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Introduction

Preface

During my Ph.D. program, I decided to study two different main topics of Celestial
Mechanics. The first topic concerns variational methods applied to the N -body problem,
from both the theoretical and computational point of view. This choice comes from the
mathematical background that I have earned during my Bachelor and Master degree
studies. The second topic is about Hamiltonian perturbation theory applied to the
restricted N -body problem with orbit crossing singularities. This last choice arises from
my wish of applying the mathematics that I have learned during my studies also to
realistic problems in Astronomy, like the study of the long term evolution of planet
crossing asteroids.

Part I: Action minimizing solutions and numerical computations

The classical Newtonian N -body problem, for its history and its challenges, is a fun-
damental problem in mathematical physics. The law of universal gravitation was for-
mulated by Isaac Newton in his Philosophiae Naturalis Principia Mathematica in 1687,
where he also solved the 2-body problem, providing a mathematical proof of the three
Kepler’s laws. In particular, the first Kepler law says that the motion of the planets is
periodic and their trajectories are ellipses, with the Sun at one of the two foci. Since
then, many mathematicians worked on this problem.

The importance of periodic solutions is well described by Henri Poincaré in his book
Les méthodes nouvelles de la mécanique céleste, published in three volumes between
1892 and 1899.

Ce qui rend ces solutions périodiques aussi précieuses, c’est qu’elle sont, pour
ainsi dire, la seule brèche par où nous puissions pénétrer dans une place jusqu’ici
réputée inabordable.

Henri Poincaré, Les méthodes nouvelles de la mécanique céleste.

This means that periodic orbits are a precious tool to deeply understand the structure of
the phase space, so that knowing their existence and stability properties is a fundamental
issue to be investigated, not only for the N -body problem, but for general dynamical
problems.

In the 3-body problem, some famous periodic solutions were found first by Leonard
Euler. In 1762, he considered the circular restricted 3-body problem and proved the

v



vi INTRODUCTION

existence of particular periodic solutions, in which the three particles are always collinear.
Later on, Joseph-Louis Lagrange expanded and generalized the results of Euler. In
1772, he found periodic orbits where the particles are placed at the vertexes of an
equilateral triangle, which uniformly rotates around its center. Nowadays these solutions
are commonly known as Lagrangian points and they play a prominent role in planning
space missions. Moreover, he discovered other particular periodic solutions for the non-
restricted 3-body problem, in which every particle is placed on a 2-body ellipse. This
is a particular case of a homographic central configuration, a notion which was extended
later to the problem of N bodies. In the 19th century, Poincaré himself proved the
existence of infinitely many periodic orbits in the restricted circular 3-body problem
using a perturbative approach, and searching for fixed points of first return maps defined
on sections transversal to the flow. Since then, some particular periodic solutions were
found as relative equilibria, or by different approaches such as perturbative or topological
methods.

More recently, a new and unexpected periodic solution of the 3-body problem was
computed numerically by C. Moore [77] in 1993. In this orbit, three equal masses follow
the same eight-shaped curve with a Dihedral symmetry, with the same time law but
with a constant time-shift, see Figure 1.

Figure 1: The Figure Eight solution of the 3-body problem.

A mathematical proof of its existence was provided in 2000 by A. Chenciner and R. Mont-
gomery [20]. Their idea was to apply Hamilton’s principle, which relates the solutions
of the Euler-Lagrange equation coming from a Lagrangian L(t, u, u̇), to the stationary
points of the action functional

A(u) =
∫ T

0
L
(
t, u(t), u̇(t)

)
dt,

where T > 0 is the fixed period. One can search for particular stationary points, such as
minimizers. The idea of minimizing the action still goes back to Poincaré [87, 88], and
he understood that collisions are the main obstruction in using the variational method,
since they give a finite contribution to the action. After the work of Chenciner and
Montgomery, many authors faced the N -body problem using variational techniques and
many action minimizing periodic solutions were found.

Besides the theoretical work, numerical methods played an essential role in under-
standing and finding such solutions too. Indeed, C. Moore computed a Figure Eight
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solution using a numerical method implementing the minimization of the action. In the
early 2000s, C. Simó was able to compute many solutions in which N equal masses share
a common planar trajectory, which is followed with the same time law and a constant
time-shift. He named choreographies these particular solutions. Figures and videos of his
solutions can be found at the websites [94, 95]. Moreover, the increasing computational
power available nowadays led also to the development of rigorous numerical techniques,
which have been used to provide computer-assisted proofs of existence and stability (or
instability) of choreographies.

Part I of this thesis is structured as follows. In Chapter 1, we review the Calculus of
Variation techniques and recall the proof of the existence of periodic orbits sharing the
symmetry of a Platonic polyhedron, following [40]. Moreover, we provide an algorithm
to enumerate them, in order to produce a list of periodic orbits.

In Chapter 2, we modify the previous problem by adding a massive body at the
center. Imposing both symmetry and topological constraints, we are still able to prove
the existence of periodic orbits, found as minimizers of the action. Moreover, we apply Γ-
convergence theory to understand their asymptotic behaviour as the value of the central
mass goes to infinity.

In Chapter 3, we introduce the theory of local minimizers for periodic problems.
The theory for fixed-ends problems is a classical topic in Calculus of Variations and it is
essentially well known. Here we discuss its extension to the case of periodic boundary
conditions, underlying the difficulties that arise. Moreover, we test the theory applying
it to the Kepler problem and the periodic orbits found in Chapter 1.

Chapter 4 is devoted to the description of numerical methods used to compute peri-
odic orbits, both rigorous and non-rigorous. The basic idea to search for minimizers of
the action is to consider a finite dimensional loop space, such as the space of truncated
Fourier series, and then apply an iterative method to reduce the value of the action.
Furthermore, the periodic orbit is refined using a multiple shooting method. On the
other hand, rigorous methods aim at producing computer-assisted proofs and they are
based on interval arithmetics, useful to control the numerical errors.

In Chapter 5, we apply numerical methods to the compute periodic orbits described
in Chapters 1 and 2. In particular, we were able to provide a computer-assisted proof of
the instability for a few of them. Moreover, we considered a system composed by charged
particles, which reminds the Rutherford model of the atom. Here we were still able to
compute periodic orbits, analyzing their stability. Using the theory of local minimizers
introduced in Chapter 3, we studied their variational nature. It turns out that these
orbits are not minimizers of the action, not even directionally, but rather saddle points.

Part II: The full and the averaged CR3BP

In many physical problems it may happen that the quantities involved do not evolve
significantly on the same timescale. We can find some examples of this behaviour in
Celestial Mechanics. For instance, the rotation axis of the Earth shifts its orientation
periodically, with a period of approximately 25 772 years, with a behaviour similar to a
spinning top. This has the effect of changing our view of the fixed stars during the years:
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indeed, Earth’s rotation axis is currently pointing towards Polaris (commonly known as
the North Star), while it will point towards Vega in about 13 000 years (see Figure 2).
This process is also called precession of the equinoxes and it was already known by the
ancient Greeks.

Another example, coming from astronomy, is the precession of the perihelia of the
planets, due to their mutual gravitational interactions. This has been relevant in the
history of Science, since it has played an important role in the development of gen-
eral relativity. Indeed, the observed precession rate of the perihelion of Mercury was
in disagreement with the predictions coming from classical Celestial Mechanics. The
precession of the perihelion was computed using averaging methods and taking into ac-
count only the Newtonian gravitation. The discrepancy between the predictions and the
observations was explained later with the introduction of general relativity by Albert
Einstein, providing the first experimental proof of the validity of his new gravitational
theory. However, hereafter we will not consider relativistic dynamical effects.

Figure 2: The precession of Earth’s rotation axis.

The above results are typically obtained by averaging out all the short periodic
perturbations, in order to capture only the long term behaviour of the system. This
idea dates back to the 18th century, when Lagrange formulated the gravitational 3-body
problem as a perturbation of the 2-body problem. Indeed, he took into account a system
composed by the Sun, a planet and a small body (that we are going to call asteroid, for
the sake of simplicity), which does not influence the motion of the larger bodies. The
Sun and the planet move on circular orbits with a 2-body motion, while the asteroid
undergoes the gravitational attraction of the two other objects. If the mass of the planet
is small, compared to the mass of the Sun, the motion of the asteroid can be considered
as a 2-body motion around the Sun, plus a small perturbation due to the presence of the
planet itself. This problem is also known as circular restricted 3-body problem and it is
the system that we take into account in this second part of the thesis. The fast variables
involved are the two mean anomalies `, `′ of the asteroid and the planet, respectively.
The averaged evolution is obtained by averaging the vector field over `, `′. The averaging
principle tells us that the solution of the averaged problem is a good approximation of
the solution of the full problem. However, due to its physical nature, this is not a
theorem and it cannot be applied in any situation.
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In this second part, we study the relation between the solutions of the full circular
restricted 3-body problem and the solutions of the averaged equations, even when the
averaging principle can not be applied. In the averaged problem, the semimajor axis of
the asteroid is a constant of motion: the averaging principle fails when, in the full prob-
lem, this value changes. This typically happens because of two reasons: close encounters
between the planet and the asteroid, which deeply modify the value of the semimajor
axis in a short time, or mean motion resonances, which periodically vary it over a long
timescale. In this second case we can define a resonant normal form, which keeps all the
resonant terms in the Hamiltonian, and use this model to make a comparison with the
solutions of the full equations of motion.

Part II is structured as follows. In Chapter 6, we first recall the formulation of the
averaged problem, focusing on the problematics produced by its singularities. Indeed,
when the orbit of the asteroid crosses the orbit of the planet, the averaged Hamiltonian
is infinite and the vector field is not defined. However, we can extend it introducing a
discontinuity in the derivatives, and in this way we are able to continue a solution beyond
an orbit crossing. Later, we introduce the resonant normal form, which aims to capture
the long term behaviour of the system in presence of mean motion resonances between the
planet and the asteroid. Finally, we recall the Kustaanheimo-Stiefel regularization, used
to accurately integrate the full circular restricted 3-body problem near close encounters.
This is needed to make a comparison between the two systems.

In Chapter 7 we show the results obtained from our numerical experiments. Taking
into account many solutions of the full equations, all with the same initial conditions
for the slow variables, numerical simulations show a relation between them and the
solution of the equations of motion of the normal form, in the sense that the solutions
obtained through the normal form give statistical information on the solutions of the
full circular restricted 3-body problem. However, a mathematical proof of this evidence
is still lacking.
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Chapter 1

Variational approach to the
N-body problem

The existence of several periodic orbits of the Newtonian N -body problem has been
proved by means of variational methods, see e.g. [20, 21, 38, 103, 104]. In all these
works, periodic orbits are found as minimizers of the Lagrangian action functional and
the bodies have all the same mass. In [18], periodic orbits with different values for the
masses are found. One difficulty with the variational approach is that the action is
not coercive on the whole space of T -periodic loops, for which a natural choice is the
Sobolev space of T -periodic loops in H1, denoted with H1

T (R,Rn). We can overcome
this problem by restricting the domain of the action to symmetric loops or by adding
topological constraints, e.g. as done in [31, 11, 44]. Another difficulty is to prove that
the minimizers are free of collisions. For this purpose we can use different techniques,
like level estimates or local perturbations, see for example [65, 19, 17].

In this chapter, we first recall the direct method of Calculus of Variations, providing
the general setting of the variational formulation of the N -body problem and discussing
the main obstructions mentioned above. Then we focus on periodic motions of N equal
masses, sharing the symmetry of Platonic polyhedra (that is, Tetrahedron, Cube, Oc-
tahedron, Dodecahedron and Icosahedron), which minimize the Lagrangian action on
suitable sets of T -periodic loops, for a given T > 0. A proof of the existence of these
orbits is given in [40], and here we recall the main fundamental steps. Later, we present
an algorithm to enumerate all the orbits that can be found following this proof. Part of
this work has been published in [37].

1.1 The direct method of Calculus of Variations

Let X be a set endowed with a notion of convergence and A : X → R := R ∪ {±∞}
be a functional. With the term direct method of Calculus of Variation we mean a set of
mathematical tools aimed to prove the existence of

min{A(u) : u ∈ X}.

3



4 CHAPTER 1. VARIATIONAL APPROACH TO THE N -BODY PROBLEM

Here we recall the fundamental tools to state a first theorem, which are the lower semi-
continuity and the coercivity. For an extensive treatment of the direct method of Calculus
of Variations, the interested reader can refer, for instance, to [25].

Definition 1.1. A functional A : X → R is said to be lower semicontinuous if for every
sequence {un}n∈N ⊆ X such that

lim
n→∞

un = u∞,

we have that
lim inf
n→∞

A(un) ≥ A(u∞).

Definition 1.2. A functional A : X → R is said to be coercive if for every t ∈ R there
exists a closed and sequentially compact set Kt ⊆ X such that the t sub-level of A is
contained in Kt, i.e.

{u ∈ X : A(u) ≤ t} ⊆ Kt.

Theorem 1.3 (Tonelli’s Theorem). Let A : X → R be a lower semicontinuous coercive
functional. Then there exists a minimum point u∗ ∈ X.

Proof. If A is always equal to +∞, there is nothing to prove. Suppose that I = infX A ∈
R ∪ {−∞}. Then there exists a minimizing sequence {un}n∈N ⊆ X such that

lim
n→∞

A(un) = I.

Therefore, there exists L ∈ R such that

A(un) ≤ L, ∀n ∈ N,

hence {un}n∈N is completely contained in a sequentially compact set, since A is coercive.
Thus the sequence {un}n∈N admits a subsequence {unk}k∈N which converges to a point
u∗ ∈ X. From the lower semicontinuity of A we have that

I ≤ A(u∗) ≤ lim inf
k→∞

A(unk) = lim
k→∞

A(uk) = I,

hence I ∈ R and u∗ is a minimum point.

Let us observe that the two hypotheses of Tonelli’s Theorem are in some kind of
conflict, since to have the lower semicontinuity we need a rather strong topology, while
for the coercivity we need a rather weak topology. The direct method of Calculus of
Variations consists in determine the right topology on the set X which satisfies both
conditions, ensuring the existence of the minimum of A.
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Let us consider an integral functional, i.e. suppose that A is of the type

A(u) =
∫ b

a
L(t, u, u̇)dt,

where [a, b] ⊆ R is an interval, L : [a, b] × Ω → R is a C2 function usually called
Lagrangian, Ω ⊆ Rn × Rn is an open set and u : [a, b]→ Rn is a C1 curve. We consider
A defined on a subset Y such that

Y ⊆ C1([a, b],Rn).
Defined in this way, A is usually not coercive on Y endowed with the uniform conver-
gence, since in general the sublevels

{u ∈ Y : A(u) ≤ t},

are not sequentially compact. This problem can be faced by assuming that A is defined
on a subset of the Sobolev space H1([a, b],Rn), endowed with the H1 topology, which
have further compactness properties (see for example [22] for an extensive treatment
about Sobolev spaces). What is usually done, is to extend A to a functional Ã : X → R,
where X is such that Y ⊆ X ⊆ H1([a, b],Rn), and Ã satisfies

(i) Ã(u) ≤ A(u) for all u ∈ Y ,

(ii) Ã is lower semicontinuous and coercive on X,

(iii) the minimum point u∗ of Ã belongs to Y and Ã(u∗) = A(u∗).

In these hypotheses, it is straightforward that u∗ is a minimum point for the original
functional A. It is worth noting that, in this extension process, we have to be particularly
careful at the step (iii). In fact, at step (ii) Tonelli’s Theorem provides us a minimizer
u∗ which belongs to the Sobolev space H1, therefore the proof that u∗ is in fact regular
has to be done separately.

1.1.1 The N-body problem as a variational problem

Consider N point masses m1, . . . ,mN subjected to their mutual gravitational attraction
and let ui ∈ R3 be the position of the i-th particle, i = 1, . . . , N . Here we choose the
units so that the gravitational constant G is unitary. The equations of motion for this
problem are

miüi = ∂U

∂ui
(u), i = 1, . . . , N, (1.1)

where
U(u) =

∑
1≤h<k≤N

mhmk

|uh − uk|
, (1.2)
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is the potential. The map R 3 t 7→ u = (u1, . . . , uN ) ∈ R3N describes the evolution of
the N particles in the three-dimensional space. The kinetic energy of the problem is
given by

K(u̇) = 1
2

N∑
i=1

mi|u̇i|2.

Hence the Euler-Lagrange equations
d

dt

(
∂L

∂u̇i

)
− ∂L

∂ui
= 0, i = 1, . . . , N,

associated to the Lagrangian function

L(u, u̇) = K(u̇) + U(u), (1.3)

correspond to the equations of motion (1.1) of the N -body problem. Fixed the period
T > 0, using the variational formulation of the classical mechanics, we have that periodic
orbits of (1.1) are stationary points of the Lagrangian action functional

A(u) =
∫ T

0
L(u, u̇)dt, (1.4)

which, in a classical setting, is defined on the set of collision-less C1 T -periodic loops

Y =
{
u ∈ C1

T

(
R,R3N) : ui(t) 6= uj(t) ∀t ∈ [0, T ], 1 ≤ i < j ≤ N

}
.

In particular, we can search for periodic solutions which are minimum points of A, using
the direct method of Calculus of Variations.

Extension of the functional

It is well known that for these type of problems, it is natural to extend the above
functional on a subset which is contained in the Sobolev space of T -periodic loops
H1
T (R,R3N ), endowed with the norm

‖u‖H1
T

=
[ ∫ T

0
|u(t)|2 + |u̇(t)|2dt

]1/2
,

where u̇ ∈ L2 is the weak derivative of u in H1. Using the integral of the center of mass
we can assume

∑N
h=1mhuh = 0 and consider the configuration space

X =
{
x = (x1, . . . , xN ) ∈ R3N :

N∑
h=1

mhxh = 0
}
.

In this way we extend the domain of (1.4) to the loop space

Λ = H1
T (R,X ).

The extension of A to Λ is simply done using the same formula (1.4), since the square
of the weak derivative of a function u ∈ H1 is integrable. Note also that A(u) can be
+∞, since Λ contains loops with collisions. Therefore, for the sake of simplicity, we still
denote with A the extended functional, instead of Ã.
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Lower semicontinuity

The functional (1.4) is lower-semicontinuous on Λ. Indeed, if {u(k)}k∈N ⊆ Λ is a sequence
such that u(k) → u∞ in H1, then by the Ascoli-Arzelà Theorem u(k) → u∞ uniformly in
[0, T ], up to subsequences. Moreover u̇(k) ⇀ u̇∞ in L2, since the sequence is bounded in
norm. Then from the Cauchy-Schwartz inequality we have

lim inf
k→∞

‖u̇(k)‖2L2 ≥ ‖u̇∞‖2L2 ,

hence the kinetic term of A is lower-semicontinuous. Furthermore, the uniform conver-
gence of {u(k)}k∈N, together with the continuity of the potential U , ensures that

lim
k→∞

∫ T

0
U(u(k)(t))dt =

∫ T

0
U(u∞(t))dt,

hence the functional (1.4) is lower-semicontinuous on Λ.

Coercivity

Note that on Λ, which is endowed with the H1 norm, Definition 1.2 is equivalent to the
following.

Definition 1.4. The functional A : Λ→ R is coercive if for every sequence {u(k)}k∈N ⊆
Λ such that

lim
k→∞
‖u(k)‖H1 = +∞,

we have that
lim
k→∞

A(u(k)) = +∞.

However, A is not coercive on the whole set of loops Λ. Consider for example the
problem of 4 bodies and take the sequence

u(n)(t) =
(
u

(n)
1 (t), u(n)

2 (t), u(n)
3 (t), u(n)

4 (t)
)
,

defined by 

u
(n)
1 (t) =

(
n+ 1

n
cos 2πt

T
, n+ 1

n
sin 2πt

T
, 0
)
,

u
(n)
2 (t) =

(
− n+ 1

n
cos 2πt

T
, n+ 1

n
sin 2πt

T
, 0
)
,

u
(n)
3 (t) =

(
n+ 1

n
cos 2πt

T
,−n+ 1

n
sin 2πt

T
, 0
)
,

u
(n)
4 (t) =

(
− n+ 1

n
cos 2πt

T
,−n+ 1

n
sin 2πt

T
, 0
)
.
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They represent four circular trajectories of radius 1/n centered at the points (±n,±n),
covered in a time T with uniform motion: in this way we have that ‖u(n)‖H1

T
→ +∞.

Since the mutual distances between the particles become larger and larger, the contribute
of the potential part to the action is zero in the limit n → +∞. Furthermore, for the
kinetic part we can compute directly that

|u̇(n)
i |

2 = 4π2

n2T 2 , i = 1, 2, 3, 4,

and then also the kinetic part tends to zero as n→∞: this is enough to show the lack of
coercivity of A. Later we shall see that we can recover the coercivity introducing some
constraints on the space of admissible loops: in particular we will use both symmetry
and topological constraints.

Collisions and regularity

Another obstruction is that minimizers of Amay have collisions: indeed if u∗ is a solution
with a collision at time tc, then from Sundman’s estimates [110], we have that

|u∗(t)| = O(|tc − t|2/3), |u̇∗(t)| = O(|tc − t|−1/3),

for t near tc, so that

K = O(|tc − t|−2/3), U = O(|tc − t|−2/3).

Therefore the contribution of collisions to the action is finite, that is A(u∗) < +∞: hence
to find minimizers that are solution of the classical N -body problem, we must exclude
both partial and total collisions.

However, if we are able to prove that a minimizer u∗ ∈ Λ is collision-free, then we are
also able to prove that it is smooth, and therefore a classical solution of the gravitational
N -body problem. Indeed, in general, let us consider a functional A : Λ→ R defined by

A(u) =
∫ T

0
L(u(t), u̇(t))dt,

where Λ ⊆ H1
T (R,Rn) is a set of T -periodic loops, where the period T > 0 is fixed.

Moreover, assume that we have a mechanical system, so that the Lagrangian is of the
form

L(u, u̇) = u̇ ·Mu̇

2 + U(u), M = diag(m1, . . . ,mn),

where the potential U is defined on Rn \ Γ, for a certain set Γ ⊆ Rn, and it is regular
enough (it will be sufficient continuous differentiable) and mi > 0, i = 1, . . . , n. In the
N -body problem, the set Γ plays the role of the collision set. Let us assume that u∗ ∈ Λ
is a minimizer of A and it is “collision free”, i.e. u∗([0, T ]) ∩ Γ = ∅: we want to show
that, under these conditions, u∗ ∈ C∞T (R,Rn). If we take as set of variations

Ṽ = {v ∈ C2
T (R,Rn) : v(0) = v(T ) = 0},
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then fixed v ∈ Ṽ , the curve u∗ + λv is still T -periodic and collision free for small values
of λ, therefore we assume it belongs to the loop space Λ. Since u∗ is a minimizer, its
first variation is zero, that is

d

dλ
A(u∗ + λv)

∣∣∣∣
λ=0

=
∫ T

0

[
(Mu̇∗(t)) · v̇(t) + ∂U(u∗(t))

∂u
· v(t)

]
dt = 0, for all v ∈ Ṽ .

Integrating by parts the second term of the integral and using the periodic boundary
conditions, we obtain∫ T

0

[
Mu̇∗(t)−

∫ t

0

∂U(u∗(s))
∂u

ds

]
· v̇(t)dt = 0, for all v ∈ Ṽ .

Since v is zero at the extrema, the integral mean over the period of its time derivative
v̇ is zero, then from the Du Bois-Reymond Lemma [43], we have that the integrating
function is constant, that is

Mu̇∗(t)−
∫ t

0

∂U(u∗(s))
∂u

ds = c ∈ R,

and finally we get

u̇∗(t) = M−1(F (t) + c
)
, F (t) =

∫ t

0

∂U(u∗(s))
∂u

ds.

Since we have assumed that U is a continuous differentiable function, its derivative
∂U/∂u is a continuous function, and since u∗ is a Lipschitz function, F (t) is differentiable.
From this we get that u̇∗ ∈ C1

T (R,Rn) and therefore u∗ ∈ C2
T (R,Rn). Furthermore, by

induction we obtain that u∗ ∈ C∞T (R,Rn).

1.2 Minimizers with the symmetry of Platonic polyhedra

We recall here the steps of the proof of the existence of periodic orbits given in [40]. Let
us fix T > 0 and let R be the rotation group of one of the five Platonic polyhedra. We
recall that the pairs (Cube, Octahedron) and (Dodecahedron, Icosahedron) share the
same rotation group, that we call O and I respectively. Moreover, we denote by T the
rotation group of the Tetrahedron, therefore R ∈ {T ,O, I}. We consider the motion of
N = |R| particles with unitary mass, hence N = 12, 24, 60 for R = T ,O, I respectively.
Let us denote by

uI : R→ R3,

the map describing the motion of one of these particles, arbitrarily selected, that we call
generating particle. Assume that

(a) the motion uR, R ∈ R \ {I} of the other particles fulfills the relation

uR = RuI , (1.5)
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(b) the trajectory of the generating particle belongs to a given non-trivial free-homotopy
class of R3 \ Γ, where

Γ = ∪R∈R\{I}r(R),

with r(R) the rotation axis of R.

(c) there exist R ∈ R and M > 0 such that

uI(t+ T/M) = RuI(t), (1.6)

for all t ∈ R.

Imposing the symmetry (1.5), the action functional of the N -body problem depends only
on the motion of the generating particle and it is expressed by

A(uI) = N

∫ T

0

(1
2 |u̇I |

2 + 1
2

∑
R∈R\{I}

1
|(R− I)uI |

)
dt. (1.7)

We search for periodic motions by minimizing A on subsets K of a Sobolev space of
T -periodic maps. More precisely, we choose the cones

K = {uI ∈ H1
T (R,R3) : (b), (c) hold}. (1.8)

1.2.1 Encoding K and proving the existence of minimizers

We describe two ways to encode the topological constraints defining the cones K. Let R̃
be the full symmetry group (including reflections) related to R. The reflection planes
induce a tessellation of the unit sphere S2, as shown in Figure 1.1, with 2N spherical
triangles. Each vertex of such triangles corresponds to a pole p ∈ P = Γ ∩ S2. Let us

Figure 1.1: Tessellation of S2 for R = O and the Archimedean polyhedron QO.

select one triangle, say τ . By a suitable choice of a point q ∈ ∂τ (see Figure 1.1) we can
define an Archimedean polyhedron QR, which is the convex hull of the orbit of q under
R, and therefore it is strictly related to the symmetry group R. For details see [40].
We can characterize a cone K by a periodic sequence t = {τk}k∈Z of triangles of the
tessellation such that τk+1 shares an edge with τk and τk+1 6= τk−1 for each k ∈ Z. This
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sequence is uniquely determined by K up to translations, and describes the homotopy
class of the admissible paths followed by the generating particle (see Figure 1.2, left).
We can also characterize K by a periodic sequence ν = {νk}k∈Z of vertexes of QR such
that the segment [νk, νk+1] is an edge of QR and νk+1 6= νk−1 for each k ∈ Z. Also
the sequence ν is uniquely determined by K up to translations, and with it we can
construct a piecewise linear loop v, joining consecutive vertexes νk with constant speed,
that represents an element of the cone K (see Figure 1.2, right).

Figure 1.2: Encoding a cone K. Left: the dashed path on S2 describes the periodic sequence t of triangles of the
tessellation. Right: the dashed piecewise linear path describes the corresponding periodic sequence ν of vertexes
of QO.

The existence of a minimizer u∗I of A restricted to a cone K = K(ν) can be shown
by Tonelli’s Theorem 1.3, provided that⋂

τj∈t
τj = ∅, (1.9)

where t is the sequence of spherical triangles corresponding to K. Indeed, we have already
seen that the action functional is lower-semicontinuous. The coercivity is recovered from
the fact that, by condition 1.9, there exists cK > 0 such that

|uI(t)| ≤ (1/cK + 1) max
t1,t2∈[0,T ]

|uI(t1)− uI(t2)|,

for all t ∈ [0, T ] and uI ∈ K. This is sufficient to conclude that the integral of the kinetic
energy goes to plus infinity as a sequence of periodic loops goes to infinity in H1 norm.
Note that condition (1.9) means that the trajectory of the generating particles does not
wind around one rotation axis only.

For later use we introduce the following definitions.

Definition 1.5. We say that a cone K is simple if the corresponding sequence t does
not contain a string τk . . . τk+2o such that

2o⋂
j=0

τk+j = p,

where p ∈ P and o is the order of p, which corresponds to the order of its associated
rotation.
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Definition 1.6. We say that a cone K winds around two coboundary axes if

(i) the corresponding sequence t is the union of two strings, τkj . . . τkj+2oj−1, j = 1, 2,
such that

2oj−1⋂
h=0

τkj+h = pj ,

where oj is the order of pj , for two different poles p1, p2;

(ii) there exists τk ∈ t such that p1, p2 ∈ τk.

To show that for a suitable choice of K the minimizers are collision-free we consider
total and partial collisions separately.

1.2.2 Total collisions

To exclude total collisions we use level estimates, i.e. first we prove that there exists
a ∈ R such that if u∗ is a solution with total collisions, then A(u∗) ≥ a. Then we
search for an admissible loop u such that A(u) < a, hence minimizers do not have total
collisions. The fundamental estimate, that can be adapted depending on the problem
we are dealing with, is the following.

Proposition 1.7. Let u : [0,T]→ R3N be a motion of N masses m1, . . . ,mN connecting
a total ejection at time t = 0 to a total collision at time t = T. Then for the action

A(u) =
∫ T

0

(1
2

N∑
i=1

mi|u̇i|2 +
∑

1≤i<j≤N

1
|mi −mj |

)
dt,

we have the estimate

A(u) ≥ 3
2M

(
πU0

)2/3T1/3, M =
N∑
i=1

mi, (1.10)

where

U0 = min
ρ(u)=1

U(u), U(u) = 1
M

N∑
i,j=1
i 6=j

1
|ui − uj |

, ρ(u) =
( N∑
i=1

mi

M
|ui|2

)1/2
.

Proof. For the function ρ we have that
N∑
i=1

mi

M
|u̇i|2 ≥ ρ̇2(u).

Therefore we have that

A(u) ≥ M2

∫ T

0

(
ρ̇2(u) + 1

ρ(u)U
(

u

ρ(u)

))
dt ≥ M2

∫ T

0

(
ρ̇2 + U0

ρ

)
dt.
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The right hand side of the inequality corresponds to the action of the Kepler problem,
in which the gravitational constant is equal to U0. From the estimates given by [44] for
the Kepler problem, we have

A(u) ≥ 3
2M

(
πU0

)2/3T1/3.

We note that a total collision of the N particles occurs at time tc if and only if
uI(tc) = 0. If there is a total collision then, by condition (c), there are M of them per
period. For a minimizer u∗I with a total collision, a priori estimates for its action are
found using Proposition 1.7 as

A(u∗I) ≥ αR,M, (1.11)

where αR,M depends only on M and T . Rounded values of αR,M for T = 1 are computed
in [40] and reported in Table 1.1. For some sequences ν, the action of the related

R�M 1 2 3 4 5

T 132.695 210.640 276.017 / /
O 457.184 725.734 950.981 1152.032 /
I 2296.892 3646.089 4777.728 / 6716.154

Table 1.1: Lower bounds aR,M for loops with M total collisions (T = 1).

piecewise linear loop v is lower than αR,M. Therefore, minimizing the action over the
cones K defined by such sequences yields minimizers without total collisions. The action
of the piecewise linear loop v can be computed explicitly and for T = 1 it is given by

A(v) = 3
2 · 41/3N`

2/3(k1ζ1 + k2ζ2)2/3, (1.12)

where k1, k2 are the numbers of sides of the two different kinds (i.e. separating different
pairs of polygons) in the trajectory of v, ` is the length of the sides (assuming QR is
inscribed in the unit sphere) and ζ1, ζ2 are the values of explicitly computable integrals,
see Table 1.2. Relations (1.11) and (1.12) will be useful later in Section 1.3.

R T O I

` 1.0 0.7149 0.4479
ζ1 9.5084 20.3225 53.9904
ζ2 9.5084 19.7400 52.5762

Table 1.2: Numerical values of `, ζ1, ζ2.
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1.2.3 Partial collisions

Because of the symmetry, a partial collision occurs at time tc if and only if uI(tc) ∈ Γ\{0},
that is when the generating particle passes through a rotation axis r. Indeed, in this
case all the particles collide in separate clusters, each containing as many particles as the
order of r. We summarize below the technique used in [40] to deal with partial collisions.

Assume that the minimizer u∗ ∈ K has a partial collision at time t = tc. From
results presented in [38], we can assume that the collision is isolated in time. Since u∗ is
a minimizer, if (t1, t2) is an interval of regularity, then the generating particle u∗I solves
the Euler-Lagrange equation of (1.7), which is

ẅ =
∑

R∈R\{I}

(R− I)w
|(R− I)w|3 , t ∈ (t1, t2). (1.13)

Let r be the rotation axis on which the generating particle collides and let C be the
subgroup (of order oC) of the rotations with axis r. We can rewrite equation (1.13) and
the first integral of the energy in the form

ẅ = α
(Rπ − I)w
|(Rπ − I)w|3 + V1(w), α =

oC−1∑
j=1

1
sin
( jπ
oC

) , (1.14)

|ẇ|2 − α 1
|(Rπ − I)w| − V (w) = h, (1.15)

where Rπ is the rotation of π around r, V1(w) and V (w) are smooth functions defined
in an open set Ω ⊆ R3 that contains r \ {0}. Moreover, if R̃ ∈ R̃ is a reflection such that
R̃r = r, then V1, V satisfy the conditions

V1(R̃w) = R̃V1(w), V (R̃w) = V (w). (1.16)

The form (1.14) of Newton’s equation is well suited for the analysis of partial collisions
occurring on r and, in particular, it implies that all the partial collisions a minimizer
u∗ ∈ K may present can be regarded as binary collisions. Note that, every time we are
in this situation, partial collisions can be excluded with the same technique that we are
going to summarize.

From [40] (see, alternatively Appendix B), we can associate to a partial collision two
unit vectors n+, n−, orthogonal to the collision axis r, corresponding to the ejection and
collision limit directions, respectively. The angle formed by these two directions is called
collision angle. Moreover, we say that a collisions is of type (⇒) if

(i) n+ = n−, and

(ii) the plane πr,n generated by r and n = n± is fixed by some reflection R̃ ∈ R̃.

A useful tool which helps in constructing local perturbations, which are free of collisions,
is the Marchal Lemma, appearing in several papers [65, 19, 38, 76]. Here we recall the
version given in [40].
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Lemma 1.8 (Marchal’s Lemma). Let uA, uB ∈ R2 \ {0} such that |uA| = |uB|, let
u0 : [−τ, τ ]→ R2 be the parabolic collision-ejection solution such that

u0(−τ) = uA, u0(τ) = uB, u0(0) = 0,

and set
n− = uA

|uA|
, n+ = uB

|uB|
.

Denote with
A(u) =

∫ τ

−τ

( |u̇|2
2 + κ

|u|

)
dt, κ > 0,

the Keplerian action. Then

(i) if n+ · n− 6= 1 there exist exactly two Keplerian arcs ud, ui : [−τ, τ ] → R2, called
direct and indirect arcs, such that

ud(−τ) = ui(−τ) = uA, ud(τ) = ui(τ) = uB,

and {
ud([−τ, τ ]) ⊆ {a1n− + a2n+, ai > 0},
ui([−τ, τ ]) ⊆ Span{n+, n−} \ {a1n− + a2n+, ai ≥ 0}.

Moreover
A(ud) < A(u0), A(ui) < A(u0).

(ii) if n+ · n− = 1 (i.e. n+ = n− := n and uA = uB), there exists only the direct arc
ud : [−τ, τ ]→ R2, such that

ud(−τ) = uA, ud(τ) = uA,

and
ud([−τ, τ ]) ⊆ {an, a > 0}.

Moreover
A(ud) < A(u0).

It turns out that, if u∗I is a solution with a partial collision and the cone K is simple,
then necessarily the collision is of type (⇒). Indeed, if that would not be the case, then
the collision angle θ is such that

− π
or
≤ θ < 2π.

Moreover, using the blow-up technique (see [108, 38]), u∗I can be treated as a parabolic
collision-ejection solution, near the collision. More specifically, let us suppose that
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the collision takes place at tc = 0. Up to translations, we can also suppose that
limt→0+ u∗I(t) = 0. Rescaling the generating particle as

wλ : [0, 1]→ R3, wλ(t) = λ2/3u∗I(t/λ),

we have that {wλ}λ converges uniformly in [0, 1] as λ→ +∞. The limit is the parabolic
ejection motion

sα(t)n+, sα(t) = 33/2

2 α1/3t1/3.

Therefore, local perturbations of u∗I which are collision-free can be constructed using
the direct and indirect arcs, see Figure 1.3 for a sketch of the construction. By Marchal’s
Lemma, the action of these local perturbations is lower than the action of the collision
solution u∗I , then we have a contradiction.

Figure 1.3: The construction of a local perturbation without collisions

In case of collision of type (⇒), by a uniqueness result (see Appendix B or, alter-
natively, [40], Proposition 5.9), it turns out that the generating particle must move on
a reflection plane, between two rotation axes. This contradicts the membership to the
cone K, except for the cones defined by sequences ν winding around two coboundary
axes.

In conclusion, provided that K is simple and it does not wind around two coboundary
axes, the minimizer u∗I of the action A restricted to K is free of partial collisions, hence
it is a smooth periodic solution of the N -body problem.

1.3 Enumerating the collision-free minimizers

Here we introduce an algorithm to generate all the sequences ν of length l, for some
admissible integer l. Then we select only the periodic ones, and check whether they
satisfy all the conditions ensuring the existence of collision-free minimizers of (1.7) in
the corresponding cone K = K(ν). Precisely, our algorithm is based on the following
steps:
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1. Find the maximal admissible length lmax and other constraints on the length l.

2. Construct all the periodic sequences ν of vertexes of the Archimedean polyhedron
QR.

3. Exclude the sequences that wind around one axis only or around two coboundary
axes.

4. Exclude the sequences that do not respect the additional choreography symmetry
(1.6).

5. Exclude the sequences that give rise to non-simple cones.

1.3.1 Constraints on the length

To exclude total collisions we use (1.11) and (1.12). If v is the linear piecewise loop
defined by the sequence ν, the relation A(v) < αR,M can be rewritten as

k1ζ1 + k2ζ2 <

(
αR,M

2 · 41/3

3
1
N

1
`2/3

)3/2
=: K. (1.17)

Since the coefficients ζ1 and ζ2 are positive, for each M there exist only a finite number of
positive integers (k1, k2) fulfilling (1.17). Given R ∈ {T ,O, I}, taking the maximal value
of k1 + k2 we get a constraint on the maximal length lmax = lmax(M) of the sequence ν,
see Table 1.3.

R�M 1 2 3 4 5

T 4 8 12 / /
O 6 12 19 25 /
I 10 21 32 / 54

Table 1.3: Values of lmax(M) for the different symmetry groups.

On the other hand, we can also give a constraint on the minimal length lmin. Indeed,
a periodic sequence of length l ≤ 5 either winds around one axis only or encloses two
coboundary axes. However, for all the five Platonic polyhedra there exists at least a
good sequence ν of length 6: for this reason we set lmin = 6.

Furthermore, in the case of R = T ,O we cannot have M = 1. In fact:

- if R = T , lmax(1) = 4, therefore we cannot construct any good sequence ν.

- if R = O, lmax(1) = 6, and the only sequences of length 6 that do not wind around
two coboundary axes have M = 2.
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1.3.2 Periodic sequences construction

To know which vertexes are reachable from a fixed vertex Vj of QR, we interpret the
polyhedron as a connected graph: in this manner we have an adjacency matrix A asso-
ciated to the graph. In this matrix we want to store the information about the kind of
sides connecting two different vertexes. The generic entry of A is

Aij =


1 if the vertex i and the vertex j are connected by a side of type 1,
2 if the vertex i and the vertex j are connected by a side of type 2,
0 otherwise.

(1.18)

For a fixed length l ∈ {lmin, . . . , lmax}, we want to generate all the sequences of vertexes
with that length, starting from vertex 1. Because of the symmetry, we can select the
first side arbitrarily, while in the other steps we can choose only among 3 different
vertexes, since we do not want to travel forward and backward along the same side.
Therefore, the total number of sequences with length l is 3l−1. To generate all these
different sequences we produce an array of choices c = (c1, . . . , cl) such that c1 = 1 and
cj ∈ {1, 2, 3}, j = 2, . . . , l. Each entry tells us the way to construct the sequence: if
v1, v2, v3 are the number of the vertexes reachable from νj (with vi sorted in ascending
order), then νj+1 = vcj . All the different 3l−1 arrays of choices can be generated using
an integer number k ∈ {0, . . . , 3l−1 − 1}, through its base 3 representation.

1.3.3 Winding around one axis only or two coboundary axes

To check whether a closed sequence winds around one axis only we have to take into
account the type of Archimedean polyhedron QR. In the cases R = T ,O it is sufficient
to count the number m of different vertexes appearing in ν. If m = 3, 4 then ν winds
around one axis only. The case of R = I is different, since also pentagonal faces appear.
If m = 5, to check this property we can take the arithmetic mean of the coordinates of
the touched vertexes and control whether it coincides with a rotation axis or not.

We note that for M different from 1, a periodic sequence satisfying the choreography
condition (1.19), introduced in the next paragraph, cannot wind around two coboundary
axes. For this reason we decided to avoid performing this additional control, since M = 1
is possible only in the case ofR = I. In this case we exclude the non-admissible sequences
in a non-automated way, looking at them one by one. We point out that such sequences
can be of three different types:

1. a pentagonal face and a triangular face sharing a vertex;

2. a pentagonal face and a square face sharing a side;

3. a square face and a triangular face sharing a side.

The sequences that travel along the boundary of two square faces sharing a vertex winds
around two axes too, but these axes are not coboundary, thus we have to keep them.
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1.3.4 Choreography condition

Condition (1.6) is satisfied if and only if there exists a rotation R ∈ R such that

ηRνj = νj+k, (1.19)

for some integer k, where ηR denotes the permutation of the vertexes of QR induced
by R. To check condition (1.19), we have to construct ηR. Let V1, . . . , VN ∈ R3 be the
coordinates of all the vertexes of QR: since each rotation R leaves QR unchanged, it
sends vertexes into vertexes. Therefore, we construct the matrices ηR such that

(ηR)ji =
{

1 if RVi = Vj ,

0 otherwise.

It results that each ηR ∈ RN×N is a permutation matrix. The product of ηR with the
vector v = (1, . . . , N)T provides the permutation of {1, . . . , N}. At this point, given
a rotation R, we are able to write the permuted sequence ηRν: we can simply check
that (1.19) holds by comparing the sequences ν and ηRν. Moreover, if the condition is
satisfied, we compute the value M = kν/k, where kν is the minimal period of ν.

