388 Chapter 12. The Motion of the Moon

19. Write down the equations of motion of the Moon with respect to axes
rotating with the mean motion of the Moon.
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Chapter 13

The Earth and its Rotation

13.1 The Eulerian Motion of the Earth

The Earth is not a sphere, and in this chapter we shall consider some of the
consequences of this. We shall assume that the Earth has symmetry about an
axis and can be represented by a spheroid for which & = b > ¢; but the Earth
is not homogeneous, and we must be wary of using the formulas for the field
of a homogeneous spheroid. Let the moments of inertia of the Earth about
the axes (the principal axes of inertia of the spheroid) be A4, B, and C. Then
A=B<C.

First we shall consider the rotation of the Earth when no outside forces are
acting on it. Then, in Euler’s equations, {5.2.7), T' = 0, and

duwy

A—dt_ - (A - C}w;zl.dg = 0, (13:{}.)

A% —(C — Awswr =0, (13.1.2)
dw;; _

c=2 = 0. (13.1.3)

From (13.1.3) we have
w3 = constant,

so that the spin of the Earth about ifs axis of symmetry is constant. Let
-4

n=— s (13.1.4)
then the first two equations become
dw1
E + nwe =0
and (13.1.5)
d,
% —nw; = 0.
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390 Chapter 18. The Earth and its Rotation

Differentiating the first, and using the second to eliminate duw; /dt, we find

dzw 1

di?

+nlw =0,

and similarly,

The general solution of equations (13.1.5) is, then,

w; = acos(nt + B),

we = asin{nt + ). (13.1.6)

The period of these terms, measured in sidereal days, so that ws = 27, is

2% A

n C-A
From other sources the value of this is known to be about 303, so that the
period is 303 sidereal days, or 302 mean solar days. This is called the Fulerian
free period.

A consequence can be considered as follows. Let P be a point on the Earth,
and with origin at the center of the Earth, and Oz pointing along the direction
of ws, let Oz meet the meridian through P. {See Figure 13.1.} The angular
velocity of the Earth is

w1 X + we¥ + wsi,

so that it has direction cosines proportional to w1, w, and wz. Let the instanta-
neous axis of rotation cut the Earth near the north pole at I; then the equation

of the line OF is
z y z

or
z y z

acos(nt + ) - asin{nt + 3) T ws
Therefore the angle NI is o/ws, and the component of NI along NP is

(13.1.7)

o
NQ = — cos(nt + B).
w3
Now the latitude of P, measured with respect to the axis of rotation, is nearly

90° — PQ =90° — PN + f-cos(nz +B8). (13.1.8)
w3
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Figure 13.1

PN is constant, so that the Eulerian oscillation should give rise to a variation
in the latitude of P with period approximately ten months.

The latitude of a point can be found very accurately by astronomical ob-
servations, and it is known from these that it does, in fact, vary. But the
empirical formula for the latitude demands two periodic terms (as opposed to
one in (13.1.8)); one of these has amplitude 0”.09 and period one year, and
the other has amplitude 0”.18 and period 14 months. The first is probably
due to periodic changes in the moments of inertia of the Earth resulting from
seasonal changes in the weather. The second might be the modification of the
Eulerian free oscillation produced by the nounrigidity of the Earth. For, sup-
pose the Earth had no rigidity, or that it was composed of nonviscous fuid;
the two equal axes must always be perpendicular to the instantaneous axis of
rotation; hence there can be no free oscillation of this sort. Therefore, as the
rigidity of the Earth diminished, the Eulerian free period would increase until
it became infinite for the case of no rigidity. There are, however, other possible
explanations for the second term, and it may be that the actual Eulerian free
oscillation simply has an amplitude too small to be detected.

18.2 The Couple Exerted on the Earth by a Distant Body

Consider MacCullagh’s formula for the potential of a body at a distant
point, (5.4.1):

_GM _G(A+B+C-3I)

V =
T 23
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Let the origin be at the center of mass of the body, and let the axes be the
principal axes of inertia. The force exerted on a distant unit mass at ris —VV,
and from Newton’s third law the distant mass exerts an equal and opposite
force on the body. This results in a couple of moment r X VV about the origin,
exerted by the distant unit mass. ‘

This couple is the result of the lack of spherical symmetry of the body, which
expresses itself in the fact that V is not just a function of r, but involves z,
y, and z in addition. Therefore, in finding the couple, we can ignore all those
parts of V that are simply functions of 7.

