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Esercizio 1
Si considerino le due funzioni di Hamilton

F = |p|*|q), G=(p-q)?
dove p = (p1,p2) € R%, ¢ = (q1,q2) € R*.

i) Scelti f,g € R, con f > g > 0, si consideri l'insieme

M={(p.q) €R": F(p,q) = f, G(p.q) = g}.
Mostrare che M & una sottovarieta di R* di dimensione 2.
ii) Mostrare che i flussi hamiltoniani ®°, <I>tG associati a F', G commutano.
iii) Consideriamo il flusso generalizzato
7 (x) = P o (), T=(1,m) ER? = = (p,q).
Mostrare che ®7 definisce una mappa da M in sé.

iv) Scelto un qualunque punto zo € M, mostrare che la mappa W, : R?

R* definita da

_>

o, (1) = @7 (20)

¢ un diffeomorfismo locale.

Esercizio 2
Si consideri il sistema hamiltoniano definito dalla funzione di Hamilton

He(I, Iz, 1, 02) = 2IF — I3 + e[sin® (o1 + 2) — sin® (o1 + 202))],
con (I, I5) € R3, (p1,92) €T? e 0 < e < 1.

i) Determinare una trasformazione canonica

(I, 12,01, 92) Lt (J1,J2, V1, 03)

tale che le nuove coordiante (¥Uy,Ws) siano separabili nell’equazione di
Hamilton-Jacobi per la funzione di Hamilton K, = H, o 1,

ii) Trovare due integrali primi tra loro indipendenti del sistema hamiltoniano
associato ad H..

iii) Descrivere I'andamento delle variabili azione I7, I e mostrare che vale il
principio della media per tutti i tempi.
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