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Chapter 10

Variation of Parameters

NALYTICAL DEVELOPMENT OF THE VARIATION OF PARAMETERS WAS
first given by Leonhard Euler in a series of memoirs on the mutual

perturbations of Jupiter and Saturn for which he received the prizes of

the French Academy in the years 1748 and 1752. The method is also
called the variation of orbital elements or the variation of constants—the
latter referring to integration constants. Euler’s treatment of the method of
variation of parameters was not entirely general since he did not consider
the orbital elements as being simultaneously variable. It is noteworthy,
however, that the first steps in the expansion of the disturbing function
were made by Euler in those papers.

Joseph-Louis Lagrange wrote his first memoir on the perturbations
of Jupiter and Saturn in 1766 in which he made further advances in the
variation of parameters method. His final equations were still incorrect
because he regarded the major axes and the times of perihelion passage
as constants. However, his expressions for the angle of inclination, the
longitude of the ascending node, and the argument of perihelion were all
perfectly correct. Later, in 1782, he developed completely and for the first
time the method of the variation of parameters in a prize memoir on the
perturbations of comets moving in elliptical orbits. One of the objectives
in this chapter is the derivation of Lagrange’s planetary equations.

The most dramatic application of the method was made indepen-
dently and almost simultaneously by the Englishman John Couch Adams
(1819-1892) and the Frenchman Urbain-Jean-Joseph Le Verrier (1811-
1877). Each predicted the existence and apparent position of the planet
Neptune from the otherwise unexplained irregularities in the motion of
Uranus.t The story is one of the most fascinating in the history of astron-
omy and is an impressive example of the precision which can be achieved
using variational methods.

The planet Uranus was discovered on March 13, 1781 by Sir William
Herschel shortly before Euler’s death in 1783. The other planets had been
known since ancient times and Herschel’s findings opened the door to an

t A mathematical account of the procedures used by Adams and Le Verrier is given
in William Marshall Smart’s book Celestial Mechanics published in 1953 by Longmans,
Green and Co.
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472 Variation of Parameters [Chap. 10

era of astronomical discoveries of major importance. Since Uranus is almost
visible to the unaided eye, the German astronomer Johann Elbert Bodet
(1747-1826) suspected that it might have been mistaken for a star in the
past. When the orbital elements had been determined with sufficient accu-
racy, a search of the old catalogs revealed that Uranus had been observed
at least 19 different times—the earliest by the first Astronomer Royal, John
Flamsteed, in the year 1690.

When the French astronomer Alexis Bouvard attempted to reconcile
the new observations with the old during his preparation of tables for
Jupiter, Saturn, and Uranus which were published in 1821, he was forced to
abandon the earlier data because of serious and unexplained discrepancies.
Even so, the planet began to deviate more and more from Bouvard’s predic-
ted positions and, by 1846, the error in longitude was almost two minutes

of arc. In 1842, Friedrich Wilhelm Bessel, suspecting the presence of an-

ultra-Uranian planet, announced his intention of investigating the motion
of Uranus. Unfortunately, he died before much could be accomplished.

On July 3, 1841, an undergraduate at St. John’s College in Cambridge,
England wrote in his journal

“Formed a design in the beginning of this week of inves-
tigating, as soon as possible after taking my degree, the
irregularities in the motion of Uranus ... in order to find
out whether they may be attributed to the action of an
undiscovered planet beyond it ...”

True to his word, by 1845 John Couch Adams had obtained a solution

t In 1766 the German astronomer Johann Daniel Titius (1729-1796) of Whittenberg
found an empirical formula for the distances of the planets from the sun—a “solution”
of the problem to which Kepler devoted so much misplaced energy. According to Titius,
the formula for the mean distance

an = 75(4+3x[2"72)) au.

with n = 1,2,3,4 holds for the planets Mercury, Venus, earth, Mars and with n = 6,7
for Jupiter and Saturn. (The symbol [z] denotes the greatest integer contained in z.)
The approximation is, indeed, remarkably good. When Uranus was found to conform
to the rule for n = 8, the formula took on greater significance. The empty space,
corresponding to n = 5, inspired Johann Bode, director of the Berlin Observatory, to
declare

“Is it not highly probgb]e that a planet actually revolves in the orbit which
the finger of the Alrx?ngty has drawn for it? Can we believe the Creator of
the world has left this space empty? Certainly not!”