Now

Az? + By? + C2?
I= 2
r
and so provides the only part of V about which we need worry; call this

3GI

=*§r—3

3G
= ﬁ(sz + By* + C2%).

Vi

The evaluation of r X VV =1 x VV; is straightforward; the couple is
T= 8¢ C-B A-C B-A4 13.2.1
=2 (C~ Bz (A= Oz, (B-Asy)). (1821

13.3 The Couples Exerted on the Earth by the Sun and Moon

With origin at the center of the Earth, take axes Ez, Ey, and Ez such that

Bz points toward the vernal equinox and Ez points toward the north celestial
pole; also EX, EY, and EZ such that EX points toward the vernal equinox
and #Z points toward the north pole of the ecliptic. {See Figure 13.2). The
relations between coordinates are

z=X,

y =Y cose — Zsine, (13.3.1)

z =Y sine + Zcose.

Here € is the obliquity of the ecliptic, assumed to be constant.
If § is the ascending node of the Moon’s orbit, then

X §, = —gt + constant,

where g is the rate of regression of the node in the ecliptic (all periodic perfur-
bations being neglected).

Let k be the inclination of the Moon’s orbit to the ecliptic; since it is small;

we shall neglect %2 so that sink = % and cosk = 1. To this order, we see that
after a time #, §3 will regress through an angle gt with respect to the Moon’s
orbit.
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Figure 13.2

Let » and n; be the mean motions of the Moon and Sun, respectively; then

XS:nzf%-G;
XM, =XQ+aM
=nt+ 5,

QM =nt+gt+,

where o, 8, and -y are constants, and the meridian through Z and M meets the
ecliptic at A4;. Then

sin MM; =sinksin QM
= ksin{nt + gt + 7).

Let R and r be the distances (assumed constant) of the Sun and the Moon.
Then we have the values of (X, Y, Z) for the Sun.

R{cos(nit + o), sin(nit+ <), 0),
and for the Moon,

r (cos(nt + B), sin(nt + B), ksin(nt + gt +7)).
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Then from (13.3.1) we find the values of (z,y,%2)
R(cos(nit + o), sin(nit 4 a)cose, sin(nit + o)sine) (13.3.2)

for the Sun, and

r (cos(nt + B), sin(nt+f)cose— k& sm(nt + gt +v)sine, (13.3.3)
sin(nt + ) sin € + ksin(nt 4 gt + ) cose)

for the Moon.
Let the masses of the Sun and Moon be M, and M,,, and let them exert

couples ,I' and ,,,T on the Earth. From (13.2.1), using the property A = B, we
find

T, = SMS (C — A)sin®(nit + a) cosesine,

Ly = 33/‘;3(;{4 C)sin(nt + o) cos(n,t + o) sine, (13349)

r,=0.

These expressions are to be used in a moment to establish the existence
of the precession of the Earth’s axis of rotation; this takes 26,000 years for
a complete cycle, so that we are certainly justified in neglecting the annual
variations in the expressions (13.3.4). If we take averages over one year, the
y-component vanishes, and we are left with

3M.G

sTe= 1 ———(C — A)sin2e. (13.3.5)
Similarly, we have for the couple exerted by the Moon,
mle = MG (C — A) {sin*(nt + B)sinecose
rs

+ksin(nt + B)sin{nt + gt + v) cos 2¢} ,

mly = 3G (A — C){cos(nt + B)sin(nt + B)sine
+k cos(nt + B)sin(nt + gt + ) cose},

mrz ={.

Consider the mean values taken over one sidereal month. We have
sin(nt + gt +7) = sin[(n? + B) + (gt = 5 +7)]
= sin(nt + ) cos(gt — 8 +7) + cos(nt + B) sin(gt — B+ 7),
so that the mean values are

= 3M G
mlz =

mly = 3M G{A C) sin{gt — B+ ) cose.

(C — 4) {~ sin 2 + k cos{gt -8+ cosZe} (1338)
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Finally, if we average over the period of revolution of the nodes (still short
compared with 26,000 years), the only nonzero term is

= 3M
mrx =

+—(C — A)sin2e. (13.3.7)

Therefore the mean value of the total couple exerted by the Sun and Moon
on the Earth, taken over a period of about nineteen vears, acts along the z-axis
and has magnitude

= 3G . M, M,

T'= T(C — A)sin2e (r_ R§> . (13.3.8)
If we substitute numerical values for the masses and distances, we see that the
Moon contributes about two-thirds of the total.