1.3.5 Simple cone control

Definition 1.5 of simple cones is given by using the tessellation of the sphere induced by
the reflection planes of the Platonic polyhedra. To decide whether a cone K is simple or
not, we must translate this definition into a condition on the sequence of vertexes. We
observe that the only way to produce a non-simple cone is by traveling all around the
boundary of a face F of QR: for the cone K, being simple or not depends on the order
of the pole associated to F and on the way the oriented path defined by ν gets to the
boundary of F and leaves it. We discuss first the case of a triangular face, pointing out
that it is associated to a pole p of order three. Suppose that ν contains a subsequence
[νk, νk+1, νk+2, νk+3] that travels all around a triangular face F , that is νk = νk+3.
Let νk−1 and νk+4 be the vertexes before and after accessing the boundary of F . Four
different cases can occur:

(i) νk+4 is a vertex of the triangular face F (Figure 1.4, top left);

(ii) the path defined by ν accesses and leaves F through the same side, i.e. [νk−1, νk] =
[νk+3, νk+4] (Figure 1.4, top right);

(iii) the path defined by ν accesses and leaves F through two different sides describing
an angle θ > π around p (Figure 1.4, bottom left);

(iv) the path defined by ν accesses and leaves F through two different sides describing
an angle θ < π around p (Figure 1.4, bottom right).
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Figure 1.4: The different cases occurring for a path around a triangular face of QR.

In the first three cases, the sequence ν defines a non-simple cone, while case iv) is
the only admissible situation for a simple cone. Cases iii) and iv) can be distinguished
by the sign of ~a× ~d ·~b× ~c where

~a = [νk−1, νk], ~b = [νk, νk+1], ~c = [νk+2, νk+3], ~d = [νk+3, νk+4].

If this sign is positive we have case iii), if negative case iv). This argument concludes
the discussion about triangular faces. Actually, we can see that a similar argument can
be used for square and pentagonal faces, provided that the associated poles have order
greater than two. However, in the case R = O, we can find poles of order two associated
to square faces. In this situation there is no way to travel all around the square face and
get a simple cone.

1.3.6 Summary of the procedure

Now we summarize the procedure that we adopt. For each admissible value of M (see
Table 1.1) we observe that M divides the possible lengths l ∈ {lmin, . . . , lmax(M)} of the
sequence ν. Then, for each integer h ∈ {0, . . . , 3l/M−1 − 1} we perform the following
steps:

(1) construct the array of choices c corresponding to h;

(2) generate the sequence ν̂ on the basis of c, starting from vertex number 1. Note
that ν̂ is a sequence with length l/M + 1;
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(3) control whether ηRν̂1 = ν̂l/M+1 for some R ∈ R. In this case we extend ν̂ to a
sequence ν with length l + 1, using the choreography condition (1.19);

(4) check whether ν is periodic or not;

(5) compute the minimal period kν of ν;

(6) check whether ν winds around one axis only or not;

(7) check whether (1.19) holds or not; if it holds, check whether the ratio kν/k is equal
to M or not;

(8) compute the values of k1, k2 and check whether (1.17) holds or not;

(9) check whether the cone K = K(ν) is simple or not.

If the sequence ν passes all the controls above, then there exists a collision-free minimizer
of the action A restricted to K. Recall that, in the case R = I, we also have to check
the sequences with M = 1, excluding the ones winding around two coboundary axes.

1.3.7 Results

The lists of good sequences found by the algorithm described in Section 1.3.6 for the
three groups T , O, I are available at the webpage [34]. Here we list only the total number
of good sequences (i.e. leading to collision-free minimizers and then classical periodic
orbits) for the different polyhedra, in Table 1.4. All the periodic orbits listed in [40]

M Total number

2 3
3 6

9

M Total number

2 24
3 18
4 15

57

M Total number

1 28
2 386
3 455
5 573

1442

Table 1.4: Total number of sequences ν found for QT ,QO,QI respectively, from the left to the right.

were found again with this procedure. We point out that we can identify two different
sequences ν, ν̃ if there exists a symmetry S of the polyhedron QR such that ηRν = ν̃,
where ηR still denotes the permutation of the vertexes induced by the symmetry S. The
results are presented using this identification.
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Chapter 2

Symmetric constellations of
satellites

The (1 +N)-body problem has been introduced by Maxwell [68] to study the dynamical
structure of Saturn’s ring, and more recently it has been reviewed in [70, 73]. In this
chapter we consider an (1 +N)-body problem, composed by a massive particle of mass
m0 � 1, which is fixed at a point of the space, plus N equal particles of mass m = 1,
moving around the massive body. All these particles interact through the gravitational
force. This system can be thought as a big planet possessing some small satellites.
Imposing symmetry and topological constraints on the possible configurations of these
satellites, we are able to find periodic orbits using variational techniques, as minimizers
of the Lagrangian action functional. Moreover, as the mass m0 of the planet increases, we
study the asymptotic behaviour of the minimizers, making use of Γ-convergence theory,
that we recall below.

2.1 Definition of Γ-convergence and its properties

Many mathematical problems appearing in different branches of applied mathematics
depend on a parameter, small or large, that can have different origins (constructive,
coming from an approximation process, specific of the problem). As this parameter
varies, it is often possible to understand a certain limit behaviour, and guess that we
may substitute the full problem we started with, with a new and simpler one, where the
parameters have disappeared. If we are studying a problem with variational techniques,
this often means that we have a sequence of minimum problems

min{Aε(u) : u ∈ X},

depending on a real parameter ε, where X is a set endowed with a notion of convergence.
Γ-convergence is a notion of convergence for sequences of functionals, which was intro-
duced by E. De Giorgi in the mid 70s in a series of paper, see for example [28, 29, 30].
Its purpose is to describe the asymptotic behaviour of families of minimum problems

23
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depending on a parameter, and guess a limit problem whose minima are the limit of the
sequence of minima of the full problem.

In the literature about Γ-convergence, we can find many equivalent definitions, as
reported for example in [26]. Here we recall the definition adopted in [13], and state the
main properties that we are going to use in this chapter.

Definition 2.1. We say that a sequence Aj : X → R of functionals Γ-converges in X
to A∞ : X → R if for all u ∈ X we have

(i) (lim inf inequality) for every sequence {uj}j∈N converging to u in X

A∞(u) ≤ lim inf
j→∞

Aj(uj); (2.1)

(ii) (lim sup inequality) there exists a sequence {uj}j∈N converging to u such that

A∞(u) ≥ lim sup
j→∞

Aj(uj). (2.2)

We usually refer to such a sequence as recovery sequence.

The function A∞ is called the Γ-limit of {Aj}j∈N, and we write Γ-limj→∞Aj = A∞.

Remark 2.2. If we have a family of functionals Aε : X → R depending on a small
continuous parameter ε > 0, we have to better specify the definition. We say that
{Aε}ε>0 Γ-converges to A0 if for all sequences {εj}j∈N ⊆ R converging to 0 we have
Γ-limj→∞Aεj = A0. If this is the case, we write Γ-limε→0Aε = A0.

It is worth noting that Γ-convergence is indeed a different kind of notion of conver-
gence, and it differs from the usual known notions of convergence. Consider for example
X = R and the sequence

Aj : R→ R, Aj(u) = sin(ju), j ∈ N.

It is known that the pointwise limit of {Aj}j∈N does not exist, however we have that

Γ- lim
j→∞

Aj(u) = −1.

Indeed

(i) the (lim inf inequality) is trivial, since we always have

−1 ≤ Aj(u), ∀u ∈ R, ∀ j ∈ N.

(ii) for the (lim sup inequality) we can construct the recovery sequences explicitly. Let
u ∈ R be a point, and set

uj = − π

2j + 2π
j

[
ju

2π

]
, j ∈ N,

where [ · ] denotes the integer part. Then we have that limj→∞ uj = u and

lim sup
j→∞

Aj(uj) = lim
j→∞

Aj(uj) = −1.
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Definition 2.3. Let (X, d) be a metric space. A sequence Aj : X → R, j ∈ N is said to
be equi-coercive if there exists a compact set K ⊆ X such that

inf
X
Aj = inf

K
Aj ,

for every j ∈ N.

When the sequence of functionals is equi-coercive, then Γ-convergence can be used
to study the asymptotic behaviour of the minimizers.

Theorem 2.4 (Convergence of minima and minimizers). Assume that

Γ- lim
j→∞

Aj = A∞,

and the sequence {Aj}j∈N is equi-coercive, and let K be the compact set of Definition
2.3. Then

(i) A∞ has a minimum in X;

(ii) the sequence of infimum values converges, that is

lim
j→∞

(
inf
X
Aj
)

= min
X
A∞; (2.3)

(iii) if {uj}j∈N ⊆ K is a sequence such that

lim
j→∞

(
Aj(uj)− inf

X
Aj
)

= 0,

then from every subsequence {ujk}k∈N converging to u∞ ∈ X we have

A∞(u∞) = min
X
A∞.

Proof. Consider the sequence of the inf values, i.e.

Ij = inf
X
Aj , j ∈ N,

and let
I∞ = lim inf

j→∞
Ij

be its inferior limit. Then there exists a subsequence jk →∞ such that

lim
k→∞

Ijk = I∞.

Let ujk → u∞ be a sequence as in (iii), then we can prove that u∞ is a minimum point
for A∞. Indeed, if v ∈ X, let {vj}j∈N be a recovery sequence for v, provided by the
definition of Γ-convergence. Then

A∞(v) ≥ lim sup
j→∞

Aj(vj) ≥ lim sup
j→∞

Ij ≥ lim inf
j→∞

Ij = I∞. (2.4)
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Moreover,

I∞ = lim
k→∞

Ijk = lim
k→∞

(
Ajk(ujk) + Ijk −Ajk(ujk)

)
= lim

k→∞
Ajk(ujk) ≥ A∞(u∞). (2.5)

The last inequality follows from the lim inf property of Γ-convergence.
Combining (2.4) and (2.5) we obtain that, for every v ∈ X,

A∞(v) ≥ A∞(u∞),

hence u∞ is a minimizer for the Γ-limit A∞. This proves (i) and (iii). From (2.5) and
(2.4) with v = u∞ we obtain

lim inf
j→∞

Ij ≥ A∞(u∞) ≥ lim sup
j→∞

Ij ,

that yields (ii).

It is worth noting that the converse of the above theorem is not true, i.e. we can have
a situation in which a minimizer of A∞ is not the limit of minimizers of {Aj}j∈N, and in
general A∞ can have several minimum points. Moreover, Γ-convergence does not imply
the convergence of the local minimizers. As a simple example of this, choose X = R and

Aj : R→ R, Aj(u) = u2 + sin(ju), j ∈ N.

These functions have a global minimum and local minima, but the Γ-limit

A∞ : R→ R, A∞(u) = t2 − 1,

has only a global minima.

2.2 The (1 +N)-body problem with symmetries

Let us consider a system of N particles with mass m1 = · · · = mN = 1, plus a particle
with mass m0 � 1, and denote their positions with ui ∈ R3, i = 0, . . . , N . We assume
that

(1) the center of mass of the whole system corresponds to the origin of the reference
frame:

N∑
i=0

miui ≡ 0;

(2) the central body is in equilibrium at the origin:

u0 ≡ 0.
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We introduce the configuration space

X =
{
u = (u0, . . . , uN ) ∈ R3(1+N) : u0 = 0,

N∑
i=1

ui = 0
}
.

The particles move under the force generated by potentials of the form 1/rα, where
α ∈ [1, 2) and r is the distance between two particles. Note that for α = 1 we obtain
the usual Newtonian gravitational potential. We write the potential separating the
contribution of the central body from the interaction among the satellites:

Uα(u) =
N∑
i=1

m0
|ui|α

+
∑

1≤i<j≤N

1
|ui − uj |α

. (2.6)

Since m0 is at rest, the kinetic energy contains only terms due to the motion of the small
particles, that is

K = 1
2

N∑
i=1
|u̇i|2, (2.7)

and the Lagrangian is given by the sum

Lα = K + Uα.

Fixed the period T > 0, consider the set of T -periodic loops Λ = H1
T (R,X ), and define

the Lagrangian action functional

Aα(u) =
∫ T

0
Lα(u, u̇) dt,

for u ∈ Λ. As already done in Chapter 1, in the following we restrict Aα to sets of
loops which are invariant under an action of a group of rotations. Let us denote with
G a subgroup of the 3-D orthogonal group O(3), containing as many elements as the
number of satellites, i.e. |G| = N . Then, labeling the satellites with the elements of G,
we introduce the space of symmetric loops

ΛG =
{
u ∈ Λ : uR(t) = RuI(t), R ∈ G, t ∈ R

}
,

where uI : [0, T ]→ R3 is the motion of an arbitrarily selected satellite, that we call the
generating particle. If we restrict the action to ΛG , then Aα depends only on the motion
of uI , hence

Aα(uI) = N

∫ T

0

( |u̇I |2
2 + m0

|uI |α
+ 1

2
∑

R∈G\{I}

1
|(R− I)uI |α

)
dt. (2.8)

Note that a collision occurs if and only if there exist R ∈ G \ {I} and tc ∈ [0, T ] such
that

uI(tc) = RuI(tc).
We denote with

Γ = {x ∈ R3 : Rx = x for some R ∈ G \ {I}},
the set of collisions. What we want to do in the following, is
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(i) impose some additional topological constraints, defining a new set of loops, in order
to recover the coercivity of Aα;

(ii) prove that, for this chosen set, there exists a collision-free minimizer for every value
of m0 large enough;

(iii) find the Γ-limit and study the properties of its minimizers.

2.2.1 The (1 +N)-body problem and Γ-convergence

Let us discuss first the point (iii). If we consider the limit m0 → ∞, the integrand
function in the action (2.8) tends to +∞, and it is not clear what the Γ-limit is. In
these situations, the usual technique adopted is a suitable rescaling of the motion. We
consider

uI(t) = mβ
0vI(t), t ∈ R,

and get

Aα(uI) = N

∫ T

0

(
m2β

0
|v̇I |2

2 + m1−αβ
0
|vI |α

+ 1
2mαβ

0

∑
R∈G\{I}

1
|(R− I)vI |α

)
dt.

We choose β in a way to balance the exponent in the kinetic energy and the exponent
in the term of the potential energy containing the mass of the central body, i.e we set
2β = 1− αβ, so that

β = 1
2 + α

.

Using this value, the action functional becomes

Aα(uI) = N

∫ T

0

(
m

2
2+α
0
|v̇I |2

2 + m
2

2+α
0
|vI |α

+ 1

2m
α

2+α
0

∑
R∈G\{I}

1
|(R− I)vI |α

)
dt

= Nm
2

2+α
0

∫ T

0

( |v̇I |2
2 + 1

|vI |α
+ 1

2m0

∑
R∈G\{I}

1
|(R− I)vI |α

)
dt.

Setting
ε = 1

m0
,

and discarding the constants in front of the integral, we can study the functional

Aαε (vI) =
∫ T

0

( |v̇I |2
2 + 1

|vI |α
+ ε

2
∑

R∈G\{I}

1
|(R− I)vI |α

)
dt. (2.9)

Note that this is the action of a Kepler problem plus a perturbation, that becomes
smaller and smaller as the mass of the central body increases and, in the limit ε → 0,
we obtain the action of the Kepler problem itself

Aα0 (vI) =
∫ T

0

( |v̇I |2
2 + 1

|vI |α
)
dt.
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This is an hint of what the Γ-limit is. Note that, at step (i) we are restricting the loop
space ΛG in order to recover the coercivity. Therefore, let us denote with

K ⊆ H1
T (R,R3 \ Γ),

the set where Aαε is defined and coercive. We assume that K is open in the H1 topology,
and the loops belonging to K are all collision-free. Collision loops necessarily belong to
the boundary

∂K = KH
1
\ K,

where KH
1

denotes the H1-closure of K. Moreover, we assume the following property on
the loops belonging to K, which will be satisfied in all the examples that we are going
to consider: there exists a constant cK > 0 such that, for every uI ∈ K and for every
τ ∈ [0, T ], we have

|uI(τ)| ≤ cK max
t,s∈[0,T ]

|uI(t)− uI(s)|. (2.10)

Then we define 1

Aαε (v) =


∫ T

0

( |v̇|2
2 + 1

|v|α
+ ε

2
∑

R∈G\{I}

1
|(R− I)v|α

)
dt, v ∈ KH

1
,

+∞, v ∈ KL
2
\ KH

1
,

(2.11)

and

Aα0 (v) =


∫ T

0

( |v̇|2
2 + 1

|v|α
)
dt, v ∈ KH

1
,

+∞, v ∈ KL
2
\ KH

1
,

(2.12)

where KL
2

denotes the L2-closure of K.

Theorem 2.5. For every α ≥ 1, we have

i)
Γ- lim

ε→0
Aαε = Aα0 ;

ii) the sequence {Aαε }ε>0 is equicoercive.

Proof. To prove i) we first show that the lim inf inequality holds. Let {εj}j∈N ⊆ R
be a sequence converging to 0 and let {vj}j∈N ⊆ K

L2
such that vj → v in L2. If

lim infj Aαεj (vj) = +∞ there is nothing to prove. Therefore we assume that

lim inf
j→∞

Aαεj (vj) < +∞. (2.13)

1for simplicity, here we write v instead of vI .
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Then, up to subsequences, there exists M > 0 such that∫ T

0

|v̇j |2

2 dt ≤ Aαεj (vj) ≤M, (2.14)

hence {‖vj‖H1}j∈N is bounded and, again up to subsequences, vj ⇀ v in H1. From
Hölder’s inequality and (2.14) it follows that for all t, s ∈ [0, T ] and for all j ∈ N we have

|vj(t)− vj(s)| ≤
∫ t

s
|v̇j(τ)|dτ ≤

√
2TM.

Moreover, the functions are all bounded by the same constant, since for every τ ∈ [0, T ],
by assumption (2.10), we have

|vj(τ)| ≤ cK max
t,s∈[0,T ]

|vj(t)− vj(s)| ≤ cK
√

2TM.

Then, by the Ascoli-Arzelà theorem, vj → v uniformly in [0, T ], up to subsequences. We
conclude that there exists a subsequence {vjk}k∈N ⊆ K

H1
such that

(i) limkAαεjk (vjk) = lim infj Aαεj (vj);

(ii) vjk ⇀ v in H1;

(iii) vjk → v uniformly in [0, T ].

It follows that
lim inf
j→∞

Aαεj (vj) = lim
k→∞

Aαεjk (vjk)

= lim inf
k→∞

∫ T

0

( |v̇jk |2
2 + 1

|vjk |α
+ εjk

2
∑

R∈G\{I}

1
|(R− I)vjk |α

)
dt

≥ lim inf
k→∞

∫ T

0

( |v̇jk |2
2 + 1

|vjk |α
)
dt

≥
∫ T

0

|v̇|2

2 dt+
∫ T

0

(
lim inf
k→∞

1
|vjk |α

)
dt

≥
∫ T

0

( |v̇|2
2 + 1

|v|α
)
dt

= Aα0 (v),

where we used the lower semicontinuity of the L2 norm with respect to the weak con-
vergence and Fatou’s lemma. This proves the lim inf inequality.

Next we prove the lim sup inequality. Let v ∈ KL
2

and let {εj}j∈N ⊆ R be a sequence
converging to 0. Without loss of generality we can assume that εj ↘ 0. If Aα0 (v) = +∞
there is nothing to prove. Therefore we assume that Aα0 (v) < +∞, hence necessarily
v ∈ KH

1
. We show that there exist {vj}j∈N ⊆ K

L2
such that vj

L2
→ v and

lim
j→∞

Aεj (vj) = A0(v). (2.15)
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Let us consider {wk}k∈N ⊆ K such that wk
H1
→ v, which exists because v belongs to the

H1 closure of K. The loops in K are collision-free, therefore we can set

ak =
∫ T

0

∑
R∈G\{I}

1
|(R− I)wk|α

dt < +∞.

We can find an increasing sequence {hk}k∈N ⊆ N such that

lim
k→∞

εhkak = 0.

Let us define a sequence {vj}j∈N ⊆ K such that, for each k ∈ N,

vj = wk, j ∈ {hk, . . . , hk+1 − 1}.

Thus we have

εj

∫ T

0

∑
R∈G\{I}

1
|(R− I)vj |α

dt ≤ εhkak, j ∈ {hk, . . . , hk+1 − 1}, ∀k ∈ N,

hence this term tends to zero as k (and therefore j) increases. From vj
H1
→ v we obtain

lim
j→∞

∫ T

0
|v̇j |2dt =

∫ T

0
|v̇|2dt, lim

j→∞

∫ T

0

1
|vj |α

dt =
∫ T

0

1
|v|α

dt. (2.16)

The second relation in (2.16) follows from the uniform convergence of {vj}j∈N to v, up
to subsequences.

Thus we proved that for each sequence {εj}j∈N converging to zero there exists a
subsequence {jk}k∈N of integers such that εjk ↘ 0 and

lim
k→∞

Aαεjk (vjk) = Aα0 (v).

This yields (2.15) and i) is proved.
Let us prove ii), i.e. that the sequence {Aαε }ε>0 is equi-coercive. The functional Aα0

is coercive in KL
2

and weakly lower semicontinuous in H1, hence a minimizer exists. We
observe that the sequence {Aαε (v)}ε>0 ⊆ R is decreasing with ε for each v ∈ KL

2
and

Aα0 (v) ≤ Aαε (v), 0 < ε ≤ ε0, (2.17)

where ε0 > 0. Given s ∈ R, we introduce the sub-levels

Kε,αs =
{
v ∈ KL

2
: Aαε (v) ≤ s

}
, (2.18)

K0,α
s =

{
v ∈ KL

2
: Aα0 (v) ≤ s

}
. (2.19)

From (2.17) we have Kε,αs ⊆ K0,α
s for all ε > 0 and for s ∈ R large enough they are all

non-empty. Moreover, the sub-levels K0,α
s are weakly compact since Aα0 is coercive and

weakly lower semicontinuous. Therefore, the set K0,α
s , for a fixed s ∈ R large enough,

satisfies Definition 2.3 of equi-coercivity for the sequence {Aαε }ε>0.
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It follows that, to understand the asymptotic behaviour of the minimizers, we can
simply study the minimizers of the Γ-limit functional Aα0 . It is worth noting that, as
already remarked, at step (i) we are restricting the loop space, and this set is unchanged
as ε decreases. This means that the action functional of the Kepler problem is defined
on the same set of definition of {Aε}ε>0. In particular, this set of loops may not contain
Keplerian orbits or, more in general, planar loops whose plane of motion passes through
the origin. As a consequence, the minimizers of the Γ-limit may not coincide with
Keplerian orbits, as one would expect: we will clarify this behaviour in the following,
showing concrete examples.

2.3 Z4 symmetry: Hip-Hop constellations

In this section we consider N = 4 and discuss the existence of periodic orbits called
Hip-Hop solutions, appearing in [21] in the case without central body. These solutions
oscillates between the square central configuration and the tetrahedral one.

Here we consider only the Keplerian case α = 1. The rotation group of the Hip-Hop
solution is isomorphic to

Z4 =
{
I,R,R2,R3}, R =

0 −1 0
1 0 0
0 0 −1

 . (2.20)

Moreover, the collision set Γ corresponds to the vertical axis

Γ = {x ∈ R3 : x · e3 = 0},

where e3 ∈ R3 is the unit vector corresponding to the third coordinate axis. To obtain
the coercivity of the action functional, we restrict its domain to the loops u ∈ ΛZ4 such
that

uI

(
t+ T

2

)
= −uI(t), t ∈ R. (2.21)

Relation (2.21) is often called the Italian symmetry, because it was introduced in [31, 24].
Therefore, the set of admissible loops is

K =
{
uI ∈ H1

T (R,R3 \ Γ) : uI(t+ T/2) = −uI(t), t ∈ R
}
.

The action (2.8) is coercive on K, in fact if {u(k)
I }k∈N ⊂ K is such that ‖u(k)

I ‖H1 →
+∞, then the kinetic part goes to infinity along this sequence, and so does the action.
Therefore, for each value of m0 ≥ 0, there exists a minimizer in the H1 closure of K,
possibly with collisions. The next step is the exclusion of collisions, in order to obtain
a sequence of classical solutions, depending on the parameter m0, of the Newtonian
(1 + 4)-body problem.

Note that in K there exists a T -periodic solution of the (1+4)-body problem with the
satellites placed at the vertexes of a square, which uniformly rotates around the central
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body with period T . Let us denote with u�

I(t) this solution. With straightforward
computations we get that

u�

I(t) =

a cos(ωt)
a sin(ωt)

0

 , a =
(
T

2π

)2/3( 1√
2

+ 1
4 +m0

)1/3
, ω = 2π

T
. (2.22)

Lemma 2.6. The solution u�

I ∈ K given by (2.22) is not a local minimizer of the action.

Proof. To prove this result, it is sufficient to compute the second variation δ2A(u�

I) of
the action and see that there exists a periodic variation w : [0, T ]→ R3 for which

δ2A(u�

I)(w) < 0. (2.23)

To this end we will consider vertical variations, i.e. we take

w(t) =

 0
0

wz(t)

 ,
with wz : [0, T ]→ R. Using the symmetries, the potential

U(uI) = m0
|uI |

+ 1
2

∑
R∈Z4\{I}

1
|(R− I)uI |

,

can be written as

U(uI) = m0√
x2 + y2 + z2 + 1

2

[ √
2√

x2 + y2 + 2z2 + 1
2
√
x2 + y2

]
,

where we have set uI = (x, y, z). The second variation δ2A is given by

δ2A(u�

I)(w) =
∫ T

0

(
|ẇ(t)|2 + w(t) ·

∂2U
(
u�

I(t)
)

∂u2 w(t)
)
dt.

Since we consider vertical variations, we only need to consider the following second
derivatives

∂2U

∂z∂x
= 3
√

2 xz

(x2 + y2 + 2z2)5/2 + 3m0
xz

(x2 + y2 + z2)5/2 ,

∂2U

∂z∂y
= 3
√

2 yz

(x2 + y2 + 2z2)5/2 + 3m0
yz

(x2 + y2 + z2)5/2 ,

∂2U

∂z2 = −
√

2
(x2 + y2 + 2z2)3/2 −

m0
(x2 + y2 + z2)3/2

+ 3
√

2 2z2

(x2 + y2 + 2z2)5/2 + 3m0
z2

(x2 + y2 + z2)5/2 .
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When we evaluate them at u�

I(t) the only non-zero derivative is

∂2U
(
u�

I(t)
)

∂z2 = −
√

2 +m0
a3 .

Therefore, substituting in the second variation and using the expressions of a and ω
given in (2.22) we obtain

δ2A(u�

I)(w) =
∫ T

0

(
ẇz(t)2 − wz(t)2

√
2 +m0

1√
2 + 1

4 +m0
ω2
)
dt.

Using as vertical variation the function

wz(t) = cos(ωt)

we get

δ2A(u�

I)(w) = ω2T

2

(
1−

√
2 +m0

1√
2 + 1

4 +m0

)
< 0,

hence u�

I is not a local minimizer.

From this lemma and from the following discussion we can conclude that minimizers
of A are not planar, in a way similar to [21].

2.3.1 Total collisions

To exclude total collisions we use level estimates. From Proposition 2.8 we can estimate
the action of a solution with a total collision. Indeed, the total mass is

M = 4 +m0,

and, if u ∈ ΛZ4 and (2.21) is satisfied, the distance between two satellites satisfy

|uh − uk| ≤ 2|uI |, h, k = 1, . . . , 4, h 6= k,

where uj stands for uRj , with j = 1, . . . , 4. Therefore, following Proposition 2.8, we
obtain

U(u) = 1
4 +m0

( 4∑
h,k=1
h6=k

1
|uh − uk|

+ 2
4∑
i=1

m0
|ui|

)

= 1
4 +m0

( 4∑
h,k=1
h6=k

1
|uh − uk|

+ 8m0
|uI |

)

≥ 1
4 +m0

( 6
|uI |

+ 8m0
|uI |

)
.
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Moreover, we have

ρ(u) =
( 4∑
i=1

|ui|2

4 +m0

)1/2
= 2√

4 +m0
|uI |.

The minimum of U(u) restricted to ρ(u) = 1 satisfies

U0 := min
ρ(u)=1

U(u) ≥ 4
(4 +m0)3/2 (3 + 4m0).

Consider now a solution u∗I ∈ K with a total collision. Because of the symmetry (2.21),
there are at least two total collisions per period, therefore, from Proposition 2.8, the
action functional satisfies

A(u∗I) ≥ 2 · 3
2(4 +m0)(πU0)2/3

(
T

2

)1/3

≥ 3 · 21/3(2π)2/3(3 + 4m0)2/3T 1/3.

(2.24)

Note also that the action of the rotating square solution u�

I given by (2.22) is

A(u�

I) =
(3 + 6

√
2

2 + 6m0

) (2π)2/3(
1√
2 + 1

4 +m0

)1/3T
1/3

= 3
21/3

(
1 + 2

√
2 + 4m0

)2/3(2π)2/3T 1/3.

(2.25)

Set
f(m0) = 3 · 21/3(3 + 4m0

)2/3
, g(m0) = 3

21/3
(
1 + 2

√
2 + 4m0

)2/3
.

With this notation, the action of a solution with total collisions u∗I and the action of the
rotating square solution u�

I can be written as

A(u∗I) = f(m0)(2π)2/3T 1/3, A(u�

I) = g(m0)(2π)2/3T 1/3,

respectively. The equation f(m0) = g(m0) has a unique real solution

m0 = 2
√

2− 5
4 < 0,

and f(0) > g(0). This means that

f(m0) > g(m0), ∀m0 ≥ 0,

hence we obtain
A(u∗I) > A(u�

I). (2.26)

Therefore, minimizers of this problem are free of total collisions, for all the values of the
mass m0 ≥ 0.
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2.3.2 Partial collisions

The method used to exclude partial collisions is similar to the one used in [21], where
the central body is missing. Using cylindrical coordinates for the generating particle

uI(t) = 1
2

ρ(t) cosϕ(t)
ρ(t) sinϕ(t)

ζ(t)

 , (2.27)

the Lagrangian of the functional (2.8) is L = K + U, where

K = ρ̇+ ρ2ϕ̇2 + ζ̇2

2 , U = 4
√

2√
ρ2 + 2ζ2 + 2

ρ
+ 8m0√

ρ2 + ζ2 . (2.28)

Let us consider a solution u∗I ∈ K which has a partial collision at time t = 0. Since
partial collisions can occur only on the vertical axis, we have

ρ∗(0) = ρ∗(T/2) = 0, ζ∗(0) = −ζ∗(T/2) 6= 0.

Moreover, since the total energy and Φ = ρ2ϕ̇ are first integrals, we can easily deduce
that Φ = 0 for a solution with partial collisions, hence it is contained on a vertical plane.
Without loss of generality, we can assume that ϕ = 0, hence

u∗I(t) = 1
2

ρ∗(t)0
ζ∗(t)

 .
Lemma 2.7. If the trajectory of a solution u∗I(t) lies in a vertical plane, then it does
not minimize the action.

Proof. We show that the action decreases if we rotate the orbit about the x axis by a
small angle γ. Let us denote with ūI the rotated orbit and with ρ̄, ϕ̄, ζ̄ the corresponding
cylindrical coordinates. The kinetic part remains unchanged:

K( ˙̄uI) = 1
2

(
˙̄ρ2 + ρ̄2 ˙̄ϕ2 + ˙̄ζ2

)
= 1

2(ρ̇2 + ζ̇2) = K(u̇∗I).

On the other hand, the potential becomes

U(ūI) = 4
√

2√
ρ̄2 + 2ζ̄2

+ 2
ρ̄

+ 8m0√
ρ̄2 + ζ̄2

= 4
√

2√
ρ2 + ζ2 − ζ2 sin2 γ

+ 2√
ρ2 + ζ2 sin2 γ

+ 8m0√
ρ+ ζ2 .

The difference between the actions of the two loops is

A(ūI)−A(u∗I) = 2
∫ T/2

0

(
U(ūI)− U(u∗I)

)
dt,
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and the term U(ūI)− U(u∗I) in the integral does not contain the part of the attraction
due to the central body, like in the case with m0 = 0. Hence, to prove that

A(ūI)−A(u∗I) < 0,

we can simply use the same proof given in [21, Lemma 4].

From Lemma 2.7, we can conclude that minimizers are free of collisions for every
value of the mass m0 ≥ 0, hence they are classical periodic solutions of the (1 + 4)-body
problem.

2.3.3 Minimizers of the Γ-limit

In this setting, circular Keplerian orbits are compatible with the set K of admissible
loops. Indeed, fixed a plane Π ⊆ R3 passing through the origin, there exists a unique
(up to phase shifts and inversions of time) circular Keplerian orbit uΠ

I : R → R3 with
period T lying on Π and satisfying (2.21), hence it is an element of K. Therefore,
there is an infinite number of minimizers of the Γ-limit functional in K, represented
by circular motions. Indeed, from [44] it is known that all the T -periodic Keplerian
ellipses (including the circular and the degenerate ones) are minimizers of the action
of the Kepler problem in the set of planar T -periodic loops winding around the origin
only once, either clockwise or counter-clockwise. Moreover non-circular orbits are not
compatible with relation (2.21).

Figure 2.1: The Hip-Hop solution. On the left we show the solution without central body, on the right the solution
with a central body of mass m0 = 100. The red curve represents the trajectory of the generating particle uI .

Note also that a solution with collisions cannot be a minimizer. Indeed, because
of relation (2.21), there are at least two collisions per period. In [44] these are called
multiple legs solutions and it is shown that their action is strictly larger than the action
of a circular orbit with minimal period T . This also means that all the minimizers in
a sequence {u∗m0}m0≥0 are bounded away from the origin. In Figure 2.1 we show two
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orbits, computed without a central body (on the left) and with a central body of mass
m0 = 100 (on the right). Since the orbit with no mass in the center is almost circular,
the difference in the trajectories of the satellites cannot be really appreciated in the two
pictures.

2.3.4 Constellations with 2N satellites

In [7, 104] the Hip-Hop solution has been generalized to the case of 2N equal masses.
Here we do the same in the case of the (1 + 2N)-body problem, with a massive central
body at the origin. The computations become longer, but techniques and arguments are
similar to the ones used above. The symmetry group G in this case is

Z2N = {I,R, . . . ,R2N−1},

where the generator is

R =

cos π
N − sin π

N 0
sin π

N cos π
N 0

0 0 −1

 .
As before, the collision set Γ corresponds to the vertical axis

Γ = {x ∈ R3 : x · e3 = 0}.

The loop set K is still defined imposing the symmetry (2.21):

K =
{
uI ∈ H1

T (R,R3 \ Γ) : uI(t+ T/2) = −uI(t), t ∈ R
}
,

and the argument used to prove the coercivity of the action functional on K is the same as
before. The action of a solution u∗I with total collisions can be estimated with the results
of Proposition 2.8. Then we can compare it with the action of the solution where the
satellites are placed at the vertexes of a planar regular 2N -gon, which rotates uniformly
around the origin, and check that the latter is lower. Moreover, this problem is invariant
under rotations around the vertical axis, therefore solutions with partial collisions must
lie on a vertical plane. Hence, we only have to find a small perturbation ūI without
collisions and with a lower value of the action. This is obtained in a way similar to [21,
Lemma 4] by applying a rotation of a small angle γ to the collision solution u∗I . In this
case we have

A(ūI)−A(u∗I) = 2
∫ T/2

0
(A+B)dt,

with

A = 2
√

2N
N∑
h=1

(
1√

ρ2
(
1− cos (2h−1)π

N

)
+ ζ2

(
1− sin2 γ cos (2h−1)π

N

) − 1√
ρ2
(
1− cos (2h−1)π

N

)
+ ζ2

)
,

B = 2
√

2N
N−1∑
h=1

(
1√

(ρ2 + ζ2 sin2 γ)
(
1− cos 2hπ

N

) − 1√
ρ2
(
1− cos 2hπ

N

)
)
.
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Figure 2.2: The Hip-Hop solution for 20 bodies. On the left it is shown the solution without central body, on
the right the solution with a central body of mass m0 = 100. The red curve represents the trajectory of the
generating particle uI . Note that here the difference between the trajectory of the satellites can be appreciated
in the two pictures.

The discussion for the Γ-limit is the same as in Section 2.3.3, since the generating particle
still moves on a circular orbit. An example of these orbits for N = 10 is shown in Figure
2.2, together with an approximation of the minimizer of the Γ-limit.

2.4 Z2 × Z2 symmetry

In this section we consider N = 4, α = 1 and discuss the existence of periodic orbits
with the symmetry of the Klein group G = Z2×Z2, appearing in [40] in the case without
a central body. Using the rotations in R3, the Klein group can be written as

Z2 × Z2 = {I,R2, R3, R4},

where

R2 =

1 0 0
0 −1 0
0 0 −1

 , R3 =

−1 0 0
0 1 0
0 0 −1

 , R4 =

−1 0 0
0 −1 0
0 0 1


are the rotations of π around the three coordinate axes. Moreover, the collisions set Γ
corresponds to the union of the three coordinate axes:

Γ =
3⋃
i=1
{αei, α ∈ R},

where ei ∈ R3 is the unit vector corresponding to the i-th coordinate axis.
We consider loops u ∈ ΛZ2×Z2 with the additional symmetry{

uI(t) = R̃3uI(−t),
uI(t) = R̃2uI(T/2− t),

(2.29)
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where R̃j is the reflection with respect to the plane {xj = 0}. Moreover, we restrict the
action functional to the set

K =
{
uI ∈ H1

T (R,R3 \ Γ) : uI satisfies (2.29) and uI(0) ∈ S1, uI(T/4) ∈ S2

}
,

where
S1 = {αe1 + βe2, α, β > 0}, S2 = {−αe1 + βe3, α, β > 0}

are two quadrants of the planes {x3 = 0}, {x2 = 0}, respectively. Note that A is coercive
on K, therefore minimizers exist, for every value of m0 ≥ 0.

2.4.1 Exclusion of collisions

Total collisions. To exclude total collisions we still use the results of Proposition 2.8.
With a notation similar to Section 2.3 we have M = 4 +m0 and

U(u) = 1
4 +m0

( 4∑
h,k=1
h6=k

1
|uh − uk|

+ 2
4∑
i=1

m0
|ui|

)

= 1
4 +m0

(
2

3∑
j=1

1
|uI × ej |

+ 8m0
|uI |

)

= 2
4 +m0

( 3∑
j=1

1
|uI × ej |

+ 4m0
|uI |

)
.

Moreover, ρ(u) = 1 if and only if

|uI | =
√

4 +m0
2 ,

hence
U0 := min

ρ(u)=1
U(u) = 4

(4 +m0)3/2

(
3
√

3
2 + 4m0

)
.

Let u∗I ∈ K be a solution with a total collision. Because of the symmetries (2.29), there
are at least two total collisions per period, therefore, from Proposition 2.8, its action
satisfies

A(u∗I) ≥ 2 · 3
2(4 +m0)(πU0)2/3

(
T

2

)1/3

= 3
21/3π

2/342/3
(

3
√

3
2 + 4m0

)2/3
T 1/3

= 6π2/3
(

3
√

3
2 + 4m0

)2/3
T 1/3.

(2.30)
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Figure 2.3: The shape of the generating particle of the loop v used to exclude total collisions.

We search for a collision-less loop whose action is less than the lower bound in (2.30).
To do that, let ρ > 0 and take a loop vI ∈ K such that the generating particle moves
with uniform velocity on a closed curve constructed as union of four half circles C±1 , C

±
2

of radius ρ. C±1 lies on the plane {x3 = ±ρ}, with its center on the axis x3, and C±2 lies
on the plane {x2 = ±ρ}, with its center on the axis x2, see Figure 2.3 for a sketch. From
the definition of vI we have

|(R− I)vI(t)| ≥ 2ρ,

for all R ∈ R \ {I} and t ∈ R, and |vI(t)| =
√

2ρ, for all t ∈ R. Hence for the action we
have the estimate

A(vI) ≤ 32π
2ρ2

T
+ 3 + 2

√
2m0

ρ
T. (2.31)

Choosing

ρ =
(3 + 2

√
2m0

64π2 T 2
)1/3

we minimize the value of the right hand side of (2.31), therefore

A(vI) ≤
( 32π2

(64π2)2/3 + (64π2)1/3
)

(3 + 2
√

2m0)2/3T 1/3

= 6π2/3(3 + 2
√

2m0)2/3T 1/3.

Comparing this estimate with (2.30) we see that

A(vI) < A(u∗I),

for every value of m0 ≥ 0. Hence minimizers are always free of total collisions.
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Partial collisions. Let u∗I ∈ K be a minimizer with partial collisions and (t1, t2) be
an interval of regularity. Then u∗I is a solution of the equation

ẅ =
∑

R∈Z2×Z2\{I}

(R− I)w
|(R− I)w|3 −m0

w

|w|3
, t ∈ (t1, t2). (2.32)

Partial collisions can be excluded as in [40]. Indeed, they can only occur on a coordinate
axes and, using the blow-up technique [38], they can be seen locally as parabolic double
collisions in a perturbed Kepler problem. The term due to the presence of the central
body with mass m0 turns out to be irrelevant for the discussion (as for the case of the
Hip-Hop solution of Section 2.3), since it is included in the perturbation, and does not
play any relevant role in the estimates. The situation is similar to the one recalled in
Section 2.5.2, where the symmetry of Platonic polyhedra is considered.

Therefore, for every choice of the mass m0 ≥ 0, there exists a collision-free minimizer,
hence a classical solution of the (1 + 4)-body problem.

2.4.2 Minimizers of the Γ-limit

Let u∗I ∈ K be a minimizer of the Γ-limit functional (2.12). We note that there exists
ūI ∈ ∂K such that ūI([0, T ]) is a Keplerian circle with center at the origin, hence we can
exclude total collisions in u∗I like in Section 2.3. It follows that, up to translations of time,
(0, T/4) is an interval of regularity of the solution, and u∗I solves the Keplerian equations
of motion. Therefore u∗I

(
[0, T/4]

)
⊆ Π where Π ⊂ R3 is a plane passing through the

origin. Moreover
u∗I(0) ∈ S1, u∗I(T/4) ∈ S2. (2.33)

By conditions (2.33) and (2.29), we have that Π coincides with a coordinate plane

Figure 2.4: Two minimizers of the action functional with the Z2×Z2 symmetry. On the left m0 = 0, on the right
m0 = 1000. The blue curve is the trajectory of the generating particle.

