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The problem

Definition finite mixing

If T is a measure-preserving map of the probability space (M, µ),
the dynamical system (M, µ,T ) is called mixing if, for all
measurable A,B ✓M,

lim
n!1

µ(T�nA \ B) = µ(A)µ(B).

Equivalently, for all f , g 2 L2(M, µ),

lim
n!1

µ((f � T n)g) = µ(f )µ(g)

(abuse of notation: µ(f ) =
R
M f dµ, etc.).

Intrinsically probabilistic notion. What if µ(M) =1?
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Some history

Hopf 1937

Considers (M, µ,T ) with µ(M) =1
(M = half-infinite strip in R2, µ = LebM)

Proves 9{⇢n}n2N, ⇢n %1, such that

lim
n!1

⇢n µ(T�nA \ B) = µ(A)µ(B)

for all squarable sets A,B ⇢M (i.e., µ(@A) = µ(@B) = 0)

Calls (M, µ,T ) an example of a mixing system
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Some history

Krickeberg 1967

Turns Hopf’s example into a definition:

Definition Kr-mixing

Let M be a completely regular topological space with a Borel
measure µ. Let {Hk}k2N make µ �-finite. Let T be a µ-preserving
homeomorphism mod µ. (M, µ,T ) is called mixing if 9{⇢n}n2N,
⇢n %1, such that

lim
n!1

⇢n µ(T�nA \ B) = µ(A)µ(B)

for all squarable sets A,B ⇢ Hk (some k).
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Some history

Krickeberg 1967

Turns Hopf’s example into a definition:

The Good: Very natural definition. Used by many (e.g., Thaler,
Isola, Melbourne-Theresiu, Arbieto-Markarian-
Pacifico-Soares), in some cases independently (⇢n

nowadays called scaling rate)

The Bad: Requires topological structure. Not so bad...

The Ugly: Only sees finite-measure sets
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Some history

Krengel & Sucheston 1969

More measure-theoretic approach:

Definition KS-(complete) mixing

Let T : M �!M be non-singular w.r.t. µ. (M, µ,T ) is called

1 mixing if {T�nA}n2N is semiremotely trivial 8A, µ(A) <1
2 completely mixing if {T�nA}n2N is semiremotely trivial 8A

{An} semiremotely trivial i↵ 9{nk} s.t.
T

j �(Anj ,Anj+1

, . . .) trivial

When µ(M) = 1, both definitions coincide with the classical one
(Sucheston 1963)
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Some history

Krengel & Sucheston 1969

More measure-theoretic approach:

The Good: Only measure theory

The Ugly: For measure-preserving DS.’s, KS-mixing ()
zero-type DS, i.e.,

limn µ(T�nA \ B) = 0, 8 finite-measure A,B.

Too weak! (Cf. translations in Rd)

For invertible measure-preserving DS.’s, KS-complete
mixing incompatible with ergodicity.
(9µ

0

⌧ µ, µ
0

(M) = 1, invariant and mixing)
Too strong!

Marco Lenci Infinite mixing



Some history

Krengel & Sucheston 1969

More measure-theoretic approach:

The Good: Only measure theory

The Ugly: For measure-preserving DS.’s, KS-mixing ()
zero-type DS, i.e.,

limn µ(T�nA \ B) = 0, 8 finite-measure A,B.

Too weak! (Cf. translations in Rd)

For invertible measure-preserving DS.’s, KS-complete
mixing incompatible with ergodicity.
(9µ

0

⌧ µ, µ
0

(M) = 1, invariant and mixing)
Too strong!

Marco Lenci Infinite mixing



Some history

Krengel & Sucheston 1969

More measure-theoretic approach:

The Good: Only measure theory

The Ugly: For measure-preserving DS.’s, KS-mixing ()
zero-type DS, i.e.,

limn µ(T�nA \ B) = 0, 8 finite-measure A,B.

Too weak! (Cf. translations in Rd)

For invertible measure-preserving DS.’s, KS-complete
mixing incompatible with ergodicity.
(9µ

0

⌧ µ, µ
0

(M) = 1, invariant and mixing)
Too strong!

Marco Lenci Infinite mixing



Some history

Aaronson 1990

‘‘[...] the discussion in [KS] indicates that there

is no reasonable generalisation of mixing.’’