13.4 The Lunisolar Precession

In this section we shall consider analytically the consequences of the mean
couple, (13.3.8}, acting on the spinning Earth; this consequence is the luniso-
lar precession of the Earth’s axis. But before doing this we shall consider a
qualitative explanation for the precession.

From the reasoning in Section 12.3, we see that a close satellite of the Earth,
moving In a circular orbit, would suffer a regression of its line of nodes, due
to the perturbations of the Moon and Sun. The inclination of its orbit to the
ecliptic would suffer no secular perturbation. Suppose the satellite initially had
an orbit in the plane of the Earth’s equator; the plane of the orbit would not
remain equatorial but would lag behind. But now suppose the satellite to be
fastened to the Earth; it would try to force the plane of the Earth’s equator to
regress, following the plane of its orbit.

Now consider the Earth as being made up of a sphere, with radius equal
to the polar radius of the Earth, and a ring of extra material that is most
concentrated around the equator. Consider this ring as being composed of &
systemn of satellites; the plane of the orbit of each one will try to regress, and,
if it were not attached to the Earth, it would succeed. As it is, each satellite
in the ring will try to communicate this regression to the plane of the Earth’s
equator. They are partially successful, and as a result the plane regresses, while
making a constant angle with the ecliptic (barring periodic variation); this is
the phenomenon of precession.

If the satellites experienced no friction with the main body of the Earth, the
precession of the bulge would be much faster than the actual precession. Also,
if the Barth’s crust floated on a liquid interior, the precession would still be too
fast. Hence it is possible to conclude that the Earth’s crust is rigidly attached
to the interior.

Let us return to the consequence of the couple (13.3.8). We are to ignore
fuctuations about the mean value; but these would be expected to cause per:—
odic variations about the mez A precesszona.l motion With periods much less £




396 Chapter 13. The Earth and its Rotation

26;000 years. We shall also ignore the phenomenon of variation of latitude, and
assume that the axis of rotation of the Earth is rigidly fixed along the shortest
principal axis of inertia of a rigid Earth.

Let the spin of the Earth about its axis be n. Using the notation of Section
13.3, we see that the direction of the axis is Z; also

ZxZ
sine

X =

The total angular velocity of the Earth is composed of this spin and the motion

of the axis itself; so it is i
... dz
nZ+4 X pre

Then the angular momentum of the Earth is

. . dz
Cnz 4+ Az x e

and its rate of change is
Cn@ + AZ x ﬁ
dt a2’
since n is constant. The equation for the rate of change of the angular momen-
tum is, then,

dz O -
C?’I.E -i—AZ X ﬁ =1X
~T2XZ, (13.4.1)
Sin €

and
L Phx (Ex )
= w?(Zcose — %)

Substituting these conditions into (13.4.1), we see that such motion is possible,
provided w satisfies the quadratic equation

r
Cnw — Aw® cose = ——
sine€

3 M,, M,
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The sum of the roots (which are real) is equal to Cn/(Acose). If we take the
sidereal day as the unit of time, this has the approximate value 27/ cose. But
the product of the roots is seen to be very small. Hence {13.4.2) has two real
roots, of which one is of the order 27/ cos € and the other is very small; obviously
we must look to the second of these for terms relevant to the actual precession.
We can neglect the square of this small root, so that we find

3GC-A[/M, M,
w= —ET (r—3 + ﬁ) COS €. (13-4-3)

Now let the unit of length be the astronomical unit, the unit of mass be the
mass of the Sun, and the unit of time be the sidereal year. Then G = 472 and
n = 27 X 365.3. Substituting these values and that of cose into (13.4.3) we find

¢- 4119 % 102,

w=—-27

It is known that w is negative {9 recedes around the ecliptic), and if we adopt
the period 25,800 years for the precession, we find
C-4A 1
c 308
A better value is 1/304, so that agreement with even this rough theory is
satisfactory. A more refined theory would enable (C — A)/C to be found from
observation.

If the reader is not aware of the elementary theory of spinning tops, he
should consult any elementary mechanics text. The account given here is based
on the methods used in Milne’s Vectorial Mechanics (Ref. 8). We shall not
investigate the stability of the precessional motion of the Earth’s axis, but it
can be shown to be stable by the use of elementary methods given in most texts.