{x1 = 0}, {x2 = 0} or {x3 = 0}. In fact, if this were not the case, then u∗I would lie on



2.5. SYMMETRY OF THE PLATONIC POLYHEDRA 43

the same plane also for times t > T/4, so that it would not belong to K. Moreover, Π
cannot be {x2 = 0} or {x3 = 0}. Indeed, loops in K are entirely contained in these two
planes and satisfying (2.29) are necessarily multiple legs solutions, which contain at least
two collisions per period, therefore they cannot be minimizers. The only possibility is
that Π = {x1 = 0}, and extending the minimizer to the whole time interval [0, T ] using
reflections, we obtain that u∗I lies entirely on Π. Moreover, u∗I([0, T ]) cannot be an ellipse,
since ellipses do not satisfy (2.29). The only remaining possibility is that u∗I is circular,
hence the minimizer u∗I ∈ ∂K is

u∗I(t) = r
(

cos(ωt)e2 + sin(ωt)e3
)
, ω = 2π

T
,

where

r =
(
T

2π

) 2
3

is given by the third Kepler’s law. In Figure 2.4 we draw the trajectories of a minimizer
for different values of the mass m0. As m0 increases, the trajectory of the generating
particle becomes closer and closer to the circular loop lying in the plane {x1 = 0}, and
the four satellites pass closer and closer to two simultaneous double collisions.

It is worth noting that, in the limit m0 → ∞, the satellites do not bounce back
and forth at double collisions, as it happens when we regularize the Keplerian equations
of motion (see, for instance, [69]). Instead, they continue moving on the same circular
trajectory and cross each other at collisions.

2.5 Symmetry of the Platonic polyhedra

In this section we use the setting of Chapter 1, hence we take the group of rotation
R ∈ {T ,O, I} of one of the five Platonic polyhedra. The number of particles N can
be either 12, 24 or 60, accordingly to the choice of the group R. Here we take into
account an exponent α ∈ [1, 2) for potential energy, defining the force of attraction. Still
imposing constraints (a), (b) and (c) of Chapter 1, we search for minimizers in the subset
of H1

T defined by (1.8). The coercivity of the action functional Aα is recovered imposing
that the homotopy class fixed by condition (b) is not represented by a loop winding
around one axis only. Indeed in this case, if we take a sequence of loops going to infinity
in the H1 norm, then the kinetic energy goes to infinity along this sequence. Therefore,
minimizers exist, possibly with collisions, for every value m0 ≥ 0 of the central mass.
In the following, we state sufficient conditions to exclude partial and total collisions,
depending on the selected free-homotopy class.

2.5.1 Total collisions

A priori estimates for the action of a solution with total collisions can be obtained also
in the case of α-homogeneous potentials.
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Proposition 2.8. Let α ∈ [1, 2) and let u : [0,T] → R3N be a motion of N masses
m1, ...,mN connecting a total ejection at time t = 0 to a total collision at time t = T.
Then for the action

Aα(u) =
∫ T

0

(1
2

N∑
h=1

mh|u̇h|2 +
∑

1≤h<k≤N

mhmk

|uh − uk|α
)
dt,

we have the estimate

Aα(u) ≥Mc̄αUα,0(T), M =
N∑
h=1

mh,

where

Uα,0 = min
ρ(u)=1

Uα(u), Uα(u) = 1
M

N∑
h,k=1
h6=k

mhmk

|uh − uk|α
, ρ(u) =

( N∑
h=1

mh

M
|uh|2

)1/2
,

and

c̄αUα,0(T) = T
2−α
2+α

2 + α

2− α(2α2)−
α

2+α

(
Uα,0

2

) 2
2+α

(∫ 2π

0
| sin t|

2
α

) 2α
2+α

. (2.34)

Proof. Using the Cauchy-Schwartz inequality for the scalar product

〈x, y〉 =
N∑
h=1

mh

M
xh · yh, x, y ∈ R3N ,

we obtain the inequality
N∑
h=1

mh

M
|u̇h|2 ≥ ρ̇2(u).

Then, using the α-homogeneity of the potential, it follows that

Aα(u) ≥ M2

∫ T

0

(
ρ̇2(u) + 1

ρα(u)Uα
( u

ρ(u)
))
dt ≥ M2

∫ T

0

(
ρ̇2 + Uα,0

ρα

)
dt.

Then the result follows from the relation

c̄αa (T) = inf
S

∫ T

0

(1
2 |u̇|

2 + a

|u|α
)
dt, for a > 0,

where
S = {u ∈ H1

T (R,R3) : u(t) = 0 for some t},

see [90].
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Corollary 2.9. In the same hypotheses of Proposition 2.8 we have

Aα(u) > 2 + α

2− α
M
2

[
Uα,0

(π
α

)α] 2
2+α

T
2−α
2+α . (2.35)

Proof. The inequality (2.35) follows immediately from Proposition 2.8 and the estimate∫ 2π

0
| sin t|

2
αdt > π, ∀α ∈ (1, 2).

A priori estimates The total mass isM = N +m0 and, imposing the symmetry (a),
the potential becomes

Uα(u) = N

N +m0

( ∑
R∈R\{I}

1
|(R− I)uI |α

+ m0
|uI |α

)
.

Let pj ∈ P, j = 1, 2, 3 be the vertexes of a triangle τ of the tessellation of the sphere S2,
recalled in Section 1.2.1. For each pole p ∈ P, let op be its order and set

kα,p =
op−1∑
j=1

1
sinα( jπop )

. (2.36)

Then the potential can be written as

Uα(u) = N

N +m0

(1
4
∑
p∈P

kα,p
|uI × p|α

+ m0
|uI |α

)
. (2.37)

Since the loops have the symmetry (a), we also have that

ρ(u) =
√

N

N +m0
|uI |,

hence ρ(u) = 1 if and only if |uI | =
√

N+m0
N . Therefore, restricting to ρ(u) = 1 and

using the fact that Uα is an α-homogeneous function, we have

Uα,0 = min
|uI |=

√
N+m0
N

Uα(u)

=
(

N

N +m0

)α
2

min
|uI |=1

Uα(u)

=
(

N

N +m0

)α+2
2
(1

4 min
|uI |=1

∑
p∈P

kα,p
|uI × p|α

+m0

)

=
(

N

N +m0

)α+2
2
(1

4 min
uI∈τ

∑
p∈P

kα,p
|uI × p|α

+m0

)
.
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Since
max
uI∈τ
|uI × p| = max

j∈{1,2,3}
|uI × pj |,

and
kα,p

maxj∈{1,2,3} |pj × p|α
>

k1,p
maxj∈{1,2,3} |pj × p|

, ∀α ∈ (1, 2),

we obtain that

Uα,0 ≥
(

N

N +m0

)α+2
2 (

Ũ0 +m0
)
, (2.38)

where
Ũ0 = 1

4
∑
p∈P

k1,p
maxj∈{1,2,3} |pj × p|

. (2.39)

Consider now a solution u∗I ∈ K with M total collisions per period. From Corollary 2.9
and from the above computations we have

Aα(u∗I) >
2 + α

2− α

(
N +m0

)
2 U

2
2+α
α,0

(
Mπ

α

) 2α
2+α

T
2−α
2+α

≥ 2 + α

2− α
N

2
(
Ũ0 +m0

) 2
2+α

(
Mπ

α

) 2α
2+α

T
2−α
2+α .

(2.40)

The values of Ũ0 are reported in Table 2.2 and they can be used to compute the right
hand side of inequality (2.40). Note that, as the value m0 of the central mass increases,
the term containing Ũ0 becomes irrelevant, since we are mostly interested in the existence
of the orbits for large values of m0.

T O I

Ũ0 6.37126 14.40566 41.03905

Table 2.1: The values of Ũ0 for the three different rotation groups.

Constructing test loops Let ν be the closed sequence of vertexes on QR, used to
identify the free-homotopy class fixed in condition (b), and let vνI be the linear piecewise
loop, travelling on the edges of the Archimedean polyhedron QR defined by ν. Its action
is given by Aα(vνI ) = AUα +AK , where

AK = N

2

∫ T

0
|v̇νI |2dt = N

2
`2k2

ν

T
,

AUα = N

2

∫ T

0

( ∑
R∈R\{I}

1
|(R− I)vνI |α

+ 2m0
|vνI |α

)
dt.
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Here ` is the length of a side of QR, kν is the minimal period of ν and we have used
that |v̇νI | = `kνT . Rescaling the test loop and using the α-homogeneity of the potential,
we have

Aα(λvνI ) = λ2AK + 1
λα
AUα ,

and the minimum is attained at λ̄ =
(
αAUα
2AK

) 1
2+α

. For this value, the action is

Aα(λ̄vνI ) = (2 + α)
[(
AUα

2

)2(AK
α

)α] 1
2+α

. (2.41)

The term AUα can be expressed through integrals. Indeed, let LR be the set of the
sides of QR, which corresponds to the union of the two orbits {R[q, qi]}R∈R, i = 1, 2, of
the segments [q, qi], i = 1, 2. It follows that we can associate to each j ∈ Z a uniquely
determined pair (Rj , ij) ∈ R × {1, 2} such that [νj−1, νj ] = Rj [q, qij ]. For each given
R′ ∈ R, set

ζα,i(R′) =
∫ 1

0

∑
R∈R\{I}

ds∣∣(R− I)R′[(1− s)q + sqi]
∣∣α , i = 1, 2.

Since ∣∣(R− I)R′[(1− s)q + sqi]
∣∣ =

∣∣((R′)−1RR′ − I)[(1− s)q + sqi]
∣∣,

and the map R 7→ (R′)−1RR′ is an isomorphism of R onto itself, we have

ζα,i(R′) = ζα,i(I) def= ζα,i, i = 1, 2.

We define also

ζα,0 =
∫ 1

0

2
|(1− s)q + sq1|α

ds

=
∫ 1

0

2
|(1− s)q + sq2|α

ds.

Since vνI travels along each side [νj−1, νj ] in a time interval of size T/kν , it follows that

AUα = N

2
T

kν

kν∑
j=1

∫ 1

0

( ∑
R∈R\{I}

1∣∣(R− I)Rj [(1− s)q + sqij ]
∣∣α + 2m0

|(1− s)q + sqij |α
)
ds

= N

2
T

kν

(
k1ζα,1 + k2ζα,2 +m0(k1 + k2)ζα,0

)
,

where ki, i = 1, 2 is the number of sides [νj−1, νj ] in the orbit of [q, qi], i = 1, 2. From
(2.41) we finally obtain

Aα(λ̄vνI ) = 2 + α

2 N

[
`2α(k1ζα,1 + k2ζα,2 +m0(k1 + k2)ζα,0

)2
k

2(α−1)
ν

4αα

] 1
2+α

T
2−α
2+α . (2.42)
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Note that, for the Keplerian case, the integrals defining ζ1,0, ζ1,1, ζ1,2 can be actually
expressed by elementary functions, see [40]. The values of ζ1,1, ζ1,2 are provided in Table
1.2, while those of ζ1,0 are reported in Table 2.2. For the non-Keplerian case α ∈ (1, 2),
we can estimate ζα,i, i = 0, 1, 2 using the values for the Keplerian case. Indeed, let

di(R) = 1
2
∣∣(R− I)(q + qi)

∣∣, i = 1, 2,

be the minimal distance between the particle vνI travelling along [q, qi], and the particle
vνR travelling along R[q, qi]. We introduce the minimal distance

δi = min
R∈R\{I}

di(R), i = 1, 2. (2.43)

The values of δ1, δ2 are reported in Table 2.2. Note that we can estimate ζα,1, ζα,2 using

ζα,i <
ζ1,i

δα−1
i

<
ζ1,i
δi
, i = 1, 2, (2.44)

where the last inequality follows from the relations δi < 1, i = 1, 2 (see Table 2.2). The
coefficients ζα,0 can be estimated as follow

ζα,0 <
2(

1− `2

4
)α

2
<

8
4− `2 . (2.45)

In conclusion, in the Keplerian case we can use equation (2.42) to compute the action
of the test loop. Instead, in the non-Keplerian case α ∈ (1, 2), we can only estimate it,
using inequalities (2.44) and (2.45), and get

Aα(λ̄vνI ) < 2 + α

2 N

[
`2α(k1

ζ1,1
δ1

+ k2
ζ1,2
δ2

+ 8m0
4−`2 (k1 + k2)

)2
k

2(α−1)
ν

4αα

] 1
2+α

T
2−α
2+α . (2.46)

T O I

δ1 0.35740 0.35740 0.36230
δ2 0.35740 0.50544 0.22391
ζ1,0 2.19722 2.09234 2.03446

8
4−`2 2.66666 2.29297 2.10560

Table 2.2: Values of δ1, δ2, ζ1,0 and the upper bound for ζα,0, for the three different rotation groups.

Using the expressions (2.40), (2.42) and (2.46), for certain free-homotopy classes we
have

Aα(λ̄vνI ) < Aα(u∗I), (2.47)

for values of m0 large enough, and therefore minimizers are free of total collisions. It
is worth noting that Aα(λ̄vνI ) and Aα(u∗I) goes to +∞ as m0 → ∞ with the same
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asymptotic behaviour. Therefore, to conclude the proof of inequality 2.47, we have to
compare the constants in front of the main terms containing the central mass m0. For
this reason, it can happen that the action of the test loop is greater than the action of a
solution with total collision for large m0, provided that the sequence ν is long enough.
This suggests that, if the free-homotopy class chosen is complicate enough, it would be
more convenient for a minima to undergo a total collision rather than continuing winding
around the rotation axes, even if the central mass is large.

2.5.2 Partial collisions

As seen before, partial collisions take place only on the rotation axes Γ\{0}. Let u∗I ∈ K
be a collision solution and (t1, t2) an interval of regularity. Then it is a solution of the
Euler-Lagrange equation

ẅ = α
∑

R∈R\{I}

(R− I)w
|(R− I)w|α+2 − αm0

w

|w|α+2 , t ∈ (t1, t2). (2.48)

Let r be the rotation axis on which the generating particle collides and let C be the
subgroup (of order oC) of the rotations with axis r. We can rewrite equation (2.48) and
the first integral of the energy in the form

ẅ = αcα
(Rπ − I)w

|(Rπ − I)w|2+α + V1(w), cα =
oC−1∑
j=1

1
sinα

( jπ
oC

) , (2.49)

|ẇ|2 − cα
1

|(Rπ − I)w|α − V (w) = h, (2.50)

where Rπ is the rotation of π around r, V1(w) and V (w) are smooth functions defined
in an open set Ω ⊆ R3 that contains r \ {0}. Moreover, if R̃ ∈ R̃ is a reflection such that
R̃r = r, then V1, V satisfy the conditions

V1(R̃w) = R̃V1(w), V (R̃w) = V (w). (2.51)

Therefore, also in this case partial collisions can be seen as binary collisions and asymp-
totic collision and ejection directions n±, orthogonal to r, can be defined (see Appendix
B). Moreover, we can associate an angle θ to the minimizer u∗I at the collision time tc.
This angle is the same for all the loops in a minimizing sequence converging to u∗I . It rep-
resents the angle between the two asymptotic directions n+, n− taking into account the
(signed) number of revolutions of the trajectories of the minimizing sequence converging
to u∗I around the collision axis r.

In particular, it follows that in the Keplerian case α = 1, partial collisions can be
excluded as in Subsection 1.2.3, provided that the cone K is simple and the sequence
ν defining the cone does not wind around two coboundary axes. For α ∈ (1, 2) the
discussion has to be adapted, and it is worth to see this case more accurately.
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Non-Keplerian case

In Subsection 1.2.3, we have seen the key tools used to exclude partial collisions in the
Keplerian case: the blow-up technique and Marchal’s Lemma.

Blow-up The blow-up technique remains valid also in the case of α-homogeneous
potential (see [38]) and the collision corresponds, asymptotically, to a parabolic collision-
ejection solution. Indeed, let us consider an ejection solution of (2.48), i.e. such that

lim
t→t+c

w(t) = w(tc) ∈ r \ {0},

for some tc ∈ [0, T ] and some rotation axis r. Up to translations of time and space, we
can assume that w(tc) = 0, tc = 0 and let n be the limit ejection direction (see Appendix
B). Let (0, t̄) the maximal interval of definition of w. Then the rescaled functions

wλ : [0, 1]→ R3, wλ(τ) = λ2/(2+α)w(τ/λ), λ > 1/t̄,

satisfy

lim
λ→+∞

wλ(t) = sα(τ)n uniformly in [0, 1],

lim
λ→+∞

ẇλ(t) = ṡα(τ)n uniformly in [δ, 1], 0 < δ < 1,

where
sα(τ) = (2 + α)2/(2+α)

2 c1/(2+α)
α τ2/(2+α), τ ∈ [0,+∞), (2.52)

is the parabolic ejection motion, solution to the equation

ṡ =
√

cα
(2s)α .

Marchal’s Lemma Marchal’s Lemma for α ∈ (1, 2) can be found in the literature, see
for example [19, 38, 76]. However, the statement commonly found (reported in Appendix
A, Lemma A.1) tells us that the minimizer among the arcs connecting two points in the
space in a given time is free of collision. In particular, it does not give any information on
the action of other critical points, different from the minimizer, as done for the version
proved in [40] for the Keplerian case (i.e. Lemma 1.8). For α ∈ (1, 2) a similar statement,
suitable four our purposes, is reported in Appendix A, Lemma A.3. This version can be
directly deduced from results present is [10] (see Appendix A, Theorem A.2.

Constructing local perturbations Here we see how to use the above mentioned
tools to exclude partial collisions for our problem. Denoting by ϕ ∈ [0, 2π) the angle
between any two points in the plane (with the same distance from the origin), the total
angle swept by a connecting arc is

ϕ+ 2kπ,
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where k ∈ {kmax, . . . , kmax}. The values kmin, kmax ∈ Z depend on α and ϕ and are given
by Lemma A.4, formulas (A.19), (A.20) respectively.

Note that, in the Keplerian case, the maximal number of arcs is always two, provided
that the angle between the points is not 0. The notion of simple cone is given in order
to always have these two arcs available: indeed, if K is simple and we have a solution
with a partial collision which is not of type (⇒), the possibility of choosing between the
two arcs permits to construct a local perturbation, belonging to K itself, which removes
the collision and lowers the action.

The notion of simple cone should be generalized to α-homogeneous potentials trying
to reproduce this property, i.e. in always having the possibility of choosing between
connecting arcs with the same winding number, independently from the value of the
angle ϕ. For α ∈ (1, 2), the arcs which are always available have winding number k such
that

max
ϕ∈(0,2π)

kmin ≤ k ≤ min
ϕ∈(0,2π)

kmax.

Note that
max

ϕ∈(0,2π)
kmin = −

[ 1
2− α

]
, min

ϕ∈(0,2π)
kmax =

[ 1
2− α

]
− 1,

hence the total number of arcs always available is 2
[
1/(2 − α)

]
. This suggests that,

intuitively, a cone can be defined to be α-simple if its loops, for every rotation axis r,
do not wind around r more than [1/(2 − α)] times. More precisely, a possible rigorous
definition is the following.

Definition 2.10. A cone K is said to be α-simple cone if the sequence σ corresponding
to K does not contain any string τk, · · · , τk+2[ 1

2−α ]o such that

Span
( 2[ 1

2−α ]o⋂
j=0

τk+j

)
= r(R),

for some R ∈ R \ {I}, where o is the order of the pole r(R) determined by R.

Assuming that the cone K is α-simple, we have

− π

oC
≤ θ ≤ 2π

[ 1
2− α

]
,

where [ · ] denotes the integer part. Let θ̄ ∈ [− π
oC
, 2π] and h ∈ Z such that

θ = θ̄ + 2πh.

Note that h ≤ [1/(2 − α)]. Let us suppose that the collision is not of type (⇒), hence
we can always assume

θ 6= 2π
[ 1

2− α

]
,
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from which it follows that h < [1/(2−α)]. From Lemma A.4, the arcs which are always
available (i.e. independently from the angle between the two points) sweep a total angle
of θ̄ + 2πk, where

max
ϕ∈(0,2π)

kmin ≤ k ≤ min
ϕ∈(0,2π)

kmax,

and kmin, kmax are given by (A.19), (A.20), respectively. Note that

max
ϕ∈(0,2π)

kmin = −
[ 1

2− α

]
, min

ϕ∈(0,2π)
kmax =

[ 1
2− α

]
− 1,

hence the total number of arcs always available is 2
[
1/(2−α)

]
. The exclusion of collisions

of type different from (⇒) can be done in the same way as before. Indeed, we can
choose a suitable connecting arc and construct a local perturbation û∗I , which removes
the collision and belongs to the cone K. Moreover, by Lemma A.4, the action of û∗I is
lower than the action of the colliding solution u∗I .

On the other hand, if the collision is of type (⇒), then

θ = 2π
[ 1

2− α

]
,

and it cannot be excluded as before, because one arc is missing. However, Proposition
B.2 still holds for α ∈ (1, 2), hence partial collisions are excluded provided that K does
not wind around to two coboundary axes.

Figure 2.5: Two loops winding around two axes only, having different free-homotopy class. The loop on the left
belongs to a cone which is simple in the Keplerian case. The loop on the right is not admissible for the Keplerian
case, however it belongs to an α-simple cone for some α ∈ (1, 2).

Note that Definition 1.6 has to be modified properly, to take into account a larger
set of cones, including the α-simple one. However, cones of this type can be simply
recognized by eye, see Figure 2.5 for an example.

2.5.3 Minimizers of the Γ-limit

The minimizers of the Γ-limit belong to the boundary ∂K, which means that the satellites
pass closer and closer to partial collisions as the mass m0 increases, and they collide in
the limit, as we have already seen in the example of Section 2.4 with the Klein group
symmetry. However, as opposite to the previous case, here it can happen that the
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minimizers of the Γ-limit are not C1, as we shall see in the examples below. The
following statement provides information about the shape of the minimizers.

Theorem 2.11. Assume K is not central and M > 1. Let v∗I ∈ K be a minimizer of the
Γ-limit functional Aα0 . Then only one of the following statements holds:

(i) v∗I has at least M total collisions per period;

(ii) its trajectory v∗I ([0, T ]) is composed by circular arcs passing through some rotation
axes, hence v∗I ∈ ∂K. Moreover, these arcs are swept with uniform motion.

Proof. Let us suppose that v∗I is a minimizer without total collisions. By contradiction,
if v∗I did not pass through the rotation axes, then it would be a classical smooth solution
of

v̈I = −α vI
|vI |2+α . (2.53)

In particular, v∗I would lie on a plane passing through the origin, and this would imply
that K is central. Therefore, we can associate to v∗I a sequence r̂1, . . . , r̂m of rotation
semi-axes and a sequence 0 ≤ τ1 < · · · < τm < T of collision times, such that

v∗I (τi) ∈ r̂i, i = 1, . . . ,m.

In the intervals (τi, τi+1) the minimizer solves equation (2.53) with the boundary condi-
tions {

v̇∗I (τ
+
i ) ⊥ r̂i,

v̇∗I (τ
−
i+1) ⊥ r̂i+1.

(2.54)

Therefore, in these intervals, its trajectory can be either a circular arc, or an arc joining
two points where the radial velocity of the orbit vanishes (inversion points). In both cases
the energy E = |v̇I |2/2−1/|vI |α of the arc is negative, since positive energies correspond
to unbounded solutions, that do not fulfill condition (2.54). However, non-circular orbits
are such that the angle between two inversion points is equal to π if α = 1, or greater
than π if α ∈ (1, 2). We observe that the angle between two rotation semi-axes is at
most π. Hence, for α = 1, only circular arcs are allowed since elliptic arcs are excluded
by condition M > 1. For α > 1 we can have only circular arcs, even without assuming
M > 1.

Without loss of generality, we can assume that 0 = τ1 < τ2 < · · · < τm < T and set
τm+1 = T . Set r̂m+1 = r̂1 and let θi be the angle between the half lines r̂i and r̂i+1,
for i = 1, . . . ,m. Let ρ be the radius of the piecewise circular loop v∗I passing through
the half lines r̂1, · · · , r̂m at the times τ1, · · · , τm, respectively, and let ω be its angular
velocity, which does not depend on i. Then we have that

ω = ∆θ
T
, ∆θ =

m∑
i=1

θi, (2.55)
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Imposing that v∗I is a solution of the equation on motion (2.53) in (τi, τi+1), i = 1, . . . ,m,
we obtain that the radius is

ρ =
(
α

ω2

) 1
2+α

. (2.56)

The action of v∗I is therefore

Aα0 (v∗I ) =
m∑
i=1

∫ τi+1

τi

(
ω2ρ2

2 + 1
ρα

)
dt = 2 + α

2
T

ρα
= 2 + α

2α
α

2+α
∆θ

2α
2+αT

2−α
2+α . (2.57)

Note that the action depends only on the sum of the angles ∆θ between the intersected
half lines. Hence v∗I minimizes this quantity, and this is equivalent to minimize the
length of this piecewise circular loop.

Remark 2.12. The minimizers of the Γ-limit can have total collisions, and in such case
they are necessarily multiple legs solutions, with at least M total collisions per period.
A priori estimates for them can be found in [44] for the Keplerian case and in [90] for the
non-Keplerian case. For the examples we shall consider here (see Table 2.3), it can be
easily verified that multiple leg solutions are not minimizers, since M > 1, hence total
collisions are excluded.

2.5.4 Examples

Here we discuss some examples, gathering the discussions of Sections 2.5.1, 2.5.2, 2.5.3.
to prove the existence of collision-free minimizers of Aαε for ε > 0. In Table 2.3 we report
the list of the selected free-homotopy classes. In Figure 2.6, the trajectories of some of
them are displayed, for different values of the mass m0. More images and videos can be
found at the website [35].

Theorem 2.13. For each sequence ν and the corresponding value of the exponent α
listed in Table 2.3, there exists a sequence {v∗I,ε}ε>0 of collision-free minimizers of Aαε
on the cone K = K(ν) such that

i) each v∗I,ε is a classical T -periodic solution of the (1 + N)-body problem with α-
homogeneous potential;

ii) as ε→ 0, the sequence {v∗I,ε}ε>0 converges to a minimizer v∗I of the Kepler problem
(2.12) which is of the form described in Theorem 2.11.

Proof. Sequences of Table 2.3 do not wind around one axis only, hence the action func-
tional Aαε is coercive in the cone K(ν), independently from the value of m0, and mini-
mizers therefore exist.

We use the estimates of Section 2.5.1 to exclude that minimizers have total collisions.
Let us distinguish two cases: α = 1 and α ∈ (1, 2). If α = 1 the action (2.42) of the test
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R ν M k1 k2 α

T ν1 = [1, 5, 2, 6, 11, 3, 12, 9, 1] 2 8 / 1
ν2 = [1, 5, 8, 3, 12, 4, 9, 7, 1] 2 8 / 1
ν3 = [1, 5, 8, 3, 10, 11, 3, 12, 4, 9, 12, 8, 1] 3 12 / 1
ν4 = [1, 7, 6, 2, 7, 9, 12, 4, 9, 1, 5, 8, 1] 3 12 / 1.7
ν5 = [1, 9, 7, 2, 5, 1, 7, 2, 10, 5, 1, 7, 2, 5, 1] 2 14 / 1.8
ν6 = [1, 9, 4, 12, 9, 4, 12, 9, 7, 2, 10, 3, 11, 10, 3, 11, 10, 5, 1] 2 18 / 1.85

O ν1 = [1, 3, 7, 20, 24, 12, 4, 9, 2, 5, 1] 2 4 6 1
ν2 = [1, 3, 8, 18, 13, 12, 4, 9, 2, 19, 11, 14, 1] 2 4 8 1
ν3 = [1, 3, 7, 20, 18, 8, 15, 4, 6, 10, 16, 5, 1] 3 6 6 1
ν4 = [1, 3, 8, 15, 4, 9, 2, 5, 1] 4 4 4 1
ν5 = [1, 3, 10, 8, 15, 6, 4, 9, 22, 2, 5, 16, 1] 4 8 4 1
ν6 = [1, 3, 8, 10, 3, 7, 20, 18, 7, 14, 11, 23, 14, 1, 16, 5, 1] 4 12 2 1.6
ν7 = [1, 14, 7, 20, 23, 14, 7, 3, 1, 16, 10, 3, 1] 2 4 8 1.7
ν8 = [1, 14, 7, 20, 23, 14, 7, 3, 1, 14, 7, 3, 1, 16, 10, 3, 1, 14, 7, 3, 1] 2 4 16 1.8
ν9 = [1, 16, 22, 6, 10, 16, 5, 1, 3, 7, 14, 1, 16, 5, 11, 19, 2, 5, 1] 3 6 12 1.75

I ν1 = [1, 3, 6, 11, 48, 15, 25, 26, 33, 47, 7, 12, 52, 59, 54, 50, 1] 2 6 10 1
ν2 = [1, 3, 59, 54, 51, 36, 35, 46, 10, 17, 57, 56, 60, 5, 4, 8, 14, 24, 38, 34, 3 9 15 1

48, 28, 11, 19, 1]
ν3 = [1, 3, 7, 12, 21, 39, 30, 44, 2, 4, 8, 20, 31, 45, 19, 1] 5 5 10 1
ν4 = [1, 3, 59, 7, 3, 6, 47, 15, 6, 11, 48, 28, 11, 19, 45, 43, 19, 1, 50, 54, 1] 5 15 5 1

Table 2.3: Sequences of vertexes of QR, defining the free-free homotopy classes. The enumeration of the vertexes
for QO is referred to the one in Figure 1.2. Images with the enumeration of the vertexes of the other two
Archimedean polyhedra can be found at [35]. Note that, for R = T , the distinction between the two kind of sides
is not relevant, so only one value is reported.

loop vνI , associated to the sequence ν, can be computed through elementary functions.
Therefore, we use the estimates (2.40) and (2.42), checking that

Aα(λ̄vνI ) < Aα(u∗I). (2.58)

After some computations we find that the above inequality is satisfied if and only if

k1ζ1,1 + k2ζ1,2 +m0(k1 + k2)ζ1,0 <
4πM
`

(Ũ0 +m0). (2.59)

Note that inequality (2.59) is verified for every value of m0 ≥ 0 if and only if
k1ζ1,1 + k2ζ1,2 <

4πM
`

Ũ0,

(k1 + k2)ζ1,0 <
4πM
`

.

(2.60)

Values of the members of the above inequalities for the sequences of Table 2.3 are re-
ported in Table 2.4.
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Figure 2.6: Some periodic orbits with the symmetry of the Cube. The topological constraints are given, from
the left to the right, by the sequences ν5, ν8, ν9 of Table 2.3. Orbits in the same column belong to the same
free-homotopy class. The mass of the central body for the figures on the top is m0 = 0, while m0 = 100 for the
figures on the bottom. As the value of m0 increases, the minimizer approaches an orbit composed by circular
arcs, joined at some points on the rotation axes, where partial collisions occur.

In the case α ∈ (1, 2), the action of the test loop vνI has to be estimated. To this
purpose we use (2.46) to estimate the left hand side of (2.58). A sufficient condition to
exclude total collisions is therefore

k1
ζ1,1
δ1

+ k2
ζ1,2
δ2

+ 8(k1 + k2)ζ1,0
4− `2 m0 < C

(
Ũ0 +m0

)
, (2.61)

where
C = 2kν

(2− α)
2+α

2

(
πM

α1/2`kν

)α
. (2.62)

Condition (2.61) is verified for every value of m0 ≥ 0 if and only if
k1
ζ1,1
δ1

+ k2
ζ1,2
δ2

< CŨ0,

8(k1 + k2)ζ1,0
4− `2 < C.

(2.63)

Values of the members of the above inequalities for the sequences of Table 2.3 are re-
ported in Table 2.5. In all the cases, the inequality (2.58) holds true, hence the mini-
mizers are free of total collisions for all the values of m0 ≥ 0.
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R ν k1ζ1,1 + k2ζ1,2
4πMŨ0

`
(k1 + k2)ζ1,0

4πM
`

T ν1 76.6704 160.1272 17.5776 25.1327
ν2 76.6704 160.1272 17.5776 25.1327
ν3 115.0056 240.1908 26.3664 37.6991

O ν1 199.7300 506.4397 20.9230 35.1556
ν2 239.2100 506.4397 25.1076 35.1556
ν3 240.3750 759.6595 25.1076 53.7334
ν4 160.2500 1012.8793 16.7384 70.3112
ν5 241.5400 1012.8793 25.1076 70.3112

I ν1 849.7033 2302.7993 32.5513 56.1123
ν2 1274.5550 3454.1990 48.8270 84.1685
ν3 795.7130 5756.9983 30.5169 140.2809
ν4 1072.7354 5756.9983 40.6892 140.2809

Table 2.4: Values of the terms in the inequalities (2.60) corresponding to the sequences of Table 2.3, valid for
α = 1.

R ν k1
ζ1,1
δ1

+ k2
ζ1,2
δ2

CŨ0
8(k1 + k2)ζ1,0

4− `2 C

T ν4 321.7839 599.1471 70.3104 94.0390
ν5 375.4146 528.9010 82.0288 83.0136
ν6 482.5759 714.1623 105.4656 112.0912

O ν6 838.5492 1914.3903 76.7614 132.8915
ν7 539.8787 1203.0097 57.5710 83.5095
ν8 852.3135 1644.8228 95.9518 114.1789
ν9 809.8181 1804.5146 86.3566 125.2642

Table 2.5: Values of the terms in the inequalities (2.63) corresponding to the sequences of Table 2.3, valid for
α ∈ (1, 2).

Partial collisions are excluded by the results of Section 2.5.2. Indeed, the sequences
in Table 2.3 correspond to α-simple cones, for the listed values of α. Moreover, they are
not tied to two coboundary axes. Hence, for each sequence ν of Table 2.3, there exists
a sequence {v∗I,ε}ε>0 of collision-free minimizers of Aαε , corresponding to a classical T -
periodic solution of the (1 +N)-body problem.

Finally, since the cones K identified by the sequences of Table 2.3 are all central, the
convergence of the sequence to a minimizer of the Kepler problem (2.12) is ensured by
Theorem 2.11.
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Chapter 3

Local minimizers for periodic
problems

In the following (see Chapter 5), we compute periodic orbits using numerical methods.
In particular, we shall compute periodic orbits of Chapters 1 and 2, which are found as
minimizers of the action. However, the used numerical methods does not ensure that
what we compute is actually a minimizer (see Chapter 4). Despite that, we can check
numerically the minimality, at least the local one, after computing the orbits, provided
that we have a suitable theory of minimizers, to be implemented in a computer program.
The theory of local minimizers for variational problems with fixed endpoints is a well
known topic in Calculus of Variations, and it can be found in classical books such as
[25, 43, 85]. For other types of boundary conditions, definitions and proofs have to be
adapted. A theory for quadratic functionals, with general boundary conditions, can
be found in [33] and [113]. A theory of local minimizers for disjoined endpoints has
been developed in [111] and further improvements led to a theory for general boundary
conditions [112].

Here we present a theory of local minimizers for the case of periodic boundary con-
ditions, adapting some proofs of the classical fixed endpoints problem, and taking inspi-
ration from the results present in the mentioned literature. We also discuss how these
results can be used when we want to check the minimality with numerical computations.

3.1 Definitions of minimizers

Fixed T > 0, let us consider a functional

A(u) =
∫ T

0
L(t, u, u̇)dt, (3.1)

where L : [0, T ]×Ω→ R is a C2 function, T -periodic in the variable t, and Ω ⊆ Rn×Rn
is an open set. We define the space of T -periodic functions

V = {u ∈ C1([0, T ],Rn) : u(0) = u(T )},

59
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and assume that A is defined on a set X ⊆ V . We say that u0 ∈ X is a

(GM) global minimum point if A(u) ≥ A(u0) for all u ∈ X;

(SLM) strong local minimum point if there exists ε > 0 such that for all u ∈ X satisfying

‖u− u0‖∞ < ε;

we have that A(u) ≥ A(u0).

(WLM) weak local minimum point if there exists ε > 0 such that for all u ∈ X satisfying

‖u− u0‖∞ + ‖u̇− u̇0‖∞ < ε;

we have that A(u) ≥ A(u0).

(DLM) directional local minimum point if the function ϕ(s) = A(u0 + sv) has a local
minimum point at s = 0 for all v ∈ V . Note that, fixed v ∈ V , ϕ : (−δ, δ) → R is
a function of the real variable s.

We want to state necessary and sufficient conditions to establish whether a given function
u0 ∈ X is a (DLM), (WLM), (SLM) or none of them. From the classical theory of
Calculus of Variations it is well known that, if u0 is a C2 minimum point, then it solves
the Euler-Lagrange equation associated to (3.1), i.e.

d

dt
Lu̇
(
t, u0(t), u̇0(t)

)
= Lu

(
t, u0(t), u̇0(t)

)
, (3.2)

Moreover, u0 also satisfies a periodic condition on the derivative, i.e.

Lu̇(0, u0(0), u̇0(0)) = Lu̇(T, u0(T ), u̇0(T )), (3.3)

which leads to
u̇0(0) = u̇0(T ). (3.4)

Note that u0 is a (DLM) if and only if the second variation

δ2A(v) =
∫ T

0

(
v(t) · L̂uu(t)v(t) + 2v̇(t) · L̂uu̇(t)v(t) + v̇(t) · L̂u̇u̇(t)v̇(t)

)
dt, (3.5)

is non-negative, where

L̂uu(t) = Luu(t, u0(t), u̇0(t)),
L̂uu̇(t) = Luu̇(t, u0(t), u̇0(t)),
L̂u̇u̇(t) = Lu̇u̇(t, u0(t), u̇0(t)).

Since δ2A is a quadratic functional, defined on the whole space of T -periodic functions
V , we are interested in studying these particular type of functionals first.
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3.2 Quadratic functionals

We consider a quadratic functional

Q(v) =
∫ T

0

(
v · P (t)v + 2v̇ ·Q(t)v + v̇ ·R(t)v̇

)
dt, (3.6)

defined on the whole space V , where P,Q,R : [0, T ] → Rn×n are C1 matrix functions
such that1 P (t) = P T (t), R(t) = RT (t) for all t ∈ [0, T ]. The Euler-Lagrange equation
associated to (3.6) is

d

dt

(
Rẏ +Qy

)
= QT ẏ + Py, (3.7)

and it is usually called Jacobi differential equation. If detR(t) 6= 0 for all t ∈ [0, T ],
setting z = Rẏ +Qy, we can write the system as{

ẏ = Ay +Bz,

ż = Cy −AT z,
(3.8)

where
A = −R−1Q, B = R−1, C = P −QTR−1Q.

Note that B and C are symmetric matrices. It is also useful to introduce the matrix
version of equation (3.8), i.e. {

Ẏ = AY +BZ,

Ż = CY −ATZ,
(3.9)

where Y,Z : [0, T ]→ Rn×n are matrix functions.

Remark 3.1. Note that, if (Y1, Z1), (Y2, Z2) are two solutions of (3.9), then

Y T
1 (t)Z2(t)− ZT1 (t)Y2(t) ≡ K, (3.10)

where K ∈ Rn×n is a constant matrix. This is obtained simply by differentiating the
expression on the left hand side of (3.10), and substituting the derivatives given by (3.9).

Definition 3.2. A solution (Y,Z) of (3.9) is said to be self-conjoined if

Y TZ − ZTY ≡ 0. (3.11)

Self-conjoined solutions are particularly useful to write the general solution of the
Jacobi differential equation (3.9).

1The character T is already used to denote the period. However, when we use the superscript T for a
matrix, we mean the transpose of the matrix itself. This notation will not be confusing in the following,
since it is always clear when we intend to transpose a matrix.
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Proposition 3.3. Let (Y0, Z0) be a self-conjoined solution of (3.9) such that detY0(t) 6=
0 for all t ∈ [0, T ]. Then all solutions (Y,Z) of (3.9) are given by the formula

Y (t) = Y0(t)
(
M + S0(t)N

)
,

Z(t) = Z0(t)
(
M + S0(t)N

)
+ Y −T0 (t)N,

(3.12)

where M,N ∈ Rn×n are arbitrary constant matrices and

S0(t) =
∫ t

a
Y −1

0 (s)B(s)Y −T0 (s) ds, (3.13)

for some a ∈ [0, T ]. Moreover

Y T
0 (t)Z(t)− ZT0 (t)Y (t) = N,

Y T (t)Z(t)− ZT (t)Y (t) = MTN −NTM.
(3.14)

Proof. Differentiating (3.12) and using the fact that (Y0, Z0) is a self-conjoined solution,
we can verify that (Y, Z) defined by (3.12) solves (3.9). Indeed,

Ẏ = (AY0 +BZ0)(M + S0N) +BY −T0 N

AY +BZ = AY0(M + S0N) +BZ0(M + S0N) +BY −T0 N

Ż = (CY0 −ATZ0)(M + S0N) + Z0Y
−1

0 BY −T0 N − Y −T0 (AY0 +BZ0)Y −T0 N

CY −ATZ = CY0(M + S0N)−ATZ0(M + S0N)−ATY −T0 N,

where we have used that
d

dt
(Y −1) = −Y −1Ẏ Y −1.

Moreover, since

Y (a) = Y0(a)M, Z(a) = Z0(a)M + Y −T0 (a)N,

the matrices M,N can be chosen in one and only one way so that they satisfy arbitrary
initial conditions. Then (3.14) are easily verified evaluating at the left hand sides for
t = a.

We introduce now some conditions and give some definitions, useful for later discus-
sions.

(L) The Legendre condition holds if R(t) ≥ 0 2 for all t ∈ [0, T ].

(L’) The strengthened Legendre condition holds if R(t) > 0 for all t ∈ [0, T ].
2In the following, when we write A > 0 (resp. A ≥ 0), where A ∈ Rn×n is a symmetric matrix, we

mean that A is positive definite (resp. positive semi-definite).
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(R) The regularity condition holds if

v ·
∫ T

0
P (t)dt v ≥ 0,

for all v ∈ Rn.

(R’) The strengthened regularity condition holds if

v ·
∫ T

0
P (t)dt v > 0,

for all v ∈ Rn \ {0}.

Definition 3.4. Let (y, z) be a solution of system (3.8) such that y(0) = 0. A point
c ∈ (0, T ] is said to be conjugate with 0 if

y(c) = 0.

Remark 3.5. For later use, it is worth noting that c ∈ (0, T ] is conjugate with 0 if and
only if

detY0(c) = 0.

Definition 3.6. Let (y, z) be a solution of system (3.8). A point c ∈ (0, T ] is said to be
semicoupled with 0 if 

y(0) = y(c),

z(0) = z(c) +
∫ T

c
P (t)dt y(c).

(3.15)

Moreover, if y(t) 6= y(c) for all t ∈ (c, T ], c is said to be coupled with 0.

We introduce the following definitions:

(J) The Jacobi condition (J) holds if every solution (y, z) of (3.8) with initial condition
y(0) = 0 does not have any conjugate point c ∈ (0, T ) with 0.

(J’) The strengthened Jacobi condition (J’) holds if every solution (y, z) of (3.8) with
initial condition y(0) = 0 does not have any conjugate point c ∈ (0, T ] with 0.

(C) Condition (C) holds if every solution (y, z) of (3.8) does not have any semicoupled
point c ∈ (0, T ) with 0.