Well, yes... maybe... I don’t know... What do you mean by
‘reasonable’?

How about letting go of a a priori universal definition?

Also, the previous attempts involved (mostly) finite-measure sets;
equivalently integrable, or local, observables (“local-local mixing”)

Seeking notion of mixing that uses global observables
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Setup

Dynamical system: (M,A , µ,T t)

(M,A , µ) �-finite measure space

µ(M) =1
T t : M �!M (semi)group of transformations preserving µ
(t 2 G = N, Z or R)

Have in mind systems with:

1 “extended chaoticity”, or

2 “localized chaoticity”
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Examples of extended chaoticity

Lorentz gas: Flow on (R2 \ scatterers)⇥ S1, preserves Liouville
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Examples of extended chaoticity

Random walk: Map on Zd ⇥ [0, 1]2, preserves Lebesgue

Marco Lenci Infinite mixing



Examples of extended chaoticity

Expanding Markov map: R �! R
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Examples of extended chaoticity

Quasi-lift of S1-expanding map: R �! R, Z-invariant
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Examples of localized chaoticity

Pomeau-Manneville maps: (via conjugation � : (0, 1] �! R+)
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Examples of localized chaoticity

Farey map: (via conjugation –log : (0, 1] �! R+)
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Infinite-volume limit

Question: What is the probability that a

uniformly drawn

random point of R2 belongs in the set A?

perhaps...

“Probability” of A = lim
r!1

Leb(A \ [�r , r ]2)

4r2
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Mathematical formulation

The class of measurable sets V is called exhaustive if

1 8V 2 V , µ(V ) <1,

2 9{Vn} such that Vn %M (Vn ✓ Vn+1

,
S

n Vn = M).

Definition infinite-volume limit

We call infinite-volume limit (µ-uniform along V ) the limit

lim
V%M

⇣
· · ·

⌘
= lim

µ(V )!1
V2V

⇣
· · ·

⌘
.
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Examples of exhaustive classes

Example for Lorentz gas: V = ([�r , r ]2 \ scatterers)⇥ S1 (r > 0)
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Examples of exhaustive classes

Example for random walk: V = {�k, . . . , k}d ⇥ [0, 1]2 (k 2 Z+)
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Examples of exhaustive classes

Example for expanding Markov map: V = [�k, k] (k 2 Z+)
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Examples of exhaustive classes

Example for Farey map: V = [0, r ] (r > 0)
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Examples of exhaustive classes

Assumption:

(A1) For fixed t, µ(T�tV4V ) = o(µ(V )) (V %M)
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Global observables

Global observables G: F : M �! R supported (more or less)
throughout the phase space

E.g., if a translation is defined on M, periodic, quasiperiodic
functions; in general, functions that look alike in di↵erent regions
of M.

Minimal requirements:

(A2) G ⇢ L1(M, µ)

(A3) 8F 2 G, 9µ(F ) := lim
V%M

1

µ(V )

Z

V
F dµ

Proposition

(A1)-(A3) =) µ(F ) = µ(F � T t) 8F 2 G, 8t 2 G
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Global-global mixing

The following definitions crucially depend on V and G:

Definition (GGM1)

8F ,G 2 G,
lim

t!1
µ((F � T t)G ) = µ(F ) µ(G )

Problem: L.h.s. might not exist

Definition (GGM2)

8F ,G 2 G,

lim
t!1
V%M

1

µ(V )

Z

V
(F � T t)G dµ = µ(F ) µ(G )
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Global-global mixing

Problem: Surface e↵ects

E.g., T : R2 �! R2 Lebesgue-invariant, morally mixing

F (x , y) =

⇢
0, x < 0
1, x � 0

F � T n(x , y) =

⇢
0, white area
1, gray area

8n 2 N, µ((F � T n)F ) =
1

2
6= [µ(F )]2 =

1

4
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Global-global mixing

Solution 1: Restrict G (eliminating “bad” observables)

Solution 2: Modify V

E.g., V = [a, a + r ]⇥ [b, b + r ], 8a, b 2 R, r > 0
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Global-global mixing

All these (foregoing and following)
definitions crucially depend on V and G!
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Beyond global-global mixing

Global-global mixing is not the whole story because:

1 it doesn’t see finite-measure phenomena (e.g., invariant set A
with µ(A) <1);

2 it doesn’t consider the evolution of an initial probability
measure (“statistical properties of dynamical systems”).