13.5 Nutation MMM

Let us forget, for the moment, about the terms in the expressions for the
couples exerted on the Earth by the Sun and Moon that produce the mean value
T, (13.3.8), used to establish the lunisolar precession; we are left with certain
periodic terms. We have seen that, as far as the couple is concerned, the Moon is
more potent than the Sun, so that the most important of the periodic terms will
be those arising from the motion of the Moon’s node, for these have the largest
amplitude and the longest period. The annual fluctuations due to the Sun and
the monthly fluctuations due to the Moon will be ignored. From (13.3.6) and
(13.3.7) we find the following relevant terms:

; _ 3Mn
I, = 12T3G (C — Ak cos2ecos(gt — B+ 7),
and
: 3My .
T, == G(C — A)k cosesin(gt.— B+ 7)-
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Let
3M,,G _
b= 273 (C - A}k,

then, if the time is measured from a suitable epoch, we can put

I = pcos2ecosgt,
= =P 9 (13.5.1)

I, = —pcosesingt.

Consider the effects of this couple, isolated from the rest of the precessional
motion; this is justified in a first approximation because all the effects are
small. At some instant the component of the couple I'), will be trying to induce
a precession of the Earth’s axis with angular velocity w., where

!
[
sine

(13.5.2)

-
Cnw, = —

This will be true only instantaneously, but if we assume I', to remain constant
for a time dt, then the Earth’s axis will precess through an angle

wl, dt,

and, according to the property of precession, this motion will be at right angles
to the direction of the couple that is causing it. Hence the Earth’s axis will
move along the y-axis through an angle

p cos2e
Cn sine

cos gt dt.

So for general ¢ we see that I, will result in simple harmonic motion along
the y-axis with period 27/g, or 18.6 years. In exactly the same way, T causes
simple harmonic motion along the z-axis, with the same period but different
amplitude. Combining the two, we see that the Earth’s axis describes an ellipse
in space with period 18.6 years.

The elliptic motion is superimposed upon the steady precessional motion
already found; the result is that the Earth’s axis describes a wavy path through
space, the extra waviness being called the nutation (for “nodding”).

We must emphasize that the account given here of precession and nutation
only scratches at the surface of the problem. The reader will find an adequate
treatment in texts such as those of Plumamer or Smart {Refs. 26, 29), but that
Tequires an analytical approach involving theory outside the scope of this text.
However, we have tried to show how elementary methods can be used to ac-
count for the grosser aspects of the phenomena, and may provide a geometrical
understanding that is not perhaps so easily grasped from the analytical meth-
ods. , y
The constants involved in the formulas for precession and nutation are found
basically from observation. But observations must be referred to an inertial
system of reference, and this is extremely difficult to do. For example, positions
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of stars at different times might be used; but the stars have their own motions,
and even if many stars were used so that their individual motions perhaps
canceled out, there is still the possibility of some general drift that would not
be affected. The motion of the Sun through space results in a general drift
of stars away from the direction of motion, and a determination of the solar
motion based on the observed positions of stars at different times involves a
redetermination of the constants of precession and nutation. One approach
to the determination of an inertial reference system is to use dynamics of the
asteroids. Another is to use the quasars as reference objects; these are very
remote and present stellar images.

13.8 Problems

1. Prove that the mutual potential energy of two distant bodies is approxi-

mately
G , M(AA+B' +C"-3I'Yy M'(A+B+C-3I)
_?{MLM + 2r2 + 2r2 ’

where r is the distance between their centers of mass, and M and M’ are
their masses, etc.

2. The quadratic equation for the precessional motion has another solution;
find it. Investigate the stability of the two solutions.

3. The boundary between the United States and Canada is, in part, defined
by the 49th parallel of latitude. If this were measured with respect to the
instantaneous north pole, find the extent (in meters) by which it would
vary.

4. Investigate the precession of Jupiter, assuming it to be solid and homo-
geneous.

5. Investigate the precession of Saturn’s rings.

6. An artificial satellite moves in a circular orbit, initially in the plane of the
Earth’s equator, just grazing the surface of the Earth. Assuming that the
orbit is free from atmospheric friction, find the period and the time taken
for a revolution around the ecliptic of the nodes of the orbit. (Consider
the action of the Sun and Moon.)

7. Find the axes of the ellipse describing the nutation considered in Section
13.5. Sketch part of the path traced out on the celestial sphere by the
Earth’s axis as a result of precession and nutation; will this include loops?




