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In this section we consider several interesting and important applications
of the concepts thus far developed in this chapter. The first example
utilizes the Lagrange planetary equations to study the average effect of
the J, term in the earth’s gravitational potential on the motion of an
earth orbiting satellite. The second example is an application of Gauss’
form of the variational equations to analyze the effect of atmospheric drag
on the orbital elements of a satellite in earth orbit.

Effect of J, on Satellite Orbits

The disturbing function associated with the J, term in the earth’s gravi-
tational field

R= —G—mJ (rr >2P2(cos &) (10.90)

1s obtained from Eq. (8.92). The colatitude angle ¢ is related to the orbital
elements and calculated from

cos¢ =1, -i, =sin(w + f)sins

using the results of Prob. 3-21. Hence, the Legendre polynomial P,(cos ¢)
is expressed as

P,(cos @) = L(3sin*(w + f)sin®7 — 1]
so that the disturbing function assumes the form
GmJ,r? ‘g

2p3

where r has been replaced by the equation of orbit.

The disturbing function can be expanded as a Fourier series in the
mean anomaly M using the technique of Sect. 5.3. The constant term in
the series is simply the average value of R over one orbit, i.e.,

z R=- (1 +ecos £)%(3sin®(w + f)sin®4 — 1] (10.91)
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Since dM = ndt and r?df = hdt, then clearly,

_ 1 2r n 9
R = 5—7; 0 ERT df
Substituting from Eq. (10.91) and performing the integration yields
— n2J,r?
_ 9 (0 _ acinl,
R = 1) (2 — 3sin1) (10.92)

Thus, the average value of the disturbing function depends only on the
three orbital elements a, e, and 7.

When E is used for R in Lagrange’s planetary equations (10.31),
we have, immediately, expressions for the average rates of change of the
satellite orbital elements during a single revolution. For example, since B
is not a function of 1, w, or A, we see that

& .

= = = = 10.93 |
dt 0 dt 0 (10.93) {
On the other hand, we obtain for the longitude of the node '
_— I
Q3. (T .
- = -§J2 (-;) NnCOS1 (10.94)

Thus, the plane of the orbit rotates about the earth’s polar axis in a
direction opposite to that of the motion of the satellite with a mean rate i
of rotation given by Eq. (10.94). This phenomenon is referred to as the
regression of the node.
In a similar manner, we obtain for the mean rate of rotation of the
line cf apsides
dw 3

Te 2 .
- = ZJQ (—p‘1> n(5cos?i—1) (10.95)

It is apparent that there exists a critical inclination angle
i = 63°26'.1

such that, if 7 exceeds 7, the line of apsides will regress while, if ¢ s
smaller than 1., the apsidal line will advance.

$ Problem 10-12

For an earth orbiting satellite, show that

- @ _ _
- = -9.96 (f.i) (1—€*)"%cosi degrees/day T'

t a ;

dw 3.5 B 5
i 5.0 (%9-) (1-¢€*)"?(5¢cos’i —1) degrees/day ;

using appropriate values for the physical data of the earth.