Introducing...
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Local observables

Local observables L: Localized f : M �! R

Minimal requirements:

(A4) L ⇢ L1(M, µ)

The choice of L is less crucial than those of V and G.
L = L1 works well in many cases. (As new definitions are mostly
continuous in the L1-norm. Occasionally one might require
compact support, or additional regularity, etc.)
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Global-local mixing

Definition (GLM2)

8F 2 G,8g 2 L,
lim

t!1
µ((F � T t)g) = µ(F )µ(g)

Definition (GLM3)

8F 2 G,

lim
t!1

sup
g2L\0

1

µ(|g |)

���µ((F � T t)g)� µ(F )µ(g)
��� = 0
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Global-local mixing

Interpretation (GLM2)

8F 2 G,8µg = µ(· g), (g 2 L, g � 0, µ(g) = 1)
lim

t!1
T t
⇤µg (F ) = µ(F )

Definition (GLM3)

8F 2 G,

lim
t!1

sup
g2L\0

1

µ(|g |)

���µ((F � T t)g)� µ(F )µ(g)
��� = 0
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Global-local mixing

Definition (GLM1)

8F 2 G,8g 2 L with µ(g) = 0,
lim

t!1
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Global-local mixing

Interpretation (GLM1)

8F 2 G,8µg , µh, (g , h densities 2 L)
lim

t!1

�
T t
⇤µg (F )� T t

⇤µh(F )
�

= 0

Definition (GLM2)

8F 2 G,8g 2 L,
lim

t!1
µ((F � T t)g) = µ(F )µ(g)

Definition (GLM3)

8F 2 G,

lim
t!1

sup
g2L\0

1

µ(|g |)

���µ((F � T t)g)� µ(F )µ(g)
��� = 0
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Global-local mixing

Definition (GLM1)

8F 2 G,8g 2 L with µ(g) = 0,
lim

t!1
µ((F � T t)g) = 0

Definition (GLM2)

8F 2 G,8g 2 L,
lim

t!1
µ((F � T t)g) = µ(F )µ(g)

Definition (GLM3)

8F 2 G,

lim
t!1

sup
g2L\0

1

µ(|g |)

���µ((F � T t)g)� µ(F )µ(g)
��� = 0
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General results

Proposition

Assuming (A1)-(A4),

(GLM3) =) (GLM2) =) (GLM1)

On the other hand, if, 8F ,G 2 G, 9µ((F � T t)G ) for t large
enough, then

(GGM2) =) (GGM1)

Proposition

Exactness =) (GLM1), for any choice of G,L

Analogous result for K-mixing
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General results

If every global observable is more or less a sum of local observables
with pairwise disjoint supports, then uniform global-local mixing
implies the “strongest” form of global-global mixing:

Proposition

Suppose that every G 2 G can be written µ-a.e. as

G (x) =
P

j2N gj(x), with gj 2 L,

and, 8V 2 V , 9 finite JV ⇢ N, such that

µ
⇣���G1V �

P
j2JV

gj

���
⌘

= o(µ(V ));
P

j2JV
kgjkL1

= O(µ(V )).

Then (GLM3) =) (GGM2)
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Applications to prototypical examples

Random walk (L 2010)

For a strongly aperiodic (homogeneous) random walk on Zd with
su�ciently fast-decaying transition probabilities, (GGMi), (GLMj)
8i , j hold for suitable choices of V ,G,L.
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Applications to prototypical examples

Uniformly expanding Markov maps of R (L, 2014)

9 large class of maps for which exactness and (GLM1) hold.

Quasi-lifts verify (GGMi), (i = 1, 2) (GLMj) (j = 1, 2) (for
suitable choices of V ,G,L).

Weaker results for finite modifications of quasi-lifts
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Applications to prototypical examples

Interval maps with indi↵erent fixed point (Bonanno, Giulietti,
L, in progress)

Large class of such maps (including Pomeau-Manneville, Farey,
Boole) verifies (GLMj) (j = 1, 2) (with “best” choice of V ,G,L).
Does not verify (GLM3).

Does not verify (GGMi), 8i
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