< An Introduction o the Mathematics and Methods
of Ashodynamics:ﬂ,&; R. BATTIN

Chapter 10

Variation of Parameters

NALYTICAL DEVELOPMENT OF THE VARIATION OF PARAMETERS WAS

first given by Leonhard Euler in a series of memoirs on the mutual
perturbations of Jupiter and Saturn for which he received the prizes of
the French Academy in the years 1748 and 1752. The method is also
called the variation of orbital elements or the variation of constants—the
latter referring to integration constants. Euler’s treatment of the method of
variation of parameters was not entirely general since he did not consider
the orbital elements as being simultaneously variable. It is noteworthy,
however, that the first steps in the expansion of the disturbing function
were made by Euler in those papers.

Joseph-Louis Lagrange wrote his first memoir on the perturbations
of Jupiter and Saturn in 1766 in which he made further advances in the
variation of parameters method. His final equations were still incorrect
because he regarded the major axes and the times of perihelion passage
as constants. However, his expressions for the angle of inclination, the
longitude of the ascending node, and the argument of perihelion were all
perfectly correct. Later, in 1782, he developed completely and for the first
time the method of the variation of parameters in a prize memoir on the
perturbations of comets moving in elliptical orbits. One of the objectives
in this chapter is the derivation of Lagrange’s planetary equations.

The most dramatic application of the method was made indepen-
dently and almost simultaneously by the Englishman John Couch Adams
(1819-1892) and the Frenchman Urbain-Jean-Joseph Le Verrier (1811-
1877). Each predicted the existence and apparent position of the planet
Neptune from the otherwise unexplained irregularities in the motion of
Uranus.t The story is one of the most fascinating in the history of astron-
omy and is an impressive example of the precision which can be achieved
using variational methods.

The planet Uranus was discovered on March 13, 1781 by Sir William
Herschel shortly before Euler’s death in 1783. The other planets had been
known since ancient times and Herschel’s findings opened the door to an

t A mathematical account of the procedures used by Adams and Le Verrier is given
in William Marshall Smart’s book Celestial Mechanics published in 1953 by Longmans,
Green and Co.
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472 Variation of Parameters [Chap. 10

era of astronomical discoveries of major importance. Since Uranus is almost
visible to the unaided eye, the German astronomer Johann Elbert Bodet
(1747-1826) suspected that it might have been mistaken for a star in the
past. When the orbital elements had been determined with sufficient accu-
racy, a search of the old catalogs revealed that Uranus had been observed
at least 19 different times—the earliest by the first Astronomer Royal, John
Flamsteed, in the year 1690.

When the French astronomer Alexis Bouvard attempted to reconcile
the new observations with the old during his preparation of tables for
Jupiter, Saturn, and Uranus which were published in 1821, he was forced to
abandon the earlier data because of serious and unexplained discrepancies.
Even so, the planet began to deviate more and more from Bouvard’s predic-
ted positions and, by 1846, the error in longitude was almost two minutes

of arc. In 1842, Friedrich Wilhelm Bessel, suspecting the presence of an-

ultra-Uranian planet, announced his intention of investigating the motion
of Uranus. Unfortunately, he died before much could be accomplished.

On July 3, 1841, an undergraduate at St. John’s College in Cambridge,
England wrote in his journal

“Formed a design in the beginning of this week of inves-
tigating, as soon as possible after taking my degree, the
irregularities in the motion of Uranus ... in order to find
out whether they may be attributed to the action of an
undiscovered planet beyond it ...”

True to his word, by 1845 John Couch Adams had obtained a solution

t In 1766 the German astronomer Johann Daniel Titius (1729-1796) of Whittenberg
found an empirical formula for the distances of the planets from the sun—a “solution”
of the problem to which Kepler devoted so much misplaced energy. According to Titius,
the formula for the mean distance

an = % (4+ 3x [2"—2]) a.u.

with n = 1,2,3,4 holds for the planets Mercury, Venus, earth, Mars and with n = 6,7
for Jupiter and Saturn. (The symbol [z] denotes the greatest integer contained in z.)
The approximation is, indeed, remarkably good. When Uranus was found to conform
to the rule for n = 8, the formula took on greater significance. The empty space,
corresponding to n = 5, inspired Johann Bode, director of the Berlin Observatory, to
declare

“Is it not highly probefble that a planet actually revolves in the orbit which
the finger of the Almighty has drawn for it? Can we believe the Creator of
the world has left this space empty? Certainly not!”

An association of European astronomers was formed to search for the missing planet.
When Ceres was discovered by Giuseppe Piazzi on the first day of January, 1801 at
approximately 2.8 a.u., Titius’ rule became Bode’s law. (It is, of course, not a law and,
ironically, its association with Titius is almost forgotten.) It is, therefore, not surprising
that both men, Adams and Le Verrier, used Bode’s law to estimate the mean distance of
Neptune as 38.8 a.u.—but it was, in fact, the first planet to violate the rule. (Neptune’s
mean distance is actually 30.1 astronomical units.)
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Sect. 10.1] Variational Methods for Linear Equations 473

and in September of that year he gave the results of his computations, on
where the new planet could be found, to James Challis, director of the
Cambridge observatory. Challis expressed little interest. The next month,
Adams contacted the Astronomer Royal, Sir George Biddell Airy, who also
reacted with a similar lack of enthusiasm.

