of the averaged Hamiltonian, on whih thesolution urves are on�ned, simply knowing their shape in a subset of theredued phase spae (!; e) of the formf(!; e) : k �=2 � ! � (k + 1)�=2 ; 0 � e � emaxgwith k 2 Z.4.1 The seular evolution algorithmThe numerial method used in [10℄ to solve Hamilton's equations (12) is animpliit Runge-Kutta-Gauss algorithm of order 6, whih is also sympleti(see [23℄).Note that Kantorovih's method, used to study the regularity of the aver-aged perturbing funtion, gives us analytial formulas for the disontinuitiesof the derivatives at the right hand sides of (12).The Runge-Kutta-Gauss methods use sub-steps whih inlude neither thestarting point nor the �nal point of the step being omputed, this allows to



24 Giovanni-Federio Gronhiavoid the omputation of the values of the derivatives of R at the noderossing points, where they are de�ned in a twofold way. We resort to thefollowing proedure (whih had already been used in [18℄): every time theasteroid orbit is lose enough to a node rossing line, the standard iterationsheme known as regula falsi is used to set the seond extreme point of thestep exatly on that line; as the omputation of the right hand sides of (12)is performed only at the intermediate points of the integration step, we avoidthe omputation at node rossings.
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Fig. 6. Graphial desription of the algorithm employed in this numerial inte-gration: it is an impliit Runge-Kutta-Gauss method, sympleti, of order 6. Inan integration step, delimited in the �gure by two onseutive small irles, weompute the derivatives of R only at the intermediate points marked with rosses.When the node rossing point is reahed within the required preision,then a orretion given by the expliit formulas for the disontinuities of thederivatives of R is applied before restarting the integration (see Figure 6).An additional regula falsi is used to ompute the value of the solutionsof the averaged equations exatly at the symmetry lines in the plane (!; e)(that is at the lines of the form ! = k�=2 with k 2 Z); the omputation of theseular evolution of a NEA requires to ompute the solution of the equations(12) between two suessive rossings of the symmetry lines. The ompleteevolution is then obtained by means of the symmetries of R.Kantorovih's deomposition of the integrals (like in (14)) is used not onlywhen the �nal point of the integration step is on a node rossing line, but alsowhen the solution is very lose to a node rossing. This allows to stabilize theomputation when the nodal distane is small and the integrand funtionsan be bounded only by very large onstants.
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Fig. 7. Seular evolution �gure for 2001 QJ142 on the bakground of the level linesof the averaged perturbing funtion. The node rossing lines with the Earth (E)are also drawn.4.2 Di�erent dynamial behavior of NEAsWe desribe the seular evolution of the Near Earth Asteroids 2001 QJ142 and1999 AN10: these elestial objets show two very di�erent kinds of dynamialbehavior.In Figure 7 we an see that the perihelion argument ! of 2001 QJ142irulates; the loss of regularity of the solution urve, orresponding to arossing at the asending node with the Earth, is partiularly enhaned inthis �gure.In Figure 8 we have !-libration for 1999 AN10. Note that it starts itsseular evolution with a double rossing with the orbit of the Earth, thatgives it two possibilities to approah the Earth for eah revolution and makesthis objet partiularly dangerous. This asteroid has been intensively studiedas a possible Earth impator for the years 2039 (see [16℄) and 2044 (see [17℄).In addition to this kind of libration, symmetri with respet to the lines! = k�=2 (k 2 Z), it is possible to have a sort of asymmetri librations, asit is shown by some of the level lines of Figure 9 in whih the evolution ofthe asteroid (2100) Ra Shalom is shown. It is possible to hoose initial valuesfor e and !, de�ning a �titious objet with the same value of the integrala as (2100) Ra Shalom, suh that an asteroid starting with those values isonstrained into a very narrow asymmetri libration.We remark that asymmetri librations have a very low probability toour: all the known NEAs examined so far do not show this kind of behavior.