An association of European astronomers was formed to search for the missing planet.
When Ceres was discovered by Giuseppe Piazzi on the first day of January, 1801 at
approximately 2.8 a.u., Titius’ rule became Bode’s law. (It is, of course, not a law and,
ironically, its association with Titius is almost forgotten.) It is, therefore, not surprising
that both men, Adams and Le Verrier, used Bode’s law to estimate the mean distance of
Neptune as 38.8 a.u.—but it was, in fact, the first planet to violate the rule. (Neptune’s
mean distance is actually 30.1 astronomical units.)
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and in September of that year he gave the results of his computations, on
where the new planet could be found, to James Challis, director of the
Cambridge observatory. Challis expressed little interest. The next month,
Adams contacted the Astronomer Royal, Sir George Biddell Airy, who also
reacted with a similar lack of enthusiasm.

Meanwhile, in that same year, the French astronomer Urbain-Jean-
Joseph Le Verrier turned his attention to the Uranus problem and published
his results on June 1, 1846. When Airy saw the close agreement with
Adams’ calculations, he suggested to Challis on July 9, 1846 that he search
for the planet. Indeed, Challis did observe Neptune on August 4 but failed
to recognize it as the object of his quest. He had neglected to reconcile his

- observations with those of the previous night—an unforgivable blunder for

a man of his experience.

On September 18, 1846, Le Verrier requested the German astronomer
Johann Gottfried Galle to look for the planet with the hope that it could be
distinguished from a star by its disk-like appearance. Then on September
23, 1846, after only an hour, Galle found the planet Neptune within one
degree of the position computed by Le Verrier.

The reader can imagine the controversy between the English and the
French over who deserved the credit. But justice prevailed and when the
battle subsided, it was universally agreed that both Adams and Le Verrier
would share equally in the glory.

Si
Variational Methods for Linear Equations

The first application of the method of variation of parameters was made
by John Bernoullit in 1697 to solve the linear differential equation of the
first order. The most general such equation is

d
- + /Oy =9(0) (10.1)
For the solution, consider first the homogeneous linear equation
d
?i% +f(t)y=0 (10.2)

t After Newton and Leibnitz, the Bernoulli brothers, James and John, were the two
most important founders of the calculus. James Bernoulli (1655-1705) trained for the
ministry at the urging of his father but managed to teach himself mathematics. In
1686 he turned to mathematics exclusively and became a professor at the University of
Basle. His younger brother John (1667-1748) was steered into business by his father
but turned, instead, to medicine and learned mathematics on the side from his brother.
Mathematics again won out and he became a professor at Groningen in Holland and,
later, succeeded his brother at Basle. His most famous student at the university was
Leonhard Euler who completed his studies there at the age of fifteen. It was through
the assistance of the younger Bernoullis, Nicholas (1695-1726) and Daniel (1700-1782),
both sons of John and both accomplished mathematicians, that Euler in 1733 secured
an appointment at the St. Petersburg Academy in Russia.

The Bernoulli family was, indeed, a unique source of mathematical talent.
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The variables are separable

dy
= = - d
" f(t)dt

and we have
y= ce_ff(t) i (10.3)

where ¢ is a constant.

Suppose now that we allow ¢ to be a function of ¢t and determine
the relation that c(t) must satisfy if Eq. (10.3) is to be a solution of the
inhomogeneous equation (10.1). By direct substitution we find

dc —[r(t)dt _

Hence

ct)=C+ / g(t)ed 1D gy
where C is a constant. Thus, the general solution of Eq. (10.1) is

y= Ce_ff d —+ e—ffdt / geffdtdt (104)

and involves two quadratures.

