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Primo Esercizio (15 punti)

Si fissi un sistema di riferimento Oxyz. Sul piano verticale Oxy si consideri un
disco omogeneo di massa m e raggio r che rotola senza strisciare su una guida
circolare di raggio R e con centro in O. La guida ruota attorno all’asse Oz
con velocità angolare costante di modulo pari a ω. In figura, tramite l’angolo
ωt, dove t è il tempo, indichiamo una direzione solidale alla guida. Un punto
materiale P di massa M scivola lungo l’asse Ox. Una molla di costante elastica
k > 0 e lunghezza a riposo nulla collega il baricentro G del disco con P . Sul
sistema agisce la forza di gravità di accelerazione g parallela ad Oy e di modulo
uguale a g.
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Utilizzando come parametri lagrangiani l’angolo φ tra il segmento OG e la
direzione solidale alla guida individuata dall’angolo ωt, e l’ascissa s del punto
P ,

i) (4 punti) calcolare la velocità angolare del disco;

ii) (2 punti) calcolare le velocità virtuali di G e del punto del disco a contatto
con la guida;

iii) (4 punti) determinare le equazioni pure del moto con le equazioni cardinali
della dinamica;

iv) (5 punti) trovare un sistema di forze costituito da un unico vettore appli-
cato in un punto opportuno equivalente alle forze centrifughe che agiscono
sul disco in un riferimento solidale alla guida.
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Secondo Esercizio (15 punti)

Si fissi un sistema di riferimento Oxyz. Sul piano orizzontale Oxy si consideri il
sistema meccanico formato da un arco a tre cerniere costituito da un corpo rigido
omogeneo C vincolato in O da una coppia rotoidale fissa e in B ≡ (ℓ/

√
2, ℓ/

√
2)

ad un’asta AB da una coppia rotoidale mobile. L’asta è vincolata in A ≡
(2ℓ/

√
2, 0) da una coppia rotoidale fissa. Il corpo C è costituito dai punti della

regione del piano delimitata dal segmento OB e dal quarto di circonferenza di
raggio ℓ/

√
2 e con centro nel punto (ℓ/

√
2, 0). Al baricentro di C è applicata la

forza F = (0,−F )T , F > 0. L’asta AB è sollecitata da un carico per unità di
lunghezza distribuito lungo l’asta dato da

f(s) =
F

ℓ

(
1

2
− s

ℓ

)
et, et =

√
2

2
(1, 1)T ,

dove F > 0 è costante ed s rappresenta la distanza dei punti dell’asta da B. Si
assuma che tutti i vincoli siano ideali.
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i) (3 punti) Ottenere un sistema di forze applicate equivalente al sistema
costituito dal carico distribuito che sia il più semplice possibile.

ii) (4 punti) Calcolare la posizione del baricentro di C.

iii) (4 punti) Determinare le reazioni vincolari interne ed esterne al sistema
con il metodo della sovrapposizione degli effetti.

iv) (4 punti) Ritrovare la reazione vincolare in A con il principio dei lavori
virtuali.
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Soluzione Primo Esercizio
i)
Introduciamo la base {e1, e2, e3}. Sia Q il punto di contatto tra il disco e la
guida. Abbiamo

χQ = R [cos(ωt+ φ)e1 + sin(ωt+ φ)e2] ,

χG = (R+ r) [cos(ωt+ φ)e1 + sin(ωt+ φ)e2] .

La velocità angolare del disco ωd = ωde3 si trova dalla formula fondamentale
della cinematica rigida:

vG = vQ + ωd × (χG − χQ),

dove
vG = (R+ r)(ω + φ̇) [− sin(ωt+ φ)e1 + cos(ωt+ φ)θe2]

e la velocità vQ si ottiene dalla condizione di puro rotolamento che porta a
scrivere

vQ = ωe3 × χQ = Rω [− sin(ωt+ φ)e1 + cos(ωt+ φ)e2] .