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Generalized Averaging Priniple and Proper Elements for NEAs 275 Proper elements for NEAsIn the study of orbit dynamis a very important role is played by the inte-grals of the motion, that is by quantities that are onstant during the timeevolution of a dynamial system.When the dynamis is non integrable, as it is the ase for the N -bodyproblem (N � 3), it is also useful to ompute quantities that are nearlyonstant during the motion. We give the following de�nition:De�nition 6. The proper elements are quasi{integrals of the motion, thatis quantities that hange very slowly with time and an be onsidered ap-proximatively onstant over time spans not too long.The �rst to employ the onept of proper elements was Hirayama [12℄:he de�ned a linear theory to identify asteroid families in the main belt. Theidenti�ation of families together with the understanding of the dynamialstruture of the asteroid belt (e.g. the relevane of seular resonanes) aretwo important reasons for the omputation of the proper elements for MBAs.There are presently three di�erent possible methods to ompute thesequantities:1. An analytial theory by Milani and Kneẑevi� [19℄,[20℄,[21℄ based on seriesexpansion in eentriity and inlination, partiularly suitable for orbitswith low eentriity and low inlination (< 17Æ). The proper elementsomputed in [20℄,[21℄ have been proven to be stable over time sales ofthe order of 107 years.2. A semianalyti theory by Lemâ�tre and Morbidelli [15℄, whih is moreappropriate for the orbits with either large eentriities or large inli-nations. This method is based on the lassial averaging method in arevisited version by Henrard [11℄. A similar method had already beenused by Williams [26℄,[27℄,[28℄ to obtain a set of proper elements that ledto the understanding of the seular resonanes resulting from two seularfrequenies being equal.3. A syntheti theory by Kneẑevi� and Milani [14℄ based on the omputationof the asteroid orbits by pure numerial integration; the short periodiperturbations are then removed by a �ltering proess performed duringthe integration. This reent theory allows to obtain a high auray ofthe elements; on the other hand it requires CPU times longer than thetwo preeding methods.Almost all the NEAs are planet rossing, and the singularities omingfrom the possibility of ollisions result in the strong divergene of the seriesused in the analytial theory and in the divergene of the integrals of thelassial averaging priniple used in the semianalyti theory. Furthermorethe strong haotiity of rossing orbits and the very short integration stepsto be hosen in this ase make the syntheti theory inappliable on large



28 Giovanni-Federio Gronhisale: in fat we have to use several values of the initial phase on the orbit foreah NEA and in this ase it would require very long omputational times.On the other hand the reasons to ompute proper elements are very dif-ferent in the ase of NEAs and the required stability times are only of theorder of 10 000 to 100 000 years. Over longer time spans the dynamis is dom-inated by large hanges in the orbital elements, inluding the semimajor axis,resulting from the lose approahes with the planets and from the e�ets ofseular resonanes.We wish to ompute proper elements for NEAs mainly for the followingreasons:1. to detet the possibility of ollision of Earth-rossing objets and to om-pute its probability;2. to identify the objets whose long term evolution is ontrolled by one ormore of the main seular resonanes;3. to identify meteor streams (sets of very small objets, that an be ob-served only when they are rossing the orbit of the Earth) and to give ariterion to be used in the identi�ation of their parent bodies.We give the de�nition of proper elements for Near Earth Asteroids andwe explain how to ompute them using the generalized averaging prinipleexplained in setion 3.Given the osulating orbit of a NEA, represented by its Keplerian elements(a; e; I; !;