(C’) Condition (C’) holds if every solution (y, z) of (3.8) does not have any semicoupled
point c ∈ (0, T ] with 0.
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First we focus on necessary conditions to have a non-negative quadratic functional. In
the classical setting of the fixed endpoints problem, it is known that (L) is a necessary
condition, moreover, if (L’) holds, then (J) is necessary. The interested reader can refer
to classical books of Calculus of Variations, such as [43], for detailed proofs of these
facts. Here we can prove similar statements, as done in the following lemmas.

Lemma 3.7. If Q(v) ≥ 0 for all v ∈ V , then conditions (L) and (R) hold.

Proof. The proof that (L) holds is the same as in the fixed endpoints problem, since
we can restrict ourself to local variations vanishing at the extrema of the interval. The
regularity condition (R) follows taking constant variations v(t) ≡ v0 ∈ Rn, since in this
case

Q(v) = v0 ·
∫ T

0
P (t) dt v0 ≥ 0,

and this is exactly condition (R).

Lemma 3.8. If Q(v) ≥ 0 for all v ∈ V and condition (L′) holds, then (C) holds.

Proof. Since (L’) holds, we can write equation (3.7) as a first order system, in the form
(3.8). Suppose that the system has a coupled point, i.e. there exist a non-zero solution
(y, z) such that for a certain c ∈ (0, T ] we have y(c) = y(0) and

z(0) = z(c) +
∫ T

c
P (t) dt y(c).

We define

vc(t) =
{
y(t) t ∈ [0, c],
y(c) t ∈ [c, T ].

Note that vc is T -periodic, then evaluating the quadratic functional and integrating by
parts we obtain

Q(vc) =
∫ c

0

(
y · Py + 2ẏ ·Qy + ẏ ·Rẏ

)
dt+ y(c) ·

∫ T

c
P (t) dt y(c)

=
∫ c

0

(
y · (Py +QT ẏ) + ẏ · (Qy +Rẏ)

)
dt+ y(c) ·

∫ T

c
P (t) dt y(c)

=
∫ c

0

(
y · ż + ẏ · z

)
dt+ y(c) ·

∫ T

c
P (t) dt y(c)

=
[
y · z

]c
0 + y(c) ·

∫ T

c
P (t) dt y(c)

= y(c) ·
(
z(c)− z(0) +

∫ T

c
P (t) dt y(c)

)
= 0.

This means that vc is a minimizer of Q. However, by condition (L’), the minimizers
solve the Jacobi differential equation (3.8) and, moreover, the theorem of uniqueness
of the solutions holds. In this case, we would obtain that vc(t) is constant, which is a
contradiction.
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Let us now focus on sufficient conditions. In the classical setting, it is known that
conditions (L’) and (J’) imply that the quadratic functional is non-negative. In [33],
a theory for quadratic functionals with general boundary conditions is provided. The
authors stated that, if (L’), (R’) and (C’) hold, then the quadratic functional is non-
negative, i.e. the absence of coupled points joined with the regularity condition are
sufficient to ensure the non-negativity. The non-negativity of a quadratic functional
can be also described in terms of the existence of a particular solution of the Riccati
equation that we are going to introduce. This approach can be found, for example, in
[111, 112]. Here we present both approaches, describing the main differences between
them. In particular, we will see that we obtain necessary and sufficient conditions using
the first approach, while with the second one we obtain only sufficient conditions. In
the following, we shall remark the difficulties in finding necessary conditions with this
approach.

We associate to the quadratic functional (3.6) the Riccati matrix equation, which is
defined as

Ẇ − C +WA+ATW +WBW = 0. (3.16)

For this purpose we note, that if (Y,Z) is a solution of (3.9) such that Y (t) is non-
singular on [0, T ], then W (t) = Z(t)Y −1(t) is a solution of (3.16) defined on the whole
interval [0, T ]. Indeed

dZ

dt
Y −1 + Z

dY −1

dt
− C + ZY −1A+ATZY −1 + ZY −1BZY −1 =

(CY −ATZ)Y −1 − ZY −1Ẏ Y −1 − C + ZY −1A+ATZY −1 + ZY −1BZY −1 =
−ZY −1Ẏ Y −1 + ZY −1(A+BZY −1) =

−ZY −1Ẏ Y −1 + ZY −1Ẏ Y −1 = 0

Moreover, if (Y,Z) is also self-conjoined, then W is symmetric.

3.2.1 The approach based on coupled points

In [33], the authors provide a theory of quadratic functionals for general boundary con-
ditions. Given an interval [a, b] ⊆ R, consider the functional

Q(v) =
∫ b

a

(
v · P (t)v + 2v̇ ·Q(t)v + v̇ ·R(t)v̇

)
dt,

defined on functions v : [a, b]→ Rn satisfying the boundary conditions

D

(
v(a)
v(b)

)
= 0, (3.17)

where D is a constant matrix of order 2n. In this setting, we can still define conditions
(J), (C) and (R) (together with their strengthened versions) in an almost analogue way
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as above, simply by following the proofs of the lemmas for necessary conditions. The
main theorem of [33] states that the absence of coupled points together with the regu-
larity condition (R’), ensures the non-negativity of the quadratic functional. Moreover,
this condition is equivalent to the absence of conjugate points plus a condition of non-
negativity of a matrix, constructed using particular solutions of the Riccati equation.

Theorem 3.9 ([33], Theorem 3). Assume that condition (L′) holds. Then the following
properties are equivalent

(i) Q(v) > 0 for all non-zero admissible functions v.

(ii) Conditions (C′) and (R′) hold.

(iii) Condition (J′) holds and

α ·
(
−Wb(a) −Y −1

a (b)
−Y −Ta (b) Wa(b)

)
α > 0, (3.18)

for all nonzero α ∈ R2n such that Dα = 0. Here (Ya, Za), (Yb, Zb) are the solutions
of (3.9) given by the initial conditions{

Ya(a) = 0,
Za(a) = I,

{
Yb(b) = 0,
Zb(b) = −I,

and Wa = ZaY
−1
a , Wb = ZbY

−1
b .

Let us focus on the case of periodic boundary conditions. Then [a, b] = [0, T ] and
the matrix D results to be

D =
(
I −I
0 0

)
∈ R2n×2n.

The vectors α ∈ R2n such that Dα = 0 are of the form

α =
(
β
β

)
,

where β ∈ Rn. Therefore, condition (3.18) becomes

β ·
(
W0(T )−WT (0)− Y −1

0 (T )− Y −T0 (T )
)
β > 0, (3.19)

for all β ∈ Rn \ {0}, which means that the matrix within the parentheses is positive
definite. From the numerical point of view, we have to choose which conditions are
suitable to be verified with numerical computations. It is clear that we can check (R’)
by computing an integral and see if the resulting matrix is positive definite, but condition
(C’) is impossible to check numerically, since it takes into account all the solutions of
(3.8). Instead, conditions (J’) and (3.19) can be managed numerically. Indeed, what we
have to do is
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(1) compute the solution (Y0, Z0) of (3.9) integrating the differential equation using
the initial conditions Y0(0) = 0, Z0(0) = I on [0, T ]. Then we check whether
detY0(t) 6= 0 for all t ∈ (0, T ] to check (J’);

(2) compute the solution (YT , ZT ) of (3.9) integrating the differential equations on
[0, T ] backwards in time, using the initial conditions YT (T ) = 0, ZT (T ) = −I;

(3) invert the matrices Y0(T ), YT (0), compute W0(T ),WT (0) and construct the matrix
in (3.19);

(4) compute the eigenvalues of the matrix in (3.19) and check whether they are all
positive or not.

3.2.2 The approach based on Riccati equation with boundary condi-
tions

Here we describe an approach based on the existence of solutions of the Riccati equation
with particular boundary conditions, similar to the ones present in [111, 112]. We point
out that we discuss both approaches also because sufficient conditions for the strong
local minimality are given in these terms, and not in terms of coupled points, as we will
see in Section 3.4. We introduce the following condition.

(SR) Condition (SR) is satisfied if there exists a symmetric solution W (t) of the Riccati
equation (3.16), defined on the whole interval [0, T ], such that

W (T )−W (0) > 0. (3.20)

This condition is sufficient to have a positive definite quadratic functional in the case
of periodic boundary conditions. For other types of boundary conditions, the inequality
(3.20) has to be adapted, see for example [112].

Theorem 3.10. Let conditions (L′) and (SR) hold. Then we have that Q(v) ≥ 0 for all
v ∈ V .

Proof. Let W be the symmetric solution of the Riccati equation (3.16) defined on the
whole interval [0, T ], such that W (T )−W (0) is positive definite. Given v ∈ V , we have
that

Q(v) =
∫ T

0

(
v · Pv + 2v̇ ·Qv + v̇ ·Rv̇ − d

dt
(v ·Wv) + d

dt
(v ·Wv)

)
dt

= v(t) ·W (t)v(t)
∣∣∣∣T
0

+
∫ T

0

(
Rv̇ +Qv −Wv

)
·B
(
Rv̇ +Qv −Wv

)
dt

= v(0) ·
(
W (T )−W (0)

)
v(0) +

∫ T

0

(
Rv̇ +Qv −Wv

)
·B
(
Rv̇ +Qv −Wv

)
dt,

where we have used that v(0) = v(T ) in the last equality. Since B(t) = R−1(t), from
condition (L’), B is positive definite for all t ∈ [0, T ], then the function in the integral is
non-negative. Since also W (T )−W (0) is positive definite, we have that Q(v) ≥ 0.
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One could try to match the sufficient conditions of Theorem 3.9 with the (SR) con-
dition on the existence of a symmetric solution of the Riccati equation with boundary
conditions. Indeed, these conditions are equivalent for the classical case of the fixed
endpoints problem, since it is known that the absence of conjugate points leads to the
existence of a symmetric solution of the Riccati equation which is positive definite. More
in general, the same can be done when the endpoints are disjoined [111]. However, when
the endpoints are joined, as in the case of the periodic boundary conditions, the existence
of a symmetric solution of the Riccati equation with boundary conditions is sufficient
but not necessary to have a positive quadratic functional (see [112], pag. 599). To show
the problems arising in finding necessary conditions for the case of periodic boundary
conditions, let us prove first the following result.

Lemma 3.11. Let conditions (L′) and (J′) hold. Let (Y0, Z0), (YT , ZT ) be the solutions
of (3.9) with initial conditions{

Y0(0) = 0,
Z0(0) = I,

{
YT (T ) = 0,
ZT (T ) = −I,

and W0 = Z0Y
−1

0 , WT = ZTY
−1
T . If

W0(T )−
(
Y0(T )Y T

0 (T )
)−1 −WT (0)− I > 0, (3.21)

then condition (SR) holds.

Proof. Since condition (J’) holds, by Remark 3.5 Y0(t) is invertible for t ∈ (0, T ] and
YT (t) is invertible for t ∈ [0, T ). Let M = Y0(T )−T and (Y1, Z1) = (YTM,ZTM). The
solutions (Y0, Z0), (Y1, Z1) are self-conjoined, and by Remark 3.1 we have that

Y T
1 Z0 − ZT1 Y0 = I.

Let (Y, Z) be the solution of (3.9) defined by{
Y = Y0 + Y1,

Z = Z0 + Z1.

Using the above observations, evaluating at t = T we obtain that

Y TZ − ZTY ≡ 0,

i.e. the solution (Y, Z) is self-conjoined.
Let us prove first that Y (t) is invertible for t ∈ [0, T ]. By Proposition 3.3, we have

Y0(t) = Y1(t)S1(t) for t ∈ [0, T ), where

S1(t) =
∫ t

0
Y −1

1 (s)B(s)Y −T1 (s) ds ≥ 0.
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Then, Y (T ) = Y0(T ) is invertible, and the relation

Y (t) = Y1(t)
(
I + S1(t)

)
, t ∈ [0, T ),

shows that Y (t) is invertible in [0, T ), hence Y (t) is invertible on the whole [0, T ].
Hence W = Y Z−1 is a symmetric solution of the Riccati equation, defined on the

whole [0, T ], such that

W (0) =
(
Z0(0) + ZT (0)M

)(
Y0(0) + YT (0)M

)−1

=
(
I + ZT (0)M

)
M−1YT (0)−1

= M−1YT (0)−1 +WT (0),
= M−1Y0(T )−T +WT (0),
= I +WT (0),

W (T ) =
(
Z0(T ) + ZT (T )M

)(
Y0(T ) + YT (T )M

)−1

=
(
Z0(T )−M

)
Y0(T )−1

= W0(T )−MY0(T )−1

= W0(T )−
(
Y0(T )Y T

0 (T )
)−1

.

Then W (T ) −W (0) has the expression given in the left hand side of (3.21), and it is
positive definite by the hypothesis, therefore condition (SR) holds.

Remark 3.12. Note that the matrices in (3.19) and in (3.21) look similar. Therefore,
one is tempted to deduce the (SR) condition assuming that (J’) and (3.19) hold, and
then follow the steps of the proof of the above lemma, proving that condition (SR) is
also necessary. The idea is to construct a solution W of the Riccati equation such that

W (T )−W (0) = W0(T )−WT (0)− Y −1
0 (T )− Y T−1

0 (T ),

which is positive definite if we assume (3.19). Such solution can be obtained using the
solution (Y,Z) of (3.9) defined as {

Y = Y0 + YT ,

Z = Z0 + ZT ,

where (Y0, Z0), (YT , ZT ) are as above. Using similar arguments, one can prove that
detY (t) 6= 0 for all t ∈ [0, T ], hence W = ZY −1 is defined on the whole [0, T ]. However,
some problems arise when we try to prove that (Y,Z) is self-conjoined, which is equivalent
to saying that W is symmetric. Indeed, evaluating in t = 0 the relation (3.10), the
invariant matrix results to be

Y T (0)Z(0)− ZT (0)Y (0) = Y T
T (0)− YT (0)

= Y0(T )− Y T
0 (T ).

(3.22)
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In dimension n = 1 this is actually zero, hence (SR) condition is equivalent to (J’) joined
with (3.19). However, this is a very special situation, since the transpose sign has no
effects in dimension one. In higher dimension, equation (3.22) is not zero in general,
hence we cannot conclude the equivalence between the two conditions with the above
approach. Moreover, if we subtract the two matrices in (3.19) and (3.21), we obtain

W0(T )−WT (0)− Y −1
0 (T )− Y T−1

0 (T )−W0(T ) +WT (0) +
(
Y0(T )Y T

0 (T )
)−1 + I =

(Y −1
0 (T )− I)T (Y −1

0 (T )− I) ≥ 0.

This means that the sufficient condition (3.19) does not necessarily imply condition
(3.21), which ensures the (SR) condition. However, it is not clear if it is possible to
obtain a solution of the Riccati equation satisfying condition (SR) with other strategies.

The following lemma relates the dimension and the sign of the determinant of Y0(t)
with the (SR) condition. This could be useful to search for a symmetric solution W
of the Riccati equation satisfying the boundary condition W (T ) −W (0) > 0 when we
cannot use Lemma 3.11.

Lemma 3.13. Let conditions (L’) and (J’) hold. Let (Y0, Z0) be the solution of (3.9)
with initial conditions {

Y0(0) = 0,
Z0(0) = I.

Then

(i) if n is even and detY0(t) > 0 for t ∈ (0, T ], then condition (SR) holds;

(ii) if n is odd and detY0(t) < 0 for t ∈ (0, T ], then condition (SR) holds.

Proof. From condition (J’), we have that the solution (Y0, Z0) of (3.9) is such that
detY0(t) 6= 0 for all t ∈ (0, T ], then we can define W0(t) = Z0(t)Y −1

0 (t). Let (Yε, Zε) be
the solution of (3.9) with initial conditions{

Yε(0) = −εI,
Zε(0) = I.

From the continuous dependence of the solutions with respect to the initial conditions,
we know that (Yε, Zε)→ (Y0, Z0) uniformly in [0, T ]. Moreover,

detYε(0) = (−ε)n,

hence in the hypotheses (i) or (ii) we have that detY0(t) and detYε(t) have the same
sing for t near zero. Therefore, for ε small enough, we have that detYε(t) 6= 0 for all
t ∈ [0, T ]. Moreover, evaluating (3.10) for t = 0, we obtain that (Yε, Zε) is self-conjoined,
hence Wε(t) = Zε(t)Y −1

ε (t) is a symmetric solution of (3.16) defined on the whole [0, T ].
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Now we prove that Wε(T ) −Wε(0) is positive definite for ε small enough. First we
note that

Wε(0) = Zε(0)Y −1
ε (0) = −1

ε
I.

Let w ∈ Rn be a nonzero vector, then

lim
ε→0+

w ·Wε(T )w = w ·W0(T )w ∈ R,

lim
ε→0+

w ·Wε(0)w = lim
ε→0+

−|w|2

ε
= −∞,

hence the thesis.

3.3 Weak local minimizers

Using the theory of quadratic functionals, we can find sufficient conditions to have a
(WLM) for the case of periodic boundary conditions. Since the approach based on
symmetric solutions of the Riccati equation with boundary condition does not fully
match the necessary and sufficient conditions of Theorem 3.9, we discuss the theory of
weak local minimizers using the approach based on coupled points.

Lemma 3.14. Let Q be a quadratic functional defined on V . Then there exists C > 0
such that

|Q(v)| ≤ C
∫ T

0

(
|v|2 + |v̇|2

)
dt, (3.23)

for all v ∈ V .

Proof. It is sufficient to note that

2|v||v̇| ≤ |v|2 + |v̇|2,

Then we have that
|Q(v)| ≤ C1

∫ T

0
|v̇|2dt + C2

∫ T

0
|v|2dt,

where the constants C1, C2 are

C1 = ‖Q‖∞ + ‖R‖∞, C2 = ‖Q‖∞ + ‖P‖∞.

Then taking C = max{C1, C2} the thesis follows.

Remark 3.15. Note that the coefficient C is small if C1 and C2 are both small. This
happens when the matrix functions P,Q,R are small in the sup norm.

Lemma 3.16. Let Q be a positive definite quadratic functional defined on V and satis-
fying (L′). Then there exists ε0 > 0 such that

Q(v) ≥ ε0

∫ T

0

(
|v|2 + |v̇|2

)
dt (3.24)

for all v ∈ V .
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Proof. Consider the functional

Q̂ε(v) := Q(v)− ε
∫ T

0

(
|v|2 + |v̇|2

)
dt

=
∫ T

0

(
v · (P − εI)v + 2v̇ ·Qv + v̇ · (R− εI)v̇

)
dt

=
∫ T

0

(
v · P̂ v + 2v̇ · Q̂v + v̇ · R̂v̇

)
dt,

where P̂ = P − εI, Q̂ = Q, R̂ = R − εI. We verify that Q̂ε is still positive definite
for ε small enough, using the equivalent conditions given by Theorem 3.9. For ε small
enough, Q̂ε verifies (L’), (J’) and (3.19).

(L’) holds since, from condition (L’) on R, we have that R ≥ kI for some k > 0. Hence
R̂ ≥ (k − ε)I. For ε small enough we have that k − ε > 0.

(J’) holds because of the uniform convergence of the solutions of (3.9) as ε→ 0.

(3.19) holds for the same reason above, since the eigenvalues are continuous functions
with respect to the entries of the matrix.

Therefore, for ε small enough, the quadratic functional Q̂ε is positive definite and the
thesis follows.

Lemma 3.17. Let Q0 be a positive definite quadratic functional defined on V , with
coefficients P0, Q0, R0, satisfying (L′). Let Q be a quadratic functional defined on V
with coefficients P,Q,R. If

‖P − P0‖∞, ‖Q−Q0‖∞, ‖R−R0‖∞,

are small enough, then Q is positive definite.

Proof. Let us write
Q(v) = Q0(v) + Q̂(v),

where
Q̂(v) =

∫ T

0

(
v · (P − P0)v + 2v̇ · (Q−Q0)v + v̇ · (R−R0)v̇

)
dt.

From Lemma 3.16 we have that

Q0(v) ≥ ε0

∫ T

0

(
|v|2 + |v̇|2

)
dt.

From Lemma 3.14, there exists C such that

|Q̂(v)| ≤ C
∫ T

0

(
|v|2 + |v̇|2

)
dt.
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Then
Q(v) ≥ ε0

∫ T

0

(
|v|2 + |v̇|2

)
dt− C

∫ T

0

(
|v|2 + |v̇|2

)
dt,

and the coefficient C, from Remark 3.15, is smaller than ε0 for ‖P −P0‖∞, ‖Q−Q0‖∞,
‖R−R0‖∞ small enough, hence Q is positive definite.

Theorem 3.18. Let u0 ∈ X be a periodic solution of the Euler-Lagrange equation (3.2)
and let conditions (L′), (C′) and (R′) hold for the second variation associated to u0.
Then u0 is a (WLM).

Proof. Let u ∈ X and set v = u− u0 ∈ V . Consider

ϕ(s) := A(u0 + sv).

Then

A(u) = ϕ(1) = ϕ(0) + ϕ′(0) + 1
2ϕ
′′(s0) = A(u0) + 1

2ϕ
′′(s0), s0 ∈ (0, 1).

We have that

ϕ′′(s0) =
∫ T

0

(
v(t) · Luu

(
t, u0(t) + s0v(t), u̇0(t) + s0v̇(t)

)
v(t)

+ 2v̇(t) · Lu̇u
(
t, u0(t) + s0v(t), u̇0(t) + s0v̇(t)

)
v(t)

+ v̇(t) · Lu̇u̇
(
t, u0(t) + s0v(t), u̇0(t) + s0v̇(t)

)
v̇(t)

)
dt.

Note that ϕ′′(s0) is a quadratic functional. If ‖v‖∞+‖v̇‖∞ is small enough, by the conti-
nuity of the second derivatives of L, the coefficients of ϕ′′(s0) are near to the coefficients
of the second variation associated to u0, in the sup norm. Therefore, from Lemma 3.17
we conclude that ϕ′′(s0) ≥ 0 and u0 is a (WLM).

3.4 Strong local minimizers

To discuss the strong local minimizers, we need a few other definitions and conditions.
We define the Weierstrass excess function as

E(t, u, v, w) := L(t, u, w)− L(t, u, v)− (w − v) · Lu̇(t, u, v). (3.25)

Let u0 ∈ X be a solution of the Euler-Lagrange equation (3.2). To simplify the notations
in the following, we define the tube around u0 of radius ε > 0 as

T (u0, ε) =
{
(t, y) ∈ [0, T ]× Rn : |y − u0(t)| < ε

}
,

and the restricted tube as

RT (u0, ε) =
{
(t, y, v) ∈ [0, T ]× Rn × Rn : |y − u0(t)| < ε, |v − u̇0(t)| < ε

}
.

We introduce also additional conditions.
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(W) The Weierstrass condition holds if

E(t, u0(t), u̇0(t), w) ≥ 0, (3.26)

for all t ∈ [0, T ] and for all w ∈ Rn.

(W’) The strengthened Weierstrass condition holds if

E(t, y, v, w) ≥ 0, (3.27)

for (t, y, v) ∈ RT (u0, ε) and for all w ∈ Rn.

(HJ) A C1 function V (t, y) is said to satisfy the Hamilton-Jacobi inequality for v ∈ Rn
if

Vt(t, y)+Vy(t, y) · v − L(t, y, v) ≤
Vt(t, u0(t)) + Vy(t, u0(t)) · u̇0(t)− L(t, u0(t), u̇0(t)).

(3.28)

Remark 3.19. Note that condition (W’) is satisfied whenever L is globally convex in
u̇, that is when Lu̇u̇ ≥ 0. In classical mechanics, the latter condition is fulfilled because
the term of the kinetic energy which is quadratic in u̇ is positive definite.

In the classical setting of the fixed endpoints problem, it is known that a necessary
condition for a solution of the Euler-Lagrange equation to be a (SLM) is that condition
(W) holds. This is true also in the case of periodic boundary conditions: we can use
the same proof, taking into account only the competitors that are zero at the extrema
of the time interval. Moreover, it is known that, if a solution of the Euler-Lagrange
equation satisfy conditions (L’), (J’) and (W’), then it is a strong local minimizer. We
refer again to classical books of Calculus of Variations for proofs of this fact [43, 85].
Here we prove the strong local minimality under the (SR) condition and the Weierstrass
condition (W’), adapting the proof for the classical problem of fixed endpoints given
in [23]. It is not clear whether conditions (C’) and (R’), sufficient to have weak local
minimizers, can be used to prove the strong local minimality, in such a way to have a
unified view of directional, weak and strong local minimizers.

Theorem 3.20. Let u0 ∈ X be a periodic solution of the Euler-Lagrange equation (3.2).
Suppose that conditions (L′) and (SR) are satisfied for the second variation associated
to u0, and that condition (W′) holds. Then u0 is a (SLM).

Proof. By the (SR) condition, there exists a symmetric solution W (t) of the Riccati
differential equation (3.16), defined on the whole [0, T ] and such that W (T )−W (0) > 0.
From the embedding theorem of differential equations (see for instance Theorem 4.1 in
[55]), there exists ε0 > 0 and a symmetric matrix function W̃ : [0, T ]→ Rn×n such that

˙̃
W − C + W̃A+AT W̃ + W̃BW̃ = −ε0I,
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and W̃ (T )− W̃ (0) > ε0I. We set

p(t) = Lu̇(t, u0(t), u̇0(t)),

V (t, y) = p(t) · y + 1
2(y − u0(t)) · W̃ (t)(y − u0(t)).

Assume for the moment that V (t, y) satisfies condition (HJ) for all (t, y) ∈ T (u0, ε) and
for all v ∈ Rn, and let u ∈ X be another T -periodic competitor such that ‖u−u0‖∞ < ε.
Hence, substituting (t, u(t), u̇(t)) for (t, y, v) in (3.28) and integrating on [0, T ], we get∫ T

0
L(t, u(t), u̇(t)) dt+

(
V (0, u(0))− V (T, u(T ))

)
≥∫ T

0
L(t, u0(t), u̇0(t)) dt+

(
V (0, u0(0))− V (T, u0(T ))

)
.

Note that, since u(t), u0(t) and L(t, ·, ·) are T -periodic functions, then also p(t) is T -
periodic. Therefore, we have that

V (0, u0(0))− V (T, u0(T )) = p(0) · u0(0) + 1
2(u0(0)− u0(0)) · W̃ (0)(u0(0)− u0(0))

− p(T ) · u0(T )− 1
2(u0(T )− u0(0)) · W̃ (T )(u0(T )− u0(0))

= 0,

V (0, u(0))− V (T, u(T )) = p(0) · u(0) + 1
2(u(0)− u0(0)) · W̃ (0)(u(0)− u0(0))

− p(T ) · u(T )− 1
2(u(T )− u0(0)) · W̃ (T )(u(T )− u0(0))

= 1
2

(
(u(0)− u0(0)) · W̃ (0)(u(0)− u0(0))

− (u(0)− u0(0)) · W̃ (T )(u(0)− u0(0))
)

≤ 0.
Hence, the inequality above becomes∫ T

0
L(t, u0(t), u̇0(t)) dt ≤

∫ T

0
L(t, u(t), u̇(t)) dt,

i.e. u0 is a (SLM).
It remains to prove that V (t, y) satisfies (HJ). Consider the equation

p(t) + W̃ (t)(y − u0(t)) = Lu̇(t, y, ζ). (3.29)

Note that the left hand side of the equation corresponds to Vy(t, y). A solution is
ζ = u̇0(γ) when t = γ, y = u0(γ), and moreover Lu̇u̇(γ, u0, u̇0) > 0 by condition (L’).
From the implicit function theorem, there exists a C1 function ζ(t, y) defining near
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(γ, u0(γ)) the solution of (3.29). We can suppose that ζ is defined on a tube T (u0, ε1).
We can also suppose that

Lu̇u̇(t, y, v) > 0, (3.30)

on RT (u0, ε2), where |ζ(t, y) − u̇0(t)| < ε2 for all (t, y) ∈ T (u0, ε1). Then, for a fixed
(t, y) ∈ T (u0, ε1), the function

v 7→ Vy(t, y) · v − L(t, y, v)

is concave on the set |v − u̇0(t)| < ε2 and has zero gradient at v = ζ(t, y). We deduce
that

max
|v−u̇0|<ε2

(
Vt(t, y) + Vy(t, y) · v − L(t, y, v)

)
:= F (t, y)

= Vt(t, y) + Vy(t, y) · ζ(t, y)− L(t, y, ζ(t, y)).
(3.31)

Substituting the expression of p(t) and using (3.29), we obtain that Fy, Fyy are continuous
in (t, y) and satisfyFy(t, u0(t)) = 0,

Fyy(t, u0(t)) = ˙̃
W − C + W̃A+AT W̃ + W̃BW̃ < 0.

From Taylor’s formula follows that for every (t, y) ∈ T (u0, ε3) we have

F (t, y) ≤ F (t, u0(t)) = Vt(t, u0(t)) + Vy(t, u0(t)) · u̇0(t). (3.32)

Set ε = min(ε1, ε2, ε3), let (t, y) ∈ T (u0, ε) and v ∈ Rn. Then, using (3.29), (3.31), (3.32)
and condition (W’), we obtain

Vt(t, y) + Vy(t, y) · v − L(t, y, v) = Vt(t, y) + Lu̇(t, y, ζ(t, y)) · v − L(t, y, v)
≤ Vt(t, y) + Lu̇(t, y, ζ(t, y)) · ζ(t, y)− L(t, y, ζ(t, y))
= F (t, y)
≤ F (t, u0(t))
= Vt(t, u0(t)) + Vy(t, u0(t)) · u̇0(t)− L(t, u0(t), u̇0(t)),

i.e. the function V (t, y) satisfies (HJ).

Remark 3.21. Note that, if in the above proof we drop the Weierstrass condition (W’),
we arrive to the conclusion that (HJ) is true only on a restricted tube RT (u0, ε), for
some ε > 0. Therefore, we can state that u0 is only a (WLM). This proves that the
theory of weak local minimizers can be also formulated in terms of the (SR) condition,
instead of using the approach of Section 3.3 based on coupled points.
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3.5 Examples

In this last part of the chapter we show some examples of application of the above theory,
focusing also on the differences on the two approaches presented. The first example is
a simple 1-dimensional problem, useful to recall the results described. The second one
is the Kepler problem, which is a well known 2-dimensional problem, useful to test the
theory. As last example, we apply the theory to the periodic orbits of the N -body
problem with the symmetry of Platonic polyhedra, discussed in Section 1.2. In this
case, even if we know that the minimizer exists, the solution is computed with numerical
methods, which does not ensure that the orbit they produce is actually a minimizer of
the action.

Example 1. Fixed a period T > 0, consider the functional

A(u) =
∫ T

0

u̇2 + u2

2 dt,

defined on the set of the C1 T -periodic functions u : [0, T ] → R. Note that A is itself
a quadratic functional and it is trivial that A(u) ≥ 0 and A(u) = 0 if and only if
u(t) ≡ 0. But still, we can check the sufficient conditions given by Theorem 3.9. The
Jacobi differential equation is {

ẏ = z,

ż = y,

and the general solution is given by{
y(t) = Aet +Be−t,

z(t) = Aet −Be−t,

where A,B ∈ R. With straightforward computations, we obtain that the solutions
(y0, z0), (yT , zT ) and the corresponding solutions of the Riccati equation are

y0(t) = et − e−t

2 , z0(t) = et + e−t

2 , w0(t) = et + e−t

et − e−t
,

yT (t) = −e
t−T + e−t+T

2 , zT (t) = −e
t−T − e−t+T

2 , wT (t) = −e
t−T − e−t+T

−et−T + e−t+T
.

The Legendre condition (L’) is trivially satisfied since Lu̇u̇ = 1, hence we can check
the validity of Theorem 3.9 by verifying one of the equivalent properties. From the
expression of y0(t), we can directly verify that it does not vanish in (0, T ], hence there
are no conjugate points and (J’) holds. Moreover, the expression in (3.19) is a scalar
number, and with simple computations, we see that it has the form

2
(
eT + e−T − 2

)
eT − e−T

,

and this is positive for T > 0. Property (iii) of Theorem 3.9 is therefore satisfied, hence
A is positive definite.
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Example 2 (Kepler problem). Fixed the period T > 0, we consider the action of the
Kepler problem

A(u) =
∫ T

0

(1
2 |u̇|

2 + 1
|u|

)
dt, (3.33)

defined on the set of the C1 T -periodic curves u : [0, T ]→ R2 which wind around but do
not intersect the origin. From [44], it is known that (3.33) attains its global minimum
at the elliptical T -periodic functions u which satisfy the Keplerian equations of motion,
i.e.

ü = − u

|u|3
, (3.34)

and for which T is the minimum period. This problem has a degeneration, since all the
elliptical solutions are minimizers. However, we can see what happens in case of circular
orbits. Circular orbits are given by

u0(t) = (a cos(nt), a sin(nt)), n = 2π
T
, a = 1

n2/3 .

Let us discuss first the second variation of the action. The second derivatives of the
Lagrangian are

Lu̇u̇ = I, Luu̇ = 0, Luu = − I

|u|3
+ 3uu

T

|u|5
.

The Legendre condition (L’) is trivially satisfied. When we evaluate the derivatives along
the circular solution, the only non-trivial one is

Luu(u0(t), u̇0(t)) = 1
a3

(
3 cos2(nt)− 1 3 cos(nt) sin(nt)

3 cos(nt) sin(nt) 3 sin2(nt)− 1

)
.

Since this matrix depends directly on the time, to solve the Jacobi differential equation
(3.9) we use numerical integration. We have done the computations for three different
values of the period, namely T = 0, 2π, 4π, and see the changes in the results.

The Jacobi condition (J’) can be verified numerically integrating the with initial
conditions Y0(0) = 0, Z0(0) = I, and then checking that detY0(t) 6= 0. The determinant
of Y0 is shown in Figure 3.1. As we can see, in all the cases there are no conjugate points,
hence condition (J’) holds.

To check property (iii) of Theorem 3.9, we have to integrate the Jacobi differential
equation backward in time, using as initial condition YT (T ) = 0, ZT (T ) = −I, then
compute the matrices W0(T ), WT (0) and construct the matrix in (3.19). Moreover,
these matrices can be used to construct also the matrix in (3.21). Therefore we check
the hypotheses of Lemma 3.11, in order to apply Theorem 3.10, and see the differences.
To simplify the discussion of the results, let us call D1 the matrix in (3.19) and D2
the one in (3.21). Since we have to check whether D1, D2 are positive definite or not,
we compute their eigenvalues. The results, for the different values of the period T
examined, are reported in Table 3.1. As we can see, the eigenvalues of matrix D1 are
always positive, therefore by Theorem 3.9 circular orbits are directional local minimizers.
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Figure 3.1: The determinant of the matrix Y0(t) for the circular orbits with period, from the left to the right,
T = 1, 2π, 4π respectively.

Moreover, by Theorem 3.18 we can state that they are also weak local minimizers. On
the other hand, the matrix D2 is positive definite only for T = 1, instead for T = 2π, 4π
negative eigenvalues arise. This means that, if we want to find a solution W or the
Riccati equation satisfying condition (SR), Lemma 3.11 is not always effective. Moreover,
following Remark 3.12, we computed the solution (Y,Z) = (Y0 + YT , Z0 + ZT ) and
constructed the solution W = ZY −1 of the Riccati equation. From the computations
performed, we verified directly that W is not a symmetric matrix, confirming that the
approach of Remark 3.12 cannot be used in general situations.

T eigs(D1) eigs(D2)

1 9.8024 9.4457
2.9775 2.1684

2π 1.5601 0.6872
0.4738 −0.4923

4π 0.7800 −0.7459
0.2369 −0.1552

Table 3.1: The eigenvalues of the two matrices D1 and D2 for the different values of the period.

However, in this case Lemma 3.13 can help to find a symmetric solution of the Riccati
equation satisfying condition (SR). Indeed, we already verified that (L’) and (J’) hold,
moreover the determinant Y0(t) is positive in (0, T ]. Since the dimension of the Kepler
problem is n = 2, we are in the hypotheses (i) of Lemma 3.13, hence condition (SR)
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holds. Therefore, the directional local minimality is verified also by Theorem (3.10).
Concerning the strong local minimality, we have to use the approach based on the

solutions of Riccati equation, and check the hypotheses of Theorem 3.20. Since the
second derivative Lu̇u̇ is globally positive definite, by Remark 3.19, the strong Weierstrass
condition (W’) holds. Since we already saw that condition (SR) holds, by Theorem 3.20,
the circular orbits taken into account are strong local minimizers of the Kepler problem.

Example 3. We take into account the orbits whose existence has been proved in Section
1.2. We know that these orbits exist, so that we assume for the moment that we are able
to compute a periodic solution u0 ∈ K, without knowing if they are the actual global
minimizers. We want to check whether what we compute is at least a local minimizer
or not. The numerical methods used for the computation of the orbits are described in
Chapter 4.

We take into account the four different solutions ν1, ν16, ν27, ν43, with the symmetry
of the Cube and period T = 1. The enumeration is referred to the one used in the list at
the website [34] and the sequences can be found in Table 5.1. The steps we perform are
similar to the ones used for the Kepler problem. First of all, we note that the Legendre
condition (L’) is satisfied, hence we try to check property (iii) of Theorem 3.9. From the
computation of Y0(t), we can compute its determinant and check whether the solution
has a conjugate point or not. From Figure 3.2 we can see that solutions ν1 and ν43 do
not have any conjugate point, therefore condition (J’) holds. On the contrary, solutions
ν16 and ν27 have a conjugate point near t = 1, hence these are not local minimizers.
Therefore, for the orbits ν1 and ν43, we construct the matrix in (3.19), which we still
call D1 and compute its eigenvalues. For the reasons explained before, we also compute
the matrix in (3.21) and call it D2. The computed eigenvalues are reported in Table
3.2. From these values we see that in both cases the matrix D1 is positive definite, even
if we note the presence of a very small eigenvalues. We can conclude that these orbits
satisfy property (iii) of Theorems 3.9 and the hypotheses of Theorem 3.18, therefore ν1
and ν43 are weak local minimizers. On the other hand, the matrix D2 is not positive
definite, since negative eigenvalues appear, hence Lemma 3.11 is not useful to deduce
(SR) condition. Moreover, since here the dimension of the space is odd and the sign of
the determinant of Y0(t) is positive, we can neither use Lemma 3.13, and we are not able
to conclude if they are also strong local minimizers or not.

orbit eigs(D1) eigs(D2)

ν1 0.33487314× 10−7 0.87715310× 101

0.99721256× 101 −0.26741239× 101

0.62518499× 101 0.53061290× 100

ν43 0.18803264× 102 −0.13136236× 103

0.29126208× 101 −0.16911298× 101

0.12147953× 10−9 0.17842526× 102

Table 3.2: The eigenvalues of the matrices D1 and D2 for the solutions ν1 and ν43.
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Figure 3.2: The determinant of the matrix Y0 in the interval [0, 1], for the four orbits ν1, ν16, ν27, ν43, with the
symmetry of the Cube.

As a remark, we want to emphasize that solutions in Section 1.2 are found as mini-
mizers of the action. Instead here we have seen that some solutions computed (namely
ν16 and ν27) are not minimizers, not even directional, and this seems to be a contra-
diction. This can be due to the fact that numerical methods do not ensure that what
we compute is a minimizer, and actually we computed another type of stationary point.
On the other hand, as we will see in Chapter 5, these orbits are computed using an im-
plementation of the direct method of Calculus of Variations, i.e. the gradient method,
whose aim is to modify the orbit in order to decrease the action. For this reason, it is
not likely that we end up in computing an orbit which is not a local minimizer.

However, we want to point out that minimizers of Section 1.2 are obtained imposing
an additional symmetry on the loop set, i.e. the choreography condition (1.6). Instead,
the theory developed in this chapter is done using the complete space of the T -periodic
loops: this means that we also allow non-symmetric variations for the orbit, that destroys
the symmetry condition (1.6). For this reason, it is possible that we can choose a non-
symmetric variation that reduces the value of the action, and this is not in contradiction
of being a minimizer on the loop set that includes condition (1.6). What we can do is
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try to adapt the above theory of local minimizers, taking into account the symmetry.

Including the symmetry in the theory Here we include the symmetry in the space
of loops. We are not going to do again the theory of local minimizers, but we underline
the major changes that have to be done in the proofs. From now on, we always assume
that condition (L’) holds. For the sake of simplicity, we assume that the dimension of
the system is n = 3, since this is the case we need. Let us suppose that the loops taken
into account satisfy the symmetry constrain

u

(
t+ T

M

)
= Ru(t), t ∈ [0, T ],

where R ∈ SO(3) and M is an integer number. To make the discussion simpler, we
suppose that L does not depend on the time, and suppose that∫ T

0
L(u, u̇) dt = M

∫ T
M

0
L(u, u̇) dt. (3.35)

We consider the functional
Ā(u) =

∫ T/M

0
L(u, u̇) dt.

defined on the set of loops

u :
[
0, T
M

]
−→ R3,

such that Ru(0) = u(T/M). Note that, by means of (3.35), if u0 : [0, T ] → R3 is a
minimizer of the functional A, then the restriction

u0
∣∣
[0,T/M ] :

[
0, T
M

]
−→ R3,

is a minimizer of Ā. Vice versa, if u0 : [0, T/M ] → R3 is a minimizer of Ā, then we
can extend it to a closed loop u0 : [0, T ] → R3, simply by using the rotation R, and we
obtain a minimizer for A.

Therefore, we study the minimality of u0, restricted to the interval [0, T/M ], as
stationary point for the functional Ā. We first discuss the positivity of the quadratic
functional, adapting Theorem 3.9. Note that the matrix D defining the boundary con-
ditions for the admissible curves for the second variation is

D =
(
R −I
0 0

)
∈ R6×6.

Therefore, a vector α ∈ R6 satisfying Dα = 0 is of the form

α =
(
β
Rβ

)
,
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where β ∈ R3. Inserting this relation in (3.18), we obtain that the second variation
associated to a solution u0 of the Euler-Lagrange equation, is positive definite if and
only if (J’) holds in the interval [0, T/M ] and the 3× 3 matrix

−WT/M (0)− Y −1
0 (T/M)R−RTY T−1

0 (T/M) +RTW0(T/M)R, (3.36)

is positive definite. Then, the proof that u0 is also a weak local minimizer can be done
in the same way as before.

Regarding the approach that uses the symmetric solution W of the Riccati equation
with boundary condition, we can look at the proof of Theorem 3.10. We still write the
quadratic functional using the solution W , and integrating by parts, the term outside
the integral becomes

v(t) ·W (t)v(t)
∣∣∣∣T/M
0

= v(T/M) ·W (T/M)v(T/M)− v(0) ·W (0)v(0)

= v(0) ·
(
RTW (T/M)R−W (0)

)
v(0).

