Global observables and infinite mixing

Marco Lenci

Università di Bologna Istituto Nazionale di Fisica Nucleare, Bologna

Dipartimento di Matematica Università di Pisa June 12, 2015

The problem

Definition finite mixing

If T is a measure-preserving map of the probability space (\mathcal{M}, μ) , the dynamical system (\mathcal{M}, μ, T) is called mixing if, for all measurable $A, B \subseteq \mathcal{M}$,

$$\lim_{n\to\infty}\mu(T^{-n}A\cap B)=\mu(A)\mu(B).$$

Equivalently, for all $f, g \in L^2(\mathcal{M}, \mu)$,

$$\lim_{n\to\infty}\mu((f\circ T^n)g)=\mu(f)\mu(g)$$

(abuse of notation: $\mu(f) = \int_{\mathcal{M}} f \, d\mu$, etc.).

The problem

Definition finite mixing

If T is a measure-preserving map of the probability space (\mathcal{M}, μ) , the dynamical system (\mathcal{M}, μ, T) is called mixing if, for all measurable $A, B \subseteq \mathcal{M}$,

$$\lim_{n\to\infty}\mu(T^{-n}A\cap B)=\mu(A)\mu(B).$$

Equivalently, for all $f, g \in L^2(\mathcal{M}, \mu)$,

$$\lim_{n\to\infty}\mu((f\circ T^n)g)=\mu(f)\mu(g)$$

(abuse of notation: $\mu(f) = \int_{\mathcal{M}} f \, d\mu$, etc.).

Intrinsically probabilistic notion.

What if
$$\mu(\mathcal{M}) = \infty$$
?

Hopf 1937

- Considers (\mathcal{M}, μ, T) with $\mu(\mathcal{M}) = \infty$ $(\mathcal{M} = \text{half-infinite strip in } \mathbb{R}^2, \ \mu = \text{Leb}_{\mathcal{M}})$
- Proves $\exists \{\rho_n\}_{n\in\mathbb{N}}, \rho_n \nearrow \infty$, such that

$$\lim_{n\to\infty} \rho_n \, \mu(T^{-n}A \cap B) = \mu(A)\mu(B)$$

for all squarable sets $A, B \subset \mathcal{M}$ (i.e., $\mu(\partial A) = \mu(\partial B) = 0$)

• Calls (\mathcal{M}, μ, T) an example of a mixing system

Krickeberg 1967

Turns Hopf's example into a definition:

Definition Kr-mixing

Let $\mathcal M$ be a completely regular topological space with a Borel measure μ . Let $\{H_k\}_{k\in\mathbb N}$ make μ σ -finite. Let T be a μ -preserving homeomorphism mod μ . $(\mathcal M,\mu,T)$ is called mixing if $\exists \{\rho_n\}_{n\in\mathbb N}$, $\rho_n\nearrow\infty$, such that

$$\lim_{n\to\infty}\rho_n\,\mu(T^{-n}A\cap B)=\mu(A)\mu(B)$$

for all squarable sets $A, B \subset H_k$ (some k).

Krickeberg 1967

Turns Hopf's example into a definition:

The Good: Very natural definition. Used by many (e.g., Thaler, Isola, Melbourne-Theresiu, Arbieto-Markarian-Pacifico-Soares), in some cases independently (ρ_n nowadays called scaling rate)

Krickeberg 1967

Turns Hopf's example into a definition:

The Good: Very natural definition. Used by many (e.g., Thaler, Isola, Melbourne-Theresiu, Arbieto-Markarian-Pacifico-Soares), in some cases independently (ρ_n nowadays called scaling rate)

The Bad: Requires topological structure. Not so bad...

Krickeberg 1967

Turns Hopf's example into a definition:

The Good: Very natural definition. Used by many (e.g., Thaler, Isola, Melbourne-Theresiu, Arbieto-Markarian-Pacifico-Soares), in some cases independently (ρ_n nowadays called scaling rate)

The Bad: Requires topological structure. Not so bad...