¢ Problem 10-1
Obtain the general solutions of

(1) — oY= e**  (a = constant)

d
(2) f—:—cost—kysint:l

using the method of variation of parameters.

Lagrange, in 1774, extended the method to the general n'* order
linear differential equation

L(y) = g(¢) (10.5)
where the operator L(y) is defined by
I i’ dy
L(y) = i f1(t)zt;r:f +---+ fn-l(t)'&; + fa(t)y

It is convenient to convert Eq. (10.5) to a system of n first-order
equations written in vector-matrix form. For this purpose, define

y=ly & dy Iy
dt  dt? din=2  dtn-l
g"=[0 00 --- 0 ¢]
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[ 0 1 0 -e- 0 0 7
0 0 1 - 0 0
F=| : S
0 0 0 e 0 1
L~fn ~Jaei —faeg - —fo —f1
so that the scalar differential equation (10.5) is equivalent to
‘fi—’t' =Fy+g (10.6)
Suppose that n linearly independent solutions of the homogeneous
equation
: L(y) =0 (10.7)
are known. Call them y,(t), y,(t), ..., y,(¢t) and form a matrix with

these vectors as the columns of the array. This is the Wronskian matriz
W defined as

W b—r [yl y2 .. yn ]
Clearly then, W satisfies the matrix differential equation
dW
7 (10.8)
and the general solution of the homogeneous equation is
yh = We (109)

where the components of the vector ¢ are n arbitrary constants.
As before we allow the elements of the vector ¢ to be functions of ¢
and require that
y = We(t) (10.10)

be a solution of Eq. (10.6). That is,

dW dc
'E—C"}'WE =FWc+g

But W is a solution of Eq. (10.8), so that the differential equation for c(t)

is reduced to

de
— = 10.11
Wdt g ( )

Now, the functions y,(t), y,(t), ..., y.(t) were given as linearly
independent so that the Wronskian determinant is not zero. Therefore, the
matrix W 1is not singular so that

—_—= W—l 10.12
7 g ( )

which is solved by quadratures for the elements of the vector c.
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¢ Problem 10-2
Obtain the general solutions of

2

(1) Kg+y=sect
dy . dy
2 — +4— =4cot2t
2) a3 " Ta T
d? d -
(3) —dt!; +2£-—3y=te ¢

¢ Problem 10-3
For the second-order linear differential operator

d’y 6
L(y) = ez Zgy

show that .
Y1 (t) = . and yz(t) = t_2

are linearly independent solutions of L(y) = 0. Then use the method of variation
of parameters to obtain the general solution of

L(y) =tlogt

S
Lagrange's Planetary Equations

The method of the variation of parameters. as originally developed by
Lagrange, was to study the disturbed motion of two bodies in the form

dr dv u lBR} *

— bkl —_— | e 10.13
A% + —r ar ( )

dt dt 3
where R is the disturbing function defined in Sect. 8.4. The solution
of the undisturbed or two-body motion is known and may be expressed
functionally in the form

r=r(t, a) v=v(t o) (10.14)

where the components of the vector a are the six constants of integration
(orbital elements). As in the previous section, we allow o to be a time
dependent quantity and require that the two-body solution (10.14) exactly
satisfy the equations (10.13) for the disturbed motion.

A set of differential equations for a(t) will result as before; however,
they will not be solvable by quadrature. The new set of equations will, in
fact, be a transformation of the dependent variables of the problem from
the original position and velocity vectors r(t) and v(t) to the time-varying
orbital elements «(t). Although the differential equations for «(t) will
be as complex as the original version, they will have advantages similar
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to those encountered in Encke’s method, i.e., only the disturbing and not
the total acceleration will effect changes in a(t). Indeed, one may regard i
the method of variation of orbital elements as a form of Encke’s method in '
which rectification of the osculating orbit is performed continuously rather

than at discrete and widely separated instants of time.