Sostituendo, si ottiene

ωd =

(
R+ r

r
(ω + φ̇)− R

r
ω

)
e3.

ii)
Le velocità virtuali diG e del punto del disco a contatto con la guida si ottengono
immaginando di bloccare la guida, come se all’istante t fosse fissa:

vG = (R+ r)φ̇ [− sin(ωt+ φ)e1 + cos(ωt+ φ)e2] ,

vQ = 0.

iii)
Un’equazione pura del moto si ottiene dalla seconda equazione cardinale della
dinamica del disco rispetto a Q:

ṀQ = NQ −mχ̇Q × vG.

Si ha

NQ = (χG − χQ)× (Fel −mge2) = r [−ks sin(ωt+ φ)−mg cos(ωt+ φ)] e3,

dove

Fel = −k(χG − χP ) = k [s− (R+ r) cos(ωt+ φ)] e1 − k(R+ r) sin(ωt+ φ)e2.

Inoltre
χ̇Q × vG = 0

perchè le due velocità sono parallele. Infine,

MQ = IQ,zω
d +m(χG − χQ)× vQ,
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con IP,z = 3mr2/2. Si ottiene

MQ =
mr

2
[3(R+ r)(ω + φ̇)−Rω] e3.

Allora l’equazione del moto diventa

3m

2
(R+ r)φ̈ = −ks sin(ωt+ φ)−mg cos(ωt+ φ).

La seconda equazione pura del moto si ottiene dalla prima equazione cardinale
della dinamica del punto P ,

MaP = −Fel −Mge2 +Φe2,

dove aP è l’accelerazione di P e Φe2 è la reazione vincolare che agisce su di esso.
Si ha

Ms̈ = k [(R+ r) cos(ωt+ φ)− s] .

iv)
Introduciamo la base {e′1, e′2, e3} solidale alla guida, con

e′1 = (cosωt)e1 + (sinωt)e2, e′2 = e3 × e′1.

La posizione di un generico punto del disco in questa base si può scrivere
attraverso le coordinate polari ρ ∈ [0, r], θ ∈ [0, 2π) come segue:

χ = x′e′1 + y′e′2,

dove
x′ = (R+ r) cosφ+ ρ cos θ, y′ = (R+ r) sinφ+ ρ sin θ.

Indicando con ω = ωe3 la velocità angolare della base solidale alla guida rispetto
a quella fissa, l’accelerazione centrifuga che agisce sul generico punto del disco
è data da

ac = −ω × (ω × χ) = ω2χ.

Chiamando σ = m
πr2 la densità del disco, la risultante delle forze centrigughe

che agiscono sul disco è

R = ω2σ

∫ r

0

∫ 2π

0

χ ρdρdθ = mω2χG.

Possiamo cercare la posizione χA = x′
Ae

′
1+y′Ae

′
2 di un punto A dell’asse centrale

ponendo NA = 0. Risulta

NA = σ

∫ r

0

∫ 2π

0

(χ−χA)×ac ρdρdθ = mω2(R+ r)(x′
A sinφ− y′A cosφ)e3 = 0.

Segue che y′A = (tanφ)x′
A, che rappresenta la retta passante per O e per G. In

definitiva il sistema {(G,R)} è equivalente alle forze centrifughe che agiscono
sul disco in un riferimento solidale alla guida.
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Soluzione Secondo Esercizio
i)
Introduciamo la base {e1, e2, e3}. Notiamo che

OA = AB = ℓ.

La risultante è data da

R =

∫ ℓ

0

f(s)ds =

∫ ℓ

0

F

ℓ

(
1

2
− s

ℓ

)
etds = 0.

Poichè il sistema di forze esterne attive applicate all’asta AB è piano, il trinomio
invariante è nullo. Per un risultato visto, possiamo sostituire tale sistema con
una coppia di momento pari a

N =

∫ ℓ

0

ser × f(s) ds = −Fℓ

12
e3,

con er = et × e3.

ii)
Consideriamo la seguente figura.

x′

y′

O′

H Q

Siano G, G1, G2 i baricentri di C, il quarto di disco ed il triangolo O′HQ. Siano
inoltre m e σ la massa e la densità di C. Evidentemente x′

G = 0. Inoltre, si ha

y′G =
1

m

(
m1y

′
G1

−m2y
′
G2

)
,

dove m2 = σℓ2

4 ,

m1y
′
G1

= σ

∫ π/4

−π/4

ρ2 cos θdρdθ =
σℓ3

6

e, da un risultato noto,

y′G2
=

ℓ

3
.