The Ugly: Only sees finite-measure sets

Krengel & Sucheston 1969

More measure-theoretic approach:

Definition

KS-(complete) mixing

Let $T: \mathcal{M} \longrightarrow \mathcal{M}$ be non-singular w.r.t. μ . (\mathcal{M}, μ, T) is called

- **1** mixing if $\{T^{-n}A\}_{n\in\mathbb{N}}$ is semiremotely trivial $\forall A, \ \mu(A) < \infty$
- **2** completely mixing if $\{T^{-n}A\}_{n\in\mathbb{N}}$ is semiremotely trivial $\forall A$

 $\{A_n\}$ semiremotely trivial iff $\exists \{n_k\}$ s.t. $\bigcap_i \sigma(A_{n_i}, A_{n_{i+1}}, \ldots)$ trivial

Krengel & Sucheston 1969

More measure-theoretic approach:

Definition

KS-(complete) mixing

Let $T: \mathcal{M} \longrightarrow \mathcal{M}$ be non-singular w.r.t. μ . (\mathcal{M}, μ, T) is called

- **1** mixing if $\{T^{-n}A\}_{n\in\mathbb{N}}$ is semiremotely trivial $\forall A, \ \mu(A) < \infty$
- ② completely mixing if $\{T^{-n}A\}_{n\in\mathbb{N}}$ is semiremotely trivial $\forall A$

$$\{A_n\}$$
 semiremotely trivial iff $\exists \{n_k\}$ s.t. $\bigcap_j \sigma(A_{n_j},A_{n_{j+1}},\ldots)$ trivial

When $\mu(\mathcal{M}) = 1$, both definitions coincide with the classical one (Sucheston 1963)

Krengel & Sucheston 1969

More measure-theoretic approach:

The Good: Only measure theory

Krengel & Sucheston 1969

More measure-theoretic approach:

The Good: Only measure theory

The Ugly: For measure-preserving DS.'s, KS-mixing \iff zero-type DS, i.e., $\lim_n \mu(T^{-n}A \cap B) = 0$, \forall finite-measure A, B. Too weak! (Cf. translations in \mathbb{R}^d)

(en translations in 12)

Krengel & Sucheston 1969

More measure-theoretic approach:

The Good: Only measure theory

The Ugly: For measure-preserving DS.'s, KS-mixing \iff zero-type DS, i.e.,

$$\lim_{n} \mu(T^{-n}A \cap B) = 0$$
, \forall finite-measure A, B .

Too weak! (Cf. translations in \mathbb{R}^d)

For invertible measure-preserving DS.'s, KS-complete mixing incompatible with ergodicity.

$$(\exists \mu_0 \ll \mu, \mu_0(\mathcal{M}) = 1$$
, invariant and mixing) Too strong!

Aaronson 1990

"[...] the discussion in [KS] indicates that there is no reasonable generalisation of mixing."

Aaronson 1990

"[...] the discussion in [KS] indicates that there is no reasonable generalisation of mixing."

Well, yes... maybe... I don't know... What do you mean by 'reasonable'?

Aaronson 1990

"[...] the discussion in [KS] indicates that there is no reasonable generalisation of mixing."

Well, yes... maybe... I don't know... What do you mean by 'reasonable'?

How about letting go of a a priori universal definition?

Aaronson 1990

"[...] the discussion in [KS] indicates that there is no reasonable generalisation of mixing."

Well, yes... maybe... I don't know... What do you mean by 'reasonable'?

How about letting go of a a priori universal definition?

Also, the previous attempts involved (mostly) finite-measure sets; equivalently integrable, or local, observables ("local-local mixing")

Seeking notion of mixing that uses global observables

Setup

Dynamical system: $(\mathcal{M}, \mathscr{A}, \mu, T^t)$

- $(\mathcal{M}, \mathscr{A}, \mu)$ σ -finite measure space
- $\mu(\mathcal{M}) = \infty$
- $T^t: \mathcal{M} \longrightarrow \mathcal{M}$ (semi)group of transformations preserving μ $(t \in \mathbb{G} = \mathbb{N}, \mathbb{Z} \text{ or } \mathbb{R})$

Setup

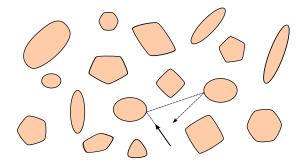
Dynamical system: $(\mathcal{M}, \mathscr{A}, \mu, T^t)$