Therefore, a symmetric solution W of the Riccati equation satisfying the boundary
condition

RTW (T/M)R−W (0) > 0, (3.37)

is sufficient to ensure a non-negative quadratic functional. Then, in the definition of
(SR) condition, (3.20) is replaced by (3.37). For the strong local minimality, the proof
of Theorem 3.20 is the same if we have assume that

p(0)−RT p
(
T

M

)
= 0. (3.38)

Note that, if the derivative Lu̇ is such that Lu̇(Ru,Rv) = RLu̇(u, v) for all (u, v), con-
dition (3.38) is verified, hence the remaining part of the proof of Theorem 3.20 is the
same.

Further computations For the case that we are studying, hypotheses (3.35) and
(3.38) are satisfied, hence we can check the modified conditions described above. We take
into account the two orbits ν16 and ν27, for which the value of M is 2 and 3 respectively.
Condition (J’) is satisfied, since from Figure 3.2 we see that there are no conjugate
points in the interval [0, 1/2] for ν16 and in the interval [0, 1/3] for ν27. Moreover,
integrating backwards the Jacobi differential equation (3.9), starting from t = T/M , we
can construct the matrix in (3.36), which we call D1 for the sake of simplicity. Therefore
we compute the eigenvalues of D1, in order to see whether it is positive definite or not.
The values of the computed eigenvalues are reported in Table 3.3. As we can see, D1
is positive definite, with a small eigenvalue appearing. Therefore, we can conclude that
these solutions are weak local minimizers, if restricted to symmetric variations. To state
the strong local minimality, we have to search for a symmetric solution W of the Riccati
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orbit eigs(D1)

ν16 0.14210855× 10−13

0.14377455× 102

0.21020856× 102

ν27 0.12768453× 10−10

0.15912220× 102

0.21086023× 102

Table 3.3: The eigenvalues of the matrices D1 for the solutions ν16 and ν27.

equation satisfying (3.37). To this end, we can prove statements similar to Lemma 3.11
and Lemma (3.13), modifying the proofs taking into account the form of the boundary
condition for the Riccati equation. However, as before, we are not able to verify the
hypotheses of these lemmas, and so we cannot conclude that they are strong minimizers.



Chapter 4

Numerical methods

In this chapter we describe the numerical methods, both non-rigorous and rigorous, used
in the following. In particular we focus on the computation of periodic orbits with given
period T > 0, on the continuation with respect to a parameter and on the rigorous
numerical techniques used to make computer-assisted proofs.

From now on, we assume that the equations of motion are given by a Lagrangian
L : [a, b]× Ω → R, where Ω ⊆ Rn × Rn is an open set. The dynamics is defined by the
Euler-Lagrange equation

d

dt

(
∂L

∂u̇

)
− ∂L

∂u
= 0. (4.1)

We assume also that we can write this equation in normal form, i.e. if we set x = (u, u̇),
then we are able to write equation (4.1) as a first order differential system of the form

ẋ = f(x, t). (4.2)

We also define the Lagrangian action

A(u) =
∫ b

a
L
(
t, u(t), u̇(t)

)
dt, (4.3)

where u : [a, b]→ Rn is a curve in H1([a, b],Rn). The set X of curves on which (4.3) is
defined depends on the problem one wants to study. In the case of periodic orbits with
fixed period T > 0, the time interval [a, b] is [0, T ] and

X ⊆
{
u ∈ H1([0, T ],Rn) : u(0) = u(T )

}
=: H1

T (R,Rn),

is a subset of T -periodic loops in H1. We recall that by Hamilton’s principle, it is known
that classical solutions of equation (4.1) are stationary points of the action (4.3).

4.1 Approximation with Fourier polynomials

A first method to compute periodic orbits is to use Hamilton’s principle: in particular,
we can search for minimizers of the action A. Following [78] and [96], we search for an

85
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approximation of the minimizers by discretizing the action A and considering it defined
on a finite dimensional loop space. To discretize the infinite dimensional set of T -periodic
loops, we take into account the truncated Fourier series at some order FM . We consider
only loops u : [0, T ]→ Rn of the form

u(t) = a0
2 +

FM∑
k=1

[
ak cos

(2πk
T
t

)
+ bk sin

(2πk
T
t

)]
, (4.4)

where ak, bk ∈ Rn are the Fourier coefficients. Restricting A to loops of the form (4.4)
we obtain a function A : Rn(2FM+1) → R that discretizes the action functional. This
function is defined simply by composition

A(a0, a1, . . . , aFM , b1, . . . , bFM ) =
∫ T

0
L(t, u, u̇) dt (4.5)

The derivatives with respect to the Fourier coefficients are

∂A

∂ak
=
∫ T

0

(
∂L

∂u

(
t, u(t), u̇(t)

) ∂u
∂ak

+ ∂L

∂u̇

(
t, u(t), u̇(t)

) ∂u̇
∂ak

)
dt

=
∫ T

0

(
∂L

∂u

(
t, u(t), u̇(t)

)
cos

(2πk
T
t

)
− 2πk

T

∂L

∂u̇

(
t, u(t), u̇(t)

)
sin
(2πk
T
t

))
dt,

∂A

∂bk
=
∫ T

0

(
∂L

∂u

(
t, u(t), u̇(t)

) ∂u
∂bk

+ ∂L

∂u̇

(
t, u(t), u̇(t)

) ∂u̇
∂bk

)
dt

=
∫ T

0

(
∂L

∂u

(
t, u(t), u̇(t)

)
sin
(2πk
T
t

)
+ 2πk

T

∂L

∂u̇

(
t, u(t), u̇(t)

)
cos

(2πk
T
t

))
dt.

If, as in our case, we assume that the Lagrangian L is of the form

L(t, u, u̇) = K(u̇) + U(t, u),

where

K(u̇) = 1
2 u̇ ·Mu̇, M = diag(m1, . . . ,mn), mi > 0, i = 1, . . . , n,

is the kinetic energy and U is the potential, we can explicitly compute the second term
of the integrals, and the partial derivatives become

∂A

∂ak
= 2(πk)2

T
Mak +

∫ T

0

∂U

∂u
(t, u(t)) cos

(2πk
T
t

)
dt, k ≥ 0, (4.6)

∂A

∂bk
= 2(πk)2

T
Mbk +

∫ T

0

∂U

∂u
(t, u(t)) sin

(2πk
T
t

)
dt, k > 0. (4.7)

Note that these derivatives may be large for high frequencies because of the term k2, and
this leads to instability of the classical gradient method (see [78]). In [78] the authors
propose a variant of the gradient method avoiding this problem. If ak is the k-th Fourier
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coefficient at some iteration, we obtain the new coefficient a′k for the successive step by
adding

δak = a′k − ak = −δτk
∂A

∂ak
, (4.8)

and similarly for the coefficients bk. This means that the decay rate in the Fourier
coefficients is controlled by a parameter δτk which depends also on the order k of the
harmonic. If we set

δτk = T

2(πk)2 δ, (4.9)

where δ > 0 is a small positive constant, this removes the high frequency instability.
To stop the iterations we could check the value of the residual acceleration, i.e. the

difference between the acceleration computed from u(t) and the vector field f(u(t)).
However, this in practice can be done only when there are no singularities in the equa-
tions. In the case of the N -body problem, when a passage near a collision occurs, we
have to choose a very large value of FM (see [96]) to obtain a better approximation, and
this slows down the computations. For this reason we choose to stop the iterations also
when the increments δak, δbk become small, as suggested in [78].

4.1.1 Gradient method on the sphere

Suppose now that the dynamics is constrained to be on the sphere S2 ⊆ R3. To simplify
the discussion we suppose that Ω = [0, T ]×S2×R3, the general case Ω = R×(S2)n×R3n

being similar. Denote with

Π : R3 \ {0} → S2, Π(x) = x

|x|
,

the projection on the sphere. The gradient method explained above can be adapted
to work in this setting simply by using this projection. Indeed, if u : [0, T ] → S2 is
a periodic loop on the sphere with Fourier coefficients ak, bk ∈ R3, k = 0, . . . , FM , we
still use equation (4.8) to obtain new coefficients a′k, b′k ∈ R3, k = 0, . . . , FM and a new
loop u′(t). However, u′(t) will not be on the sphere in general, but we can project it,
obtaining a new loop on the sphere ū : [0, T ] → S2, defined by ū := Π ◦ u′. Then we
can compute its corresponding Fourier coefficients āk, b̄k ∈ R3, k = 0, . . . , FM , either by
using the classical formula

āk = 2
T

∫ T

0
ū(t) cos

(2πk
T
t

)
dt,

b̄k = 2
T

∫ T

0
ū(t) sin

(2πk
T
t

)
dt,

or by using the FFT algorithm (see for example [89]), and continue with the iterations.
Note that the same manner to update the Fourier coefficients can be used every time we
have loops constrained to be on an embedded manifold M ⊆ Rn, provided that we have
a projection from the embedding space to the manifold itself.
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We remark that the natural way to define the gradient method on a manifold M
would be by using local charts ϕ : U → M , where U ⊆ Rs is an open set and s is
the dimension of the manifold. Composing the action A with the charts ϕ, we reduce
ourself to the previous setting explained at the beginning of this chapter, then we can
simply use the same formulation of the gradient method. Note that this method has
been effectively used in [74, 75] to compute choreographies on the sphere and on the
hyperbolic plane. However, in the simple case of the sphere, the method proposed here
is an effective and fast-to-code alternative that we have used successfully.

4.2 Shooting method

Another method to compute periodic orbits is to use the shooting method. We describe
this method for general systems of ODEs, that are not necessarily of Euler-Lagrange
type. The goal is to solve the boundary value problem{

ẋ = f(x),
x(T/M) = Sx(0),

(4.10)

where x ∈ Rn, f : Ω → Rn is a vector field, Ω ⊆ Rn is an open set, S ∈ O(n), and
M > 0 is an integer number. This formulation takes into account also possible rotation
or reflection symmetries of the periodic orbit. Note that if there are no symmetries at
all, we can set M = 1 and S = I and obtain the usual periodic boundary conditions.

Fixed m+ 1 time points 0 = τ0 < τ1 < · · · < τm = T/M , we define the function

G : Rnm → Rnm,

as {
Gi = φτi−τi−1(xi−1)− xi, i = 1, . . . ,m− 1
Gm = φτm−τm−1(xm−1)− Sx0,

(4.11)

where x0, . . . , xm−1 ∈ Rn are points in the space. If x(t) is a T -periodic solution satisfying
(4.10), the function G evaluated at

X = (x(τ0), . . . , x(τm−1)) ∈ Rnm,

vanishes. Then, the equation
G(X) = 0, (4.12)

is solved using the Newton method. The Jacobian matrix of G is
M1 −I

M2
. . .
. . . −I

−S Mm

 , (4.13)
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where
Mi = ∂

∂x
φτi−τi−1(xi−1), i = 1, . . . ,m.

If X ′ denotes the new value of X at some iteration of the Newton method and ∆X =
X ′ −X, at each step we solve the linear system

∂G

∂X
(X)∆X = −G(X). (4.14)

However, the Jacobian matrix is singular at the minimum points, since we are free to
choose the initial point along the periodic orbit. This degeneracy can be avoided as in
[1], by adding the condition on the first shooting point

f(x0) ·∆x0 = 0, (4.15)

to the system (4.14), where x0,∆x0 are the first components of X,∆X respectively. The
system of equations (4.14), (4.15) has nm+ 1 equations and nm unknowns, and we can
solve it through the SVD decomposition, obtaining the value of ∆X. Note that, if the
system has the Jacobi integral, as in the case of autonomous Lagrangian systems, the
additional degeneracy given by the conservation of this quantity is automatically removed
since we have fixed the period. Moreover, to increase the stability of the method, we use
a damping factor, i.e. the new value X ′ at a generic iteration is obtained as

X ′ = X + γ∆X. (4.16)

The damping parameter γ is adaptive and it is computed as

γ = γmin
max

{
γmin, ‖∆X‖∞

} ,
where ‖∆X‖∞ = maxi |∆Xi|.

4.2.1 Least squares approach

To search for the zeros of G we can also use a least-squares approach. We set

F (X) = |G(X)|2

2 ,

and search for the absolute minimum points by a modified Newton method. The deriva-
tives of F are

∂F

∂xj
=

n∑
i=1

∂Gi
∂xj
·Gi, (4.17)

∂2F

∂xj∂xh
=

n∑
i=1

[
∂Gi
∂xj

∂Gi
∂xh

+ ∂2Gi
∂xj∂xh

Gi

]
. (4.18)
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If X ′ denotes the new value of X at some iteration and ∆X = X ′ −X, at each step we
solve the linear system

A(X)∆X = − ∂F
∂X

(X), (4.19)

where the entries of the matrix A are

Ajh =
n∑
i=1

∂Gi
∂xj

∂Gi
∂xh

,

i.e. we consider an approximation of the second derivatives (4.18) of F , neglecting the
terms containing the second derivatives of Gi. For the same reasons explained above, we
have to add condition (4.15) to system (4.19) and still use the SVD method to compute
the corrections ∆X.

4.3 Continuation method

Suppose now that the vector field in (4.10) depends also on a real parameter, say λ, that
is f = f(x, λ). In this manner, also the function G in (4.11) depends on λ: G = G(X,λ).
Given a couple (Xi, λi)T such that G(Xi, λi) = 0, we want to continue this solution with
respect to the varying parameter λ, in order to find a curve of solutions, parametrized
with λ. To do this, we add to system (4.11) an equation to displace the entire couple
(X,λ)T . The system that we solve is therefore

G(X,λ) = 0,

1
2

∣∣∣∣
(
Xi

λi

)
−
(
X

λ

) ∣∣∣∣2 − δ2 = 0,
(4.20)

where δ > 0 is a positive value, determining the displacement along the curve of solutions.
The solution (Xi+1, λi+1)T of system (4.20) is computed using again a Newton

method, solving at each step a linear system given by the matrix ∂G

∂X

∂G

∂λ

X −Xi λ− λi

 . (4.21)

Since we are searching for periodic solutions, for the reasons explained above, we add the
transversality condition (4.15). The final system we solve at each step is non-squared,
and we use again the SVD decomposition. Since this is a pseudo arc-length method, the
starting guess to compute (Xi+1, λi+1)T should be constructed starting from the known
solution (Xi, λi), taking a tangent displacement along the curve of solutions. Here we
construct the starting guess approximating the tangent line using two previous different
solutions, say (Xi, λi)T and (Xi−1, λi−1)T , as(

X̂

λ̂

)
=
(
Xi

λi

)
+ γ

(
Xi −Xi−1
λi − λi−1

)
, γ = 2δ

|(Xi, λi)T − (Xi−1, λi−1)T | .
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Note also that, since G is defined through the flow of an ordinary differential equation
and we need to compute the derivatives of G with respect to the parameter λ, we have
to compute the derivatives of the flow with respect to λ. To do this, the system of
differential equations that we have to solve numerically is

ẋ = f(x, λ),

Ȧ = ∂f(x, λ)
∂x

A,

ẇ = ∂f(x, λ)
∂x

w + ∂f(x, λ)
∂λ

,

(4.22)

where x,w ∈ Rn, A ∈ Rn×n and λ ∈ R. Indeed, the second equation gives the derivatives
of the flow φt with respect to the initial condition x, while the third equation gives the
derivatives of the flow φt with respect to the parameter λ.

4.4 Starting guess for the shooting method

Despite the introduction of the dumping factor makes Newton’s method more stable and
can force the convergence in some cases, the choice of a good initial condition is still
fundamental to obtain a fast convergence. However, this choice strongly depends on the
features of the specific problem one is facing.

When the problem has a variational formulation and the action functional is coercive,
things become simpler. Indeed, we can first discretize and minimize the action using the
gradient method, as explained in Section 4.1, obtaining a rough approximation of the
solution, and then use this curve as starting guess for Newton’s method. Note that this is
still effective even if we do not have a theoretical proof of the existence of minimizers, as
long as the process of minimization of the action converges. We will see how to apply this
computation scheme in Chapter 5, applying the above methods to the N -body problem.

However, it can also happen that the gradient method fails, because the problem we
are facing does not have minima; it can also happen that the problem does not have a
variational formulation at all and therefore we cannot use the minimization of the action.
A general strategy that can be used in these cases makes use of continuation. It consists
in using an auxiliary differential problem

ẋ = g(x, t, λ), (4.23)

depending on a real parameter λ ∈ R, and possibly on the time t, such that for λ = 0
corresponds to the original problem (4.10), i.e. g(x, t, 0) = f(x). The idea is to make
the system simpler for λ = 1: if we are able to find easily a solution for this value of
the parameter, then we can use continuation and try to reach a value close to λ = 0. At
that point, we can switch to the original problem and use the output of the continuation
method as starting guess for the Newton method. In the next chapter we will see an
example where the minimization of the action fails and instead this method is effective.
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4.5 Computer-assisted proofs and rigorous numerics

The methods described above are all non-rigorous, in the sense that we always compute
an approximation of the initial condition x0 of a periodic orbit with fixed period T > 0,
without providing any estimate of the errors done during the computation. In this
section we mention tools and methods that we used to produce rigorous computer-
assisted proofs, which means that, together with the computations, we also provide the
information on the errors done.

4.5.1 Introduction to computer-assisted proofs

Since the mid 60s, the computational power of electronic calculators experienced an
enormous and fast development. Indeed, according to the now famous Moore’s law [79],
the number of transistors in integrated chips doubles every two years. This availability
of computing power led to the development of new mathematical techniques, aimed
to assist the human being in proving mathematical statements in a rigorous way, i.e.
theorems. The first computer-assisted proof goes back to the year 1977, in which a
proof of the Four Color Theorem [3, 4] was provided, even if it was rather controversial.
The Four Color Problem was first formulated in 1852 by Francis Guthrie, a student of
Augustus De Morgan, when, while trying to color the map of countries of England, he
noticed that four colors were sufficient [109]. An intuitive statement of this theorem
says that “given any separation of a plane into contiguous regions, the regions can be
colored using at most four colors so that no two adjacent regions have the same color”.
Another famous theorem, which has been proved with the help of a computer, is the
so called Kepler conjecture about sphere packaging. The statement was first formulated
by Johannes Kepler in 1611, in his essay Strena seu de nive sexangula. Intuitively, it
says that “the best way to pack equally sized spheres is in a pyramid”. The pyramid
packaging, represented in Figure 4.1, is also called face-centered cubic packaging. The

Figure 4.1: The face-centered cubic packaging.

first computer-assisted proof of this conjecture can be found in [53, 54].
One of the most famous problems of dynamics studied with computer-assisted meth-

ods is the Lorenz attractor and its chaotic nature [72, 105]. The understanding of the
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dynamics of this system was included in the list of open mathematical problems pro-
posed by Stephen Smale [98], as the 14-th problem. The proof has been given in [106],
with the aim of rigorous computational methods. Computer-assisted methods have also
been used to study solutions of the N -body problem, see for example [62, 60, 61, 37].
With computers we are able to check inequalities, using rigorous finite approximations
of numbers. If hypotheses of theorems are formulated as a finite number of inequal-
ities, here is where the role of computers becomes important and can help to verify
them. In the following, we will explain the tools and the methods needed to perform
computer-assisted proofs in dynamics.

4.5.2 Interval arithmetic and Interval Newton Theorem

Since the precision of floating point numbers is finite due to truncation, we use interval
arithmetic to take into account rounding-off errors. This means that all the basic oper-
ations between floating point numbers are replaced by the corresponding operations on
closed intervals, producing a superset of the true result. Interval computations are also
extended to all elementary functions. For a detailed explanation of interval arithmetic
and its implementation, the reader can refer to [80]. In the following, for any set B we
denote by [B] the interval hull of B, i.e. the smallest product of intervals containing B.
Moreover, for any interval set B we denote with mid(B) the center of B.

The main tool to rigorously prove the existence of a zero of a function is the Interval
Newton Theorem.

Theorem 4.1 (Interval Newton). Let f : Rn → Rn be a C1 function and let B ⊆ Rn be
a product of intervals. Assume that the interval hull of the Jacobian df(B), denoted by
[df(B)], is invertible. Let x0 ∈ B and define the interval Newton operator as

N(x0, B, f) = x0 − [df(B)]−1f(x0). (4.24)

Then

1. if
N(x0, B, f) ⊆ B, (4.25)

then there exists a unique x∗ ∈ B such that f(x∗) = 0;

2. if x1 ∈ B and f(x1) = 0, then x1 ∈ N(x0, B, f);

3. if N(x0, B, f) ∩B = ∅, then f(x) 6= 0 for all x ∈ B.

This theorem can be used to construct a Newton-like algorithm to find rigorous
enclosures of zeros of a function, as proposed in [62]. Given a first guess x0 ∈ Rn,
usually computed with non-rigorous methods, we choose an interval set B containing x0
and then perform the following algorithm.

Step 1 Compute N(x0, B, f).
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Step 2 If N(x0, B, f) ⊆ B, then return success.

Step 3 If B ∩N(x0, B, f) = ∅, then return failure, there are no zeros of f in B.

Step 4 If B ⊆ N(x0, B, f), then modify the computation parameters and go to Step 1.

Step 5 Define a new interval set B by B := B∩N(x0, B, f) and a new x0 by x0 := mid(B)
and then go to Step 1.

4.5.3 Computation of periodic orbits

To rigorously integrate a system of ODEs and compute rigorous enclosures of the partial
derivatives with respect to the initial conditions, we use the C1-Lohner algorithm [114].
This algorithm is based on the Taylor integration method (see e.g. [59] or [8]) and a
particular set representation, which is fundamental to obtain sharp enclosures of the
solution. Indeed, the naive representation of sets does not work, due to the huge un-
controlled overestimation of the errors done during the integration: this effect is usually
known as wrapping effect [80]. Given a set of initial conditions B ⊆ Rn and a time τ , the
C1-Lohner algorithm produces an enclosure of the solution of the ODE and of its deriva-
tives with respect to the initial conditions at time τ . The C1-Lohner algorithm, as well
as algorithms to rigorously compute Poincaré maps for affine sections, are implemented
in the CAPD library [58].

We want to use rigorous numerical integration to find an enclosure for the initial
condition of a periodic orbit, using the tools described above. Here we suppose that the
system has n degrees of freedom and has a Lagrangian L, independent from the time.
The system has the Jacobi first integral, defined as

E(u, u̇) = ∂L

∂u̇
· u̇− L(u, u̇). (4.26)

Since the hypotheses of Theorem 4.1 require the solution to be isolated, first we have
to determine a unique initial condition of a periodic orbit: for this purpose we use a
Poincaré map. Fixed a value h, we choose a hypersurface σ ⊆ R2n transversal to the
flow and, setting x = (u, u̇), we define the isoenergetic manifold

Σ = {x ∈ R2n : x ∈ σ, E(x) = h},

and denote with
p : Σ→ Σ,

the associated Poincaré map. The value h of the energy is obtained computing the energy
of a non-rigorous solution x0 ∈ Σ, computed with the methods exposed in Section 4.2.
If the system does not have any other first integral then, in general, fixed points of the
map p are isolated. Now, given a product of intervals B ⊆ Rn containing x0, we can
apply the algorithm described above to the function

f(x) = p(x)− x,
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and, if it is successful, Theorem 4.1 yields the existence of a unique fixed point of the
Poincaré map in the set B, and therefore a unique initial condition for the corresponding
periodic orbit.

Furthermore, if one wants to study the stability of the periodic orbit, once we have
the box B containing the initial condition, we use the C1-Lohner algorithm to compute
an enclosure of the monodromy matrix, since it corresponds to the partial derivatives
of the solution with respect to the initial conditions, computed at time t = T , where
T denotes the period. At this point we have a rigorous estimate on the entries of the
monodromy matrix, and one can deduce rigorous enclosures for the Floquet multipliers.
In the next chapter we will see how to proceed with this step for the periodic solutions
found in Chapter 1.
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Chapter 5

Numerical computations in
N-body systems

In this chapter we use numerical methods described in Chapter 4. In particular, in
the first section we see how to compute periodic orbits with the symmetry of Platonic
polyhedra, described in Chapter 1. After the computation of an initial point, we focus
on the study of their stability, using rigorous numerical techniques aimed to produce
computer-assisted proofs. For a small number of these orbits we were able to rigorously
prove their instability. Non-rigorous numerical computations show that all the orbits
found with the algorithm in Section 1.3 are unstable, always experiencing a large Floquet
multiplier. In the second section we compute periodic orbits in a system composed by
charged particles, moving under the Coulomb force. In particular, we take into account
the so called Coulomb (N+1)-body problem, composed by a positively charged particle,
fixed at the origin, and N equally negatively charged particles, surrounding the positive
charge. This system reminds the Rutherford model of the atom [92]. Moreover, still using
numerical computations, we provide some suggestions about the variational nature of
the orbits we compute.

5.1 System of N masses and computer-assisted proof

In this section we compute periodic orbits of the N -body problem with the symmetry
of Platonic polyhedra, whose existence has been proved in Chapter 1. In particular,
we were able to compute the orbits in the lists produced by the algorithm described in
Section 1.3. Videos and other numerical results about them can be found at the website
[34].

5.1.1 Computing periodic orbits

The orbits enumerated in Section 1.3 were first computed with non-rigorous numerical
methods described in Chapter 4: to this end we used the following strategy.

97
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Step 1: Generate a first guess in the desired free homotopy class, computing the Fourier
coefficients of the linear piecewise loop v, travelling along the sides of QR, defined
by the sequence of vertexes ν. We usually used a number of Fourier modes between
30 and 50.

Step 2: Start the iterations of the gradient method of Section 4.1, using the first guess
computed at Step 1. At each step, the Fourier coefficients are changed in order to
decrease the value of the action. We stop iterating when the increments δak, δbk
become small enough.

Step 3: Use the loop produced by the last iteration of the gradient method to construct
a first guess for the shooting method of Section 4.2, then start its iterations. To
make the computation faster, we added to the system (4.10) also the symmetry
of the generating particle, given by the choreography condition (1.6). We usually
used a number of shooting points between 5 and 20.

Examples of orbits computed are displayed in Figure 5.2. More figures and videos can
be found at the website [34].

As further experiment, we also tried to compute the orbits with the same symmetry
and topological constraints, but forcing the particles to be constrained on a sphere of
fixed radius. We applied the variant of the gradient method described in Section 4.1 to
some free-homotopy classes ν, obtaining the convergence of the method. This suggests
that these orbits still exist in this setting. Figure 5.1 shows two examples of them.
It is worth noting that choreographies have been computed on the sphere and on the
hyperbolic plane, see [74, 75]: the authors were able to carry the planar choreographies
computed by C. Simó [97, 96], on a non-flat two-dimensional space, using the cotangent
potential [14, 32] as interacting force.

Figure 5.1: Two orbits with the symmetry of the Cube, with the particles constrained to be on a sphere of radius
1. The red curve is the trajectory of the generating particle.



5.1. SYSTEM OF N MASSES AND COMPUTER-ASSISTED PROOF 99

5.1.2 Properties of the monodromy matrix

After the computation of an initial point of the orbit, we studied the stability focusing
on the dynamics of the generating particle. This corresponds to study the stability of
the periodic orbit of the full N -body problem with respect to symmetric perturbations.
However, if the orbit of the generating particle is unstable, also the full orbit of N -body
is unstable.

From the standard Floquet theory we know that the monodromy matrix M(T ) is a
6×6 real symplectic matrix with a double unit eigenvalue, one arising from the periodicity
of the orbit and the other one from the energy conservation. Since M(T ) is symplectic,
we have only three possibilities for the remaining eigenvalues λ1, λ2, λ3, λ4:

(1) some of them are real and λ1λ2 = 1, λ3λ4 = 1;

(2) λ1, λ2, λ3, λ4 ∈ C \ R and λ1 = λ−1
2 = λ̄3 = λ̄−1

4 ;

(3) λ1, λ2, λ3, λ4 ∈ C \ R and λ1 = λ−1
2 = λ̄2, λ3 = λ−1

4 = λ̄4.

As in [60], we can give a stability criterion using the values T1 = λ1+λ2 and T2 = λ3+λ4.
The characteristic polynomial of the monodromy matrix is

p(λ) = (λ− 1)2(λ− λ1)(λ− λ2)(λ− λ3)(λ− λ4)
= (λ− 1)2(λ2 − T1λ+ 1)(λ2 − T2λ+ 1)
= λ6 − (T1 + T2 + 2)λ5 + (T1T2 + 2(T1 + T2) + 3)λ4 + . . .

.

Let us denote by dij the generic entry of the monodromy matrix, and set

a =
6∑
i=1

dii, b =
∑

1≤i≤j≤6
(diidjj − dijdji).

From the expressions of the coefficients of the characteristic polynomial we obtain{
T1 + T2 + 2 = a,

T1T2 + 2(T1 + T2) + 3 = b.
(5.1)

It turns out that T1 and T2 are the roots of the polynomial of degree two

q(s) = s2 − (a− 2)s+ (b− 2a+ 1). (5.2)

We use the following result, see [60].

Lemma 5.1. Let T1, T2 the roots of the polynomial (5.2). The eigenvalues of the mon-
odromy matrix lie on the unit circle if and only if{

∆ = (a− 2)2 − 4(b− 2a+ 1) > 0,
|T1| < 2, |T2| < 2.

(5.3)
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Proof. The hypothesis ∆ > 0 yields that T1, T2 are real and distinct. This excludes the
possibility (2) above. We also exclude (1), because in this case we have

|T1| = |λ1 + λ2| = |λ1 + λ−1
1 | > 2, |T2| = |λ3 + λ4| = |λ3 + λ−1

3 | > 2.

The only possibility left is (3), that is the eigenvalues of the monodromy matrix lie on
the unit circle.

By this lemma we avoid the numerical computation of the eigenvalues and we can
establish the stability of the orbit simply by computing the roots of a polynomial of
degree two, whose coefficients depend only on the entries of the monodromy matrix
M(T ). As already explained in Subsection 4.5.1, this lemma permits also to produce a
computer-assisted proof, since we can check inequalities (5.3) using a computer.

Moreover, for symmetric periodic orbits we can factorize M(T ) as in [91]:

M(T ) = (STM(T/M))M , (5.4)

where M(t) is the fundamental solution of the variational equation at time t. Here the
matrix S ∈ R6×6 is given by S = diag(R,R), and R ∈ R is the matrix satisfying the
choreography condition (1.6). This means that we can integrate the variational equation
only over the timespan [0, T/M ] and we can study the stability by applying Lemma 5.1
to the matrix STM(T/M).

Our numerical computations suggest that all the periodic orbits found in Section 1.3
are unstable. Non-rigorous numerical values of ∆, T1, T2 for can be found at the website
[34]. To make rigorous the results and produce a computer-assisted proof, we have to
integrate the equation of motion using interval arithmetic ([80]), as explained in Section
4.5.

label M vertexes of QO
ν1 2 [1, 3, 8, 10, 16, 5, 1]
ν16 2 [1, 3, 8, 18, 13, 12, 4, 9, 2, 19, 11, 14, 1]
ν27 3 [1, 3, 7, 20, 18, 8, 15, 4, 6, 10, 16, 5, 1]
ν43 4 [1, 3, 8, 15, 4, 9, 2, 5, 1]

Table 5.1: List of sequences used in the tests. The labels correspond to the enumeration used in the website [34].

5.1.3 Computer-assisted proof of the instability

We have applied the method described in Section 4.5 to produce a rigorous proof of
the instability of the periodic orbits corresponding to the free-homotopy classes listed in
Table 5.1. As surface of section we choose

Σ = {(u, u̇) ∈ R6 : u3 = 0, E(u, u̇) = h},
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where u3 is the third component of u and h is the value of the energy of an approximated
initial condition (u0, u̇0) ∈ Σ. This condition is computed from the solution ũ(t) obtained
with the shooting method, propagated to reach the plane u3 = 0. Note that, up to a
rotation R ∈ R, we can always assume that ũ(t) passes through this plane.1 The N -body
motion corresponding to the selected cases is displayed in Figure 5.2.

Figure 5.2: Periodic motions of the N bodies corresponding to the sequences listed in Table 5.1. The solid black
curve represents the trajectory of the generating particle.

Hereafter we shall use a notation similar to [60, 61] to describe an interval: first we
write the digits shared by the interval extrema, then the remaining digits are reported
as subscript and superscript. Thus, for instance, we write

12.34567895678
1234

for the interval
[12.34567891234, 12.34567895678].

For the four selected cases in Table 5.1 we checked that condition (4.25) holds using
multiple precision interval arithmetic. This ensures the existence of an initial condition

1For instance, for ν1 and ν43 we rotate the orbit of the generating particle, as it does not pass through
the plane u3 = 0.
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for the orbits in the selected box B. When the bodies do not undergo close approaches,
as in the cases of ν16 and ν43, the inclusion can be checked with a much larger box. Using
double precision arithmetic, CPU times are quite short: less than a minute in both cases.
Multiple precision computations are slower: with the parameters given in Table 5.2 the
computer-assisted proof took about 40 minutes for ν16 and 60 minutes for ν43. On the
other hand, when close approaches occur, as in the cases of ν1 and ν27, we are forced
to use a very tiny box, a longer mantissa and a higher order for the Taylor method (see
Table 5.2) and moreover, we need to compute an initial point with the shooting method
using quadruple precision. This increases significantly the CPU time: 104 minutes for
ν1 and 190 minutes for ν27. All the tests reported in this section were performed on an
AMD FX(tm)-4100 Quad-Core 1.4 GHz Processor.

To show the instability of these orbits we prove that conditions (5.3) are violated. For
ν16 and ν43 these computations are successful even using only double precision interval
arithmetic. In the other two cases we need multiple precision and a higher order for
the Taylor method. As we can see from Table 5.2, the value of T1 is well above 2, that
yields a computer-assisted proof of the instability of these four test orbits. In Table 5.3
we report also the non-rigorous values of ∆, T1, T2, obtained by numerical integration
without interval arithmetic. Comparing the values in the two tables, we can see that
the non-rigorous ones are in good agreement with the estimates computed with interval
arithmetic. Non-rigorous values for several other orbits can be found at [34].

label mantissa (bits) size(B) order ∆ T1 T2

ν1 100 2 · 10−18 30 1488.953031
2965 43.365500

499 4.7785466
1

ν16 52 2 · 10−14 15 90582.130
06 301.099389

68 0.1307566
359

100 2 · 10−14 30 90582.122
14 301.099382

76 0.1307492
33

ν27 100 2 · 10−25 30 5105.471787
6 73.2790356

5 1.8264514
3

ν43 52 2 · 10−14 15 7.035520
19 9.23226059

1 6.5798051
0

100 2 · 10−14 30 7.035520
19 9.23226058

3 6.5798051
0

Table 5.2: Enclosures for the values of ∆, T1, T2.

label ∆ T1 T2

ν1 1488.953003 43.365500 4.778546
ν16 90582.118054 301.099379 0.130746
ν27 5105.471786 73.279035 1.826451
ν43 7.035519 9.232260 6.579805

Table 5.3: Non-rigorous values of ∆, T1, T2.
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5.1.4 Conclusions and further remarks

All the solutions found with the rotation groups {T ,O} appear to be unstable, with a
large value of |T1| or |T2| (see the website [34] for the results). Using multiple precision
interval arithmetic, we were able to make rigorous these results for a few orbits, producing
a computer-assisted proof of their instability. From the numerical point of view, the main
difficulty is to automatize the choice of the parameters appearing in the computations:
the order of the Fourier polynomials, the number of shooting points, the size of the boxes,
the order of the Taylor method, the mantissa size for multiple precision computations,
etc. Moreover, when the bodies undergo close approaches, a longer computational time
is needed to check whether condition (4.25) holds, because a larger size of the mantissa
is required. This requires a long computational time. For these reasons we performed
interval arithmetic computations only for a few orbits in our list.

We also have to point out that there is no guarantee that the computed periodic
solutions correspond to minimizers of the action A, whose existence have been assessed
in Sections 1.2, 1.3. Indeed, with the proposed procedure, we first search for a minimizer
of A in a finite dimensional set of Fourier polynomials by a gradient method, decreasing
the value of the action; then we refine these solutions by a shooting method. This
algorithm is meant to obtain local minima of the action A. However, there is no proof,
not even computer-assisted, that the computed solutions minimize the action A in the
cone K. What can be done is to study the variational properties of these solutions with
the theory of local minimizers described in Chapter 3, understanding whether they are
at least local minimizers of the action. Examples of non-rigorous computations have
been proposed in Section 3.5.

Figure 5.3: Periodic motion with ν not fulfilling condition (1.17).

As a final remark, we observe that the procedure described in Section 4.5 can also
be used to prove the existence of periodic orbits not included in our list. For example,
the sequence

ν = [1, 3, 7, 18, 20, 24, 12, 4, 9, 17, 19, 21, 23, 14, 1],

of vertexes of QO does not satisfy the condition on the maximal length (1.17): in fact it
has M = 2, lmax(2) = 12 and the length of ν is 14. This means that we cannot exclude
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total collisions with the estimates of Chapter 1. However, the validity of condition
(4.25) can be checked numerically. Using the approximated orbit obtained with multiple
shooting, we were able to check that (4.25) holds using a box with size 2 · 10−14. In this
way, we have a computer-assisted proof of the existence of a periodic orbit belonging to
K(ν), represented in Figure 5.3.

We also found the values

∆ = 442358
29, T1 = 665.394

83, T2 = 0.305
293,

that yields a rigorous proof of the instability of this orbit.

5.2 System of N + 1 charged particles

The connection between the macroscopic scale, i.e. Celestial Mechanics, and the micro-
scopic scale, i.e. atomic mechanics, is given by the Coulomb force, which governs the
interaction between charged particles. The Coulomb potential depends on 1/r, as the
Newtonian potential, with the difference that it depends on the charges and not on the
masses. However, charges can be also negative, making this force both attractive and
repulsive. The most famous connection is given by the Rutherford model of the atom
[92], which represents the atom as a miniature Solar System: the nucleus is placed at the
center and plays the role of the Sun, while the electrons orbit around it, see Figure 5.4.

Figure 5.4: A representation of Rutherford’s model of
the atom.

Since the introduction of quantum mechan-
ics, this model was deprecated. How-
ever, despite quantum mechanics provides
a more accurate description of nature, clas-
sical methods are still useful in studying
atomic dynamics [107].

In more recent years, the Coulomb N -
body problem, i.e. the problem of N
charged particles which interact through the
Coulomb force, was taken into account, and
periodic orbits in the Coulomb 3-body prob-
lem were found, see for example [86, 93, 57],
trying to reproduce some features of the
known orbits in the classical Newtonian 3-
body problem. On the other hand, some
special symmetric solutions were found nu-
merically in [27], for small values of N . The use of the Coulomb force as the only
interacting force is motivated by the fact that the gravitational interaction is negligible
when the electrostatic force is introduced in the system. Moreover, the Coulomb force
by itself amounts to a non-relativistic approximation, which is reliable only when the
velocities are small compared to the speed of light [64].

In this section we consider the Coulomb (N + 1)-body problem, composed by a
positive charged particle and other N negative equally charged particles. We search for
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periodic motions sharing the symmetry of Platonic polyhedra, hence N can be either
12, 24 or 60. Here we have been able to compute a set of periodic orbits similar to
the one found in Section 1.3, see the website [36] for animations of these solutions.
Our numerical computations also show that these orbits are unstable. Moreover, since
the approach used in Chapter 1 for the proof of the existence was the minimization of
the action, here we investigated whether this method could still work for the Coulomb
(N+1)-body problem or not. However, we show numerically that the orbits we compute
are not minimizers of the action, not even locally. Finally, we compute other periodic
orbits with an even number of electrons, similar to the one found in Section 2.3.

5.2.1 The electrostatic potential

We take into account a system composed by N + 1 charged particles, one of which has
positive charge and the rest have equal negative charges. Despite the Rutherford model
[92] turned out to be not valid to represent the physical nature of the atom, for the sake
of simplicity we will use terms as electrons and nucleus in the following.

We denote with q < 0,m > 0 the charge and the mass of the electron respectively,
with Q > 0 the charge of the nucleus, with ui ∈ R3, i = 1, . . . , N the position of the i-th
electron and with u0 ∈ R3 the position of the nucleus. The mass of the nucleus is very
high compared with the mass of the electrons, so we assume that the nucleus stays fixed
at u0 ∈ R3. The particles move under the Coulomb force, and the system of equations
that determine the motion is given by

müi = κq

[ N∑
j=1
j 6=i

q
ui − uj
|ui − uj |3

+ Q
ui − u0
|ui − u0|3

]
, i = 1, . . . , N, (5.5)

where κ > 0 is the Coulomb constant.
We choose a reference frame centered at the center of mass, hence from now on we

assume that u0 ≡ 0. The system (5.5) is Lagrangian, and the Lagrangian L is given by

L = K + U,

where

K = 1
2

N∑
i=1

m|u̇i|2, (5.6)

is the kinetic energy and

U = −κ
∑

1≤i<j≤N

q2

|ui − uj |
− κ

N∑
i=1

qQ

|ui|
, (5.7)

is the Coulomb potential. To simplify the computations, we choose the units of charge,
mass and distance so that

- the charge of the electron is unitary, hence q = −1,
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- the mass of the electron is unitary, hence m = 1,

- the Coulomb constant is unitary, hence κ = 1.

Solutions to the equations (5.5) can be found also as stationary points of the Lagrangian
action functional, defined as

A(u) =
∫ b

a
L(u, u̇) dt. (5.8)

The functional (5.8) is defined over a set of curves K ⊆ H1([a, b],R3N ), which has to be
specified, depending on the problem that one wants to study.

5.2.2 Symmetry of the Platonic polyhedra and topological constraints

We want to compute periodic orbits of the system (5.5), imposing both symmetry and
topological constraints. As done in Chapter 1, we take into account a Platonic poly-
hedron and we denote with R its rotation group. We consider a system composed by
N = |R| electrons, hence N can be either 12, 24 or 60 and, identifying {1, · · · , N} with
the elements of R, we label the positions of the particles with the rotations of the group.
Fixed the period T > 0, we impose the constraints (a), (b) and (c) of Section 1.2 on the
loops. Taking into account the symmetry (a), the action functional writes as

A(u) = N

∫ T

0

(1
2 |u̇I |

2 − 1
2

∑
R∈R\{I}

1
|(R− I)uI |

+ Q

|uI |

)
dt, (5.9)

and it is defined on the set of T -periodic loops

K = {u ∈ H1
T (R,R3N ) : (a), (b) and (c) hold}. (5.10)

Since a term with a negative sign appears in the Lagrangian, it is not clear whether this
functional is coercive or not, and the search for periodic orbits using the minimization
of the action does not apply so easily. For this reason we investigate the existence of
periodic orbits with a preliminary numerical study.