To obtain the variational equations, we substitute Eqgs. (10.14) into
Egs. (10.13) and use the fact that

or ov pu
o Y wmtm
Here, the partial derivatives serve to emphasize that when the vector « is
considered to be constant, then Eqgs. (10.14) are solutions of the equations
~ which describe the undisturbed motion.
For the disturbed motion

dr Or Orda
@5t dadt
and, paralleling the arguments used in the previous section, we have
o da
Jda dt
as the condition to be imposed on «(t). Physically, this means we are

requiring the velocity vectors of both the disturbed and undisturbed motion
to be identical. Similarly,

r=0 (10.15)

=0 (10.16)

dv _ dv + ov da
dt ~ 8t  Oda dt
and, using the second of Eqs. (10.15), we find that

T
ovda _[0R i)
Jda dt or
must obtain if Egs. (10.13) are to be satisfied. Equations (10.16) and
(10.17) are the required six scalar differential equations to be satisfied by
the vector of orbital elements a/(t).

The Lagrange Matrix and Lagrangian Brackets

The two matrix-vector variational equations can be combined to produce
a more convenient and compact form. For this purpose, we first multiply
Eq. (10.16) by [0v/8a]™ . Then, multiply Eq. (10.17) by [dr/0«]™ and
subtract the two. The result is expressed as
T
da _ [QE} (10.18)
dt Jda
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478 Variation of Parameters [Chap. 10
where the matrix
or 1T av ov]T or
L= [Ba] da [Ba] Ao (10.19)

is six-dimensional and skew-symmetric. The form of the right-hand side of
Eq. (10.18) follows from the chain rule of partial differentiation

OR OR Or

da Or do

The element in the i*® row and j*® column of the Lagrange matriz
L is denoted by [e;, ;] and will be referred to as a Lagrangian bracket.
From Eq. (10.19) we have
&) = or 9v  Idr Ov
" 0oy Oa;  Oa; Oa
_0rTgv OrT v _ 9vT Or  Ov” or
do; 0a;  Oo;0a;  Oaj; do;  Oa; da;

[o;

(10.20)

An important property of the Lagrange matrix L is displayed when

we calculate the partial derivative of the Lagrangian bracket with respect
to t. Thus,

g-[aa]— o [ovT 6r+6v""6v_8 ovT ar_av'rav
otV da; \ Ot ) Ao da; oy Oo; \ Ot ) By da; Oc;

J
and, clearly, the second and fourth terms cancel immediately. Using the

gravitational potential function V = u/r. the second one of Egs. (10.15)
becomes

ovT oV
ot  Or

O aa (V)0 @ (v ar
ot v I _aaj or ) dey;  Oay \ Or 5&;

_2(evYor 5 (avy or
~ or da; | 0a; Or doy 87&]-
V.V
~ da;0c; Oo0a;

In view of this discussion, we can summarize the properties of the
Lagrangian brackets as

(1) lo;,05) =0

(2) [o; C'j] = _[aj’ o]

(3) ol =0

so that

0
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or, equivalently, for the Lagrange matrix,

L™ =-L  and %It: =0 (10.21)
The fact that the matrix L is not an ezplicit function of t will be exploited

to great advantage in determining the elements of the Lagrange matrix.

g% Problem 10-4
Consider the case for which the position and velocity ve oé ro and vo at
some instant of time to are used as orbital elements, i.e.

o’ =[rf v§]

Using the fact that the Lagrangian matrix L-{s independent of time, show that

where the matrix J is defined~in Sect. 9.5. Then show that the variational

_OR dvg _ OR
dvo dt  Oro

Computing the Lagrangian Brackets

To compute the Lagrangian brackets we first select an appropriate set of
orbital elements. The classical choice is

a®=[Q 1 w a e A (10.22)

where (1, 7, w are the three Euler angles, a is the semimajor axis, e is the
eccentricity and