- $(\mathcal{M}, \mathscr{A}, \mu)$ σ -finite measure space
- $\mu(\mathcal{M}) = \infty$
- $T^t: \mathcal{M} \longrightarrow \mathcal{M}$ (semi)group of transformations preserving μ $(t \in \mathbb{G} = \mathbb{N}, \mathbb{Z} \text{ or } \mathbb{R})$

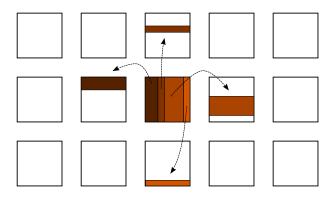
Have in mind systems with:

- 1 "extended chaoticity", or
- "localized chaoticity"

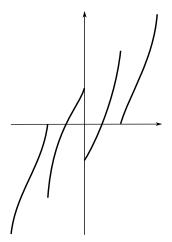
Lorentz gas: Flow on $(\mathbb{R}^2 \setminus scatterers) \times S^1$, preserves Liouville



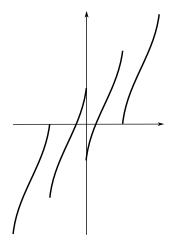
Random walk: Map on $\mathbb{Z}^d \times [0,1]^2$, preserves Lebesgue



Expanding Markov map: $\mathbb{R} \longrightarrow \mathbb{R}$

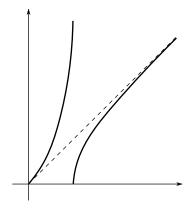


Quasi-lift of S^1 -expanding map: $\mathbb{R} \longrightarrow \mathbb{R}$, \mathbb{Z} -invariant



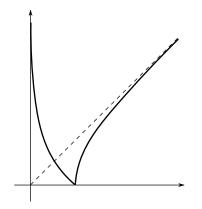
Examples of localized chaoticity

Pomeau-Manneville maps: (via conjugation $\phi:(0,1]\longrightarrow \mathbb{R}^+$)

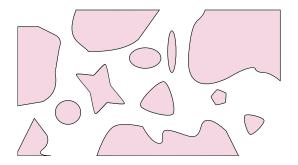


Examples of localized chaoticity

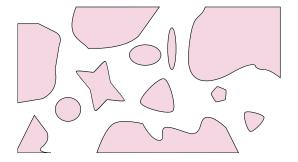
Farey map: (via conjugation $-\log:(0,1]\longrightarrow \mathbb{R}^+$)



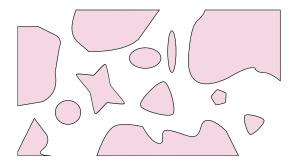
Question: What is the probability that a random point of \mathbb{R}^2 belongs in the set A?



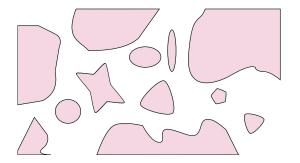
Question: What is the probability that a random point of \mathbb{R}^2 belongs in the set A? Ambiguous...



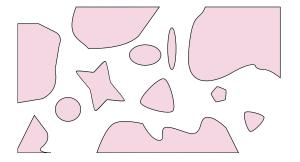
Question: What is the probability that a uniformly drawn random point of \mathbb{R}^2 belongs in the set A?



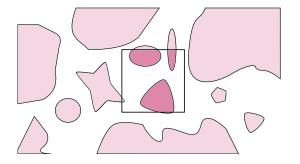
Question: What is the probability that a uniformly drawn random point of \mathbb{R}^2 belongs in the set A? III-posed!



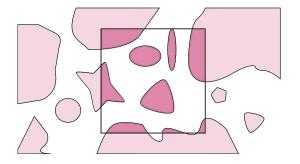
Question: What is the probability that a uniformly drawn random point of \mathbb{R}^2 belongs in the set A? III-posed! But...



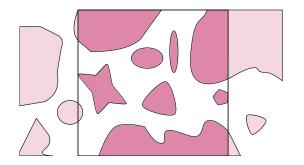
Question: What is the probability that a uniformly drawn random point of \mathbb{R}^2 belongs in the set A? III-posed! But...



Question: What is the probability that a uniformly drawn random point of \mathbb{R}^2 belongs in the set A? III-posed! But...



Question: What is the probability that a uniformly drawn random point of \mathbb{R}^2 belongs in the set A? III-posed! But...



perhaps...