Meanwhile, in that same year, the French astronomer Urbain-Jean-
Joseph Le Verrier turned his attention to the Uranus problem and published
his results on June 1, 1846. When Airy saw the close agreement with
Adams’ calculations, he suggested to Challis on July 9, 1846 that he search
for the planet. Indeed, Challis did observe Neptune on August 4 but failed
to recognize it as the object of his quest. He had neglected to reconcile his

- observations with those of the previous night—an unforgivable blunder for

a man of his experience.

On September 18, 1846, Le Verrier requested the German astronomer
Johann Gottfried Galle to look for the planet with the hope that it could be
distinguished from a star by its disk-like appearance. Then on September
23, 1846, after only an hour, Galle found the planet Neptune within one
degree of the position computed by Le Verrier.

The reader can imagine the controversy between the English and the
French over who deserved the credit. But justice prevailed and when the
battle subsided, it was universally agreed that both Adams and Le Verrier
would share equally in the glory.

NO
Variational Methods for Linear Equations

The first application of the method of variation of parameters was made
by John Bernoullit in 1697 to solve the linear differential equation of the
first order. The most general such equation is

d
— Iy = gt (10.1)
For the solution, consider first the homogeneous linear equation
d
a% + f(t)y =0 (10.2)

t After Newton and Leibnitz, the Bernoulli brothers, James and John, were the two
most important founders of the calculus. James Bernoulli (1655-1705) trained for the
ministry at the urging of his father but managed to teach himself mathematics. In
1686 he turned to mathematics exclusively and became a professor at the University of
Basle. His younger brother John (1667-1748) was steered into business by his father
but turned, instead, to medicine and learned mathematics on the side from his brother.
Mathematics again won out and he became a professor at Groningen in Holland and,
later, succeeded his brother at Basle. His most famous student at the university was
Leonhard Euler who completed his studies there at the age of fifteen. It was through
the assistance of the younger Bernoullis, Nicholas (1695-1726) and Daniel (1700-1782),
both sons of John and both accomplished mathematicians, that Euler in 1733 secured
an appointment at the St. Petersburg Academy in Russia.

The Bernoulli family was, indeed, a unique source of mathematical talent.
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474 Variation of Parameters [Chap. 10

The variables are separable

dy
— = —f(t)dt
. f(t)
and we have
y= ce—ff(t) dt (10.3)

where ¢ is a constant.

Suppose now that we allow ¢ to be a function of ¢t and determine
the relation that c(t) must satisfy if Eq. (10.3) is to be a solution of the
inhomogeneous equation (10.1). By direct substitution we find

dc —[r(t)dt _

Hence

o(t) = C+/g(t)eff(‘)‘“dt
where C is a constant. Thus, the general solution of Eq. (10.1) is

y=Ce [Ty e“f”‘/geff‘“dt (10.4)

and involves two quadratures.

¢ Problem 10-1
Obtain the general solutions of

(1) S W= e®* (a = constant)

d
(2) —d%cost-i-ysint:l

using the method of variation of parameters.

Lagrange, in 1774, extended the method to the general n't order
linear differential equation

L(y) = ¢() (10.5)
where the operator L(y) is defined by
_d'y d" 1ty dy
L(y) = am T fl(t)_&'i—,:'i' +- 4 fn——l(t)_d-t' + fa(t)y

It is convenient to convert Eq. (10.5) to a system of n first-order
equations written in vector-matrix form. For this purpose, define

yr=ly @ Ly Ty
dt  dt? dtn=2  dtn-!
g"=[0 00 --- 0 g]
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Sect. 10.1] Variational Methods for Linear Equations 475
[ 0 1 0 - 0 0 7
0 0 1 - 0 0
F=| @ SRR
0 0 0 --- 0 1
-—fn _fn—l -fn—2 o _f2 _fl-‘
so that the scalar differential equation (10.5) is equivalent to
dy
T Fy+g (10.6)

Suppose that n linearly independent solutions of the homogeneous

equation

L(y) =0 (10.7)

are known. Call them y,(¢), y,(t), ..., y,(t) and form a matrix with

these vectors as the columns of the array. This is the Wronskian matriz
W defined as

W=[y1 Yy - Yn]
Clearly then, W satisfies the matrix differential equation
dW
— =FW 10.8
o (10.8)
and the general solution of the homogeneous equation is
Yy, = Wc (10.9)

where the components of the vector ¢ are n arbitrary constants.
As before we allow the elements of the vector ¢ to be functions of ¢
and require that
y = We(t) (10.10)

be a solution of Eq. (10.6). That is,

aW dc
—at—C'\"WE =FWc+g

But W is a solution of Eq. (10.8), so that the differential equation for c(t)
is reduced to

de
W— = 10.11
7 =8 (10.11)
Now, the functions y,(t), y,(t), ..., y,(t) were given as linearly

independent so that the Wronskian determinant is not zero. Therefore, the
matrix W is not singular so that

i dc -1
_ 10.12
prial U ( )

which is solved by quadratures for the elements of the vector c.
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¢ Problem 10-2
Obtain the general solutions of

d2
(1) ?dt_g + y = sect
d’y . dy
— +4— =4cot2t
(2) FTE + 7t co
d*y dy -
(3) F+2a_3y=t6t

