We take into account the Coulomb (N+1)-body problem, which is a system
composed by a positively charged particle fixed at the origin (i. e. the
nucleus), surrounded by N negatively charged particles (i. e. electrons). These
particles move under the effect of the Coulomb force, without gravitation. This system
remids the Rutherford model of the atom.
Units are chosen so that
Setting N = 12, 24, 60, we compute periodic orbits which are invariant under the
rotations of the symmetry group of one of the five Platonic
polyhedra. Such orbits depend only on the trajectory of one of the electrons,
which is called generating particle.
Moreover, its trajectory cannot pass through the axes of the rotations of the group:
due to this fact, we compute orbits in different homotopy classes of the space minus the
union of the rotation axes.
Below are listed the periodic orbits we computed for the three different rotation
groups (the period is always set to be 1). The first column is just a number to identify the orbit. The second column represents the
homotopy class in which the orbit lies. These classes are coded using a path on the
edges of an Archimedean
solid, and the sequence of numbers refers to the enumeration of the vertexes we used. For a
deepen explanation, please see references [1] and [2] at the end of this page.
The number M indicates how many particles move on the trajectory of the generating
particle, following this curve with a constant shift in time. The number in the column labeled with R identifies a rotation of the group, which keeps unchanged
the trajectory of the generating particle. This number refers to the enumeration we used to represent
the rotations in our software. The fifth column contains the minimum integer value of
the central charge for which we were able to compute the corresponding orbits.
The last column contains a link to display videos and additional information about the
orbits. Each page contains
Interested people can contact me to obtain
more information about the representations of homotopy classes and the rotation groups,
or
also to get the initial conditions for the orbits.
12 electrons (Tetrahedron Symmetry)
Index
Sequence
M
R
of the central chargeVideos
1
[1 5 10 2 7 9 1]
2
2
Link
2
[1 5 2 6 11 3 12 9 1]
2
11
Link
3
[1 5 8 3 12 4 9 7 1]
2
12
Link
4
[1 5 10 11 4 9 1]
3
10
Link
5
[1 5 2 7 6 4 9 12 8 1]
3
7
Link
6
[1 5 2 6 4 9 7 2 10 11 6 7 1]
3
4
Link
7
[1 5 8 3 10 11 3 12 4 9 12 8 1]
3
10
Link
8
[1 5 8 12 3 10 11 4 6 2 7 9 1]
3
3
Link
9
[1 5 10 11 4 9 1 5 10 11 4 9 1]
3
4
Link
Index | Sequence | M | R | of the central charge |
Videos |
---|---|---|---|---|---|
1 | [ 1 3 8 10 16 5 1] | 2 | 10 | Link | |
2 | [ 1 3 10 6 4 9 22 16 1] | 2 | 4 | Link | |
3 | [ 1 3 7 14 11 19 2 5 1] | 2 | 11 | Link | |
4 | [ 1 3 10 6 4 9 17 19 11 14 1] | 2 | 9 | Link | |
5 | [ 1 3 8 10 6 4 9 2 22 16 1] | 2 | 4 | Link | |
6 | [ 1 3 8 15 6 4 9 2 5 16 1] | 2 | 4 | Link | |
7 | [ 1 3 7 20 23 11 19 2 22 16 1] | 2 | 11 | Link | |
8 | [ 1 3 7 14 23 11 19 2 5 16 1] | 2 | 11 | Link | |
9 | [ 1 3 7 18 20 7 14 1 5 16 1] | 2 | 7 | Link | |
10 | [ 1 3 8 15 13 12 4 6 10 16 1] | 2 | 12 | Link | |
11 | [ 1 3 7 20 24 12 4 9 2 5 1] | 2 | 12 | Link | |
12 | [ 1 3 8 15 4 6 10 16 5 11 23 14 1] | 2 | 10 | Link | |
13 | [ 1 3 8 10 6 4 9 17 21 19 11 14 1] | 2 | 9 | Link | |
14 | [ 1 3 7 18 13 12 4 9 17 19 11 14 1] | 2 | 4 | Link | |
15 | [ 1 3 8 15 6 4 9 17 21 23 11 14 1] | 2 | 9 | Link | |
16 | [ 1 3 8 18 13 12 4 9 2 19 11 14 1] | 2 | 4 | Link | |
17 | [ 1 3 8 15 13 12 4 9 2 5 11 14 1] | 2 | 4 | Link | |
18 | [ 1 3 7 20 24 12 4 9 17 21 23 14 1] | 2 | 4 | Link | |
19 | [ 1 3 10 6 4 12 13 18 20 23 11 5 1] | 2 | 13 | Link | |
20 | [ 1 3 8 10 6 15 4 9 2 22 16 5 1] | 2 | 4 | Link | |