"Probability" of
$$A = \lim_{r \to \infty} \frac{\text{Leb}(A \cap [-r, r]^2)}{4r^2}$$

Mathematical formulation

The class of measurable sets \mathscr{V} is called exhaustive if

Mathematical formulation

The class of measurable sets \mathscr{V} is called exhaustive if

Definition

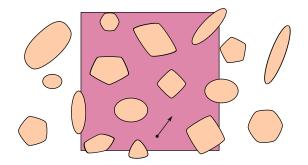
infinite-volume limit

We call infinite-volume limit (μ -uniform along \mathscr{V}) the limit

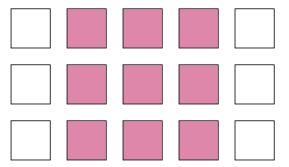
$$\lim_{V \nearrow \mathcal{M}} \left(\cdots \right) = \lim_{\substack{\mu(V) \to \infty \\ V \in \mathcal{V}}} \left(\cdots \right).$$

Examples of exhaustive classes

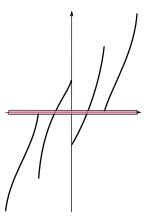
Example for Lorentz gas: $V = ([-r, r]^2 \setminus scatterers) \times S^1 \ (r > 0)$



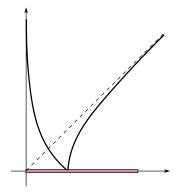
Example for random walk: $V = \{-k, ..., k\}^d \times [0, 1]^2 \ (k \in \mathbb{Z}^+)$



Example for expanding Markov map: $V = [-k, k] \ (k \in \mathbb{Z}^+)$



Example for Farey map: V = [0, r] (r > 0)



Assumption:

(A1) For fixed
$$t$$
, $\mu(T^{-t}V\triangle V) = o(\mu(V))$ $(V \nearrow \mathcal{M})$

Global observables \mathcal{G} : $F: \mathcal{M} \longrightarrow \mathbb{R}$ supported (more or less) throughout the phase space

E.g., if a translation is defined on \mathcal{M} , periodic, quasiperiodic functions; in general, functions that look alike in different regions of \mathcal{M} .

Global observables \mathcal{G} : $F: \mathcal{M} \longrightarrow \mathbb{R}$ supported (more or less) throughout the phase space

E.g., if a translation is defined on \mathcal{M} , periodic, quasiperiodic functions; in general, functions that look alike in different regions of \mathcal{M} .

Minimal requirements:

Global observables \mathcal{G} : $F: \mathcal{M} \longrightarrow \mathbb{R}$ supported (more or less) throughout the phase space

E.g., if a translation is defined on \mathcal{M} , periodic, quasiperiodic functions; in general, functions that look alike in different regions of \mathcal{M} .

Minimal requirements:

(A2)
$$\mathcal{G} \subset L^{\infty}(\mathcal{M}, \mu)$$

Global observables \mathcal{G} : $F: \mathcal{M} \longrightarrow \mathbb{R}$ supported (more or less) throughout the phase space

E.g., if a translation is defined on \mathcal{M} , periodic, quasiperiodic functions; in general, functions that look alike in different regions of \mathcal{M} .

Minimal requirements:

(A2)
$$\mathcal{G} \subset L^{\infty}(\mathcal{M}, \mu)$$

(A3)
$$\forall F \in \mathcal{G}, \quad \exists \overline{\mu}(F) := \lim_{V \nearrow \mathcal{M}} \frac{1}{\mu(V)} \int_{V} F \, d\mu$$

Global observables \mathcal{G} : $F: \mathcal{M} \longrightarrow \mathbb{R}$ supported (more or less) throughout the phase space

E.g., if a translation is defined on \mathcal{M} , periodic, quasiperiodic functions; in general, functions that look alike in different regions of \mathcal{M} .