) at a given time t, the following quantities are onstant duringthe averaged motion in the framework of the irular oplanar ase:a; emin; emax; Imin; Imax ;they are respetively the semimajor axis and the minimum and maximumvalue of the averaged eentriity and the averaged inlination.We an onsider as set of proper elements eitherfa; emin; Imaxg or fa; emax; Iming :Remark 6. If we onsider an !-librating orbit we an also de�ne!min; !max;that are the minimum and maximum value of the averaged perihelion argu-ment. These quantities are also onstant during the averaged motion and angive additional informations to understand the dynamis of the objets thatwe are studying.We an also use a set of proper elements in whih the extreme valuesof the eentriity and inlination are substituted by the seular frequeniesof the longitude of perihelion g and the longitude of the node s in ase of



Generalized Averaging Priniple and Proper Elements for NEAs 29!-irulation. If ! is librating we an use the libration frequeny lf in plaeof g.The omputation of these proper frequenies requires some additionalomments:Proposition 2. If ! is irulating, then let t0 and t1 be the times of passageat 0 and �=2 and let 
t0 ; 
t1 be the orresponding values of the longitude ofthe node. We have the following formulas to ompute the seular frequeniesof the argument of perihelion g � s and of the longitude of the node s:g � s = 2�4(t1 � t0) ; s = 
t1 �
t0t1 � t0 :If ! is symmetrially librating, then let �0 and �1 be two onseutive timesof passage at the same integer multiple of �=2 and let 
�0 ; 
�1 be the orre-sponding values of the longitude of the node. We an ompute the frequenyof the longitude of the node s and the libration frequeny lf by the followingformulas: s = 
�1 �
�0�1 � �0 ; lf = � 2�2(�1 � �0) ;where the sign has to be hosen negative for lokwise libration.Proof. The formula for g � s is an immediate onsequene of the fat thatthe period of irulation of ! must be four times the time interval requiredby an inrease by �=2 of !.The proper frequeny s has to be omputed taking into aount that thenode has a seular preession, but also long periodi osillations ontrolledby the argument 2!.The averaged Hamiltonian does not ontain 
 beause of the invarianewith respet to rotation around the z axis; aording to D'Alembert's rules(see [24℄) it ontains only the osine of 2!, thus the perturbative equation ofmotion for 
 is d
dt = ��R�Z (2!) :If ! is irulating it is possible to hange (at least loally) variable and writethe equation d
d! = �R=�Z�R=�G = F (os(2!))with a right hand side ontaining only os(2!). The solution for 
 as afuntion of ! is: 
(!) = � ! + f(sin(2!))and the funtion f(sin(2!)) is zero for ! = 0; �=2, thus
t1 �
t0 = � �=2



30 Giovanni-Federio Gronhiidenti�es the seular part of the evolution of 
, whose frequeny an beomputed by s = 
t1 �
t0t1 � t0 :The symmetri libration ases are di�erent beause ! returns to the samemultiple of �=2 after a time interval �1 � �0, while in the same time span 
has hanged by 
�1 �
�0 . Then g � s is not a proper frequeny (its seularpart is by de�nition zero), and by arguments that are similar to the onesabove, the libration frequeny lf and the seular frequeny of the node s anbe omputed bylf = � 2�2(�1 � �0) ; s = 
�1 �
�0�1 � �0 :We agree that the negative sign for lf is hosen for lokwise librations.6 Reliability TestsA numerial test on the reliability of the weak averaged solutions and of theproper elements for NEAs obtained with the generalized averaging priniplean be found in [7℄. A sample of orbits has been taken into aount and theweak averaged solutions for the objets of this sample have been omparedwith their orresponding quantities obtained by pure numerial integrationsusing initial onditions that orrespond to irular oplanar orbits for theplanets.The results of this omparison are satisfatory: the ases in whih theseular evolution theory fails are generally the ones for whih it is not valid apriori, that is low order mean motion resonanes and lose approahes withone or more planets, that ould hange the value of the semimajor axis, whihis assumed to be onstant in the averaging theory.(433) Eros (1981) MidasProp. El. AT NI AT NIemin 0:22285 0:22272 0:34872 0:34978emax 0:23307 0:23289 0:65075 0:65029Imin 10:06653 10:06472 39:78069 39:79393Imax 10:82960 10:83039 51:49418 51:43053!min �1 �1 248:61698 248:51999!max +1 +1 291:38302 291:56100Table 1. Proper elements table for the asteroids (433) Eros and (1981) Midas: theangles are given in degrees. In ase of !-irulation we de�ne !min = �1; !max =+1. AT means Averaged Theory, while NI means Numerial Integrations.