Risulta

y′G =
2ℓ

3(π − 2)
.

La posizione di G è data da

xG =
√
2ℓ

(
1

2
− 1

3(π − 2)

)
, yG =

√
2ℓ

3(π − 2)
.
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iii)
Consideriamo dapprima il caso in cui agisce solo la coppia N sull’asta AB. Sia
Φ′

B la reazione che AB esercita su C. Dall’equilibrio di C segue subito che

Φ′
B =

Φ′
B√
2
(e1 + e2) = −Φ′

O.

Inoltre dall’equilibrio di AB si ha

Φ′
B = Φ′

A.

Dalla seconda equazione cardinale della statica per AB rispetto ad A si trova

Φ′
B =

F

12
.

Dunque

Φ′
B =

F

12
√
2
(e1 + e2) = −Φ′

O = Φ′
A.

Consideriamo ora il caso in cui agisce −Fe2 nel baricentro G di C. Sia Φ′′
B la

reazione che AB esercita su C. Dall’equilibrio di AB segue subito che

Φ′′
B =

Φ′′
B√
2
(e1 − e2) = Φ′′

A.

Dalla seconda equazione cardinale della statica per C rispetto ad O si trova

Φ′′
B = −FxG

ℓ
.

Infine dalla prima equazione cardinale della statica per C si ha

Φ′′
O =

FxG

ℓ
√
2
e1 + F

(
1− xG

ℓ
√
2

)
e2.

Sovrapponendo gli effetti si ottiene:

ΦB =
F√
2

[(
1

12
− xG

ℓ

)
e1 +

(
1

12
+

xG

ℓ

)
e2

]
= ΦA,

ΦO =
F√
2

[(
xG

ℓ
− 1

12

)
e1 +

(√
2− xG

ℓ
− 1

12

)
e2

]
.

iv)
Eliminando il vincolo in A il sistema acquista 2 gradi di libertà, che rappre-
sentiamo attraverso gli angoli θ e φ definiti nella figura 1). Inoltre, la reazione
ΦA = ΦA,xe1 +ΦA,ye2 è ora vista come una forza attiva. Il principio dei lavori
virtuali porge

N · ωdt+ F · δχG +ΦA · δχA = 0, (1)

per ogni spostamento virtuale che allontani il sistema dalla configurazione di
equibrio θ = φ = π

4 . Si ha

ω = φ̇e3,

F = −Fe2,

χG =

(
ℓ

2
cos θ − d sin θ

)
e1 +

(
ℓ

2
sin θ + d cos θ

)
e2,

χA = ℓ (cos θ + sinφ) e1 + ℓ (sin θ − cosφ) e2,
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Figura 1: Figura relativa al punto iv).

dove d = y′G− ℓ
2 e ω è la velocità angolare di AB. Gli spostamenti virtuali sono

δχG = −δθ

(
ℓ

2
sin θ + d cos θ

)
e1 + δθ

(
ℓ

2
cos θ − d sin θ

)
e2,

δχA = ℓ (−δθ sin θ + δφ cosφ) e1 + ℓ (δθ cos θ + δφ sinφ) e2.

L’equazione (1), dopo aver posto θ = φ = π
4 , diventa

−Fℓ
√
2

12
δφ+ F (y′G − ℓ)δθ +ΦA,xℓ(δφ− δθ) + ΦA,yℓ(δφ+ δθ) = 0

e deve valere per ogni δθ e per ogni δφ. Segue che

F (y′G − ℓ)− ℓΦA,x + ℓΦA,y = 0,

ΦA,xℓ+ΦA,yℓ−
Fℓ

√
2

12
= 0,

da cui si ottiene la stessa reazione ΦA trovata in precedenza.
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