A= —nr (10.23)
where n is the mean motion
ne B
=1\ 23

and 7 is the time of pericenter passage.
The position and velocity vectors, expressed in reference coordinates
as functions of the orbital elements, are then

[ 1, 1, I3 ] [a(cosE —e¢)
- r=lmy my MWy bsin E (10.24)
|y ne ng | | 0
[ I, 1, 3] [—ansinE/(1 —ecosE)
v=|m; m,; m, bncos E/(1 —ecosE) (10.25)
[ny my ng || 0
)?,,‘: Cﬂcw_céswgﬂ p l:~C.Q.3vJ-CLCUUSﬂ. /Qg:SﬂSi
wmy = sQewy ciswefll - - m,= -5fsw +clewesl . gz cSlsi

Ma= SISW Mo = S5ucew miy = CL

S e aam v e e -
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[The components of r and v in orbital plane coordinates are obtained from
Egs. (4.40) and the transformation to reference coordinates via the rotation
matrix from Eq. (2.3).] Thus, r and v are functions of the Euler angles
through the direction cosine elements of the rotation matrix as given in
Eqgs. (2.9). The elements a and e enter the relations explicitly through
Eqgs. (10.24) and (10.25), and implicitly through the mean motion n, the

semiminor axis
b=avy1—-e2

and through the eccentric anomaly E in Kepler's equation
E—esinE=nt+ ) (10.26)

We begin by calculating the partial derivatives of r and v with respect
to each of the orbital elements. Since the Lagrangian brackets are not
explicit functions of time, we may set ¢ equal to any convenient value after
the differentiation. The expressions will be simplest at pericenter for which
t=1,r=qg=a(l—¢€),and E =0.

Consider first the partial derivative of r with respect to (1. From Eq.
(2.9), we have

% = %(cosﬂcosw — sin Qsinw cos 1)
= —sin{2cosw — cos)sinw cos
= -m,
and, similarly,
om; on, _ 0
N 1 N
Now since,
a(cos E — ¢) q
bsin £ =10
0 0

at pericenter, the derivatives of the other direction cosines do not enter in
the calculation of dr/dQ. The result appears in the next equation set.

The derivatives of r with respect to 7 and w are entirely similar and
in exactly the same way we compute the derivatives of v. Therefore, at
pericenter,

or _ q —lm : i gsinw rlr? L q rf’tg
?Q 0 01 ns 0w n,
(10.27)
ov _ nab _lm2 Ov  nabcosw rf’f ov nab Tf;
of q 0 01 q s ow q n,
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To calculate dr/da, we first determine

3 . . OF
%[a(cosE—— e)] =cosE —e— asmEa—

a
d . ) oFE
——(bsinE) = /1 —e2sinE + bcos E —
da da
Then, by differentiating Kepler’s equation (10.26)
oF 0E On 3n
%—ecosEa—a_ %t——%t
we obtain
08 _ _nt
da  2r
so that at pericenter
0 q o) i 3bnt
%[a(cosE —e)] = - and %(bsm E)=- 5
Therefore,
or gq “ 3bnr g
o e (10.28)
n Ny
and, similarly,
l l
ov  3a*n?r | 1 bn | "2
ov _ - I 10.29
da 22 | 2q e ( )
n Ny

To calculate the derivatives with respect to e and A, note that

oF
%—SinE—CCOSE%f—z() and g—f—ecosEg/—\—:l
Hence, for £ = 0, we have
oF oF a
Be -0 amd Se=<
and the rest of the derivation is as before. There obtains
or __|h or _ab |2
de - 1 a - q 2
ny ng
_ (10.30)
dv _ nal rln2 ov na3 Till
a, T 1 2 o T T 1
de bg n, al q n,

all of which are, of course, valid only at pericenter.

e



3 YR I A A S s Lol o 8 & e el N a1 e Ry A S e
ol
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With all of the derivatives evaluated, it is a simple task to calculate
the Lagrangian brackets defined in Eq. (10.20). For example,

or Ov or Ov

L=% 30 s B
= nab[(lymz — lym,)sinw — (I;mg — lym,) cosw]
= nab(n, sinw + n, cosw)
= nabsin?
and again
a0 v _or ov

