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Esercizio 1

i) Estendere le relazioni

P1 = p2 cos q2, P2 = p1q1

ad una trasformazione canonica
1
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ii) Si consideri il sistema hamiltoniano con funzione di Hamilton
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Si trovi la soluzione di questo sistema con dati iniziali

p1(0) = 0, p2(0) = 1, q1(0) = e, q2(0) = 0.

Esercizio 2
Consideriamo la lagrangiana

L(q, q̇, t) =
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con q, q̇, t 2 R.

i) Trovare la soluzione t ! �̄(t) dell’equazione di Eulero-Lagrange per L con

condizioni iniziali �̄(0) = 1, ˙̄�(0) = 0.

ii) Mostrare che per ogni T > 0, �̄ è un minimo debole del funzionale di

azione lagrangiana

A(�) =

Z T

0
L(�(t), �̇(t))dt,

nella classe di funzioni C
1
([0, T ],R).

iii) Fissato T > 0, calcolare la slope function del campo di estremali {�↵(t)}↵
definito in {(t,↵) : t 2 (0, T ),↵ 2 R} dalle soluzioni dell’equazione di

Eulero-Lagrange per L con condizioni iniziali �̄(0) = 0, ˙̄�(0) = ↵.

iv) Scrivere le equazioni di Carathéodory e determinare la funzione icononale

S(q, t) nella forma

S(q, t) = f(q, t) +

Z
g(t)dt,

con f(q, t), g(t) funzioni che devono essere calcolate.

1può essere utile ricordare che, per x 2 (�⇡/2,⇡/2), si ha
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dove C è una costante arbitraria.


