¢ Problem 10-3
For the second-order linear differential operator
d’y 6
Lly)= — - =
(V)= =7 - 3V
show that

1
yi(t)=t>  and yg(t)=t—2

are linearly independent solutions of L(y) = 0. Then use the method of variation
of parameters to obtain the general solution of

L(y) =tlogt

10.2 Lagrange's Planetary Equations

The method of the variation of parameters. as originally developed by
Lagrange, was to study the disturbed motion of two bodies in the form
dr v u_ [8RJ R

(10.13)

@~V @R o

where R is the disturbing function defined in Sect. 8.4. The solution
of the undisturbed or two-body motion is known and may be expressed
functionally in the form

r=rt, o) v=v(, a) (10.14)

where the components of the vector o are the six constants of integration
(orbital elements). As in the previous section, we allow « to be a time
dependent quantity and require that the two-body solution (10.14) exactly
satisfy the equations (10.13) for the disturbed motion.

A set of differential equations for a(t) will result as before; however,
they will not be solvable by quadrature. The new set of equations will, in
fact, be a transformation of the dependent variables of the problem from
the original position and velocity vectors r(t) and v(t) to the time-varying
orbital elements a(t). Although the differential equations for e (t) will
be as complex as the original version, they will have advantages similar
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Sect. 10.2] Lagrange’s Planetary Equations 417

to those encountered in Encke’s method, i.e., only the disturbing and not
the total acceleration will effect changes in «(t). Indeed, one may regard
the method of variation of orbital elements as a form of Encke’s method in
which rectification of the osculating orbit is performed continuously rather
than at discrete and widely separated instants of time.
To obtain the variational equations, we substitute Eqgs. (10.14) into
Egs. (10.13) and use the fact that
AR A (10.15)
Here, the partial derivatives serve to emphasize that when the vector a is
considered to be constant, then Egs. (10.14) are solutions of the equations

" which describe the undisturbed motion.

For the disturbed motion
Q _0Or Orda
dt 0t Oda dt
and, paralleling the arguments used in the previous section, we have

or da
da dt
as the condition to be imposed on a(t). Physically, this means we are

requiring the velocity vectors of both the disturbed and undisturbed motion
to be identical. Similarly,

=0 (10.16)

dv._0dv 0Ovda

dt 8t Odoa dt
and, using the second of Eqgs. (10.15), we find that

v da {BR} *

_Br

= 10.17
Jda dt ( )

must obtain if Egs. (10.13) are to be satisfied. Equations (10.16) and
(10.17) are the required six scalar differential equations to be satisfied by
the vector of orbital elements ().

The Lagrange Matrix and Lagrangian Brackets

The two matrix-vector variational equations can be combined to produce
a more convenient and compact form. For this purpose, we first multiply
Eq. (10.16) by [0v/da]T . Then, multiply Eq. (10.17) by [dr/0a]™ and
subtract the two. The result is expressed as
o e
Ja

@ _ 10.18
= (10.18)
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478 Variation of Parameters [Chap. 10

where the matrix

IoXe" loXe" oa Jda

is six-dimensional and skew-symmetric. The form of the right-hand side of
Eq. (10.18) follows from the chain rule of partial differentiation

OR OR Or
da  Or da

The element in the 7*® row and j*® column of the Lagrange matriz

L is denoted by [, ;] and will be referred to as a Lagrangian bracket.
From Eq. (10.19) we have
oy, 0] = or dv  Or Ov
" Oa; da;  Oa; Oe

_0OrT Ov 3 orT ov _OvT Or ovT Or
Y da; Oa, da, B da, da;  da; da;

Lz[ar]Tav_[av]" or (10.19)

(10.20)

An important property of the Lagrange matrix L is displayed when
we calculate the partial derivative of the Lagrangian bracket with respect
to t. Thus,

0 o] = 0 <8VT> dr N OvT Ov g [(OvT\ Or OvT Ov
ottt I aaj ot ) Oa, 6013- da, Oa, \ Ot aaj da, 6aj
and, clearly, the second and fourth terms cancel immediately. Using the

gravitational potential function V = u/r, the second one of Egs. (10.15)
becomes

ovT _ oV
ot  Or

-?—[a-a-]— 0 [0V ar_ 0 [(OV\ Or
5t ‘0% _Oaj or /] 8a; Ooy; \ Or aaj

_o(av)er o (avy ar
~ Or da; | 0a; Or do; 87&1
_ v eV
- 0a00; Ododa;

In view of this discussion, we can summarize the properties of the
Lagrangian brackets as

(1) la;, ;] =0

(2) e, aj] = ‘[QJ" a,]

(3) %[ai’ aj] =0

so that

0
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Sect. 10.2] Lagrange's Planetary Equations 479

or, equivalently, for the Lagrange matrix,

The fact that the matrix L is not an explicit function of t will be exploited

to great advantage in determining the elements of the Lagrange matrix.