21 | [ 1 3 8 10 16 5 1 3 8 10 16 5 1] | 2 | 1 | Link | |
22 | [ 1 3 7 18 20 23 11 19 2 9 22 16 1] | 2 | 11 | Link | |
23 | [ 1 3 10 8 18 13 12 4 15 6 22 16 1] | 2 | 12 | Link | |
24 | [ 1 3 8 15 4 12 13 18 7 14 11 5 1] | 2 | 13 | Link | |
25 | [ 1 3 7 18 8 15 6 10 16 1] | 3 | 18 | Link | |
26 | [ 1 3 8 15 13 24 21 23 14 1] | 3 | 15 | Link | |
27 | [ 1 3 7 20 18 8 15 4 6 10 16 5 1] | 3 | 18 | Link | |
28 | [ 1 3 10 6 15 13 12 17 21 23 11 5 1] | 3 | 15 | Link | |
29 | [ 1 3 8 15 6 10 3 7 18 8 10 16 1] | 3 | 6 | Link | |
30 | [ 1 3 10 8 15 13 12 24 21 23 11 14 1] | 3 | 15 | Link | |
31 | [ 1 3 8 15 4 6 10 3 7 20 18 8 10 16 5 1] | 3 | 6 | Link | |
32 | [ 1 3 7 14 1 5 11 19 2 5 16 22 6 10 16 1] | 3 | 5 | Link | |
33 | [ 1 3 8 10 6 15 13 24 12 17 21 23 14 11 5 1] | 3 | 15 | Link | |
34 | [ 1 3 10 8 15 4 6 10 8 3 7 20 18 8 3 10 16 5 1] | 3 | 6 | Link | |
35 | [ 1 3 10 6 22 2 5 11 14 7 3 10 16 22 2 19 11 14 1] | 3 | 5 | Link | |
36 | [ 1 3 10 16 22 2 5 11 14 1 3 10 16 22 2 5 11 14 1] | 3 | 5 | Link | |
37 | [ 1 3 8 18 13 15 6 10 3 1 14 7 18 8 10 6 22 16 1] | 3 | 6 | Link | |
38 | [ 1 3 7 14 23 20 18 8 15 13 12 4 6 10 16 22 2 5 1] | 3 | 18 | Link | |
39 | [ 1 3 10 8 15 13 18 8 3 10 16 22 6 10 8 3 7 14 1] | 3 | 18 | Link | |
40 | [ 1 3 7 20 24 21 19 2 5 1 3 7 20 24 21 19 2 5 1] | 3 | 19 | Link | |
41 | [ 1 3 8 10 6 4 15 13 24 12 17 19 21 23 14 11 5 16 1] | 3 | 15 | Link | |
42 | [ 1 3 8 15 6 4 15 13 24 21 17 19 21 23 14 1 5 16 1] | 3 | 15 | Link | |
43 | [ 1 3 8 15 4 9 2 5 1] | 4 | 8 | Link | |
44 | [ 1 3 10 8 15 6 4 9 22 2 5 16 1] | 4 | 8 | Link | |
45 | [ 1 3 7 18 8 15 13 12 4 9 17 19 2 5 11 14 1] | 4 | 8 | Link | |
46 | [ 1 3 8 15 4 9 2 5 1 3 8 15 4 9 2 5 1] | 4 | 4 | Link | |
47 | [ 1 3 10 8 3 7 18 20 7 14 23 11 14 1 5 16 1] | 4 | 3 | Link | |
48 | [ 1 3 10 6 22 2 5 16 10 6 4 9 22 16 10 8 15 6 22 16 1] | 4 | 2 | Link | |
49 | [ 1 3 7 20 18 8 15 13 24 12 4 9 17 21 19 2 5 11 23 14 1] | 4 | 8 | Link | |
50 | [ 1 3 10 6 4 9 2 5 16 10 8 15 4 9 22 16 1 3 8 15 6 22 2 5 1] | 4 | 2 | Link | |
51 | [ 1 3 10 16 5 1 3 7 18 8 10 3 7 14 23 20 18 7 14 1 5 11 23 14 1] | 4 | 3 | Link | |
52 | [ 1 3 8 15 4 9 2 5 1 3 8 15 4 9 2 5 1 3 8 15 4 9 2 5 1] | 4 | 2 | Link | |
53 | [ 1 3 10 8 3 7 14 1 5 16 1 3 7 14 23 11 14 1 3 7 18 20 7 14 1] | 4 | 14 | Link | |
54 | [ 1 3 10 6 15 8 3 7 18 13 24 20 7 14 23 21 19 11 14 1 5 2 22 16 1] | 4 | 3 | Link | |
55 | [ 1 3 8 15 6 10 3 7 20 24 13 18 7 14 11 19 21 23 14 1 16 22 2 5 1] | 4 | 3 | Link | |
56 | [ 1 3 10 8 15 6 4 9 22 2 5 16 1 3 10 8 15 6 4 9 22 2 5 16 1] | 4 | 4 | Link | |
57 | [ 1 3 10 6 22 9 2 5 16 10 6 15 4 9 22 16 10 3 8 15 6 22 16 5 1] | 4 | 2 | Link |
Index | Sequence | M | R | of the central charge |
Videos |
---|---|---|---|---|---|
1 | [ 1 3 6 15 48 28 45 19 1] | 1 | 1 | Link | |
2 | [ 1 3 59 52 53 51 36 50 43 19 1] | 1 | 1 | Link | |
3 | [ 1 3 7 59 54 50 1 ] | 2 | 59 | Link | |
4 | [ 1 3 6 11 28 42 20 31 45 19 1 ] | 2 | 42 | Link | |
5 | [ 1 3 6 47 7 12 52 59 54 1 ] | 3 | 47 | Link | |
6 | [ 1 3 6 15 47 7 12 13 52 59 54 50 1 ] | 3 | 25 | Link | |
7 | [ 1 3 59 54 50 43 19 1 54 51 36 50 1 ] | 3 | 50 | Link | |
8 | [ 1 3 59 7 12 21 33 26 25 38 34 48 28 11 19 1 ] | 3 | 21 | Link | |
9 | [ 1 3 7 59 54 50 43 45 19 1 54 51 35 36 50 1 ] | 3 | 50 | Link |
G. Fusco, G. F. Gronchi , P. Negrini: 2011. Platonic polyhedra, topological constraints and periodic orbits of the classical N-body problem, Invent. Math. Vol. 285, Num. 2, 283-332. DOI: https://doi.org/10.1007/s00222-010-0306-3.
M. Fenucci, G. F. Gronchi: 2018. On the stability of periodic N-body motions with the symmetry of Platonic polyhedra, Nonlinearity, Vol. 31, Num. 11, pp 4935-4954. DOI: https://doi.org/10.1088/1361-6544/aad644.