Note that (5.9) depends only on the motion of the generating particle uI . This means
that we can reduce the searching for periodic orbits of the full system of charges to the
searching of periodic orbits of the generating particle uI , whose dynamics is defined by
the Lagrangian

L = 1
2 |u̇I |

2 − 1
2

∑
R∈R\{I}

1
|(R− I)uI |

+ Q

|uI |
. (5.11)

The Euler-Lagrange equations of (5.11), written as first order system, are
u̇I = vI ,

v̇I =
∑

R∈R\{I}

(I −R)uI
|(R− I)uI |3

− QuI
|uI |3

.
(5.12)
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This system has the advantage that the dimension is much more smaller than the dimen-
sion of the system of equations (5.5), 6 compared to 6N . Moreover, if the periodic orbit
of the generating particle uI is unstable in the system (5.12), also the complete orbit
with N electrons is unstable in the system (5.5). On the other hand, the stability in
the reduced system leads only to the stability with respect to symmetric perturbations
of the complete orbit. To study entirely the stability, we need to solve equations (5.5),
together with its variational equation, in order to compute the full 6N×6N monodromy
matrix. Since we do not expect to find many stable orbits for the reduced system, the
study of the stability is divided in two steps: at the first step we check whether the
generating particle is stable in the reduced system or not and, if it is stable, we proceed
in the computation of the full monodromy matrix and get an estimation of the Floquet
multipliers.

5.2.3 Computing periodic orbits

As it has been mentioned in Chapter 4, one of the difficulties in computing periodic
orbits is to find a good initial guess for the Newton method to converge. To deal with
this, we have used two different continuation schemes.

From the physical intuition, if the central charge Q is zero, the electrons only repel
each other, and we do not expect to find any periodic solutions. For continuity reasons, if
the central charge is too small compared to the number of electrons, a periodic orbit could
still not exist. On the contrary, if the positive charge is large enough, the contribution
of the electrons in the vector field (5.5) is small, compared to the term given by the
positive charge. Indeed, rescaling the loops as ui(t) = Q1/3vi(t), i = 1, . . . , N in (5.5),
we obtain a differential equation for vi, which writes as

v̈i = µ
N∑
j=1
j 6=i

vi − vj
|vi − vj |3

− vi
|vi|3

, i = 1, · · · , N, (5.13)

where µ = 1/Q. Note that, when the positive charge is ideally “infinite”, the interactions
between the electrons disappear, and the differential equation that determines the motion
of vi is the equation of the Kepler problem. Intuitively, when the central charge is finite
but very large, the solution is close to a circular piecewise loop, composed by Keplerian
arcs, joined at points on the collision lines, similarly to what we saw in Chapter 2. For
this reason, periodic solutions seem more likely to exist when the central charge is high
enough. Therefore, we search for periodic orbits for a high value of the central charge,
then we consider Q as a parameter and use the continuation method to lower its value.

To find periodic orbits for large values of Q we use the strategy explained in Section
4.4. Indeed, differently for the case of Section 5.1, the gradient method do not work.
This is also a first suggestion that the action is not coercive. Therefore, first we choose
a closed curve

ϕ : [0, T ]→ R6, ϕ(t) =
(
u(t), u̇(t)

)T
,
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such that the image of the spatial component u([0, T ]) belongs to the chosen free-
homotopy class of R3 \ Γ. Moreover, we can take this spatial component to be on a
sphere, since we expect that the final orbit does not have large changes in the radial
component. Of course this curve will not solve equation (4.10), but we can perturb the
system and define a new differential equation for which ϕ is a solution. Indeed, if we
define

ẋ = f(x)− εψ(t), (5.14)

where
ψ(t) = ϕ̇(t)− f(ϕ(t)),

then ϕ(t) is a solution of (5.14) for ε = 1. To find the periodic orbit for ε = 0, we consider
ε as a parameter and we use the continuation method. In our computations, we decided
to stop the continuation when we reach a value of ε < 10−2: this was usually enough
to have an initial guess for the shooting method to converge for ε = 0 and compute the
periodic orbit.

Summarizing, the approach used to compute the orbits is the divided in three steps.

Step 1: We generate a starting guess for a high value of the central charge Q, with the
method described above. In our computations, we decided to choose a value near
2N , i.e. two times the number of electrons.

Step 2: We compute the solution using the shooting method described in Section 4.2, with
the same value of Q used to produce the initial guess, and using continuation w.r.t.
ε as explained above, until we reach ε = 0. Using this last solution as starting
guess, we compute a second solution for the value of the central charge equal to
Q−1: this is needed to start the continuation w.r.t. the value of the central charge.

Step 3: Using the two solutions computed at the Step 2, we start the continuation method
described in Section 4.3, in order to find solutions for smaller values of Q.

5.2.4 Results of the computations

In Section 1.3, for each Platonic polyhedra, a list of free-homotopy classes of R3 \Γ, each
one containing a collision-free minimizer of the N -body problem with equal masses,
were provided: these lists are available at [34]. Here we search for symmetric periodic
solutions of the system (5.5), in the same free-homotopy classes listed at [34].

In Section 1.3, 9 and 57 homotopically different periodic orbits with the symmetry
of the Tetrahedron and the Cube, respectively, were found for the N -body problem with
equal masses. The total number of orbits with the symmetry of the Dodecahedron was
1442, but the entire computation of all of them was not done. Here we were able to
compute all these orbits also in Coulomb (N + 1)-body problem, with the symmetry
of the Tetrahedron and the Cube, reproducing the list in [34]. For the symmetry of
the Dodecahedron only a few number of orbits were computed (a large number of them
is expected). Examples of orbits with 24 electrons are displayed in Figure 5.5. More
images and videos are available in the webpage [36].
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Figure 5.5: Solutions with 24 electrons and the symmetry of the Cube. The value of the central charge is 24 in
all the four examples. The homotopy class for the orbits on top is ν2 and ν43 for the orbits on bottom. The
enumeration is referred to the website [36]. The red electrons represent the generating particles, and the red curve
are their trajectories. The black particle in the middle is the nucleus. The orbits on the right are obtained by
the continuation method, starting from the orbits on the left. We reached them after following a turning point
on the curve of solutions.

5.2.5 Continuation

In our computations we set the period to be T = 1: this is not restricting, since an orbit
with an arbitrary period can be found simply by rescaling size and time. During the
continuation process we always reached a turning point in Q. This means that, when we
were able to reach the physical situation of negative charged ions (i.e. when Q < N), we
can continue the solutions following the turning point, and find a second orbit in which
the system is neutral (i.e. when Q = N). This does not happen in all the cases we tried,
and it is not clear if there is an additional topological condition to be satisfied in order
to have the turning point below Q = N .
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5.2.6 Stability

As said before, the study of the stability is divided in two steps: first we study the
stability of the orbit of the generating particle in the reduced system (5.11), computing
a 6 × 6 monodromy matrix M6. If the generating particle in unstable, then also the
complete orbit in the system (5.5) is unstable, otherwise we proceed in the computation
of the complete 6N × 6N monodromy matrix M6N . During the continuation, the six
eigenvalues of M6 move in the complex plane. For the most of the orbits, looking at the
eigenvalues of M6 was enough to conclude the instability, since during the continuation
a very large Floquet multiplier (of the order that ranges from 106 to 1020, depending on
the orbit) appears. However, it can happen that for certain values of the central charge,
the eigenvalues of M6 are all on the unit circle, meaning that the generating particle is
stable in the reduced system. In these few cases we computed the matrix M6N , verifying
that the complete orbit is in fact unstable, since a large Floquet multiplier arises. An
example of this situation is reported in Figure 5.6. More figures of this kind can be
found at [36]. From the computations, it results that all the orbits are unstable. Results
for the orbits with the symmetry of the Tetrahedron are summarised in Table 5.4.
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Figure 5.6: The spectral radius of the monodromy matrix. On the x axis is reported the value of the central charge
and on the y axis is reported the value of the spectral radius, in logarithmic scale. The blue curve represents the
evolution of the spectral radius of the monodromy matrix in the reduced system, while the red curve represents
the evolution of the spectral radius in the complete system. During the continuation, the generating particle
becomes stable for certain values of Q (near Q = 20, blue curve), but in fact the resulting complete orbit is
unstable (red curve). This plot is referred to the orbits in Figure 5.5, bottom.

5.2.7 Are these orbits minimizers of the action?

Here we study whether the solutions obtained are local minimizers of the action (5.9)
or not. As first indication, we discretize the functional using a space of truncated
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label minQ |λ| (Q = minQ) |λ6N | (Q = minQ) |λ| (Q = 12)

ν1 10.346970805 7.3761606 / 0.18050567 · 104

ν2 8.281250928 2.5911113 / 0.26940597 · 104

ν3 9.965258217 3.7293607 / 0.49658024 · 102

ν4 12.905694682 1.0 0.4930569 · 105 /
ν5 8.720563122 0.28289539 · 103 / 0.33578812 · 109

ν6 9.546005362 0.49445974 · 102 / 0.27073516 · 105

ν7 8.076087749 0.18090607 · 105 / 0.33898930 · 1013

ν8 12.905977225 2.8508903 / /
ν9 12.905656346 1.0 0.2461446 · 1010 /

Table 5.4: Some numerical values obtained for the orbits with the symmetry of the Tetrahedron. Second column
contains an approximation of the minimal value of the central charge Q obtained during the continuation. Third
column contains the spectral radius of the monodromy matrix M6 for Q = minQ. When this value is equal to
1, we report the spectral radius of the complete monodromy matrix M6N in column four. Last column contains
the value of the spectral radius of M6 for Q = 12, for which the system is neutral. The labels correspond to the
enumeration used in the website [36].

Fourier series, as done in Section 4.1. In this manner the discretized action depends
only on a finite number of Fourier coefficients. To see if the computed solution u∗(t) is a
minimum or not, we can compute the coefficients of its Fourier series and then evaluate
the Hessian matrix of the discretized action, using high order numerical differentiation
based on Richardson extrapolation (see, for instance, [12] for a detailed treatment about
numerical differentiation). To reduce the numerical error, we computed the Hessian
matrix increasing the order of truncation, and compare the results. Negative eigenvalues
always arise, indicating that the computed solutions are not minima, but indeed saddle
points. However, the computation of the numerical Hessian results to be very slow,
especially when we use a large number of Fourier modes. Moreover, this method does
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Figure 5.7: The determinant of the matrix Y0(t) in the fundamental interval [0, T/M ] = [0, 1/2], for different
values of the central charge Q. These plots are referred to the periodic orbits in Figure 5.5, top.
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not take into account the symmetries included in the space of loops.
To study better the variational properties, we can use the theory of local minimizers

explained in Chapter 3, including also the symmetry constraint as explained in Example
3. First of all, we integrate the Jacobi differential equation and we search for conjugate
points in the fundamental interval [0, T/M ], simply by plotting the determinant of the
matrix Y0(t). Since the computation is quite fast, we can also see how the determinant
changes with respect to the value of the central charge Q, computing it during the
continuation process, and see how it behaves after the turning point. Most of the orbits
have a behaviour similar to the one shown in Figure 5.7, i.e. they have at least a
conjugate point in the interval [0, T/M ], indicating that they are not minimizers, not
even directional.

However it can occur that, during the continuation process, the determinant of Y0(t)
does not vanish for certain values of the central charge Q. An example of this behaviour
is shown in Figure 5.8, where we can see that the determinant is positive for the values
Q = 36, 40. Continue increasing the value of the charge Q, this behaviour still persists,
and it seems that the determinant has a limiting curve that does not vanish in the
fundamental interval (0, 1/4]. Hence we also have to compute the matrix in (3.36), and
verify whether it is positive definite or not. In this case, the eigenvalues of the matrix
in (3.36), for Q = 40, are computed to be

14.723038, 5.5236623, −307.98056,

hence this orbit is also not a local minimizer, despite the absence of conjugate points.
For values of Q > 40, this property still holds, and the negative eigenvalue seems to
converge to a value close to −60.757245.
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Figure 5.8: The determinant of the matrix Y0(t) in the fundamental interval [0, T/M ] = [0, 1/2], for different
values of the central charge Q. These plots are referred to the periodic orbits of Figure 5.5, bottom.

Further computations for the remaining orbits show that the two described be-
haviours are common to all of them, suggesting that they are not local minimizers, but
indeed different kind of stationary points, such as saddles. For this reason the method
of minimization of the action does not seem to work for the Coulomb (N + 1)-body
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problem to find periodic orbits, as it is formulated. A strategy could be to try to find
a proper loop set on which the action is coercive, or rather use critical points theorems,
see for example [2].

5.2.8 Hip-Hop solutions

In [27], periodic orbits of 2N electrons with a positive charged nucleus and the Z2N
symmetry were computed for small values of N (i.e. N = 2, 3, 4), for the case of the
neutral atom, i.e. Q = 2N . Note that the symmetry group is the same of the Hip-Hop
solutions of Subsection 2.3.4.

Here we tried to obtain again these orbits, using the computation strategy described
above and used for the case of the Platonic polyhedra symmetry. In all the cases we
tried, namely N = 1, . . . , 30 we were able to obtain periodic orbits in the case of the
neutral system, i.e. for Q = 2N . Using the continuation method, we also decreased this
vale: here, differently from the situation of the symmetry of Platonic polyhedra, we did
not observe a turning point in the curve of solutions. Instead, it seems that there is a
lower bound of Q for which this value of positive charge is not strong enough to hold the
electrons near the nucleus, and therefore everything blows up. In Figure 5.9, periodic
orbits with N = 6 and displayed for decreasing values of the central charge Q.

Figure 5.9: Periodic orbits of 2N electrons with the Z2N symmetry, for N = 6. The central charge is Q =
12, 8, 6, 5.5 (top left, top right, bottom left, bottom right respectively).

As we can see, the orbit of the generating particle tends to flatten to the coordinate
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plane {x3 = 0} and there is a small and fast migration from the upper half space {x3 > 0}
to the lower half space {x3 < 0}. This behaviour could possibly be the explanation of
the blow up of the orbit. Indeed, the migration becomes faster and faster as the central
charge decreases, and at a certain point the value Q of the central charge it is not
able anymore to counteract the repulsion between the electrons, which becomes large
during this process. Moreover, the spectral radius of the monodromy matrix grows as
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Figure 5.10: Spectral radius of the monodromy matrix for the periodic orbits with 2N electrons and the Z2N
symmetry, for N = 6.

Q approaches the lower bound, which is another suggestion about the behaviour of of
these orbits during the continuation. A plot of the spectral radius of the monodromy
matrix can be seen in Figure 5.10, for the example with N = 6.

Finally, we note that prove the existence of these orbits seems easier than the case
of the symmetry of the Platonic polyhedra. The idea is to use a perturbative approach
and use continuation with respect to a parameter (see, for instance, [82] for a deepen
explanation) instead of using variational methods. Indeed, if we rescale the loops as
ui(t) = Q1/3vi(t), i = 1, . . . , 2N , we obtain the equations of motion (5.13), which for
µ = 0 represent 2N uncoupled Kepler problems, where µ = 1/Q. Moreover, if we take
into account the Z2N symmetry, then the motion depends only on the generating particle
v1, and its equation of motion is given by

v̈1 = − v1
|v1|3

+ ∂U

∂v1
, U = −µ2

2N−1∑
i=1

1
|(Ri − I)v1|

. (5.15)

Also here, for µ = 0 the generating particle moves with Keplerian motion. Therefore, in
this setting, we are able to find a circular orbit with period T with the symmetry

v1(t+ T/2) = −v1(t), t ∈ R,

which is not contained in the plane {x3 = 0}. Moreover, since the angular momentum
is a first integral, system (5.15) has actually two degrees of freedom. The idea to prove
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the existence of these orbits is to construct a Poincaré map, and evaluate its differential
for µ = 0 in the point corresponding to the circular orbit, which is a fixed point of
the map. Then, if the eigenvalues are not on the unit circle, we can apply the implicit
function theorem to prove the existence of a fixed point of the Poincaré map for values
0 < µ < µ∗, for a certain µ∗ > 0. Then, a further issue is to estimate the value of µ∗,
to state whether µ∗ > 1/(2N) or not. Note that the value µ = 1/(2N) corresponds to
Q = 2N , for which we obtain a periodic orbit in a neutral system.
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Part II

The full and the averaged CR3BP
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Chapter 6

Averaging the restricted 3-body
problem

In this chapter we take into account the circular restricted 3-body problem, composed
by the Sun, a planet and an asteroid. The planet moves around the Sun on a circular
orbit, while the asteroid is allowed to move in the whole three-dimensional space. The
long term evolution of the asteroid is obtained averaging the vector field, due to the
gravitational attraction of the Sun and the planet, over the two fast angles involved in
the problem, i.e. the mean anomalies `, `′ of the asteroid and the planet respectively.
In Celestial Mechanics, when there are two sets of variables evolving over two different
time scales, averaging over the fast ones is a usual procedure. This removes all the fast
and small oscillations and captures the relevant long term dynamics. This is commonly
known as averaging principle and, since it is only a physical principle and not a formal
statement neither a theorem, it can not be applied in every situation, see [5].

In the circular restricted 3-body problem, provided that there are no close encounters
neither mean motion resonances between the asteroid and the planet, the semimajor
axis of the asteroid is nearly constant. In these conditions, the averaging principle can
be applied, the semimajor axis becomes constant and the averaged solution is a good
approximation of the original solution.

The averaged vector field becomes singular when the orbits of the planet and the
asteroid cross each other, but we can still define a generalized averaged solution that
passes through this singularity, see [49, 45, 50]. However, there is no proof that these
solutions are close to the solutions of the full circular restricted 3-body problem. This
comparison is investigated in Chapter 7. Instead, when there is a mean motion resonance,
the semimajor axis changes periodically over a secular timescale. In this situation we
can define another model, keeping all the resonant relevant terms, which describes the
long term dynamics, see for example [66].

On the other hand, in the circular restricted 3-body problem, the asteroid could
undergo close encounters with the planet. Close encounters are a source of numerical
instability: indeed, the orbit of the asteroid can vary largely for small perturbations of
the initial conditions. Therefore, we have to take care of this problem if we want to
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obtain reliable results to make a comparison with the above mentioned models. To this
end we use the Kustaanheimo-Stiefel regularization [102, 56].

6.1 The averaged circular restricted 3-body problem

We denote with X ,X ′ ∈ R3 the heliocentric position of the asteroid and the planet
respectively. The equations of motion for the asteroid are

Ẍ = −κ2 X
|X |3

+ m⊕
m�

κ2
( X ′−X
|X ′−X |3

− X ′

| X |3
)
, (6.1)

where κ is the Gauss constant and m�, m⊕ are the masses of the Sun and the planet,
respectively. System (6.1) can be written in Hamiltonian form as

Ẇ = −∂H
∂ X

, Ẋ = ∂H
∂W

=W,

where the Hamiltonian is

H(W,X , t) = |W|
2

2 − κ2

| X |
− m⊕
m�

κ2
( 1
| X −X ′(t)| −

X ·X ′(t)
| X ′(t)|3

)
. (6.2)

We choose the units so that the radius and the mean motion of the orbit of the Earth
are a′ = 1, n′ = 1, respectively. Moreover, we can set G = 1. Denoting with µ = m⊕,
from the Third Kepler Law for the Earth, we obtain m� = 1− µ, and moreover

κ2 = Gm� = 1− µ.

The dependence on the time in the Hamiltonian can be written using an angle, say
`′, identifying the position of the planet, which is

X ′(`′) =

cos(`′ + `′(0))
sin(`′ + `′(0))

0

 ,
where `′(0) is the initial phase.

To describe the motion, we use Delaunay elements Y = (L,G,Z, `, g, z), defined
through the classical Keplerian elements (a, e, I,Ω, ω, `) as

L = κ
√
a, ` = `,

G = κ
√
a(1− e2), g = ω,

Z = κ
√
a(1− e2) cos I, z = Ω.

(6.3)

In these coordinates, the Hamiltonian (6.2) becomes

H = H0 +εH1, ε = m⊕
m�

κ2 = µ,
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where
H0 = − κ4

2L2 (6.4)

is the unperturbed Hamiltonian, corresponding to a 2-body problem with the asteroid
and the Sun only, and

H1 = −
( 1
| X −X ′(`′)| −

X ·X ′(`′)
| X ′(`′)|3

)
. (6.5)

is the perturbation, where X is considered as function of Y. Note that

H = H(L,G,Z, `, g, z, `′).

The perturbation H1 is composed by a sum of two terms: the first is the direct
part of the perturbation, due to the attraction of the planet, the second is the indirect
perturbation, due to the attraction of the Sun on the planet.

We can reduce the number of degrees of freedom of the system by averaging over
the fast angles (`, `′), which are the mean anomalies of the asteroid and the planet
respectively. In this way, ` is eliminated from the Hamiltonian and the conjugate variable
L is an integral of motion in the averaged system, i.e. the semimajor axis a is constant.
The averaged equations of motion for the averaged elements Y = (G,Z, g, z)T are given
by

Ġ = −ε∂H1
∂g

, ġ = ε
∂H1
∂G

,

Ż = −ε∂H1
∂z

, ż = ε
∂H1
∂Z

,

(6.6)

where the bar denotes the average with respect to the variables (`, `′), that is, for exam-
ple,

∂H1
∂g

= 1
(2π)2

∫
T2

∂H1
∂g

d`d`′,

where
T2 = {(`, `′) : 0 ≤ ` ≤ 2π, 0 ≤ `′ ≤ 2π}.

Here we are assuming that there are no mean motion resonances between the asteroid
and the planet, otherwise the solutions of system (6.6) may not be representative of the
behaviour of the corresponding components of the solutions of the complete system. We
deal with mean motion resonances in Section 6.3.

If no orbit crossing occurs, by the theorem of differentiation under the integral sign,
the averaged equations (6.6) are Hamilton equations, defined by the Hamiltonian

H = ε

(2π)2

∫
T2
H1 d`d`

′ = − ε

(2π)2

∫
T2

1
| X −X ′ |

d`d`′. (6.7)

Note that the average in (6.7) of the indirect part of the perturbation vanishes. Note
also that the averaged problem is integrable. Indeed, the component Z of the angular
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momentum orthogonal to the orbital plane of the planet and the averaged Hamiltonian
H are first integral in involution and, generically, independent.

When the orbit of the asteroid crosses the one of the planet, a singularity appears
in (6.6), corresponding to a collision for particular values of the mean anomalies (`, `′).
A method to extend the solutions also in the case of crossing singularities is explained
in the following section. Note that, since in the averaged system the semimajor axis a
is constant, we expect that the generalized solutions of the averaged system represent
the singular solution of the complete system only when there are no close approaches
between the planet and the asteroid, because close encounters may change widely the
value of a. However, when we take into account a large number of solutions of the
complete system, with the same initial conditions for the slow variables (G,Z, g, z), the
generalized solutions can still be reliable in a statistical sense, as long as the changes in
semimajor axis are compensated by the large number of solutions taken into account.
We will explain better this situation, showing numerical simulations in Chapter 7.

6.2 Averaging in presence of orbit crossings

Here we explain how to deal with the crossing singularity of the averaged problem. In
particular, we will see that it is possible to continue an averaged solution beyond a
crossing configuration [49, 45, 50]. The main fundamental tool to treat the singularity
is the minimum orbit intersection distance (MOID) [46, 47, 63].

6.2.1 The minimum orbit intersection distance

Let (Ej , vj) ∈ R6, j = 1, 2 be two sets of orbital elements of two confocal Keplerian orbits.
The component Ej ∈ R5, j = 1, 2 describes the shape of the orbit, while vj ∈ S1, j = 1, 2
is a parameter along the orbit, i.e. an angle. We denote with E = (E1, E2) ∈ R10

the couple of the orbit configurations and we set V = (v1, v2) ∈ T2. We choose a
reference frame centered at the common focus and we denote with X j(Ej , vj), j = 1, 2
the Cartesian coordinates of the two bodies.

For a given configuration E , we define the Keplerian distance function d as

d : T2 → R, d(E , V ) = | X 1−X 2 |.

Local minimum points of d can be found by computing all the critical points of the
function d2. Methods to do this are described for instance in [46, 47].

Let Vh = Vh(E) be a local minimum point of the Keplerian distance function. We
consider the maps

E 7→ dh(E) = d(E , Vh), E 7→ dmin(E) = min
h
dh(E , Vh).

Note that, fixed the configuration E , dmin gives the minimum orbit distance. Moreover
dh and dmin are singular at crossing configurations, and their derivatives do not exist.
We can deal with this singularity and obtain analytic maps in a neighbourhood of a
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crossing configuration Ec by properly choose a sign of these maps. It is worth noting
that dh, dmin have also other type of singularities1. In fact dh has bifurcations, since
the number of local minimum points can change. Therefore the maps dh and dmin are
defined only locally.

We say that a configuration E is non-degenerate if all the critical points of the Kep-
lerian distance function are non-degenerate. If E is non-degenerate, then there exists a
neighbourhood W ⊆ R10 of E such that the maps dh, restricted to W, do not have bi-
furcations. On the other hand, the map dmin can lose regularity when two local minima
exchange their role as absolute minimum.

Here we summarize the procedure to deal with the crossing singularity of dh, the pro-
cedure for dmin being the same. We consider the points on the two ellipses corresponding
to the local minimum points Vh = (v(h)

1 , v
(h)
2 ) of d2

X (h)
1 = X 1(E1, v

(h)
1 ), X (h)

2 = X 2(E2, v
(h)
2 ).

We denote with τ
(h)
1 , τ

(h)
2 the tangent vectors to the trajectories E1, E2 at these points,

i.e.
τ

(h)
1 = ∂ X 1

∂v1
(E1, v

(h)
1 ), τ

(h)
2 = ∂ X 2

∂v2
(E2, v

(h)
2 ),

and their cross product
τ

(h)
3 = τ

(h)
1 × τ (h)

2 .

We define also
∆ = X 1−X 2, ∆h = X (h)

1 −X
(h)
2 .

Figure 6.1: The vectors τ (h)
1 , τ

(h)
2 , τ

(h)
3 ,∆h.

The vector ∆h joins the points attaining a local minimum value of d2, hence |∆h| =
dh. From the definition of critical points of d2, both vectors τ (h)

1 , τ
(h)
2 are orthogonal

1Actually, this can be done only when the crossing is not tangent, as we are going to see.
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to ∆h, therefore τ (h)
3 and ∆h are parallel (see Figure 6.1 for a sketch). Denoting with

τ̂
(h)
3 , ∆̂(h) the corresponding unit vectors, the distance with sign

d̃h =
(
τ̂

(h)
3 · ∆̂(h))dh, (6.8)

is an analytic function in a neighbourhood of a crossing configuration, provided that τ (h)
1

and τ
(h)
2 are not parallel, situation happening only when the trajectories are tangent at

the crossing point. A proof of this statement can be found in [50]. Note that to obtain
regularity in a neighbourhood of a crossing configuration, we lose continuity at the
configurations with τ (h)

1 × τ (h)
2 = 0 and dh 6= 0: this can happen for example when there

are symmetries in the spatial configuration of the trajectories.
The derivatives of d̃h with respect to the component Ek, k = 1, . . . , 10 of E are given

by
∂d̃h
∂Ek

= τ̂
(h)
3 · ∂∆

∂Ek
(E , Vh). (6.9)

We call (signed) orbit distance the map d̃min.

6.2.2 Extraction of the singularity

With the notations used in Section 6.1, in the restricted 3-body problem (6.1) the el-
ements E are the Delaunay elements (L,G,Z, g, z) of the asteroid and the planet, and
V = (`, `′) are the mean anomalies. Denote by Ec a non-degenerate crossing configuration
with only one crossing point. We choose the index h such that dh(Ec) = 0. For each E in
a neighborhood of Ec we consider the Taylor development of V 7→ d2(E , V ) = |X −X ′|2,
in a neighborhood of the local minimum point Vh = Vh(E)

d2(E , V ) = d2
h(E) + 1

2(V − Vh) · Hh(E)(V − Vh) +R(h)
3 (E , V ) , (6.10)

where

Hh(E) = ∂2d2

∂V 2 (E , Vh(E)),

is the Hessian matrix of d2 in Vh = (`h, `′h), and

R(h)
3 (E , V ) =

∑
|α|=3

r(h)
α (E , V )(V − Vh)α , (6.11)

r(h)
α (E , V ) = 3

α!

∫ 1

0
(1− t)2Dαd2(E , Vh + t(V − Vh)) dt, (6.12)

is the Taylor remainder in the integral form. We introduce the approximated distance

δh =
√
d2
h + (V − Vh) · Ah(V − Vh) , (6.13)
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where

Ah = 1
2Hh =


|τh|2 + ∂2X

∂`2
(E, `h) ·∆h −τh · τ ′h

−τh · τ ′h |τ ′h|2 −
∂2X ′

∂`′2
(E′, `′h) ·∆h

 ,

and
∆h = ∆h(E) , τh = ∂X

∂`
(E, `h) , τ ′h = ∂X ′

∂`′
(E′, `′h) .

Note that, if the matrix Ah is non-degenerate, then it is positive definite since Vh is a
minimum point, and this property holds in a suitably chosen neighbourhood W of Ec.
The matrix Ah is degenerate at the crossing configuration if and only if the tangent
vectors τh, τ ′h are parallel: in this situation we have seen that we can not even define the
signed orbit distance. Therefore, in the following we always assume that the crossing is
not tangent.

To extract the singularity at an orbit crossing, we split the integral as∫
T2

1
d
d`d`′ =

∫
T2

(1
d
− 1
δh

)
d`d`′ +

∫
T2

1
δh
d`d`′. (6.14)

We refer to
1
d
− 1
δh
,

as reminder function: first we investigate the behaviour of this term of the splitting. Let
us set

Σ = {E ∈ W : dh(E) = 0}. (6.15)

From [50], we have a bound on the reminder function, i.e. there exists a positive C such
that ∣∣∣∣1d − 1

δh

∣∣∣∣ ≤ C, ∀(E , V ) ∈ (W × T2) \ UΣ,

where
UΣ = {(E , Vh(E)) : E ∈ Σ},

therefore this function is integrable. Moreover, we also have a bound on the derivatives.
In fact, there exists a positive constant C ′ such that, if we denote with yk one of the
Delaunay elements, we have∣∣∣∣ ∂∂yk

(1
d
− 1
δh

)∣∣∣∣ ≤ C ′

dh + |V − Vh|
, ∀(E , V ) ∈ (W × T2) \ UΣ.

Hence the derivatives are integrable and it follows that the map

W \ Σ 3 E 7→
∫
T2

∂

∂yk

(1
d
− 1
δh

)
d`d`′, (6.16)
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can be extended continuously to the whole set W. To compute the derivatives in (6.16)
we can use

∂

∂yk

( 1
δh

)
= − 1

2δ3
h

∂δ2
h

∂yk
.

From (6.10) we obtain the derivatives of the approximated distance as

∂δ2
h

∂yk
= ∂d2

h

∂yk
− 2∂Vh

∂yk
· Ah(V − Vh) + (V − Vh) · ∂Ah

∂yk
(V − Vh). (6.17)

The derivatives of Vh are computed differentiating the relation

∂

∂yk
d2
h(E , Vh(E)) = 0,

which holds since (E , Vh(E)) is a stationary point of d2. Hence

∂Vh
∂yk

(E) = −[Hh(E)]−1 ∂

∂yk
∇V d2(E , Vh(E)). (6.18)

On the other hand, the average over T2 of the derivatives of 1/δh are non-convergent
integrals for E ∈ Σ: for this reason the averaged vector field is not defined at orbit
crossings, and this term is the source of the singularity: let us discuss better its behaviour.

6.2.3 Integration of 1/δh and its derivatives

Let (Ec, Vh(Ec)) be the crossing configuration and consider the translation

Th : R2 → R2, V 7→ Th(V ) = V + Vh.

We consider also the linear map given by the matrix

Lh =
√
Ah,

defined as the unique positive definite matrix such that

L2
h = Ah. (6.19)

Using these transformations to change the coordinates in the integral, we get that∫
T2

1
δh
d`d`′ =

∫
Th(T2)

1
δh
dV = 1

det
√
Ah

∫
Lh(T2)

1√
d2
h + |W |2

dW

where
W = Lh ◦ T −1

h (V ) = Lh(V − Vh).

Let us denote with
Lh =

[
a11 a12
a12 a22

]
,
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and compute the coefficients aij of this matrix as function of the coefficients Aij of Ah.
From (6.19) we obtain the system

a2
11 + a2

12 = A11, (6.20)
a11a12 + a12a22 = A12, (6.21)

a2
12 + a2

22 = A22. (6.22)

Set
α =

√
detAh.

We search for the coefficients aij so that Lh is positive definite. From

det
√
Ah =

√
detAh

we get
a2

12 = a11a22 − α.

Inserting this relation in (6.20), (6.22) and summing we have

(a11 + a22)2 − 2α = A11 +A22.

Since by assumption the trace of Lh is positive, we get

a11 + a22 =
√

2α+A11 +A22.

Inserting this relation in (6.21) we obtain

a12 = A12√
2α+A11 +A22

.

Then, from (6.20), (6.22), taking into account that a11, a22 > 0, we get

a11 = α+A11√
2α+A11 +A22

, a22 = α+A22√
2α+A11 +A22

.

Let us consider the points

P1 ≡ (π, π), P2 ≡ (−π, π),
P3 ≡ (−π,−π), P4 ≡ (π,−π),

and their images through the linear map Lh

Qj ≡ (xj , yj), j = 1, . . . , 4,

so that

(x1, y1) = π(a11 + a12, a12 + a22), (x2, y2) = π(−a11 + a12,−a12 + a22),

(x3, y3) = −(x1, y1), (x4, y4) = −(x2, y2).
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Set P5 = P1 and, for j = 1, . . . , 4, let Rj be the straight line passing through the points
Pj , Pj+1, whose equation is

ξj(y − yj) = ηj(x− xj),

with
ξj = xj+1 − xj , ηj = yj+1 − yj .

Note that (ξj , ηj) 6= (0, 0) unless detAh = 0. Introducing polar coordinates (ρ, θ) such
that

W = (ρ cos θ, ρ sin θ),

we can write these lines in polar form:

Rj =
{(
rj(θ) cos θ, rj(θ) sin(θ)

)
: θ ∈ (θ̄j , θ̄j + π)

}
with

rj(θ) = ξjyj − ηjxj
ξj sin θ − ηj cos θ

and

θ̄j =
{

arctan(ηj/ξj), ξj 6= 0,
π/2, ξj = 0.

Note that
(ξ1, η1) = −2π(a11, a12), (ξ2, η2) = −2π(a12, a22),

(ξ3, η3) = −(ξ1, η1), (ξ4, η4) = −(ξ2, η2),

so that, for each j = 1, . . . , 4,

ξjyj − ηjxj = −2π2 detLh

and
r1(θ) = π detLh

a11 sin θ − a12 cos θ , r2(θ) = π detLh
a12 sin θ − a22 cos θ ,

r3(θ) = −r1(θ), r4(θ) = −r2(θ).

Now, taking into account these changes of coordinates, we have

∫
Th(T2)

1
δh
d`d`′ = 1√

detAh

( 4∑
j=1

∫ θj+1

θj

√
d2
h + r2

j (θ)dθ − 2πdh
)

(6.23)

with
cos θj = xj√

x2
j + y2

j

, sin θj = yj√
x2
j + y2

j

,

and
θ1 < θ2 < θ3 < θ4 < θ5 = 2π + θ1.
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Note that the integrals in (6.23) are bounded, hence they are differentiable functions
of the Delaunay elements. Instead, the term −2πdh/

√
detAh is not differentiable at

E = Ec ∈ Σ, and the loss of regularity is due only to this term.
Exchanging again the integral sign and the derivative in the terms of the sum in

(6.23), we can compute the derivatives as

∂

∂yk

∫
T2

1
δh
d`d`′ =

( ∂

∂yk

1√
detAh

)( 4∑
j=1

∫ θj+1

θj

√
d2
h + r2

j (θ)dθ − 2πdh
)

+ 1√
detAh

( 4∑
j=1

∫ θj+1

θj

dh
∂dh
∂yk

+ rj(θ) ∂rj∂yk
(θ)√

d2
h + r2

j (θ)
dθ − 2π∂dh

∂yk

)
,

(6.24)

where yk is one of the Delaunay elements. Note that the above derivatives should contain
also the term given by the differentiation of the extrema of the integrals

1√
detAh

4∑
j=1

(√
d2
h + r2

j (θj+1)∂θj+1
∂yk

−
√
d2
h + r2

j (θj)
∂θj
∂yk

)
.

However, this term vanishes because

r2(θ2) = r1(θ2), r3(θ3) = r2(θ3), r4(θ4) = r3(θ4), r1(θ1) = r4(θ5),

and
∂θ5
∂yk

= ∂θ1
∂yk

.

Moreover, in (6.24) we have that

∂r1
∂yk

(θ) = 1
(a11 sin θ − a12 cos θ)

[
π
( ∂

∂yk
detLh

)
− r1(θ)

(∂a11
∂yk

sin θ − ∂a12
∂yk

cos θ
)]
,

∂r2
∂yk

(θ) = 1
(a12 sin θ − a22 cos θ)

[
π
( ∂

∂yk
detLh

)
− r2(θ)

(∂a12
∂yk

sin θ − ∂a22
∂yk

cos θ
)]
.

As said before, the term −2πdh/
√

detAh is not differentiable at the orbit crossing.
However, the derivatives admit two analytic extensions to the whole W from both sides
of the singular set Σ, see [50]. More specifically, we set

W+ =W ∩ {d̃h > 0}, W− =W ∩ {d̃h < 0},

where d̃h is the signed distance given by (6.8). Then we have that the maps

W+ 3 E 7→ ∂

∂yk

∫
T2

1
δh
d`d`′, W− 3 E 7→ ∂

∂yk

∫
T2

1
δh
d`d`′,

can be extended to two different analytic maps defined on W.
When we gather together the terms of the split (6.14), we obtain that the derivatives

ofH1 with respect to the Delaunay elements can be extended to two Lipschitz-continuous
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maps
(∂H1
∂yk

)±
h

on a neighbourhood W of the crossing configuration Ec. These maps,
restricted to W+,W− respectively, correspond to ∂H1

∂yk
. Moreover, the jump in the

derivatives, passing from W+ to W−, is given by

Diffh
(
∂H1
∂yk

)
:=
(
∂H1
∂yk

)−
h

−
(
∂H1
∂yk

)+

h

= 1
π

[
∂

∂yk

( 1√
detAh

)
d̃h + 1√

detAh
∂d̃h
∂yk

]
.

(6.25)

6.2.4 Generalized solutions

Generically, we can uniquely extend the solutions beyond the crossing singularity dmin =
0. This is obtained by patching together classical solutions defined on the domain W+

with solutions defined on W− or vice versa. Here we describe how to extend a solution
of the averaged equations beyond the crossing singularity.

Let a > 0 be the value of the semimajor axis of the asteroid and Y : I → R4 be a
continuous function defined in an open interval I ⊆ R, representing a possible evolution
of the Delaunay elements Y = (G,Z, g, z) of the asteroid. Then we set

E(t) =
(
E(t), E′

)
∈ R10,

where E′ ∈ R5 are the elements representing the shape and the orientation of the orbit
of the planet and

E(t) =
(
k
√
a, Y (t)

)
∈ R5,

are the elements for the asteroid, depending on the time. Let T (Y ) be the set of times
tc ∈ I such that dmin(E(tc)) = 0, and assume also that each tc is isolated. Hence

I \ T (Y ) = ∪j∈N Ij ,

is a disjoint union of open intervals Ij , with N a countable set. We say that Y is
a generalized solution if its restriction to each Ij , j ∈ N is a classical solution of the
averaged equations (6.6) and, for each tc ∈ T (Y ), there exist the limits

lim
t→t+c

Ẏ (t), lim
t→t−c

Ẏ (t),

and they are finite.
Let Y0 ∈ R4 be such that dmin(E0) > 0, with

E0 = (E0, E
′), E0 = (k

√
a, Y0).

Given a time t0 ∈ R, we show how to construct a generalized solution of the Cauchy
problem {

Ẏ = εJ2∇H1,

Y (t0) = Y0,
(6.26)
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where J2 ∈ R4×4 is the symplectic identity. Let Y (t) be the maximal classical solution
of (6.26), defined on the interval J ⊆ R. Assume that

tc = sup J < +∞,

and
lim
t→t−c

E(t) = Ec,

with Ec a non-degenerate crossing configuration, such that dmin(Ec) = dh(Ec) = 0 for
some h. Let W,W± be the neighbourhoods of Ec as defined above and suppose that
there exists τ ∈ (t0, tc) such that E(t) ∈ W+ for t ∈ (τ, tc). Let Yτ = Y (τ), hence there
exists Ẏc ∈ R4 such that

lim
t→t−c

Ẏ (t) = Ẏc. (6.27)

In fact (6.27) is fulfilled by the solution of the Cauchy problem{
Ẏ = εJ2(∇H1)+

h ,

Y (τ) = Yτ ,
(6.28)

and this solution is defined at the crossing time tc. Then let Yc be its value at t = tc.
We can extend Y (t) beyond the crossing singularity by considering the new problem{

Ẏ = εJ2(∇H1)−h ,
Y (tc) = Yc.

(6.29)

The solution of (6.29) satisfies

lim
t→t+c

Ẏ (t) = Ẏc + εDiffh(∇H1)(E(tc)). (6.30)

The vector field in (6.29) corresponds to ε∇H1 on W−, hence we can continue the solu-
tion outsideW and this procedure can be repeated at almost every crossing singularities.
Indeed, the generalized solution is unique provided that the evolution of t 7→ E(t) is not
tangent to the orbit crossing set Σ. Moreover, recall that if detAh = 0, the extraction
of the singularity cannot be performed.

Note that, in the case E(t) ∈ W− for t ∈ (τ, tc) the previous discussion still holds if
we exchange (∇H1h)+ with (∇H1h)−. In this case (6.30) becomes

lim
t→t+c

Ẏ (t) = Ẏc − εDiffh(∇H1)(E(tc)).

6.2.5 Numerical implementation

We describe here the algorithm used to compute the solutions of the averaged equa-
tions and extend them towards the crossing singularity. To perform the integration we
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use the Runge-Kutta-Gauss scheme, which is an implicit Runge-Kutta method. More
specifically, let

ẋ = f(x, t), x ∈ Rn,

be a first order differential equation, where f : Rn × R → Rn is the vector field. Given
a time step h ∈ R and xm ∈ Rn an approximation of the solution at time tm, the
approximated solution xm+1 at time tm + h is defined by

xm+1 = xm + h
s∑
i=1

biki,

ki = f

(
xm + h

s∑
j=1

aijkj , tm + hci

)
, i = 1, . . . , s.