Problem 10-4
Consider the case for which the position and velocity vectors ro and vo at
some instant of time ¢y are used as orbital elements, i.e.,

a” =[rf v§]

Using the fact that the Lagrangian matrix L is independent of time, show that
L=J

where the matrix J is defined in Sect. 9.5. Then show that the variational

equations are
drg OR dvy __OR

dt  dvo dt  oro

which are in the so-called canonical form and should be compared to Hamilton’s
canonical form of the equations of motion developed in Prob. 2-13.

Computing the Lagrangian Brackets

To compute the Lagrangian brackets we first select an appropriate set of
orbital elements. The classical choice is

a®™=[Q 7 w a e A (10.22)

where (1, 7, w are the three Euler angles, a is the semimajor axis, e is the
eccentricity and

A= —nr (10.23)
where n is the mean motion
I
n= 33

and 7 is the time of pericenter passage.
The position and velocity vectors, expressed in reference coordinates
as functions of the orbital elements, are then

[ 1, 1, 13 ] [a(cosE —e)
- r=|m; my, my bsin E (10.24)
| M2 Mg ] | 0
(1, Il ;] [-ansinE/(1—ecosE)
v=|m; m, m, bncos E/(1 —ecos E) (10.25)
"y Ny ng | | 0
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[The components of r and v in orbital plane coordinates are obtained from
Egs. (4.40) and the transformation to reference coordinates via the rotation
matrix from Eq. (2.3).] Thus, r and v are functions of the Euler angles
through the direction cosine elements of the rotation matrix as given in
Egs. (2.9). The elements a and e enter the relations explicitly through
Eqs. (10.24) and (10.25), and implicitly through the mean motion n, the

semiminor axis
b=avy1 - e2

and through the eccentric anomaly E in Kepler’s equation
E—esinE =nt+ ) (10.26)

We begin by calculating the partial derivatives of r and v with respect
to each of the orbital elements. Since the Lagrangian brackets are not
explicit functions of time, we may set ¢ equal to any convenient value after
the differentiation. The expressions will be simplest at pericenter for which
t=1,r=qg=a(l—e),and E =0.

Consider first the partial derivative of r with respect to (1. From Eq.
(2.9), we have

% = -8—Q(cosﬂcosw — sin {)sinw cos 7)
= —sin{2cosw — cos QA sinwcos s
—m,
and, similarly,
oy, 9
o0 1 o0
Now since,
a(cos E — ¢) q
bsin £ =10
0 0

at pericenter, the derivatives of the other direction cosines do not enter in
the calculation of dr/d(). The result appears in the next equation set.

The derivatives of r with respect to 7 and w are entirely similar and
In exactly the same way we compute the derivatives of v. Therefore, at
pericenter,

or e or , ly or Ly
30 = ¢ L 5; = dsinw | my Ee mg
- 0 ng ng
(10.27)
ov _ nab —lm2 v nabcosw ;f ov nab rle
—_— 9 —_— = —,— 3 —_— 1
o0 q 0 01 q ny ow q n,
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To calculate dr/da, we first determine

—la(cos E — )] = cosE—e—asinE‘a—E

da da
0 . ) oF
—(bsinE) =v/1 —e2sinE + bcos £ —
da da
Then, by differentiating Kepler’s equation (10.26)
OF 0E On 3n
—_— F—=__"t=___
da € o8 da Oda 2a t
we obtain
08 _ _tnt
da  2r
so that at pericenter
0 _q 0 _ 3bnt
%[a(cosE —e)] = " and b—(l(bsm E)=- 5
Therefore,
or g g 3bnr Ly
da a 2q
ny Ny
and, similarly,
! l
ov  3a’n?r | 11 bn | "2
ov _ _on 10.2
da 2¢? e 2q i ( %)
n Ny

To calculate the derivatives with respect to ¢ and A, note that

oF OF OF

E—sinE—ecosEgzO and a—)\—ecosEE:\————l
Hence, for £ = 0, we have
oFr oF a
e =0 amd oy=v
and the rest of the derivation is as before. There obtains
or . 7511 or ab rf'z?
de - 1 a_)\ - q 2
n Ng
~ (10.30)
v _ na® rln? ov nad 7511
a, T 1 2 Ay T 1
de bq n, D) q n,

all of which are, of course, valid only at pericenter.
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With all of the derivatives evaluated, it is a simple task to calculate
the Lagrangian brackets defined in Eq. (10.20). For example,

or Ov or 0Ov

L01=% % 80 &
= nab[(lyms — lymy)sinw — (I;mg — l3m;) cosw]
= nab(n, sinw + n, cosw)
= nabsin:
and again
oo 5 BY o oy

0X da Jda 48l
ab’n na3q_na 2aq — b?
a2 <T>
na

1
2

Because of the skew-symmetry of the matrix L, there are just 15 distinct
brackets to evaluate and only six of these turn out to be different from
zero. The results are summarized as follows:

[7,Q)] = nabsin:

[w, Q) =0 [w.7] =0
[a,Q] = —3nbcosi [a.i] =0 [a,w] = —4nb
nae nade
e, Q1] = 2 cost [e,i] =0 [ew] = le.a] =0
2,0 =0 Al =0 Phw] =0  [Aa] =ina [he =0

With the elements of the Lagrange matrix determined, Eq. (10.18)
may be written in component form as

di nb da nade de OR

—mabsingZ 4+ ™ aa ae _
na smzdt -+ 9 coszdt A coszdt _GQ
nabsini@ = ?—E

dt 01

nbda nalede OR

2 dt b dt Ow

: 7 g _mbdu _madd _ OR
2 dt 2dt 2 dt da

nade dQ  naledw OR

bt T Ty @ T e
nada OR
2 dt ~ 9\

T W) TR
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These are easily solved for the derivatives of the orbital elements to produce
the classical form of Lagrange’s planetary equations:

dQ 1 OR

dt  nab sini 97

di _ 1 0OR cost OR
dt ~  nabsniof | nabsini 9w
dw cost OR b OR

dt  nabsini 8i ' nade e

da 2 OR

dt ~ na ox

de b OR b2 OR

dt ~  na®e 0w | nale O

d\ 2 0R b2 OR

dt ~ nada nate de

(10.31)

Equations (10.31) demonstrate explicitly that the matrix L is nonsin-
gular so long as the eccentricity e is neither zero nor one and the inclination
angle 7 is not zero. It should be remarked that a different choice of orbital
elements will alleviate these annoying singularities as seen in a later section

of this chapter.

¢ Problem 10-5

The Lagrangian brackets are the sum of three Jacobians

73 a;] =

where =, y, and z denote the time derivatives of z, y, and z.

0z,4) | Oyi) . 0(z3

dai,a;)  I(ai, ;) I ai,aj)

NOTE: The Jacobian is a determinant defined by

Problem 10-6

Consider a new set of orbital elements [ ™

Ju Ou
d(u,v) da 88
da,B) | Ov Ov
da 3dp

_%nzaz
a = nab B

nabcos:

B

B ] where

so that in Eqgs. (10.31) the disturbing function R = R(Q,7,w,a,e,)) is to be

replaced by

R=R‘(a1ﬂ)
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First, verify the relations

OR OR*
a0~ 9Bs
QE = —nabsiniaR‘
3‘i 803
OR _OR’
3w 8B2

OR _ n’a OR"* n rz_baR' 4 ﬁlzcosz.aR‘ n 3\ OR”
8a 2 day 2 Oaq 2 das 2na 0P
OR _naae oR" _ na’e OR"

e . b daz b ®'3a,
dR _ 18R
oA - n 6ﬁ1

and then show that Lagrange’s planetary equations, in terms of the alternate set
of orbital elements, are in canonical form; i.e.,

da™ _9R" . dBT _ _OF
dt 98B dt ~ da

The partitioned vector elements o and [ are said to be canonically conjugate.

NOTE: The orbital elements a;. a2, a3 are, respectively, the total energy, the
angular momentum, and the component of the angular momentum vector along
the reference z axis.

10.3 Gauss' Form of the Variational Equations

Although Lagrange’s variational equations were derived for the special case
in which the disturbing acceleration was represented as the gradient of the
disturbing function, this restriction is wholly unnecessary. If the disturbed
relative motion of two bodies is formulated as in Sect. 9.4 according to

=T =3y (10.32)

then it is readily seen that the derivation in the previous section leading to
Eq. (10.18) is still valid with the result now expressed as

da or 1~
L dt = [g} ay (10.33)

The elements of the Lagrange matrix, i.e., the Lagrangian brackets,

are as calculated in the previous section. However, the matrix coefficient
of the disturbing acceleration vector a, in Eq. (10.33) is needed to obtain
the appropriate variational equations. (The reader should understand that
although dr/0a was computed in the previous section as a part of the
determination of the Lagrangian brackets, the derivatives so obtained were
valid only at the instantaneous pericenter.) We now derive the variational
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equations appropriate to various choices for component resolutions of the
disturbing acceleration vector.

All of the equations derived in the following subsection and attributed
to Gauss can also be obtained more simply from the equations of Sect. 10.5.
Because of the complexity of the results, it is useful that they be derived
using two different methods. It is left for the reader to verify that the two
sets of variational equations so obtained are, indeed, equivalent.

Gauss' Equations in Polar Coordinates

The rotation matrix
L Ly l3
R=|{m, m, my
ny Ny, nNg

will affect an orthogonal transformation of vector components from oscu-
lating orbital plane coordinates i,, 1,, 1, to the reference coordinates i,
i,, 1,. The direction cosine elements of R are related to the Euler angles
through Eqgs. (2.9).