Minimal requirements:

(A2)
$$\mathcal{G} \subset L^{\infty}(\mathcal{M}, \mu)$$

(A3)
$$\forall F \in \mathcal{G}, \quad \exists \overline{\mu}(F) := \lim_{V \nearrow \mathcal{M}} \frac{1}{\mu(V)} \int_{V} F \, d\mu$$

Proposition

(A1)-(A3)
$$\Longrightarrow \overline{\mu}(F) = \overline{\mu}(F \circ T^t) \quad \forall F \in \mathcal{G}, \ \forall t \in \mathbb{G}$$

The following definitions crucially depend on $\mathscr V$ and $\mathcal G$:

The following definitions crucially depend on $\mathscr V$ and $\mathcal G$:

Definition (GGM1) $\forall F,G\in\mathcal{G},\\ \lim_{t\to\infty}\overline{\mu}((F\circ T^t)G)=\overline{\mu}(F)\overline{\mu}(G)$

The following definitions crucially depend on $\mathscr V$ and $\mathcal G$:

Definition (GGM1) $\forall F,G\in\mathcal{G},\\ \lim_{t\to\infty}\overline{\mu}((F\circ T^t)G)=\overline{\mu}(F)\overline{\mu}(G)$

Problem: L.h.s. might not exist

The following definitions crucially depend on $\mathscr V$ and $\mathcal G$:

Definition (GGM1)

 $\forall F, G \in \mathcal{G}$,

$$\lim_{t\to\infty}\overline{\mu}((F\circ T^t)G)=\overline{\mu}(F)\overline{\mu}(G)$$

Problem: L.h.s. might not exist

Definition

 $\forall F, G \in \mathcal{G}$,

$$\lim_{\substack{t\to\infty\\V\geq M}}\frac{1}{\mu(V)}\int_V (F\circ T^t)G\,d\mu=\overline{\mu}(F)\,\overline{\mu}(G)$$

(GGM2)

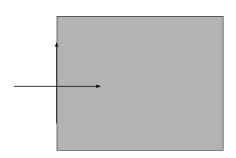
Problem: Surface effects

Problem: Surface effects

E.g., $\mathcal{T}:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ Lebesgue-invariant, morally mixing

$$F(x,y) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

$$F \circ T^n(x,y) = \begin{cases} 0, & \text{white area} \\ 1, & \text{gray area} \end{cases}$$

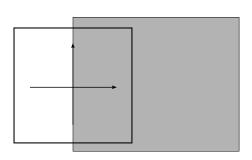


Problem: Surface effects

E.g., $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ Lebesgue-invariant, morally mixing

$$F(x,y) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

$$F\circ T^n(x,y)=\left\{egin{array}{ll} 0, & ext{white area}\ 1, & ext{gray area} \end{array}
ight.$$

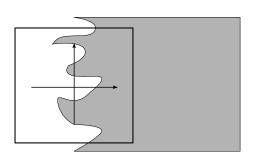


Problem: Surface effects

E.g., $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ Lebesgue-invariant, morally mixing

$$F(x,y) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

$$F(x,y) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases} \qquad F \circ T^n(x,y) = \begin{cases} 0, & \text{white area} \\ 1, & \text{gray area} \end{cases}$$

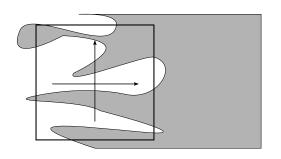


Problem: Surface effects

E.g., $\mathcal{T}:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ Lebesgue-invariant, morally mixing

$$F(x,y) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

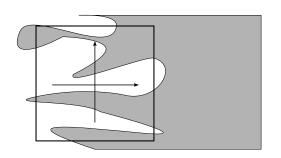
$$F \circ T^n(x,y) = \left\{ egin{array}{ll} 0, & ext{white area} \ 1, & ext{gray area} \end{array}
ight.$$



Problem: Surface effects

E.g., $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ Lebesgue-invariant, morally mixing

$$F(x,y) = \left\{ egin{array}{ll} 0, & x < 0 \ 1, & x \geq 0 \end{array}
ight. \qquad F \circ T^n(x,y) = \left\{ egin{array}{ll} 0, & ext{white area} \ 1, & ext{gray area} \end{array}
ight.$$



$$\forall n \in \mathbb{N}, \qquad \overline{\mu}((F \circ T^n)F) = \frac{1}{2} \neq [\overline{\mu}(F)]^2 = \frac{1}{4}$$

Solution 1: Restrict \mathcal{G} (eliminating "bad" observables)