(6.31)

Here s is an integer number, A = (aij) ∈ Rs×s is a matrix and b = (b1, . . . , bs)T , c =
(c1, . . . , cs)T ∈ Rs are vectors such that

s∑
j=1

aij = ci, i = 1, . . . , s,
s∑
j=1

bi = 1. (6.32)

The scheme (6.31) is a generic Runge-Kutta method with s stages. Note that, in com-
puting the solution xm+1, the vector field is evaluated in intermediate points between xm
and xm+1. In a Runge-Kutta-Gauss method, which has maximal order 2s, the matrix A
is a full matrix, hence equation (6.31) defines xm+1 implicitly and it has to be solved with
iterative methods (e.g. using a fixed point method). Coefficients of the Runge-Kutta-
Gauss methods can be found in classical books on numerical analysis, such as [6, 67].
Moreover, the Runge-Kutta-Gauss method is very suitable to integrate Hamiltonian sys-
tems over long time spans, since it is a symplectic method and it nearly conserves the
value of the energy.

During the integration we use an adaptive time step. Away from the orbit crossing,
we use a larger step. Instead, when approaching the orbit crossing, the time step is
decreased, in order to reach exactly the crossing condition. To compute the solution
beyond the singularity, we use the formula (6.25) that gives the difference between the
two different extensions of the vector field. We compute the intermediate values of the
extended vector field just after the crossing, then we correct these values by (6.25) and
use them as approximations of the averaged vector field at the intermediate points of the
solutions, see Figure 6.2. Moreover, when we are close to the crossing, the vector field is
computed using the extraction of the singularity explained in Subsection 6.2.2, with the
splitting (6.14). After the crossing, the time step is reset to its original maximal value.

6.3 Mean motion resonances

Here we assume that there is resonance between the mean motions of the planet and the
asteroid, that is there exists (h, h′) ∈ Z2 such that

hn+ h′n′ ' 0, (6.33)
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Figure 6.2: The Runge-Kutta-Gauss method and continuation of the solution beyond the singularity

where n, n′ are the mean motions of the asteroid and the planet respectively. Note that,
since ˙̀ = n, ˙̀′ = n′, from (6.33) we get that the resonant angle

σ := h`+ h′`′, (6.34)

is almost constant and may change significantly only over a secular timescale. In this
case, σ has to be included in the secular equations. When a mean motion resonance is
involved in the dynamics, the averaged problem of Section 6.1 does not represent well
the secular dynamics of the asteroid. However, it is still possible to define a system with
a long term dynamics that takes into account these effects, using a resonant normal form
[81, 66]. In the following we also assume that there are no close approaches between the
planet and the asteroid.

6.3.1 Resonance detection

A method to determine whether an asteroid is in mean motion resonance with the planet
or not is the following:

(i) first we use the third Kepler’s law in a 2-body approximation to check whether the
initial mean motions of the planet and the asteroid are commensurable;

(ii) perform a numerical integration and check the behaviour of the critical angle.

Indeed, in a 2-body approximation where we neglect the influence of the planet, the
mean motion n of the asteroid is

n =

√
Gm�
a3 , (6.35)
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which simply becomes
n = a−3/2,

with the units defined in Section 6.1. Inserting this in (6.33) and taking into account
that n′ = 1, we obtain the condition

a−3/2 = − h
h′
.

Hence, if the initial value a of the semimajor axis is such that a−3/2 is close to be a
rational number, it is likely that the asteroid is in mean motion resonance with the
planet. At this point, to check the resonance condition, we integrate the full circular
restricted 3-body problem for a timespan comparable to several orbital periods of the
planet, and analyze the behaviour of the resonant angle σ defined by (6.34). If σ librates,
it means that a mean motion resonance is involved in the dynamics. As an example,
in Figure 6.3 we show the time evolution of the critical angle σ = 5` − 2`′ relative
to the asteroid 1999 JB11. Here the planet involved is the Earth, and the integration
is performed over 3000 years: we can clearly see the libration of σ, with a period of
approximately 1000 years. We conclude that the asteroid is in the 2 : 5 mean motion
resonance with the Earth. This result was obtained in [41]. Note also that the semimajor
axis oscillates with a similar period.
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Figure 6.3: Time evolution of the critical angle σ = 5`− 2`′ (left) and the semimajor axis (right) of the asteroid
1999 JB11.

Another possibility to identify a mean motion resonance, similar to the approach of
[100], is to fix a maximal order K ∈ N, perform a numerical integration of the full circular
restricted 3-body problem for a total time of several orbital periods of the planet and
consider the set of all integer combinations of the fast variables (`, `′), up to order K.
More specifically, we consider all the combinations

σ(h,h′) = h`+ h′`′, h, h′ ∈ Z,
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for which |h| + |h′| ≤ K and h, h′ are relatively prime. Then, we check whether the
angle σ(h,h′) librates or not. Once we have identified the couples (h, h′) for which σ(h,h′)
librates, we can determine the center and the amplitude of the oscillation, in order to
detect the strongest resonance involved. Moreover, the time evolution of the semimajor
axis is related to the libration of the critical angle. Indeed it is known that, in presence
of a resonance, the semimajor axis oscillates with the same period of oscillation of the
critical angle, see [84]. This also explains the plot of Figure 6.3.

It is worth saying that, when we consider more than one planet in the system,
the identification of resonances becomes more challenging. The detection of 2-body
resonances can be done in the same way, with the only difference that we do not know the
planet involved. Moreover also 3-body mean motion resonances, involving the asteroid
and two planets, can be relevant in the dynamics. Analytical methods to detect 3-body
mean motion resonances were developed in [83], and the same authors applied their
method to main belt asteroids [84]. A total of 255 objects in 3-body mean motion
resonances with Jupiter and Saturn were found. In [42] a semi-analytical method to
estimate the strength of the 3-body resonances was developed, producing an atlas of the
strongest ones in the Solar System. Another numerical technique was developed in [99],
where the authors found 65972 main belt asteroids in a 3-body mean motion resonance
with two planets of the Solar System.

6.3.2 The resonant normal form

We describe now how to obtain the resonant normal form, as done in [81, 66]. Let
(h, h′) ∈ Z2 be the vector satisfying relation (6.33). The orbit of the planet is fixed and
its mean anomaly `′ grows linearly with time with constant rate n′, hence

`′ = n′t+ `′(0).

We extend the phase space, introducing a variable L′ conjugated to `′. The Hamiltonian
in the extended phase space is given by

H = H0 +εH1, H0 = − κ4

2L2 + n′L′, (6.36)

and H1 is given by (6.5). It is worth noting that the variable L′ is not related2 to the
semimajor axis a′ of the planet, since we have assumed that a′ has a constant value,
but it gives the changing rate of `′. Therefore, the perturbing function H1 depends on
(L,G,Z, `, g, z, `′), but not on L′.

Let us denote with ϕ ∈ T2 the fast angles, i.e. ϕ = (`, `′) and let I ∈ R6 be the
remaining variables, i.e. I = (L′, L,G, Z, g, z). We use the Lie series to search for a
suitable canonical transformation, close to the identity, that pushes the non-resonant
terms to the order ε2. We search for a function χ = χ(I ′, ϕ′) such that the inverse
transformation is

φεχ(I ′, ϕ′) = (I, ϕ),
2That is, we are not using the relation L′ = κ

√
a′.
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where φtχ is the Hamiltonian flow associated to χ. Using a formal expansion in ε we have

H′ = H◦φεχ
= H+ε{H, χ}+O(ε2)
= H0 +ε

(
H1 +{H0, χ}

)
+O(ε2).

(6.37)

In the resonant case, we search for a solution χ of the equation

H1 +{H0, χ} = f, (6.38)

where f = f(I ′, h`+ h′`′). We suppose that there are no orbit crossings with the planet.
We can write the perturbing function H1 as a Fourier series of the fast angles, hence

H1 =
∑

(k,k′)∈Z2

Ĥ(k,k′)e
i(k`+k′`′),

where
Ĥ(k,k′) = 1

(2π)2

∫
T2
H1 e

−i(k`+k′`)d`d`′, (6.39)

are the Fourier coefficients. We also write χ as a Fourier series, hence

χ =
∑

(k,k′)∈Z2

χ̂(k,k′)e
i(k`+k′`′). (6.40)

Inserting these series in the left hand side of (6.38) we obtain

H1 +{H0, χ} = H1−
∂H0
∂I
· ∂χ
∂ϕ

=
∑

(k,k′)∈Z2

(
Ĥ(k,k′) − i(kn+ k′n′)χ̂(k,k′)

)
ei(h`+h

′`′).
(6.41)

Hence we choose
χ(k,k′) = Ĥk,k′

i(kn+ k′n′) , (6.42)

when the denominator does not vanish, and zero otherwise: in this manner we eliminate
as many terms as possible from equation (6.41). Therefore, the term with (k, k′) = (0, 0)
and the resonant terms with (k, k′) = m(h, h′), m ∈ Z\{0} are excluded in the expression
(6.40) of χ. With this choice, we have that

f = Ĥ(0,0) +
∑

m∈Z\{0}
Ĥ(mh,mh′)e

im(h`+h′`′). (6.43)

The function f contains only resonant terms and we rename it Hres. Thus the new
Hamiltonian, which is obtained from (6.37), has the form

H′ = H0 +εHres, (6.44)
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and it is called resonant normal form.
To deal with the Fourier series expansion, since the coefficients decay exponentially,

it is natural to truncate Hres up to a certain order. This is also useful in numerical
computations. To this end, we introduce the resonant set, which contains all the integer
multiples of (h, h′), that is

R := {(k, k′) ∈ Z2 : there exists m ∈ Z : (k, k′) = m(h, h′)}. (6.45)

Then the resonant normal form to order N ∈ N is given by

HN
res =

∑
(k,k′)∈R,
|k|+|k′|≤N

Ĥ(k,k′)e
i(k`+k′`′), (6.46)

where Ĥ(k,k′) are defined in (6.39). We can also write (6.46) as

HN
res = 1

(2π)2

∫
T2
DN

(
(h¯̀+ h′ ¯̀′)− (h`+ h′`′)

)
H1 d¯̀d¯̀′, (6.47)

where DN is the Dirichlet kernel, defined by

DN (x) =
∑
|x|≤N

einx =
sin
(
(N + 1/2)x

)
sin(x/2) . (6.48)

We introduce the resonant angle σ through the canonical transformation Ψ defined as(
σ
σ′

)
= A

(
`
`′

)
,

(
S
S′

)
= A−T

(
L
L′

)
, (6.49)

where
A =

(
h h′

0 1/h

)
, A−T =

(
1/h 0
−h′ h

)
. (6.50)

Using the new canonical variables Y = (S,G,Z, σ, g, z), the terms H0 and HN
res of the

Hamiltonian become

H0 = − κ4

2(hS)2 + n′
(

h′S + S′

h

)
,

HN
res = 1

(2π)2

∫
T2
DN (h`+ h′`′ − σ)H1 d`d`

′.

(6.51)

Note that, since H0,HN
res do not depend on σ′, the value of S′ is constant. The equations

of motion are given by

Ṡ = −ε∂H
N
res

∂σ
,

Ġ = −ε∂H
N
res

∂g
,

Ż = −ε∂H
N
res

∂z
,



σ̇ = hκ4

(hS)3 + n′h′ + ε
∂HN

res
∂S

,

ġ = ε
∂HN

res
∂G

,

ż = ε
∂HN

res
∂Z

.

(6.52)
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As we have seen in Section 6.1 for the non-resonant case, also the truncated resonant
normal form HN

res is singular at orbit crossings. The extraction of the singularity can be
performed in a similar way, still using the MOID, see [66]. It turns out that the vector
field has two different Lipschitz-continuous extensions (∂H

N
res

∂yi
)±h in a neighbourhood of

each non-degenerate crossing configuration Ec. Moreover, in this neighbourhood, the
difference between the two extensions is

Diff
(
∂HN

res
∂yi

)
h

:= ε

[(
∂HN

res
∂yi

)−
h

−
(
∂HN

res
∂yi

)+

h

]
= − ε

π
DN

(
σ − (h`h + h′`′h)

)[ ∂

∂yi

(
1√

detAh

)
d̃h + 1√

detAh
∂d̃h
∂yi

]
.

(6.53)

It is worth noting that the component ∂HN
res

∂σ is always regular, since σ appears only in
the Dirichlet kernel, and not in the perturbing function H1.

As a final remark, we point out that, setting σc = h`h − h′`′h, we have

lim
N→∞

DN (σ − σc) = δσc ,

that is, for N → ∞, the Dirichlet kernel converges in the sense of distributions to the
Dirac delta centered at σc.

6.3.3 Dynamical protection from collisions

When the orbit of the asteroid crosses the orbit of the planet, the resonance protects the
asteroid from close encounters with the planet itself. This was already known before, see
for instance [71], but it was obtained by using another perturbative approach. Indeed,
we can choose to perform a canonical transformation that brings the couple of fast angles
(`, `′) in the couple (σ, τ), where σ is the slow critical angle and τ evolves much faster
that σ.

More precisely, we define a canonical transformation (`, `′, L, L′)→ (σ, τ, S, T ), which
leaves the other variables unchanged, through the unimodular matrix

A =
(

h h′

a b

)
,

where a, b are integer numbers such that bh− ah′ = 1. Then, the canonical transforma-
tion Ψ is defined by (

σ
τ

)
= A

(
`
`′

)
,

(
S
T

)
= A−T

(
L
L′

)
.

The average is done over the fast angle τ , and we get the Hamiltonian

K(σ, S, T ;X) = 1
2π

∫ 2π

0
H1 ◦Ψ−1(σ, τ, S, T ;X)dτ, (6.54)

where we denote with X the remaining variables.
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With the notations above, we also have

lim
N→∞

HN
res = Hres .

We introduce the functions

K N
res(σ, S, T ;X) = HN

res ◦Ψ−1(σ, τ, S, T ;X),
Kres(σ, S, T ;X) = Hres ◦Ψ−1(σ, τ, S, T ;X).

Moreover, K can be defined as pointwise limit for N →∞ of the partial Fourier sum

KN(σ, S, T ;X) = 1
2π

∫ 2π

0
DN (σ̃ − σ)K(σ̃, S, T ;X)dσ̃.

Assume now that Ec is a non-degenerate crossing configuration, i.e. dh = 0, and let
σc = h`h+h′`′h, where (`h, `′h) are the values of the mean anomalies corresponding to the
collision. Let us also denote with Y = Y (E) the vector of the elements different from σ
and let Yc(Ec) be its value at the crossing configuration. It turns out (see [66]) that, at
every non-crossing configuration, KN coincides with K N

res for every N and K coincides
with Kres. On the other hand, for E = Ec we have

(i) K N
res(σ;Yc) = KN(σ;Yc) for all N ∈ N, for all σ,

(ii) Kres(σ;Yc) = K(σ;Yc) for all σ 6= σc, and

(iii) limσ→σc Kres(σ;Yc) = limσ→σc K(σ;Yc) = +∞.

Moreover, the derivatives with respect to any one of the elements yj in Y of the trun-
cated Hamiltonians KN and K N

res generically do not exists at a crossing configuration Ec,
while the derivatives of K and Kres exist and are continuous for σ 6= σc. However, the
derivatives of these truncated Hamiltonians fulfill

lim
E→E±c

∂K N
res(σ;Y )
∂yi

= lim
E→E±c

∂KN(σ;Y )
∂yi

,

and the difference between the two limits converges, in the sense of distributions for
N → ∞, to a Dirac delta. Therefore, averaging over a single fast variable produces a
well defined vector field, provided that σ 6= σc. Moreover, the fact that at the crossing
configuration Ec the single averaged Hamiltonian K has a pole of order one at the collision
configuration σ = σc, has a consequence on the dynamics. Indeed, the averaged solution
cannot pass through this collision configuration in the resonant averaged model.

6.4 Integration of the full problem

The full circular restricted 3-body problem has to be integrated to make a comparison
with the averaged system. Since we want to investigate the connection between these
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two problems in a statistical sense, we have to perform numerical integrations of the full
problem using several different initial conditions. Among them, it can happen that we
choose an initial condition leading to a collision, or to a close encounter with the planet.
For this reason, we have to properly integrate the problem near the collisions, in order to
prevent as much as possible the effects of close encounters in the numerical propagation.
To this end we use the Kustaanheimo-Stiefel regularization [39, 102, 56, 16, 101].

6.4.1 The problem in synodic coordinates

We take into account a Cartesian reference frame centered at the center of mass of the
system Sun-Planet. The units of mass and distance are chosen so that

m� +m⊕ = 1, |x� − x⊕| = 1,

where x�, x⊕ are the positions of the Sun and the planet, respectively. The unit of time
is chosen so that the angular velocities of the planet and the Sun are equal to 1. We
denote with ε the mass of the planet, since it is small compared to the mass of the Sun.
In a uniformly rotating reference frame, called synodic reference frame, the positions
of the Sun and the planet are fixed, and their coordinates are (−ε, 0, 0)T , (1 − ε, 0, 0)T
respectively. Denote with (x, y, z)T , (ẋ, ẏ, ż)T ∈ R3 the coordinates of the position and
velocity of the asteroid, respectively. The Lagrangian of the problem is given by

L = 1
2
(
ẋ2 + ẏ2 + ż2)+

(
xẏ − xẏ

)
+ U, U = 1

2
(
x2 + y2)+ 1− ε

r1
+ ε

r2
, (6.55)

where r1, r2 are the distances from the Sun and the planet respectively, i.e.

r1 =
√

(x+ ε)2 + y2 + z2, r2 =
√

(x− 1 + ε)2 + y2 + z2. (6.56)

The equations of motion in this reference frame are

ẍ− 2ẏ = ∂U

∂x
= x− (1− ε)x+ ε

r3
1
− εx− 1 + ε

r3
2

,

ÿ + 2ẋ = ∂U

∂y
= y − (1− ε) y

r3
1
− ε y

r3
2
,

z̈ = ∂U

∂z
= −(1− ε) z

r3
1
− ε z

r3
2
.

(6.57)

System (6.57) has the first integral C, usually called Jacobi integral, defined by

C

2 = −1
2
(
ẋ2 + ẏ2 + ż2)+ 1

2
(
x2 + y2)+ 1− ε

r1
+ ε

r2
, (6.58)

C corresponds to the opposite of the doubled total energy.
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6.4.2 Kustaanheimo-Stiefel regularization

It is possible to gain in computation time and accuracy regularizing the problem, that
is changing the space and time variables in order to eliminate the singularity of the
collision with a body. For this purpose we use the Kustaanheimo-Stiefel regularization,
which generalizes the Levi-Civita regularization for the planar circular restricted 3-body
problem, having in mind that we want to regularize the collisions with the planet. First
we perform a time transformation and later a coordinate one. We define the fictitious
time τ by

dt

dτ
= r2, r2 =

√
(x− x0)2 + y2 + z2, (6.59)

where x0 = 1− ε. Note that, when we are close to the collision, this change of time has
the effect of slowing down the dynamics. The relation between the second derivatives is
given by

d2

dt2
= d

dt

( 1
r2

d

dτ

)
= 1
r2

d

dτ

( 1
r2

d

dτ

)
= 1
r2

2

d2

dτ2 −
1
r3

2

dr2
dτ

d

dτ
.

Denoting with a prime the derivative with respect to the fictitious time τ , the equations
of motion (6.57) are written as

1
r2

2
x′′ − r′2

r3
2
x′ − 2

r2
y′ = x− 1− ε

r3
1

(x+ ε)− ε

r3
2

(x− 1 + ε),

1
r2

2
y′′ − r′2

r3
2
y′ + 2

r2
x′ = y − 1− ε

r3
1
y − ε

r3
2
y,

1
r2

2
z′′ − r′2

r3
2
z′ = −1− ε

r3
1
z − ε

r3
2
z,

which are equivalent to

x′′ − 2r2y
′ = r′2

r2
x′ + r2

2F1 −
ε

r2
(x− 1 + ε),

y′′ + 2r2x
′ = r′2

r2
y′ + r2

2F2 −
ε

r2
y,

z′′ = r′2
r2
z′ + r2

2F3 −
ε

r2
z,

(6.60)

where

F1 = x− (1− ε)
r3

1
(x+ ε),

F2 = y − (1− ε)
r3

1
y,

F3 = −(1− ε)
r3

1
z.

(6.61)
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Let Q = (x− x0, y, z, 0)T ∈ R4 and F = (F1, F2, F3, 0)T ∈ R4, then equations (6.60) are
written as

Q′′ = r′2
r2
Q′ + r2

2F + r2BQ
′ − εQ

r2

= Q ·Q′

Q ·Q
Q′ + |Q|2F + |Q|BQ′ − ε Q

|Q|
,

(6.62)

where

B =


0 2 0 0
−2 0 0 0
0 0 0 0
0 0 0 0

 .
Let u = (u1, u2, u3, u4)T ∈ R4, we consider the transformation

Q = L(u)u, (6.63)

where L(u) is the matrix of the K-S transformation

L(u) =


u1 −u2 −u3 u4
u2 u1 −u4 −u3
u3 u4 u1 u2
u4 −u3 u2 −u1

 . (6.64)

Note that the change of coordinates (6.63) can be written also as
x− x0 = u2

1 − u2
2 − u2

3 + u2
4,

y = 2(u1u2 − u3u4),
z = 2(u1u3 + u2u4),

(6.65)

since the last equation is trivially zero. Moreover, we have that

r2
2 = (x− x0)2 + y2 + z2 = (u2

1 + u2
2 + u2

3 + u2
4)2 = |u|4. (6.66)

The matrix L(u) has the following properties

(1) LT (u)L(u) = |u|2I.

(2) L′(u) = L(u′).

(3) L(u)u′ = L(u′)u, provided that u4u
′
1 − u3u

′
2 + u2u

′
3 − u1u

′
4 = 0. This last relation

is also called bilinear relation.

(4) If u, u′ satisfy the bilinear relation, then

|u|2L(u′)u′ − 2u · u′L(u)u′ + |u′|2L(u)u = 0.
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From (6.63) and properties (2) and (3) we have

Q′ = 2L(u)u′,
Q′′ = 2L(u)u′′ + 2L(u′)u′.

(6.67)

Combining (6.67) with (6.62), and changing the coordinates, we get

2L(u)u′′ + 2L(u′)u′ = 4u · u
′

|u2|
L(u)u′ + |u|4F + 2|u|2BL(u)u′ − ε

|u|2
L(u)u.

Using property (4), the above equation becomes

L(u)u′′ − |u
′|2

|u|2
L(u)u = |u|

4

2 F + |u|2BL(u)u′ − ε

2|u|2L(u)u. (6.68)

Using property (1), the inverse of L(u) is L(u)−1 = LT (u)/|u|2, hence (6.68) becomes

u′′ +
(

ε

2|u|2 −
|u′|2

|u|2
)
u = |u|

2

2 LT (u)F + LT (u)BL(u)u′, (6.69)

and this defines the equation of motion in the K-S variables u. This equation is well
defined at the collision with the planet, i.e. when u = 0. Indeed, we define

h = Q̇ · Q̇
2 − ε

r2
. (6.70)

In the u coordinates and with the new time τ we have

Q̇ · Q̇
2 = 2 |u

′|2

|u|2
,

hence
h = |u

′|2

|u|2
− ε

|u2|
. (6.71)

Combining (6.71) with the equation of motion (6.69), we obtain

u′′ − h

2u = |u|
2

2 LT (u)F + LT (u)BL(u)u′. (6.72)

Moreover, using the expression (6.58) of the Jacobi constant C, we have that

h = 1
2
(
x2 + y2)+ 1− ε

r1
− C

2 , (6.73)

hence in this term the singularity of the collision with the planet is removed. Since also
the right hand side of equation (6.72) is smooth at u = 0, we conclude that there is
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no singularity at the origin. The expressions of r1, h, F1, F2, F3 in the new variables u,
appearing in the equation of motion (6.72) and (6.73), are given by

r1 =
√

(1 + u2
1 − u2

2 − u2
3 + u2

4)2 + 4(u1u2 − u3u4)2 + 4(u1u3 + u2u4)2),

F1 = (u2
1 − u2

2 − u2
3 + u2

4 + 1− ε)− (1− ε)(1 + u2
1 − u2

2 − u2
3 + u2

4)
r3

1
,

F2 = 2(u1u2 − u3u4)− 2(1− ε)(u1u2 − u3u4)
r3

1
,

F3 = −2(1− ε)(u1u3 + u2u4)
r3

1
,

h = 1
2
(
(u2

1 − u2
2 − u3

3 + u2
4 + 1− ε)2 + 4(u1u2 − u3u4)2)+ 1− ε

r1
− C

2 .

(6.74)

Note that, when we integrate numerically equation (6.72), we also add to the system the
equation (6.59) defining the fictitious time τ , in order to recover the original time t.

Moreover, given the initial conditions (x, y, z)T , (ẋ, ẏ, ż)T ∈ R3 for the problem in
the synodic reference frame, we have to find the initial conditions (u1, u2, u3, u4)T ,
(u′1, u′2, u′3, u′4)T ∈ R4 in the K-S variables. To do that, note that equations (6.65)
define a map from R4 to R3, thus the inverse transformation is undetermined, since we
have three equations and four variables. Therefore, we can set arbitrarily one of the four
variables equal to zero as done in [102]. It is convenient to distinguish between the cases
x < x0 and x ≥ x0: in the first case we set u3 = 0, in the second case u4 = 0. Therefore,
the inverse relations are

u3 = 0, u2 =
√
r − x+ x0

2 , u1 = y

2u2
, u4 = z

2u2
, (6.75)

if x < x0, and

u4 = 0, u1 =
√
r + x− x0

2 , u2 = y

2u1
, u3 = z

2u1
, (6.76)

if x ≥ x0. Finally, to compute the initial derivatives u′ we can simply invert the first
equation in (6.67).



Chapter 7

Comparison between the systems

In science, an experiment is a test used to support or confute a hypothesis or, in general,
a theory. Due to the large distances involved in astronomical motions, the most common
way of performing experiments on existing objects is by means of observations. However,
depending on the problem, large evolution timescales are also involved. Thus, performing
experiments on real astronomical objects is not always trivial. Nowadays in Celestial
Mechanics, thanks to the available computational power, the role of experiments is played
by accurate numerical simulations.

In this chapter we investigate the relation between the solutions of the circular re-
stricted 3-body problem and the solution of the equations given by the non-resonant
or the resonant normal form. Using the tools introduced in Chapter 6, we perform nu-
merical experiments in the cases of regular dynamics, orbit crossings and mean motion
resonances.

When there are neither close encounters nor mean motion resonances between the
planet and the asteroid, the averaging principle is valid and the solution of the averaged
problem is a good approximation of the original solution for a large timespan. However,
if no mean motion resonances are involved but the solution of the averaged equations
passes through an orbit crossing, then the classical averaging principle cannot be applied.
Indeed, it may happen that the solution of the full problem undergoes close approaches
with the planet, which usually produce large changes in the semimajor axis.

Here we tried to interpret the solution of the averaged problem using a large set
of solutions of the full problem, computed varying only the initial fast angles involved.
Numerical simulations suggest that the solution of the averaged problem gives informa-
tion on the solutions of the full circular restricted 3-body problem, in a statistical sense.
Indeed, it seems that the large number of solutions taken into account compensate the
changes in semimajor axis produced by close encounters, whose effects almost cancel out
when we consider their arithmetic mean. This behaviour seems to be valid also when
the asteroid and the planet are in mean motion resonance, provided that the comparison
is done on the solutions of the full problem having the same initial resonant angle.

Some of these experiments were already present in [48, 50, 66], performed for some
particular known objects in the Solar System. However, the dynamics in that case is
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more complicated, due to the presence of several planets. Here we used the simple model
of the circular restricted 3-body problem, for a better understanding of the results.

7.1 Arithmetic mean and standard deviation

The circular restricted 3-body problem (6.57) is integrated in Cartesian Coordinates,
using the Kustaanheimo-Stiefel regularization near close approaches between the planet
and the asteroid. Then the Cartesian coordinates (x, y, z, ẋ, ẏ, ż) are converted into the
set of action-angle coordinates used for the averaged problem, i.e. Delaunay elements
(L,G,Z, `, g, z) if there are no mean motion resonances, or the elements (S,G,Z, σ, g, z)
in case of mean motion resonances. Here we discuss the setting of the averaged problem
without mean motion resonances, pointing out later the differences arising in the second
setting. This allows to compare the solution of the averaged equations (6.6) with the
solutions of the full equations (6.1).

To make a statistical comparison, we proceed in the following way. We fix the initial
shape and orientation of the orbit of the asteroid, i.e. we provide the initial Keplerian
elements

(
a, e, i,Ω, ω

)
at time t = 0. Then we perform several numerical integrations,

changing the initial values of the fast angles (`, `′). More specifically, fixed a positive
integer M ∈ N, we take the angles

`j1 = 2π
M
j1,

`′j2 = 2π
M
j2,

j1, j2 = 1, . . . ,M. (7.1)

Then, for every index j1, j2 = 1, . . . ,M , we integrate numerically the full problem with
initial Keplerian elements(

a, e, i,Ω, ω, `j1 , `′j2
)
, j1, j2 = 1, . . . ,M, (7.2)

which have to be converted in Cartesian coordinates, for a timespan [0, T ], obtaining
M2 different solutions. In the following, we will also use the term clones to refer to
these solutions. Let y ∈ {G,Z, g, z} be one of the relevant Delaunay elements for the
averaged problem, and denote with yj1,j2(t), j1, j2 = 1, . . . ,M the evolution of this ele-
ment in the circular restricted 3-body problem, obtained with the initial condition (7.2)
corresponding to the couple (j1, j2). Then we consider the arithmetic mean

ŷM (t) = 1
M2

M∑
j1,j2=1

yj1,j2(t), t ∈ [0, T ], (7.3)

and the standard deviation

σ̂M (t) =

√√√√√ M∑
j1,j2=1

(
yj1,j2(t)− ŷM (t)

)2
M2 − 1 , t ∈ [0, T ]. (7.4)
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To investigate the relation between the solutions of the full equations and the solution
of the averaged equations, we compare the averaged solution to the arithmetic mean
ŷM (t) and use also the standard deviation σ̂M (t) to understand a possible statistical
connection.

Note that, to integrate the circular restricted 3-body problem, we use an explicit
Runge-Kutta of order 7 with adaptive step-size, namely the DOP853 integrator (see [52]
for a description) available at [51]. Therefore, every computed solution is discretized at
different times. Moreover, also the solution of the averaged problem is computed using
another different time discretization, since the Runge-Kutta-Gauss method explained
in Subsection 6.2.5 is also step-size adaptive. However, the comparison has to de done
using the same time for the averaged solution and the arithmetic mean. To this end, we
discretize the integration interval [0, T ] using K + 1 equispaced points, that is we set

tk = T

K
k, k = 0, . . . ,K.

Hence yj1,j2(tk), j1, j2 = 1, . . . ,M is obtained using cubic splines, based on the output of
the numerical integration. The same is done for the solution of the averaged equations.

7.2 Non-resonant case

As already remarked, the averaged system (6.6) is integrable, since Z and the averaged
Hamiltonian H itself are first integrals in involution and generally independent. There-
fore, to understand the flow of the averaged problem, we can look at the level curves of
H(·, Z(0), ·, z(0)), as function of the remaining Delaunay elements (G, g). Level curves
for Z(0) computed from

a = 1.8, e = 0.15, i = 45◦,

and z(0) = 10◦ are represented in Figure 7.1.
Due to the planet crossing singularity, some level curves of the averaged Hamiltonian

are non-smooth. In particular, non-smooth level curves correspond to solutions passing
through an orbit crossing. Since, as explained before, the vector field has a jump at the
crossing, these level curves define only piecewise smooth solutions. Instead, if the chosen
initial condition corresponds to a smooth level curve, then there are no orbit crossings
during the evolution and the solution is smooth. Let us first discuss this case.

7.2.1 Smooth evolution

In this first experiment, the value of the mass of the planet is chosen to be µ = 10−4.
We compute the initial Delaunay elements from the initial Keplerian elements

a = 1.8, e = 0.15, i = 45◦, Ω = 10◦, ω = 60◦.

From Figure 7.1 we see that the value (ω, e) belongs to a domain on which the level
curves of H are smooth, hence we do not expect crossings during the evolution. The
averaged problem is integrated for a total time of 400 planet periods.
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Figure 7.1: The level curves of the averaged Hamiltonian.

The full circular restricted 3-body problem has been integrated using the procedure
explained in Section 7.1, using M = 8, 100, producing 64 and 10000 different clones
respectively. Then the arithmetic mean and the standard deviation have been computed
using cubic spline.

In Figure 7.2, the results of these integrations are shown. The green curve represents
the solution of the averaged problem, while the black solid curve is the evolution of
the arithmetic mean ŷM for the elements e, i,Ω, ω. The gray filled area represents the
points which are closer than the standard deviation to the arithmetic mean, at each
time. As we can see, already with M = 8 we obtain a good correspondence between
the averaged solution and the arithmetic mean. Increasing M to 100, we do not see
any significant improvement in the approximation. This is explained by the fact that,
in these conditions, the averaging principle can be applied, then any solution is well
approximated by the solution of the averaged problem, independently from the initial
values of the fast angles `, `′. It is important to note that the value of the standard
deviation is small, because the dynamics is smooth in this part phase space: indeed,
in this situation, small changes in the initial conditions produce small changes in the
solutions. Moreover, we recognize fast and small oscillations in the arithmetic mean,
which are persistent also for large values of M . This is due to the fact that every
solution has fast and small oscillations, produced by the perturbation of the planet,
and they do not cancel out when we consider the arithmetic mean ỹM . In particular,
we cannot conclude the convergence of ŷM to the solution of the averaged problem, as
M → +∞. We expect that ŷM is close to the solution of the averaged problem up to
some order in ε.
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Figure 7.2: A smooth solution of the averaged circular restricted 3-body problem. The green curve represents the
averaged solution, while the black solid curve represents the evolution of the arithmetic mean ÎM (t). The gray
filled area is the standard deviation from the mean. The plot on the top is produced using M = 8, the plot on
the bottom using M = 100.
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7.2.2 Non-smooth evolution

Here we search for an initial condition which produces a crossing configuration in the
solution of the averaged equations. The value of the mass of the planet is chosen to be
µ = 10−4, as in the previous experiment. We compute the initial Delaunay elements
from the Keplerian elements

a = 1.8, e = 0.75, i = 45◦, Ω = 10◦, ω = 75◦.

From Figure 7.1 we see that the value (ω, e) corresponds to a non-smooth level curve
of H, hence we expect an orbit crossing during the secular evolution. Therefore, the
solution of the averaged equations is integrated using the Runge-Kutta-Gauss scheme
explained in Subsection 6.2.5, for a total time of 400 orbital periods of the planet.

The full circular restricted 3-body problem has been integrated using the procedure
explained in Section 7.1, using M = 8, 100, producing 64 and 10000 different clones
respectively. Then the arithmetic mean and the standard deviation have been computed
using cubic splines.

In Figure 7.4 the results of these integrations are shown. The green curve represents
the solution of the averaged problem, while the black solid curve is the evolution of the
arithmetic mean ŷM , for the elements e, i,Ω, ω. The gray filled area represents the points
which are closer than the standard deviation to the arithmetic mean, at each time. As
we can see, near the time tc = 210 the solution of the averaged problem (green line) has
a corner, meaning that at this epoch the orbit of the asteroid crosses the orbit of the
planet.

On the other hand, from the time evolution of the arithmetic mean (black solid
curve) and the standard deviation (gray area), computed from whole set of solutions with
different initial conditions for the fast angles, we understand that some of them undergo
close approaches with the planet. Indeed, near the crossing time tc, the arithmetic mean
changes its approximated linear behaviour and moreover, the standard deviation has
an evident large grow in the elements e, i, ω. When we increase the number of clones
to M = 100 (see Figure 7.4, bottom), we see this large grow also in the longitude of
the ascending node Ω, meaning that strong close approaches occurred in some of these
solutions.

As we said in Chapter 6, the averaged equations of motion represents well enough the
long term behaviour of the full system as long as there are no close approaches. However,
from the plots of Figure 7.4 we can see that there is a relation between the solution of the
averaged problem passing through an orbit crossings and the arithmetic mean introduced
in Section 7.1. Indeed, the solution of the averaged problem always remains confined in
the region defined by the arithmetic mean ŷM and its standard deviation σ̂M . Moreover,
passing from M = 8 to M = 100, the arithmetic mean does not have quick changes,
suggesting that the effects of close approaches are canceled when we take into account
the arithmetic mean of the elements. Furthermore, in the plot with M = 100, near
the crossing time tc, we can clearly see a change of direction in the evolution of the
arithmetic mean, which tends to follow the solution of the averaged equations, and the
two curves get closer. As before, we cannot have a convergence as M → ∞, but we
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Figure 7.3: Comparison between the constant value of the semimajor axis a (green line) and the arithmetic mean
(black solid curve) computed with M = 8, on the left, and M = 100, on the right. The gray filled area represents
the standard deviation from the mean value.

expect that the arithmetic mean and the solution of the averaged problem are close up
to some order in ε, for large values of M . These facts suggest that the solutions of the
averaged problem give information on the whole set of solutions of the full equations
of motion of the restricted 3-body problem, in the sense that they are confined in a
confidence region defined by the arithmetic mean and its standard deviation.

Furthermore, we stress the fact that close approaches generally produce a wide change
in the value of the semimajor axis, while we know that it remains constant in the
averaged problem. For this reason, when we integrate the full problem, we also compute
the arithmetic mean and the standard deviation for this element. Comparison between
these two quantities is shown in Figure 7.3. As we can see, near the crossing time tc,
the standard deviation grows largely, confirming that close approaches occurred in some
solutions. However, when we take into account a large number of solutions with different
initial fast angles, as in the case M = 100, these large changes are compensated by the
large number of solutions. Indeed, despite the large standard deviations, we see that the
arithmetic mean remains close to the initial value.

7.3 Resonant case

When a mean motion resonance between the asteroid and the planet is involved in the
dynamics, we have to modify the procedure to compute the arithmetic mean. Indeed,
initial conditions (7.1) for the fast angles `, `′ give rise to different initial conditions for
the secular angle σ. To make a reliable comparison between the model given by the
truncated resonant normal form HN

res and the full circular restricted 3-body problem,
we have to define initial conditions that keep the initial value of σ unchanged. In this
manner, the corresponding solution of the resonant model does not change.
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Figure 7.4: An orbit crossing solution of the averaged circular restricted 3-body problem. The green curve
represents the averaged solution, while the black solid curve represents the evolution of the arithmetic mean
ÎM (t). The gray filled area is the standard deviation from the mean. The plot on the top is produced using
M = 8, the plot on the bottom using M = 100.
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7.3.1 Arithmetic mean

Let us suppose that we have detected a resonant dynamics using the method of Sub-
section 6.3.1. Let (a, e, i,Ω, ω, `) be the initial Keplerian elements of the asteroid and `′

be the initial phase of the planet, that we used to integrate the full circular restricted
3-body problem in order to detect the resonance. Let (h, h′) ∈ Z2 be the resonant vector
of integer numbers. Let

σ = h`+ h′`′

be the initial value of the secular angle. Then, fixed a positive integer number M ∈ N,
we take the initial conditions

`j = 2π
M
j,

`′j = σ − h`j
h′

,

j = 1, . . . ,M. (7.5)

Therefore, for every index j = 1, . . . ,M , we integrate numerically the circular restricted
3-body problem with initial Keplerian elements(

a, e, i,Ω, ω, `j , `′j
)
, j = 1, . . . ,M. (7.6)

which have to be converted into Cartesian coordinates, for a timespan [0, T ], obtaining
M different clones instead of M2, as for the non-resonant case. Then, the Cartesian
coordinates in output are converted into the resonant variables (S,G,Z, σ, g, z), then the
arithmetic mean ŷM and its standard deviation σ̂M are computed as before at equispaced
time points, using a cubic spline interpolation.

7.3.2 Numerical simulations

We perform a test using the initial conditions of the asteroid 1999 JB11, which we found
to be in the 5 : 2 resonance with the Earth. The mass of the planet used in the test is
chosen to be µ = 10−4. This value is slightly larger than the mass parameter of the Earth
used to perform the resonance detection in Subsection 6.3.1, however the resonance still
persists. We compute the initial resonant elements from the initial Keplerian elements

a = 1.842, e = 0.25, i = 37.1◦, Ω = 10◦, ω = 31◦, ` = 0◦,

which are taken from [41]. Therefore, the solution of the resonant model is integrated
using the Runge-Kutta-Gauss scheme explained in Subsection 6.2.5, for a total time of
400 orbital periods of the planet. We performed two numerical tests, using N = 3 and
N = 15 for the truncation order of the truncated resonant normal form HN

res.
The full circular restricted 3-body problem has been integrated using the procedure

explained in Subsection 7.3.1, keeping the initial value of the resonant angle σ constant,
with M = 300 different clones. Then the arithmetic mean and the standard deviation
have been computed using the cubic spline.
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In Figure 7.5 the results of these integrations are shown. The green curve represents
the solution of the resonant model, while the black solid curve is the evolution of the
arithmetic mean ŷM . The gray filled area represents the points which are closer than the
standard deviation to the arithmetic mean, at each time. As we can see from the plot
on the top, which is produced using a truncation order equal to N = 3 for the resonant
normal form, the solution of the resonant model exits out from the standard deviation
area, after about 270 orbital periods of the planet. However, this is explained by the
fact that, when the truncation order is small, the truncated resonant normal form does
not represent well the solutions of the full problem after some libration periods. Indeed,
increasing the truncation order to N = 15, this problem disappears, as we can see from
the plot in Figure 7.5, bottom: here the solution of the resonant model stays very close
to the arithmetic mean over the entire propagation timespan.

Moreover, we do not notice any orbit crossing during the evolution in the resonant
model, and furthermore we do not see any evidence of the presence of close encounters
between the planet and the asteroid in the 300 clones, since we do not see any large
grow in the standard deviation. This still has the consequence that small changes in the
initial conditions produce small changes in the solutions, and this can be noticed in the
sharp standard deviation. Moreover, fast and small oscillations due to the perturbation
of the planet are still persistent.

From these plots, it seems that the solutions of the resonant model give information
about the solutions of the full circular restricted 3-body problem in a statistical sense,
as in the case without mean motion resonances, provided that we consider only the
solutions with the same initial condition for the resonant angle σ.

We did not perform any test in the case of mean motion resonances and orbit cross-
ings, which is the last possible setting in this framework. We plan to investigate better
this setting with further numerical experiments. However, the results presented in [66]
suggest that, using a large order of truncation for the resonant Hamiltonian, the jumps
in the derivatives due to the crossing singularity are as small as the rounding off error,
therefore they cannot be perceived in the numerical simulations and they do not have
any effect on the dynamics.
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Figure 7.5: Comparison between the averaged resonant solution (green line) and the arithmetic mean computed
(black solid line), computed using M = 300 clones. The gray region represents the standard deviation from the
mean. The plot on the top is produced using truncation order equal to N = 3, the plot on the bottom using
truncation order equal to N = 15.