Using the asterisk to distinguish a vector resolved along reference axes
from the same vector resolved along osculating axes, we have

z T Qg a4y
I‘* = y r = 0 a; = ady ad = adg
2z 0 ay, agp
so that
r" = RR,r and a; =RRa, (10.34)
The rotation matrix
cosf —sinf O (a/r)(cos E — e) —(b/r)sinE 0
R;=|sinf cosf O0f= (b/r)sin E (a/r)(cosE —¢€) O
0 0 1 0 0 1

provides the necessary transformation from local osculating polar coordi-
nates i, ig, i, to the orbital plane coordinates i, i,, ij-
Let a be any one of the six orbital elements. Then, to derive the

variational equations in terms of the osculating polar components of the
disturbing acceleration, we may calculate

or*T G}
da Jda

aj=a,
and replace the term dR/8a with this quantity in the Lagrange planetary
equations (10.31).
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486 Variation of Parameters [Chap. 10

For the three Euler angle elements, we first obtain

AR, -m; —my; -—mg
-a—ﬁ = ll 12 13
0 0 0

5R. lysinw lzcosw  sin{lcost
57 = | ™ sinw mgcosw —cos{lcost
| naSinw Ny cosw —sint

= |myg -m; O

0w n, —-n; O
Then,
OR .o Oor* R
5; =adT% =a;"R}rRT 'E;Rfr (1035)
is evaluated for a = (1, 7, w. We have
OR _ . 0
- = d TCOS1
o0 —rcosfsinz
(10.36)
0 0
OR OR
i 3o =% |
rsind 0
where
b=w+f

is the argument of latitude defined in Sect. 3.4.

The vector r* depends on the remaining three elements through the
vector
a(cos E —¢)
R,r= bsin E
0

The derivatives with respect to a, e, A (following the arguments used in
computing the Lagrangian brackets) are obtained as follows:

P [ cosE — e+ (3ant/2r)sin E
,6_(Rfr) = | (b/a)sin E — (3ant/2r) cos E
a 0 b

-

(r/a)cos f + (3ant/2b) sin f
= | (r/a)sin f — (3ant/2b)(e + cos f)
0

-
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5 i —(a®/r)sin’ E —a
%(Rfr) = | —(a®e/b)sin E + (ab/r)sin E cos E
0

[ —(a®r/b%)sin’® f —a
= | (a®r/b?)sin fcos f
0

.

5 [ —(a%/r)sinE —(a?/b)sin f
5(Rfr)=. (ab/r)cosE | = | (a®/b)(e + cos f)
0 0
Then. for a = a, e, A, we evaluate
OR G o %) s 0
ﬁzadﬂr%—:adR}rRTRa(Rfr)zade Q(Rfr) (1037)
and obtain
OR (r/a) — (3ant/2b)esin f
B = aj | —(3ant/2b)(1 +ecos f)
¢ 0
(10.38)
—acos f (a?/b)esin f
ok =a] | [1+ (ar/b?)]asin f O_R:a;, (a%/b)(1 + ecos f)
de 0 oA 0

Eliminating the Secular Term

Before writing out the complete set of variational equations, let us address
an undesirable complication caused by the presence of the linear function of
time t in the expression for 0R/da. If we examine the Lagrange planetary
equations (10.31), we see that JR/da appears in, and only in, the equation
for the time rate of change of the element A. An element exhibiting such
behavior is clearly inconvenient at best when large values of t are to be
considered and should, therefore, be avoided if at all possible. Fortunately,
the difficulty can be overcome in the following manner.
Differentiate the mean anomaly

M=nt+ A
to obtain
) aM . 3ntda  dA
dt 20 dt = dt
since the derivative of the mean motion n = y/u/a3 is simply
dn __inda
dt  2adt
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Then, using Egs. (10.31), we have

dM _ 2 <3nt8R+6R _ b OR
- 2a 8\ Qda nae Oe

dt " na

It is apparent from Eqs. (10.38) that the parenthesized factor in this
last equation does not contain ¢ explicitly because of the cancellation.
Therefore, an effective artifice for avoiding the difficulty associated with
the choice of A as an orbital element is to replace the variational equation
for A in Lagrange’s equations by

dM _  dB

gt— =n-+ 'Ei"t" (10.39)

where

d _ 39R 2 0R b2 OR

dt = a20\ nada nale Oe
The quantity £ is then to be regarded as the sixth orbital element instead
of A= —nr.

(10.40)

Summary of Gauss' Equations

Finally, we are ready to summarize the complete set of variational equa-
tions. By substituting Egs. (10.36) and (10.38) into Lagrange’s planetary
equations (noting that p = b?/a and h = nab), we obtain

g_fz _ rsin@a
dt ~ hsini %k
di rcosé@
'd_t = h Qgn
dw 1 X rsinf cost
— = —[=pcos fay + (p+7)sin fay] - ————ay,
dt he hsinz (10.41)
da 2% / D '
< = esmfadr-i-;ade
de 1 .
priay {psin fay, +[(p+7)cos f + rejayy}
dM b i
- =0t %[(pcosf - 2re)ay, — (p+r)sin fay)

(It should be noted that variational equations for either the eccentric or
true anomaly may be used in place of the sixth equation above for the mean
anomaly. The appropriate equations are the subject of a problem later in
this section.)