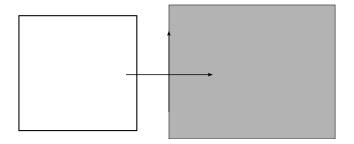
Solution 1: Restrict \mathcal{G} (eliminating "bad" observables)

Solution 1: Restrict \mathcal{G} (eliminating "bad" observables)

E.g.,
$$V = [a, a+r] \times [b, b+r], \quad \forall a, b \in \mathbb{R}, r > 0$$

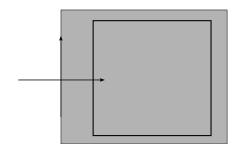
Solution 1: Restrict G (eliminating "bad" observables)

E.g.,
$$V = [a, a+r] \times [b, b+r], \quad \forall a, b \in \mathbb{R}, r > 0$$



Solution 1: Restrict G (eliminating "bad" observables)

E.g.,
$$V = [a, a+r] \times [b, b+r], \quad \forall a, b \in \mathbb{R}, r > 0$$



All these (foregoing and following) definitions crucially depend on $\mathscr V$ and $\mathcal G!$

Global-global mixing is not the whole story because:

Global-global mixing is not the whole story because:

1 it doesn't see finite-measure phenomena (e.g., invariant set A with $\mu(A) < \infty$);

Global-global mixing is not the whole story because:

- it doesn't see finite-measure phenomena (e.g., invariant set A with $\mu(A)<\infty$);
- it doesn't consider the evolution of an initial probability measure ("statistical properties of dynamical systems").

Global-global mixing is not the whole story because:

- it doesn't see finite-measure phenomena (e.g., invariant set A with $\mu(A)<\infty$);
- it doesn't consider the evolution of an initial probability measure ("statistical properties of dynamical systems").

Introducing...

Local observables

Local observables \mathcal{L} : Localized $f: \mathcal{M} \longrightarrow \mathbb{R}$

Local observables

Local observables \mathcal{L} : Localized $f: \mathcal{M} \longrightarrow \mathbb{R}$

Minimal requirements:

(A4)
$$\mathcal{L} \subset L^1(\mathcal{M}, \mu)$$

The choice of $\mathcal L$ is less crucial than those of $\mathscr V$ and $\mathcal G$. $\mathcal L=L^1$ works well in many cases. (As new definitions are mostly continuous in the L^1 -norm. Occasionally one might require compact support, or additional regularity, etc.)

Definition (GLM2)

$$\forall F \in \mathcal{G}, \forall g \in \mathcal{L}, \lim_{t \to \infty} \mu((F \circ T^t)g) = \overline{\mu}(F)\mu(g)$$

Interpretation

(GLM2)

$$\forall F \in \mathcal{G}, \forall \mu_{g} = \mu(\cdot g), \ (g \in \mathcal{L}, \ g \geq 0, \ \mu(g) = 1)$$
$$\lim_{t \to \infty} T_{*}^{t} \mu_{g}(F) = \overline{\mu}(F)$$

Definition (GLM1)

$$\begin{aligned} \forall F \in \mathcal{G}, \forall g \in \mathcal{L} \text{ with } \mu(g) &= 0, \\ \lim_{t \to \infty} \mu((F \circ T^t)g) &= 0 \end{aligned}$$

Definition (GLM2)

$$\forall F \in \mathcal{G}, \forall g \in \mathcal{L}, \lim_{t \to \infty} \mu((F \circ T^t)g) = \overline{\mu}(F)\mu(g)$$

Interpretation

(GLM1)

(GLM2)

$$\forall F \in \mathcal{G}, \forall \mu_{g}, \mu_{h}, \quad (g, h \text{ densities } \in \mathcal{L}) \\ \lim_{t \to \infty} \left(T_{*}^{t} \mu_{g}(F) - T_{*}^{t} \mu_{h}(F) \right) = 0$$

Definition

$$\forall F \in \mathcal{G}, \forall g \in \mathcal{L}, \lim_{t \to \infty} \mu((F \circ T^t)g) = \overline{\mu}(F)\mu(g)$$

Definition (GLM1)

$$\begin{aligned} \forall F \in \mathcal{G}, \forall g \in \mathcal{L} \text{ with } \mu(g) &= 0, \\ \lim_{t \to \infty} \mu((F \circ T^t)g) &= 0 \end{aligned}$$