156 CHAPTER 7. COMPARISON BETWEEN THE SYSTEMS



Appendix A

The Marchal Lemma

A.1 Weak force potential

We consider a unitary mass particle, moving under the central force defined by the
α-homogeneous potential energy

V (x) = − 1
|x|α

, (A.1)

where x ∈ R2 \ {0} and α ∈ [1, 2). The Lagrangian is

L(x, ẋ) = |ẋ|
2

2 + 1
|x|α

, (A.2)

and the equations of motion are

ẍ = −α x

|x|α+2 . (A.3)

The problem has the first integrals of the energy, which is defined as

E(x, ẋ) = |ẋ|
2

2 − 1
|x|α

, (A.4)

and the total angular momentum

c(x, ẋ) = x1ẋ2 − x2ẋ1, (A.5)

where x = (x1, x2), ẋ = (ẋ1, ẋ2). In polar coordinates (ρ, θ), defined through{
x1 = ρ cos θ,
x2 = ρ sin θ,

the equations of motion (A.3) are written as
ρ2θ̇ = c,

ρ̈ = − α

ρα+1 + c2

ρ3 .
(A.6)
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The first equation represents the conservation of the angular momentum, while the
second depends only on the variable ρ and can be written as

ρ̈ = − d

dρ
V c

eff(ρ), (A.7)

where V c
eff is the effective potential, defined as

V c
eff(ρ) := − 1

ρα
+ c2

2ρ2 . (A.8)

System (A.7) has a first integral, corresponding to the total energy (A.4) written using
the conservation of the angular momentum, which results to be

Eceff(ρ, ρ̇) = ρ̇2

2 + V c
eff(ρ). (A.9)

Therefore, system (A.7) is integrable and the phase portrait can be deduced from the
level curves of V c

eff. An example of phase portrait for specific values of α and c is shown
in Figure A.1.

Figure A.1: The phase portrait of (A.7) in the plane (ρ, ρ̇), for α = 1.4 and c = 0.2.

A.2 Collision-ejection solutions

Let ρ̄ > 0 be a positive value and h ∈ R such that h ≥ hmin(ρ̄), where

hmin(ρ̄) = − 1
ρ̄α
.
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Note that hmin(ρ̄) is the minimal value of the energy which allows a solution of (A.7)
to pass from the value ρ̄. A collision-ejection solution is a solution passing through the
origin, connecting two points in the plane at distance ρ̄ from the origin. Note that for
α ∈ [1, 2), collision solutions are possible only when c = 0, see [69].

We search for the collision-ejection orbit with energy h. We can study only half of
this solution, for example the ejection one. Moreover, since the angular momentum is
zero, the motion takes place on a line. The time needed for the ejection solution to
go from the origin to the point at distance ρ̄ is recovered from the conservation of the
energy, and it is given by

τ(h) =
∫ ρ̄

0

ρ√
2hρ2 + 2ρ2−αdρ

= 1√
2

∫ ρ̄

0

ρα/2√
hρα + 1

dρ.

(A.10)

Denote with xh : [−τ(h), τ(h)] → R2 the collision-ejection solution in the plane and let
ρh(t) be its radial component. The action of the collision-ejection solution is given by

A(xh) = 2
∫ τ(h)

0

(
ρ̇2
h(t)
2 + 1

ραh(t)

)
dt. (A.11)

From the conservation of the energy, we have that

dρh
dt

=
√

2
(
h+ 1

ραh

)
. (A.12)

We can express the integral (A.11) using ρ as parameter instead of t and, dropping the
subscript h for the sake of simplicity, we obtain

A(xh) = 2
∫ τ(h)

0

(
h+ 2

ρα

)
dt

= 2hτ(h) + 2
√

2
∫ ρ̄

0

1
ρα
√
h+ 1/ρa

dρ

= 2hτ(h) + 2
√

2
∫ ρ̄

0

1
ρα/2
√
hρα + 1

dρ.

(A.13)

Parabolic collision-ejection When the value of the energy is h = 0, we have the
so called parabolic collision-ejection solution: we have seen in Chapters 1 and 2 that it
plays an important role in excluding partial collisions. In this case we can solve explicitly
the above integrals. The time needed to arrive at the collision is

τ(0) =
√

2
2 + α

ρ̄
α+2

2 , (A.14)

and the action is given by

A(x0) = 4
√

2
2− αρ̄

2−α
2 . (A.15)
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We can also explicitly compute the collision solution. Indeed, searching for a solution of
the form

ρ(t) = γtβ,

and imposing that it solves equation (A.7) with c = 0, we get
β = 2

2 + α
,

γ =
((α+ 2)2

2

) 1
α+2

.

(A.16)

A.3 Marchal’s Lemma for α-homogeneous potentials

Results present in the literature In the literature, Marchal’s Lemma is often re-
ferred to the following result (see for example [65, 19, 38, 76] for a proof).

Lemma A.1 (Marchal’s Lemma). Let τ > 0, α ∈ [1, 2) and xA, xB ∈ R2 \ {0} be two
points in the space. Then any minimizer of the action

A(x) =
∫ τ

0

( |ẋ|2
2 + 1

|x|α
)
dt, (A.17)

which is defined on the set of curves x : [0, τ ]→ R2 such that x(0) = xA, x(τ) = xB, is
free of interior collisions.

In the Keplerian case, the method used in [19] to prove this lemma is the following:
take a solution connecting xA and xB which has a collision and perturb it in all the
possible directions. Then, average the actions of the perturbed paths over a small circle:
it turns out that this average is less than the action of the collision path. Therefore,
there exists a perturbing direction which lowers the action of the collision path, so that
it cannot be a minimizer. However, this version of the lemma does not provide any
information about how many minimizers exist and, more in general, it does not relate
the action of other stationary points to the action of the collision-ejection solution.

Another version of Marchal’s Lemma, stated for the Keplerian case α = 1, can be
found in [40]. We have reported this version in Chapter 1, Lemma 1.8. Here, only
the parabolic collision-ejection solution is taken into account and it states that there are
actually two solutions of the Keplerian equations of motion, connecting any two different
points (at the same distance from the origin), whose action is lower than the action of the
parabolic collision-ejection solution itself. Moreover, if the ending points coincide, there
is only one non-collision connecting solution. In general, the action of these two arcs
is different, hence we conclude that any non-collision stationary point has action lower
than the action of the parabolic collision-ejection solution. Furthermore, the number of
stationary points is related to the angle between xA and xB: this is also important in the
proof of the exclusion of partial collisions given in Subsection 1.2.3. However, the proof
in [40] of this version of the lemma is done by using the explicit form of the solutions of
the Kepler problem, hence it cannot be adapted to the case α ∈ (1, 2).
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A more general statement is contained in [10], and it holds for potential depend-
ing also on the angle (e.g. for the anisotropic Kepler potential). In the case of α-
homogeneous potential, the result can be summarized as follows.

Theorem A.2. Let xA = rA(cosϕA, sinϕA), xB = rB(cosϕB, sinϕB) ∈ R2 \ {0} and
τ > 0. Given an integer k ∈ Z such that

|ϕA − (ϕB + 2kπ)| < 2π
2− α,

define

G =
{
x ∈ H1([−τ, τ ],R2) : x(−τ) = xA, x(τ) = xB

and the total angle swept by x is ϕB + 2kπ − ϕA
}
.

Then any minimizer of the action

A(x) =
∫ τ

−τ

( |ẋ|2
2 + 1

|x|α
)
dt.

in the class G is free of collisions.

This version of the theorem gives informations not only on the minimizer, but also
on other stationary points of the fixed-ends problem. The strategy used to prove this
lemma is the following. A disk of radius ε > 0 centered at the origin is cut out from
the plane and an obstacle problem is introduced. If the minimizer in G has a collision,
then the minimizers x∗ε of the obstacle problem touch the border of the disk, for every
ε > 0. Using a blow-up, it can be proven that x∗ε is composed by two parabolic arcs,
connected by an arc on the circle of radius ε. Then, the total variation of the angle can
be computed and it results to be greater than 2π/(2− α): this is in contradiction with
the arcs in the class G, hence the minimizer is collision free.

Marchal’s Lemma for the parabolic collision-ejection solution A version of
Marchal’s Lemma (analogous to Lemma 1.8 in the Keplerian case) which is suitable for
our purposes of Chapter 2, can be stated as follows.

Lemma A.3. Let α ∈ (1, 2) and ρ̄ > 0. Let τ(0) be the time needed for the parabolic
collision-ejection solution, starting at distance ρ̄, to arrive at the collision. Let ϕ ∈
[0, 2π) and set {

xA = (0, ρ̄),
xB = ρ̄(cosϕ, sinϕ).

Let x̄ : [−τ(0), τ(0)]→ R2 be any non-collision solution of equation (A.3) connecting xA
to xB in time 2τ(0), i.e. such that

x̄
(
− τ(0)

)
= xA, x̄

(
τ(0)

)
= xB,
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and denote with x0 : [−τ(0), τ(0)]→ R2 the parabolic collision-ejection solution with the
same boundary conditions. Then we have that

A(x̄) < A(x0), (A.18)

where
A(x) =

∫ τ(0)

−τ(0)

( |ẋ|2
2 + 1

|x|α
)
dt.

Moreover, the total number of connecting arcs is a function of the angle ϕ between
the points and the exponent α ∈ (1, 2).

Lemma A.4. In the hypotheses of Lemma A.3, connecting arcs all have a different
winding number with respect to the zero. In particular, the total angle swept by each arc
is

ϕ+ 2πk, k = kmin, . . . , kmax,

where

kmin =


−
[ 1

2− α + ϕ

2π

]
if 1

2− α + ϕ

2π /∈ Z,

−
( 1

2− α + ϕ

2π

)
+ 1 if 1

2− α + ϕ

2π ∈ Z,
(A.19)

kmax =



[ 1
2− α −

ϕ

2π

]
if 1

2− α −
ϕ

2π /∈ Z,

( 1
2− α −

ϕ

2π

)
− 1 if 1

2− α −
ϕ

2π ∈ Z,
(A.20)

and [ · ] denotes the integer part. Moreover, the total number of arcs is given by

ktot(α,ϕ) = kmax − kmin + 1.

Remark A.5. Note that Lemma A.4 matches with the Keplerian case α = 1. Indeed,
the value

1
2− α + ϕ

2π = 1 + ϕ

2π
is an integer number if and only if ϕ = 0, since ϕ ∈ [0, 2π). Hence, for ϕ 6= 0, we always
have

kmin = −1, kmax = 0,

and there are exactly two connecting arcs, one sweeping a total angle of ϕ and the other
one sweeping a total angle of ϕ− 2π, see Figure A.2 for an example. For ϕ = 0 we have
that kmin = kmax = 0, therefore there is only one connecting arc and it lies on the half
line connecting the origin to the point itself.
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Figure A.2: Example of Keplerian connecting arcs. The ending points are at distance 1 from the origin, the angle
between them is ϕ = 120◦. The blue arc is the direct arc (which is also the minimizer of the action) and the red
arc is the indirect arc.

This version of the lemma follows immediately from Theorem A.2. In the following
sections, we report our idea to prove Lemma A.3, which is supported by numerical
computation. This work has been done before our knowledge of the existence of Theorem
A.2.

A.4 Connecting arcs

Let α ∈ [1, 2), τ > 0, ρ̄ > 0 and let ϕ ∈ [0, 2π) be an angle. Given the values (h, c) of
the energy and the angular momentum respectively, we define two functions, computing
the time passed and the angle swept by an arc which starts at distance ρ̄ from the center
and ends at the same distance ρ̄. Moreover, we assume that these arcs pass only through
the pericenter or the apocenter.

Properties of the effective potential Note that the derivative of the effective po-
tential V c

eff is
d

dρ
V c

eff = − c
2

ρ3 + α

ρα+1 ,

hence there exists a unique point ρm(c) such that V c
eff attains its minimum at ρm(c), and

it is given by

ρm(c) =
(
c2

α

) 1
2−α

. (A.21)

Moreover, we have that

lim
ρ→0+

V c
eff(ρ) = +∞, lim

ρ→+∞
V c

eff(ρ) = 0−.
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The typical graph of the function V c
eff is shown in Figure A.3. Hence, given h ∈ R, the

motion is possible only when h− V c
eff(ρ) ≥ 0, and the equation

h− V c
eff(ρ) = 0

has

(i) two solutions 0 < ρ−(h, c) < ρ+(h, c) for h < 0;

(ii) one solution 0 < ρ−(h, c) for h ≥ 0.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-2000

-1000

0
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2000

3000

4000

5000

Figure A.3: The graphic of the effective potential V ceff.

The domain of definition Note that an arc can pass through the value ρ̄ only if the
values (h, c) of the first integrals satisfy

h− V c
eff(ρ̄) ≥ 0.

The border of this region in the (h, c) plane is given by the equation

V c
eff(ρ̄) = h, (A.22)

which can be written as
c2 = 2hρ̄2 + 2ρ̄2−α. (A.23)

This is a parabola in the (h, c) plane, whose axis of symmetry corresponds to the energy
axis. We define then the region

D := {(h, c) ∈ R2 : h− V c
eff(ρ̄) ≥ 0}.

Note that (h, c) ∈ D if and only if
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(i) h < 0 and ρ−(h, c) ≤ ρ̄ ≤ ρ+(h, c) or

(ii) h ≥ 0 and ρ−(h, c) ≤ ρ̄,

where ρ±(h, c) are the solutions of equation (A.22). Moreover, the border ∂D corresponds
to the union of the two curves

C− := {(h, c) ∈ R2 : ρ−(h, c) = ρ̄},
C+ := {(h, c) ∈ R2 : ρ+(h, c) = ρ̄}.

These two curves join at two symmetric points (hs,±cs), for which equation (A.22) has
only a solution and ρ̄ is a minimum of V c

eff. With easy computations, we get
hs = α− 2

2
1
ρ̄α
,

cs =
√
αρ̄

2−α
2 .

(A.24)

Note that hs < 0.

Arcs passing through the pericenter The function ρ−(h, c) defining the minimum
positive solution of h− V c

eff(ρ) = 0 is well defined in D and it is continuous and differen-
tiable. This value corresponds to the pericenter of the orbit with energy h and angular
momentum c, and moreover ρ−(h, c) ≤ ρ̄. We define then

T : D → R, Φ : D → R,

as

T(h, c) = 2
∫ ρ̄

ρ−(h,c)

ρ√
2hρ2 + 2ρ2−α − c2dρ, (A.25)

Φ(h, c) = 2
∫ ρ̄

ρ−(h,c)

c

ρ
√

2hρ2 + 2ρ2−α − c2dρ. (A.26)

The function T associates to the orbit with energy h and angular momentum c the time
needed to go from a point at distance ρ̄ from the center to return at the same distance,
passing through the pericenter. The function Φ associates the total angle swept by this
arc in time T(h, c).

With the same notations used to state Lemma A.3, the arcs connecting the points
xA, xB in a fixed time τ , passing through the pericenter, are found as intersections of
the level curves {

T(h, c) = τ,

Φ(h, c) ≡ ϕ (mod 2π).
(A.27)

Level curves of these functions, computed numerically, are shown in Figure A.4, for
α = 1.4.

Therefore, to study the existence and the number of connecting arcs, we have to
study the intersections between the level curves of the above functions. Note that on
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Figure A.4: The level curves of the functions T (top) and Φ (bottom) for α = 1.4. The red points correspond to
the points (hs,±cs) of equation (A.24) where the two branches of the border join.
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the border ∂D, the function Φ computing the angle swept is 0 on the branch C− and
corresponds to the precession angle of the pericenter on the branch C+, hence

2π ≤ Φ|C+∩{c>0} ≤
2

2− απ, −2π ≥ Φ|C+∩{c<0} ≥ −
2

2− απ, Φ|C− = 0.

In a similar way, the function T computing the time, is 0 on the branch C− and corre-
sponds to the time of passage between two pericenters P(h, c) on the branch C+, i.e.

T|C+ = P(h, c), T|C− = 0.

Note also that we are interested in finding arcs connecting in the time of the parabolic
collision-ejection solution x0(t), which we denoted by 2τ(0). Therefore, it is clear that

T(0, 0) = 2τ(0),

i.e. the point (0, 0) ∈ D lies on the level curve of T we are interested in.
Asymptotic properties can be deduced for these functions. For instance, for the time
function T we have that

lim
h→+∞

T(h, c) = 0,

for every c. Indeed, we have the estimate

0 ≤ T(h, c)

=
∫ ρ̄

ρ−(h,c)

ρ√
2hρ2 + 2ρ2−α − c2dρ

≤
∫ ρ̄

ρ−(h,c)

4ρ+ 2(2−α)
h ρ1−α√

2hρ2 + 2ρ2−α − c2dρ

= 1
h

√
2hρ2 + 2ρ2−α − c2

∣∣∣∣ρ̄
ρ−(h,c)

=
√

2hρ̄2 + 2ρ̄2−α − c2

h
.

and the last term goes to 0 as h→ +∞.
Moreover for negative energies, it is known (see [15]) that the angle of precession of

the pericenter, defined by

∆θ(h, c) = 2
∫ ρ+(h,c)

ρ−(h,c)

c

ρ
√

2hρ2 + 2ρ2−α − c2dρ,

satisfies
lim
c→0±

∆θ(h, c) = ± 2
2− απ.

Hence we can write
∆θ(h, c) = Φ(h, c) + Φ′(h, c),
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where
Φ′(h, c) = 2

∫ ρ+(h,c)

ρ̄

c

ρ
√

2hρ2 + 2ρ2−α − c2dρ.

and we get
lim
c→0±

Φ(h, c) = ± 2
2− απ + lim

c→0±
Φ′(h, c).

Now, we note that

lim
c→0±

Φ′(h, c) = 2 lim
c→0±

∫ ρ+(h,c)

ρ̄

c

ρ
√

2hρ2 + 2ρ2−α − c2dρ

= 2 lim
c→0±

∫
R

c

ρ
√

2hρ2 + 2ρ2−α − c21[ρ̄,ρ+(h,c)]dρ

= 0,

where 1[ρ̄,ρ+(h,c)] denotes the characteristic function of the interval. The last equality
follows from the Lebesgue theorem of dominated convergence. Indeed, the functions in
the integral are all integrable, hence we can compute the limit as the integral of the
pointwise limit function. To this end, we can compute that

lim
c→0±

ρ+(h, c) =
(−1
h

) 1
α

,

and in particular it is bounded, thus the functions in the integral converge to 0 almost
everywhere. Then, for negative energies, it follows that

lim
c→0±

Φ(h, c) = ± 2
2− απ. (A.28)

We can arrive to the same conclusion also for positive values of the energy. In this case,
the total angle swept by the orbit is given by

∆θ(h, c) = 2
∫ ∞
ρ−(h,c)

c

ρ
√

2hρ2 + 2ρ2−α − c2dρ,

and we can still prove that

lim
c→0±

∆θ(h, c) = ± 2
2− απ. (A.29)

Indeed, assume that c > 0 (the case c < 0 is analogous), with the variable change
ρ = 1/u we get

∆θ(h, c) = 2
∫ u−(h,c)

0

1√
2h
c2 + 2

c2u
α − u2

du,

where u−(h, c) = 1/ρ−(h, c). With the variable change s = u/u−(h, c), and using the
equation

h = c2

2 u−(h, c)2 − u−(h, c)α, (A.30)
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we get that

∆θ(h, c) = 2
∫ 1

0

1√
s(1− s)

1√
1 + 1

s + a(h, c) 1−sα
s(1−s)

ds, (A.31)

where
a(h, c) = 2

c2u−(h, c)α−2.

Now, using (A.30), we can write

a(h, c) = 1− 2h
c2u−(h, c)2 . (A.32)

Since h ≥ 0, then ρ−(h, c) is lower than the zero of V c
eff, i.e.

ρ−(h, c) ≤ ρ0 :=
(
c2

2

) 1
2−α

.

Therefore
c2u−(u, c)2 ≥ 2

2
2−α c−

2α
2−α ,

hence
1

c2u−(u, c)2 ≤ 2−
2

2−α c
2α

2−α ,

In particular, from (A.32) it follows that

lim
c→0+

a(h, c) = 1.

Moreover, the functions in the integral in (A.31) are all uniformly bounded, then we can
pass to the limit for c→ 0+. In this manner, we obtain

lim
c→0+

∆θ(h, c) = 2
∫ 1

0

1√
s(1− s)

1√
1 + s−sα

s2−s

ds = 2
2− απ.

Still splitting the integral, we have that

lim
c→0+

Φ(h, c) = 2
2− απ + 2 lim

c→0+

∫ ∞
ρ̄

c

ρ
√

2hρ2 + 2ρ2−α − c2dρ

= 2
2− απ,

(A.33)

where the last equality still follows from the dominated convergence theorem. In partic-
ular, the function Φ is discontinuous on the line c = 0.
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Arcs passing through the apocenter On the other hand, similar functions can be
defined considering the arcs passing through the apocenter. Of course, to do that the
pericenter has to exist, hence we can define them only for h < 0, in such a way that
ρ+(h, c) exists. Therefore we set

D′ := D ∩ {(h, c) ∈ R2 : h < 0}.

Then we define the functions

T′ : D′ → R, Φ′ : D′ → R,

as

T′(h, c) = 2
∫ ρ+(h,c)

ρ̄

ρ√
2hρ2 + 2ρ2−α − c2dρ, (A.34)

Φ′(h, c) = 2
∫ ρ+(h,c)

ρ̄

c

ρ
√

2hρ2 + 2ρ2−α − c2dρ, (A.35)

which have the same meaning as before, but instead of taking the arc passing through
the pericenter, we take the arc passing through the apocenter. Connecting arcs are still
found as intersections between the level curves{

T′(h, c) = τ,

Φ′(h, c) ≡ ϕ (mod 2π).
(A.36)

Level curves of these functions are represented in Figure A.5, in an example with α = 1.4.
Here the behaviour on the border is different. Indeed, for T′ we have that

T′|C+ = 0, T′|C− = P(h, c),

and moreover, since ρ+(h, c)→ +∞ for every admissible c as h→ 0−, we have that

lim
h→0−

T′(h, c) = +∞.

For the angle function Φ′, we have that

2π ≤ Φ′|C−∩{c>0} ≤
2

2− απ, −2π ≥ Φ′|C−∩{c<0} ≥ −
2

2− απ, Φ′|C+ = 0.

Moreover, Φ′ is continuous on the line {c = 0} and

Φ′(h, 0) = 0,

for every admissible h, as we have seen before.
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Figure A.5: The level curves of the functions T′ (top) and Φ′ (bottom) for α = 1.4. The red points correspond
to the points (hs,±cs) of equation (A.24) where the two branches of the border join.
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A.5 Action of connecting arcs

For a connecting arc x̄(t) with energy h and angular momentum c, using polar coordi-
nates, the action becomes

A(x̄) =
∫ τ

0

(
ρ̇2

2 + c2

2ρ2 + 1
ρα

)
dt

= 2
∫ τ

2

0

(
ρ̇2

2 + c2

2ρ2 + 1
ρα

)
dt,

where the last equation follows from the fact that connecting arcs defined above are
symmetric. Using the conservation of the energy (A.9), we can write

A(x̄) = 2
∫ τ

2

0

(
h+ 2

ρα

)
dt.

Still from the conservation of the energy, we can use ρ as independent variable instead
of the time t, through the coordinate change

dρ

dt
= ±

√
2
(
h− c2

2ρ2 + 1
ρα

)
, (A.37)

where the sign is − if the arc passes through the pericenter and + if it passes through
the apocenter. Let us assume, for instance, that the arc passes through the pericenter,
then the action becomes

A(x̄) = 2
∫ ρ̄

ρ−(h,c)

(
h+ 2

ρα

)
dρ√

2
(
h− c2

2ρ2 + 1
ρα
)

= 2
∫ ρ̄

ρ−(h,c)

(
h+ 2

ρα

)
ρ dρ√

2hρ2 + 2ρ2−α − c2

= 2
∫ ρ̄

ρ−(h,c)

ρ dρ√
2hρ2 + 2ρ2−α − c2h+ 4

∫ ρ̄

ρ−(h,c)

dρ

ρα−1
√

2hρ2 + 2ρ2−α − c2

= hT(h, c) + 4
∫ ρ̄

ρ−(h,c)

dρ

ρα−1
√

2hρ2 + 2ρ2−α − c2 .

(A.38)

Using the fact that for a connecting arc T(h, c) = τ , then we can write

A(x̄) = hτ + 4
∫ ρ̄

ρ−(h,c)

dρ

ρα−1
√

2hρ2 + 2ρ2−α − c2 .

If the arc x̄ passes through the apocenter, with similar computations we get that the
action can be written as

A(x̄) = hT′(h, c) + 4
∫ ρ+(h,c)

ρ̄

dρ

ρα−1
√

2hρ2 + 2ρ2−α − c2 . (A.39)
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A.6 Numerical examples

Here we show some numerical evidences, which can help in complete the proof of Lemmas
A.3 and A.4 with the approach used above. In particular, Lemma A.4 is motivated by
the fact that the total angle swept by an arc defined above cannot exceed the value

2π
2− α,

and moreover this is reached only in limit cases, either on the border ∂D, or for c→ 0±
where Φ(h, c) is discontinuous. Therefore, we expect that level curves of Φ, Φ′ exist only
for integer values k for which

− 2π
2− α < ϕ+ 2kπ < 2π

2− α.

These inequalities lead to the bounds

kmin ≤ k ≤ kmax,

where kmin and kmax are defined by A.19 and A.20, respectively. Then, one have to
prove that such level curves exist and intersect the level curve of the time function T
only once, for each admissible value of k.

We see here numerical examples in which we discuss the behaviour of the level curves.
To produce some tests we choose α = 1.4, which allows a maximal deflection angle equals
to

2π
2− α = 10

3 π.

We use different values for the angle ϕ ∈ [0, 2π) between the two ending points. These
values are chosen in order to take into account also the particular cases in which the
expressions

1
2− α + ϕ

2π ,
1

2− α −
ϕ

2π ,

assume an integer value. The values of ϕ and kmin, kmax computed by (A.19), (A.20) re-
spectively, are reported in Table A.1. In three cases, we expect three different connecting
arcs, while in one case we expect four connecting arcs. Moreover, for ϕ = 11π/9, 4π/3
we expect to have two connecting arcs with negative angular momentum. To actually
find the connecting arcs, we numerically compute the functions T, Φ for the arcs passing
through the pericenter and the function T′, Φ′ for the arcs passing through the apoc-
enter. The value chosen for the distance is ρ̄ = 1 and the total time for the parabolic
collision-ejection solution to go from the starting point to the ending point is

T(0, 0) ' 0.8318903.

We plot then the level curve of T corresponding to the value T(0, 0), and the level
curves of Φ corresponding to the values ϕ (mod 2π). Plots of these curves are reported
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ϕ 1
2−α + ϕ

2π
1

2−α −
ϕ
2π kmin kmax

1
3π

11
6

3
2 −1 1

2
3π 2 1 −1 1
11
9 π

41
11

18
11 −2 1

4
3π

7
3 1 −2 0

Table A.1: Values of kmin, kmax obtained from (A.19), (A.20) respectively, for some values of the angle ϕ ∈ [0, 2π),
computed for α = 1.4.
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Figure A.6: Intersections between the level curves of the function T and Φ. The red curve is the level curve
of T corresponding to time needed for the parabolic collision-ejection solution to go from the starting point to
the ending point. The other curves correspond to level curves of Φ(h, c) = ϕ (mod 2π). The values used are
ϕ = π/3, 2π/3, 11π/9, 4π/3 to produce the figures top left, top right, bottom left, bottom right, respectively.

in Figure A.6. As we can see from these figures, we can recover the number of arcs
computed from Table A.6.



A.6. NUMERICAL EXAMPLES 175

Indeed, for the case ϕ = π/3, we recognize three different intersections between the
curves, corresponding to three different connecting arcs passing through the pericenter.
Moreover, only one of them has negative angular momentum, in agreement with the
values of kmin and kmax. The case ϕ = 2π/3 is similar to the previous one.

When we increase the angle between the points, we see that another connecting
arc appears, as in the case ϕ = 11π/9: here in fact there are four intersection points.
Moreover, two of them have negative angular momentum.

Increasing again the angle, one of the arcs with positive angular momentum disap-
pear, as in the case ϕ = 4π/3, and the total number of connecting arcs is again three.

From these figures (and also from Figure A.4), it seems that every level curve of T
is bounded and they end in the singular points (hs,±cs). These points seem to be focal
points also for the level curves of Φ, as we can see from Figure A.4, bottom. Instead,
looking at the level curves of the function T′ and Φ′, represented in Figure A.5, we see
that T′ is very flat for energies h ≤ hs. Since we are interested in the level curve of value
T(0, 0) reported above, we expect this curve to lie in this region. Level curves of Φ′
passing in h ≤ hs have a moderate level value. Therefore, we expect to find connecting
arcs passing through the apocenter only for small values of ϕ.

Indeed, in the above examples, we plotted also the level curves of T′ and Φ′, but we
did not find any intersection between them, suggesting that all the connecting arcs pass
through the pericenter in these case.

Using a shooting method, we were able to compute accurate initial velocity needed
to obtain the connecting arcs. From these values, we computed the energy and the
angular momentum: in this way we found the intersection points that we see in the
plots of Figure A.6. Then, integrating numerically the equation of motion, we obtained
the entire time evolution of the connecting arcs (which are shown in Figure A.7), and we
also computed the corresponding values of the action. These values are all reported in
Table A.2. The action of the parabolic collision-ejection solution is computed through
(A.15) and it results to be

A(x0) = 9.42809.

As we can see from the values reported in the table, the action of the connecting arcs is
always lower than the action of the parabolic collision-ejection solution.

As we have seen, the intersection of the level curve of the time function T with the
level curve of the angle function Φ is used to recover the number of connecting arcs.
However, from the examples above we understand that, to prove Lemma A.3, what is
important is only the value of the action along the level curve of T. Indeed, it seems
that the intersections can take place at any point of this curve, since we have to take
into account any angle ϕ ∈ [0, 2π) between the two ending points. To this end, we can
define two additional functions

A : D → R, A′ : D′ → R,

using formulas (A.38) and (A.39), respectively. The function A(h, c) (resp. A′(h, c))
computes the action of an arc passing through the pericenter (resp. apocenter), con-
necting two points at a distance ρ̄ from the origin, in time T(h, c). Therefore, Marchal’s
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ϕ h c action

−0.2321566 1.2378042 1.49036
1
3π 0.5943874 0.5838823 8.44843

1.3033445 −0.8734238 6.92642
0.9838781 1.6217948 3.07209

2
3π 0.2782592 0.4184355 8.97619

1.5813843 −1.0677468 5.91637
1.2891075 −1.5677844 3.63051

11
9 π 0.1941770 −0.3554013 9.11137

0.0077296 0.0739359 9.41517
1.6347522 1.1523729 5.52925
0.9838781 −1.6217948 3.07209

4
3π 0.2782592 −0.4184355 8.97619

1.5813843 1.0677468 5.91637

Table A.2: The values of the energy and angular momentum corresponding to the intersection points, for the
cases analyzed above. In the last column we report also the value of the action of the arc.

Figure A.7: The connecting arcs in the cases analyzed above.

Lemma traduces in the inequality

A(h, c)
∣∣∣∣{

(h,c)∈D: T(h,c)=T(0,0)
} ≤ A(0, 0),

where the equal sign holds if and only if (h, c) = (0, 0), for the arcs passing through the
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pericenter. For the arcs passing through the apocenter, it becomes

A′(h, c)
∣∣∣∣{

(h,c)∈D′: T′(h,c)=T(0,0)
} < A(0, 0).

In Figure A.8 we show example with the level curves of A, numerically computed for

Level curves of the action
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Figure A.8: Level curves of the function A. The black curve passing through (0, 0) is {(h, c) : T(h, c) = T(0, 0)}.

α = 1.4 and ρ̄ = 1. In the same plot, we reported also the level curve

{(h, c) ∈ D : T(h, c) = T(0, 0)}

of the time function, corresponding to the black thick curve. Recall that the values
(h, c) belonging to this curve correspond to possible connecting arcs passing through
the pericenter. Stating from the point (0, 0) and following the black curve, we can see
that the value of A decreases, suggesting that (0, 0) is actually the maximum on this
curve. Since the point (0, 0) corresponds to the parabolic collision-ejection solution, this
would prove that any other connecting arc has action lower than the collision solution,
as stated in Lemma A.3.
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Appendix B

Properties of solutions with
partial collisions

We recall here the uniqueness result of [40] and propose an extension to α ∈ (1, 2).
Suppose that w : (0, t̄) → R3 is a maximal ejection solution of (1.13) (or (2.48) for
α ∈ (1, 2)), having a collision on an axis r for t = 0. We denote with er the unit vector
parallel to r and with Rπ the rotation of an angle π around r. Then, we have that there
exist b ∈ R and a unit vector n orthogonal to r such that

lim
t→0+

ẇ(t) +Rπẇ(t)
2 = ber, (B.1)

lim
t→0+

w(t)−Rπw(t)
|w(t)−Rπw(t)| = lim

t→0+

w(t)
|w(t)| = n. (B.2)

The unit vector n is the ejection direction we used in Chapters 1 and 2. The following
result generalizes Proposition 5.6 in [40] to the case of α-homogeneous potentials. We
omit the proof, that can be derived from the results in [38], [9].
Proposition B.1. Let w : (0, t̄)→ R3 be a maximal solution of (2.49). Assume that

lim
t→0+

w(t) = 0. (B.3)

Then
(i) there exist b ∈ R and a unit vector n, orthogonal to r, such that

lim
t→0+

ẇ(t) +Rπẇ(t)
2 = ber, (B.4)

lim
t→0+

w(t)−Rπw(t)
|w(t)−Rπw(t)| = lim

t→0+

w(t)
|w(t)| = n. (B.5)

(ii) The rescaled function wλ : [0, 1]→ R3 defined by wλ(0) = 0, wλ(τ) = λ2/(2+α)w(τ/λ), λ >
1/t̄, satisfies

lim
λ→+∞

wλ(τ) = sα(τ)n uniformly in [0, 1],

lim
λ→+∞

ẇλ(τ) = ṡα(τ)n uniformly in [δ, 1], 0 < δ < 1, (B.6)

179
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where

sα(τ) = (2 + α)2/(2+α)

2 c1/(2+α)
α τ2/(2+α), τ ∈ [0,+∞)

is the parabolic ejection motion, that is the solution of

ṡ = (cα/2α)1/2s−α/2

that satisfies limτ→0+ s(τ) = 0.
(iii) The following estimates hold for positive constants t0, ρ0, x0, Cj, j = 1, .., 7 that
depend only on b and on the energy constant h.

C1t
2/(2+α) ≤ ρ(t) ≤ C2t

2/(2+α),

C3t
−α/(2+α) ≤ ρ̇(t) ≤ C4t

−α/(2+α), t ∈ (0, t0],
|dxdρ − 1| ≤ C5ρ

1+α, ρ ∈ (0, ρ0],
|y′| ≤ C6x

α/2, |z′| ≤ C7x
1+α, x ∈ (0, x0],

(B.7)

where ρ = 1
2 |(Rπ − I)w| and x, y, z are the components of w on n, er, e⊥ = er × n and ′

denotes differentiation with respect to x.

The same result stated in Proposition 5.9 of [40] holds also in the case of α-homogeneous
potentials. We recall the statement below.

Proposition B.2. Let wi : (0, t̄i) → R3, t̄i > 0, i = 1, 2 be two maximal solutions of
(2.48) such that

lim
t→0+

wi(t) = 0, i = 1, 2.

If hi, bi, ni, i = 1, 2 are the corresponding values of the energy and the values of b and n
given by (B.1) and (B.2), respectively, then

h1 = h2,

b1 = b2,

n1 = n2,

=⇒
{
t̄1 = t̄2,

w1 = w2.

Proof. The proof follows exactly the same steps as in the case α = 1. Here we recall
the main points. Projecting the equation of motion (2.49) onto the basis n, er, e⊥ and
setting

w = xn + yer + ze⊥
we get 

ẍ = − αcα

(2x)1+α(1 + z2

x2 )
2+α

2
+ V1 · n

ÿ = V1 · er
z̈ = − αcαz

21+αx2+α(1 + z2

x2 )
2+α

2
+ V1 · e⊥

. (B.8)
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We take x as independent variable and write the energy equation (2.50) as

ẋ2(1 + |y′|2 + |z′|2) = cα

(2x)α(1 + z2

x2 )
α
2

+ V + h, (B.9)

where ′ denotes differentiation with respect to x. Setting

x = es, s ∈ (−∞, s0], (B.10)

where s0 < 0 is chosen later, and introducing the variables

η = dy

ds
, ζ = dz

ds

we can write the first order system
dy

ds
= η,

dη

ds
=
(2 + α

2 + α

2U
)
η + e(2+α)sA

dz

ds
= ζ,

dζ

ds
=
(2 + α

2 + α

2U
)
ζ −

(α
2 + α

2V
)
z + e(2+α)sB

, (B.11)

where U ,A,V,B are defined by relations

1 + U = (1 + |y′|2 + |z′|2)
(1 + z2

x2 )
2+α

2

(
1− (2x)1+α(1 + z2

x2 )
2+α

2 V1·n
αcα

)
(
1 + (2x)α(1 + z2

x2 )
α
2 V+h

cα

) ,

1 +W =
(1 + |y′|2 + |z′|2)(1 + z2

x2 )
α
2

1 + (2x)α(1 + z2

x2 )
α
2 V+h

cα

,

A = 2α

cα
V1 · er(1 +W),

1 + V = 1
(1 + z2

x2 )
2+α

2
(1 +W),

B = 2α

cα
V1 · e⊥(1 +W).

System B.11 can be written in compact form as
dγ

ds
= Mγ +N (γ, s) (B.12)

where γ = (y, z, η, ζ)T ,

N (γ, s) =
(
0, 0, α2Uη + e(2+α)sA, α2Uζ −

α

2Vz + e(2+α)sB
)T

and M is the constant matrix

M =


0 0 1 0
0 0 0 1
0 0 2+α

2 0
0 −α

2 0 2+α
2

 .
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To each solution w of (2.49) satisfying (B.3) there corresponds a solution γw of (B.12)
and this correspondence is 1–1. Moreover, from the estimates (B.7), we can find a
constant C0 > 0, depending only on h, b, such that

|γw(s)| ≤ C0e
2+α

2 s, s ∈ (−∞, s0]. (B.13)

Computing explicitly the eigenvalues

λ1 = 0, λ2 = α

2 , λ3 = 1, λ4 = 2 + α

2 ,

and the eigenvectors

ρ1 = (1, 0, 0, 0)T , ρ2 = (0, 1, 0, α2 )T , ρ3 = (0, 1, 0, 1)T , ρ4 = (1, 0, 2+α
2 , 0)T ,

of the matrix M , we find that there exists a constant C1 > 0 such that

|eMs| ≤ C1e
2+α

2 s, s ∈ [0,+∞). (B.14)

Let us consider a solution of the homogeneous equation dγ
ds = Mγ of the form

γδ(s) = e
2+α

2 sδρ4, δ ∈ R. (B.15)

Given K > 0 and c ∈ (0, α2 ], consider the complete metric space of the continuous maps

X = {γ : (−∞, s0]→ R4 : |(γ − γδ)(s)| ≤ Ke(1+c)s}, (B.16)

endowed with the distance

d(γ, γ̃) = max
s∈(−∞,s0]

|γ(s)− γ̃(s)|e−s. (B.17)

For each fixed δ and for K large enough we have

γw ∈ X

for all solutions w of (2.49), (B.3) corresponding to given values of h, b, n. Moreover,
solutions of (2.49) correspond to continuous solutions γ : (−∞, s0]→ R4 of the nonlinear
integral equation

γ(s) = γδ(s) +
∫ s

−∞
eM(s−r)N (γ(r), r)dr. (B.18)

We can show that the map

(Tγ)(s) = γδ(s) +
∫ s

−∞
eM(s−r)N (γ(r), r)dr (B.19)

defines a contraction on X for −s0 > 0 sufficiently large, implying that equation (B.18)
has a unique solution for each δ ∈ R. Moreover, the choice of δ is uniquely determined
by the value of b in (B.4).
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From the estimates

U ,V,W = O(eαs), A,B = O(1) s ∈ (−∞, s0] (B.20)

and, for the gradients,

Uγ ,Vγ ,Aγ ,Bγ = O(e−
(2−α)

2 s), s ∈ (−∞, s0], (B.21)

we get

|N (γ(s), s)| ≤ Ce
2+3α

2 s |N (γ(s), s)−N (γ̃(s), s)| ≤ Ce(1+α)sd(γ, γ̃) (B.22)

and, by (B.14),
|(Tγ)(s)− γδ(s)| ≤ Ce

2+3α
2 s, s ∈ (−∞, s0], (B.23)

and
d(Tγ, T γ̃) ≤ Ceαs0d(γ, γ̃), ∀γ, γ̃ ∈ X. (B.24)

Relation (B.24) shows that the map T : X → X is a contraction, provided −s0 > 0 is
sufficiently large.

If γ = (y, z, η, ζ)T is the fixed point of T , (B.23) implies that

lim
s→−∞

|γ(s)− γδ(s)|e−
2+α

2 s = 0. (B.25)

Proposition B.1 and the variable change (B.10) imply the asymptotic estimates

t ∝ 2
2 + α

√
2α
cα
e

2+α
2 s,

dt

dx
∝
√

2α
cα
e
α
2 s. (B.26)

From these asymptotic formulas and (B.25) it follows that

δ = 2
2 + α

√
2α
cα
b.
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Birkhäuser Boston, 1993.

[3] K. Appel and W. Haken. Every planar map is four colorable. Part I: Discharging.
Illinois J. Math., 21(3):429–490, 09 1977.

[4] K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. Part II:
Reducibility. Illinois J. Math., 21(3):491–567, 09 1977.

[5] V.I. Arnold. Mathematical Methods of Classical Mechanics. Graduate Texts in
Mathematics. Springer New York, 1978.

[6] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1st edition, 1998.

[7] E. Barrabés, J. M. Cors, C. Pinyol, and J. Soler. Hip-hop solutions of the 2N -body
problem. Celestial Mechanics and Dynamical Astronomy, 95(1):5–66, May 2006.
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tonien de 4 corps de masses égales dans R3: orbites “hip-hop”. Cel. Mech. Dyn.
Ast., 77(2):139–152, 2000.

[22] F. Clarke. Functional Analysis, Calculus of Variations and Optimal Control. Grad-
uate Texts in Mathematics. Springer London, 2013.

[23] F. H. Clarke and V. Zeidan. Sufficiency and the Jacobi condition in the calculus
of variations. Canad. J. Math., 38(5):1199–1209, 1986.

[24] V. Coti Zelati. Periodic solutions for N -body type problems. Annales de l’I.H.P.
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