If initial conditions are specified for 1, 7, w, a, e, M, these differ-
ential equations may be integrated by any convenient numerical method.
Needless to say, as a part of the integration process, Kepler’s equation
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must be solved for the osculating eccentric anomaly and the osculating
true anomaly determined from an appropriate identity; specifically,

l+e€

M=F—esinE and tan 1 f = 1—%

1

Generally, when the disturbing acceleration is small, a relatively large
integration step can be employed. On the other hand, it is necessary to
point out that, for this particular choice of orbital elements, the advantage
of the variational method is lost for orbits of low inclination or small eccen-
tricity. In these singular cases, the rates of change of (1, w and/or § will be
large despite the fact that the disturbing acceleration is small. Particular
techniques for avoiding these difficulties are treated in later sections.

¢ Problem 10-7
Let a4t and a4n be the components of the disturbing acceleration in the
plane of the osculating orbit along the velocity vector and perpendicular to it.

Show that
agr | _ h esin f —(1+ecosf)| | aat
adg pv

1+ecosf esin f Qdn
and then derive the variational equations in the form

_@Q _ rsinOa

dt  hsini "

_(_i_z; _ rcosBa

dt R e

duw 1 . r rsinfcost
y il [251nfadt + <Ze+ Ecosf) adn] T Thang %
@ _ 2a2va

7 dt

2 = L [a(e + cos faus ~ Tsin s
dM b g
_=n___[2(1+E_:)sinfadt+1COSfadn]

dt eav P a

¢ Problem 10-8

The variational equations for the eccentric and the true anomalies are, in
polar coordinates,

dE na 1 r\ .
E-——r— ;l—a[(cosf——e)adr—<1+z>smfadg]
df h 1 .
prile + o [pcos fadr — (p+7)sin f aqs)
and, in tangential-normal coordinates,
dE na 1
= 2~ [9asi n
o - ebv[ asin f aqr + r(e + cos f)agn|
af _h 1

) T
%12 = [2smfadt + (2€+ Ecosf) adn]
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490 Variation of Parameters [Chap. 10

¢ Problem 10-9
The disturbing function for the constant radial thrust acceleration problem
of Sect. 8.8 is simply
R = Tary
Derive the variational equations (10.41) for this case directly from the Lagrange
planetary equations.

NO
Nonsingular Elements

For orbits of zero inclination angle, the line of nodes does not exist. For
orbits of zero eccentricity the line of apsides is meaningless. Therefore, it
is not surprising to find singularities in the variational equations for those
elements associated with the node or pericenter. These are the longitude
of the node (1, the argument of pericenter w, the time of pericenter pas-
sage 7 (or A = —n7), and any of the anomalies which are measured from
pericenter.

To find variational equations which are nonsingular, we must search for
combinations of the usual orbital elements which do not depend on either
the line of nodes or the apsidal line. For example, if we add the variational
equations for {1 and w, the resulting equation exhibits no singularity for
vanishing inclination angle ¢. Specifically, from the first and third of Egs.
(10.41), we have

dw 1 T

— = 7-[=pcosfag + (p+r)sin fag) + - sinf tan $10agp

where
T=0N+w (10.42)

is the longitude of pericenter as defined in Sect. 3.4.

The singularity due to zero eccentricity is still present so that = itself
is not a suitable nonsingular orbital element. However, by adding together
the variational equations, for @ and M, we obtain an equation devoid of
either singularity. Since

b 1 b—a b2 — g2 ae

ahe he  ahe = ahe(a+b) h(a + b)
it follows that

dl ae ipeos fa (p+r)sin fa,) 2br +rsin0tan%z’
i " hla+n)? dr ~\PTT)SUL ] Qagl = 75" 0ar R Cdh
where

l=w+M (10.43)

is the mean longitude defined in Sect. 4.3.
Clearly, ! should replace M in our set of nonsingular variables, but the
equation just obtained is not yet suitable since it involves the true anomaly
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f which is referenced to pericenter. To pursue the question further, let us
examine the augmented form of Kepler’s equation

l=w+M=w+E-—esinF

If we define
K=w+E (10.44)

as the eccentric longitude, corresponding to the mean longitude [, then
Kepler’s equation becomes

=K +esinwcos K — ecoswwsin K

Furthermore, the equation of orbit may be written either in terms of K or
in terms of the true longitude

also defined in Sect. 4.3. We have

r=a(l —ecosE) =a(l —esinwsin K — ecos @ cos K)

or
__Pr  _ P
l1+ecosf 1+esinwsinl +ecoswcosl

Observe that both in the equation of orbit and in Kepler’s equation the
eccentricity e and the longitude of pericenter w appear only in the com-
binations esintw and ecosw. These functions are, therefore, promising
candidates for new elements to replace ¢ and w.

Therefore, define P, and P, as orbital elements, where

P, =esinw and P, =ecosw™ (10.46)

and obtain variational equations by differentiating and using the variational
equations already obtained for ¢ and w. Hence,

by _ ecoswdw +sinw ¢
dt dt dt
rsinftan L1
5 2-Pyag

1
= —E[pcosLadr —(p+r)sinLaygy —rPyag) +

with a similar expression for P,.