Generalized Averaging Priniple and Proper Elements for NEAs 31(433) Eros (1981) MidasProp. Freq. AT NI AT NIg 14:675 14:876 �25:625 �25:650s �21:101 �21:136 �25:625 �25:650lf 0 0 �45:672 �45:422Table 2. Proper frequenies table for (433) Eros and (1981) Midas: the units arear-seonds per year. In ase of !-irulation we de�ne lf = 0 while in ase of!-libration we de�ne g = s.The agreement of the elements for the sample seleted in [7℄ is of theorder of 5� 10�3 both for the proper eentriity and the proper inlination(if onsidered in radians) over a time span of the order of 104 yrs.In Tables 1,2 we present the set of proper elements and proper frequen-ies of two objets of the sample: 433 (Eros) and (1981) Midas, that are re-spetively !-irulating and !-librating. The orbital elements used for theseasteroids are in Table 3.Body a (AU) ! (Æ) 
 (Æ) e I (Æ)(433) Eros 1:45823 178:640 304:411 0:222863 10:829(1981) Midas 1:77611 267:720 357:097 0:650113 39:831Table 3. Orbital elements used in the omparison for (433) Eros and for (1981)Midas.In [7℄ there is also a omparison of the previous results with full numer-ial integrations starting with the atual eentriity and inlination of theplanets: we observe that the di�erene between the proper elements obtainedin both ways for the seleted sample is not dramati (at least for the timesale of this integration), but the rossing times between the orbits are notreliable at all if we do not take into aount the eentriity and inlinationof the planets and the omputation of these times is useful for several appli-ations suh as the study of the possibility of ollision. Thus the need of amore aurate averaging theory is evident.7 Generalized averaging priniple in theeentri{inlined aseReently we have proven that the generalized averaging theory, de�ned inSetion 3, an be extended inluding the eentriities and the inlinations ofthe planets. We give in this setion only the main idea of this generalization;the reader interested an found a omplete explanation of the theory in [5℄,[6℄.
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Fig. 10. The mutual referene frame: the asending mutual node is marked withasterisks.Also in this framework we an study the ase of only one perturbing planetand we an obtain the total perturbation by the sum of the ontribution ofeah planet in the model. We an write the averaged perturbing funtion Ras a funtion of a partiular set of variables, alled mutual elements, that arealmost everywhere regular funtions of Delaunay's variables and are de�nedby the mutual position of the osulating orbits of the asteroid and the planet.Then the equations of motion for the asteroid beome8>><>>: _eG = �R�EM �EM�g_eZ = �R�EM �EM�z 8>><>>: _~g = � �R�EM �EM�G_~z = � �R�EM �EM�Z (27)where EM is a suitable subset of the mutual elements.First note that the de�nitions of mutual nodal line and mutual nodesmake sense even in the ellipti ase; but we observe that we have generally adi�erent mutual nodal line for eah planet while in the irular oplanar aseit is the same for all of them.7.1 The mutual referene frameWe give a short desription of the mutual elements. Let us onsider twoellipti non-oplanar osulating orbits of an asteroid and a planet with aommon fous: we give the followingDe�nition 7. We allmutual referene frame a system Oxyz (see Figure 10)suh that the x axis is along the mutual nodal line and is direted towards



Generalized Averaging Priniple and Proper Elements for NEAs 33the mutual asending node; the y axis lies on the planet orbital plane, sothat the orbit of the planet lies on the (x; y) plane. We shall use the furtheronvention that the positive z axis is oriented as the angular momentum ofthe planet.Let !M ; !0M be the mutual perienter arguments (the angles between thex axis and the perienters) of the orbit of the asteroid and of the planetrespetively, and let IM be the mutual inlination between the two onis.We de�ne as mutual elements the set of variablesfa; e; a0; e0; !M ; !0M ; IMgand we set EM = fa; e; !M ; !0M ; IMg.Note that we an express the mutual variables !M ; !0M ; IM as funtionsof the Keplerian elements !,
,I , !0,
0,I 0; furthermore the derivatives of themutual elements with respet to Delaunay's variables appearing in equations(27) an be easily omputed by means of the Keplerian elements EK of theasteroid: �EM�ED = �EM�EK �EK�ED :8 ConlusionsThe generalized averaging priniple and the related results reviewed in thispaper have been applied to the searh for parent bodies of meteor streams(using appropriate variables, like the ones in [25℄) and to the omputationof the seular evolution of the MOID (using algebrai methods as in [4℄).We think that the extension of the theory inluding the eentriity andinlination of the planets will be very useful to improve the auray of theresults of suh appliations. There are additional possible appliations of thistheory, that we have still to investigate, to the omputation of the ollisionprobability between a NEA and the Earth.9 AknowledgementsThe author wish to thank A. Celletti and A. Milani for their very usefulsuggestions in writing this paper.Referenes1. Arnold, V.: 1997, Mathematial Aspets of Classial and Celestial Mehanis,Springer-Verlag, Berlin Heidelberg2. Demidovi, B.P. and Maron I.A.: 1966. Foundations of Numerial Mathe-matis, SNTL, Praha3. Fleming, W. H.: 1964. Funtions of Several Variables, Addison-Wesley
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