Definition (GLM2)

$$\forall F \in \mathcal{G}, \forall g \in \mathcal{L}, \lim_{t \to \infty} \mu((F \circ T^t)g) = \overline{\mu}(F)\mu(g)$$

Definition

(GLM3)

$$orall F \in \mathcal{G}, \ \lim_{t \to \infty} \sup_{g \in \mathcal{L} \setminus 0} \left. \frac{1}{\mu(|g|)} \left| \mu((F \circ T^t)g) - \overline{\mu}(F)\mu(g) \right| = 0 \right.$$

Proposition

Assuming (A1)-(A4),

$$(GLM3) \implies (GLM2) \implies (GLM1)$$

On the other hand, if, $\forall F, G \in \mathcal{G}$, $\exists \overline{\mu}((F \circ T^t)G)$ for t large enough, then

$$(GGM2) \implies (GGM1)$$

Proposition

Assuming (A1)-(A4),

$$(GLM3) \implies (GLM2) \implies (GLM1)$$

On the other hand, if, $\forall F, G \in \mathcal{G}$, $\exists \overline{\mu}((F \circ T^t)G)$ for t large enough, then

$$(GGM2) \implies (GGM1)$$

Proposition

Exactness \implies (GLM1), for any choice of \mathcal{G}, \mathcal{L}

Proposition

Assuming (A1)-(A4),

$$(GLM3) \Rightarrow (GLM2) \Rightarrow (GLM1)$$

On the other hand, if, $\forall F, G \in \mathcal{G}$, $\exists \overline{\mu}((F \circ T^t)G)$ for t large enough, then

$$(GGM2) \implies (GGM1)$$

Proposition

Exactness \implies (GLM1), for any choice of \mathcal{G}, \mathcal{L}

Analogous result for K-mixing

If every global observable is more or less a sum of local observables with pairwise disjoint supports, then uniform global-local mixing implies the "strongest" form of global-global mixing:

If every global observable is more or less a sum of local observables with pairwise disjoint supports, then uniform global-local mixing implies the "strongest" form of global-global mixing:

Proposition

Suppose that every $G \in \mathcal{G}$ can be written μ -a.e. as

$$G(x) = \sum_{j \in \mathbb{N}} g_j(x),$$
 with $g_j \in \mathcal{L}$,

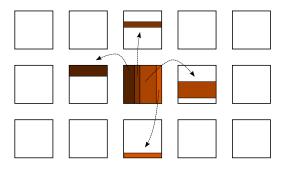
and, $\forall V \in \mathscr{V}$, \exists finite $\mathbb{J}_V \subset \mathbb{N}$, such that

$$\mu\left(\left|G1_{V}-\sum_{j\in\mathbb{J}_{V}}g_{j}\right|\right)=o(\mu(V));$$
$$\sum_{j\in\mathbb{J}_{V}}\|g_{j}\|_{L^{1}}=O(\mu(V)).$$

Then (GLM3) \Longrightarrow (GGM2)

Applications to prototypical examples

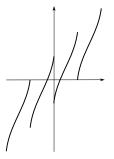
Random walk (L 2010)



For a *strongly aperiodic* (homogeneous) random walk on \mathbb{Z}^d with sufficiently fast-decaying transition probabilities, **(GGMi)**, **(GLMj)** $\forall i, j$ hold for suitable choices of $\mathscr{V}, \mathcal{G}, \mathcal{L}$.

Applications to prototypical examples

Uniformly expanding Markov maps of \mathbb{R} (*L*, 2014)



 \exists large class of maps for which exactness and (GLM1) hold.

Quasi-lifts verify **(GGMi)**, (i = 1, 2) **(GLMj)** (j = 1, 2) (for suitable choices of $\mathcal{V}, \mathcal{G}, \mathcal{L}$).

Weaker results for finite modifications of quasi-lifts

Applications to prototypical examples

Interval maps with indifferent fixed point (Bonanno, Giulietti, L, in progress)



Large class of such maps (including Pomeau-Manneville, Farey, Boole) verifies (GLMj) (j=1,2) (with "best" choice of $\mathscr{V},\mathcal{G},\mathcal{L}$). Does not verify (GLM3).

Does not verify (**GGMi**), $\forall i$