Although these equations are nonsingular, the argument of latitude ¢
needs to be expressed in terms of the true longitude L. For this purpose,
we write

) d=w+f=L-1]
so that
sinf = sin L cos (1 — cos Lsin ()

Now, we know that (1 is not itself a nonsingular element. However, sin¢
appears in the variational equation for P, multiplied by tan %i suggesting
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492 Variation of Parameters [Chap. 10

that the functions tan 27sin€Q) and tan 34cos{) would be suitable candi-
dates for new elements to replace {2 and z.
Again, we are led to define @), and @, as orbital elements, where

@, =tan 3isin}  and  Q, =tan 77cos{ (10.47)
and obtain
dQ, LA 1 .. di
— = tan 51 Cosﬂ—t— + 5 Sec 2zstE

21
sec” 3¢(sinf cos 2 + cosfsinN)ay,

2h

2h(1 +Q2 -+-Q2)smLadh

with a similar result for Q,. The element set is now complete.
Finally, we note that the classical elements are easily recoverable from
the new elements. For example,

e? = P? + P? tan? 1i = Q? + Q3

tanw = i tan{l = =
Py Q2

provided, of course, that P, and @), are not zero.

We now summarize the variational equations for the elements a, P,
P,, @, Q,, | which have recently been named the equinoctial variables by
Professor Roger A. Broucke of the University of Texas. They are, indeed,
nonsingular except for the rectilinear orbit h = 0 and for the orbit whose
inclination angle ¢ = 7. (These singularities can also be eliminated but we
will not pursue the question further.)

With P, P,, @, and @, chosen to replace the classical elements e,
(1, 7, and w and defined ast

P, =esinw Q, =taniisinQ
P, =ecosw Q, = tan 7 cos

1. The equation for the semimajor axis is

da 2a? D

i [(P sinL ~ P, cos L)a,, + adg] (10.48)
2. The equations for P, P,, Q,, and Q, are

dap, r

1= E{-—gcosLad, +[P+(1+ £) sin L] agq

~ P,(Q, cos L — @, sin L)adh} (10.49)

+ Lagrange first introduced this element set (using 7 instead of %i) in 1774 for his
study of secular variations. His notation for the four elements was h, I, p, and ¢.
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Sect. 10.4] Nonsingular Elements 493

ap, rip.. D
el h{r sinLay, + [P2 + (1 + ;) cosL] 49
+ P, (Q,cos L — Q,sin L)adh} (10.50)
dQ r 2 .
— =51+ Q1+ Q})sinLay, (10.51)
aQy _ T 2, 2
TRl ﬁ(l + Q7 +Q3)cosLay, (10.52)
3. The equation for the mean longitude is
dl T a D . 2b
Pl E{[a—i—b (;) (P,sinL + P,ycosL) + E—} Ay,
a D .
+ - 0 (1 + ;) (P,cosL — P,sin L)ay,
+ (@, cos L — @, sin L)adh} (10.53)
where
b = ay/1- P2 - P} h = nab
D . T h
- =1+P L+ P L - =
- + P;sin L + P, cos R~ a1+ P smL+ PcosL)

4. The true longitude L is obtained from the mean longitude [ by first
solving Kepler’s equation

=K+ P cosK — P,sinK

for the eccentric longitude K and determining r from the equation of
orbit
r=a(l - P;sin K — P,cosK)

Then, L is calculated from the eccentric longitude according to the
easily derived relations

. a a 2 ] a
S - ——~ PP — P
sin L 7‘[<1 a+bP2)SmK+a+b 1 Pycos K 1]
=2/(1- 2 _p2 a in K —
cosL = T[(l a+bP1)cosK+a+bP1PgsmK Pz]
where

a 1 1
a+b 14+1-€ 1++/1-P}-P}
or alternately expressed as

. _8

a+b e
in terms of the parameter § defined in Prob. 4-7.
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494 Variation of Parameters [Chap. 10

Verification of the validity of these equations is left as an exercise for

the reader.

Problem 10-10

The equinoctial coordinale azes are defined with respect to the reference

axes as follows:

(1) a positive rotation about the vector i, through an angle 2 to establish

the direction of the ascending node i,

(2) a positive rotation about the vector i, through an angle i to establish

the direction of i, and
(3) a negative rotation about the vector i, through an angle Q.

The position and velocity vectors are expressed in components along the

equinoctial axes as

cos L h —Py —sinL
r=r|sinL and v=—| Py+4cosL
0 P 0

and the rotation matrix, to transform from equinoctial coordinates to reference

coordinates, in terms of the equinoctial elements is

1 1-Q1+ Q3 2Q;Q2 \ 2Q:
1+ Q% + Q3 _%lgf * %2 @ 1 Q.'Z?Q: Q2

$ Problem 10-11

The equations of motion for the constant radial thrust problem of Sect. 8.8

can be written as the following set of nonsingular variational equations:

e hcost‘)a
= —— Tr

dt 7!
d_P2 = ﬁsinOa

dt = 0 Tr

da 2a?

5= —%—(Pg sin@ — Py cos@)ar,
do 2

== %(1 + Pysinf + chost‘»’)2

where

h=\/ua(l - PZ — F})
with the jnitia.l conditions at t = tp obtained from
PP=P,=60=0

and
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