0\ Oa Jda 0O
ab>n  na®q na [2aq-b?
2¢2 q’a 2

na

1
2

Because of the skew-symmetry of the matrix L, there are just 15 distinct
brackets to evaluate and only six of these turn out to be different from
zero. The results are summarized as follows:

[7,Q] = nabsint

[w,02] =0 [w.7] =0
[a,Q] = —%nbcosi [a,7] =0 [a,w] =—3nb
nade nade
e, = 5 cost [e,i] =0 [e,w] = 7 le.a] =0
(A, Q] =0 Az =0 [Aw] =0 [Aa] = ina [Ae =0

With the elements of the Lagrange matrix determined, Eq. (10.18)
may be written in component form as

—nabsinz‘—z+ n—bcosid—a = _@ SZE — _a_R_
it " 2 b '@ T a0
nabsini— = QE

dt ~ 01

nbda nadede _ OR

2 dt b dt  Ow
; nb  dQ nbdw nad\ _OR
2 dt 2dt 2dt Qe

na3e dQ naledw OR
COBR~—F —p=—=

b dt b dt  Oe
nady  OF
2 dt a3\
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These are easily solved for the derivatives of the orbital elements to produce
the classical form of Lagrange’s planetary equations:

df)
dt
dr
dt
dw
dt
da
dt
de
dt
dA
dt

1 OR

nabsini 07
1 OR cost OR

nabsini 40 ' nabsini Ow
_cosi OR b OR
nabsini 71  nade de
2 OR
na o\

b OR b2 OR
nade 0w | nale ON
2 OR b2 OR

na 0a nate Je

(10.31)

Equations (10.31) demonstrate explicitly that the matrix L is nonsin-
gular so long as the eccentricity e is neither zero nor one and the inclination
angle ¢ is not zero. It should be remarked that a different choice of orbital
elements will alleviate these annoying singularities as seen in a later section

of this chapter.

¢ Problem 10-5

The Lagrangian brackets are the sum of three Jacobian

[, o;] =

(%)

aivaj)

0(z,4) | 0(u,)

3o, a;) | Ban,ay)

where z, y, and z denote the time derivatives of'z, vy, and =.

Problem 10-6

Consider a new set/of orbital elements [ ™ 3] where

_%nzaz iy
a = nab B=|w
nabcosz 0

so that ip/Eqgs. (10.31) the disturbing function R = R(Q,7,w,a,e,)\) is to be

replaced by

R=R(x,p)
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First, verify the relations

OR OR'
80 ~ 9B
QE = —nabsiniaR.
8i 303
R _ OR’
dw 8P

AR _n’adR"  nbdR’ N

B2~ 2 ;| 2 Bas

6_R_ _ _na3e R _n OR®
de b Oaq b co“aas
JR 10R°

EX

- dﬁT aR-
- i  da

he orbital elements a;. a2, a3 are, respectively, the total energy, the
momentum, and the component of the angular momentum vector along
thereference z axis.

St
Gauss’ Form of the Variational Equations

Although Lagrange’s variational equations were derived for the special case

in which the disturbing acceleration was represented as the gradient of the

disturbing function, this restriction is wholly unnecessary. If the disturbed

relative motion of two bodies is formulated as in Sect. 9.4 according to
d’cr  u

then it is readily seen that the derivation in the previous section leading to

Eq. (10.18) is still valid with the result now expressed as

da or ™
L = [%] ay (10.33)

The elements of the Lagrange matrix, i.e., the Lagrangian brackets,
are as calculated in the previous section. However, the matrix coefficient
of the disturbing acceleration vector a; in Eq. (10.33) is needed to obtain
the appropriate variational equations. (The reader should understand that
although dr/da was computed in the previous section as a part of the
determination of the Lagrangian brackets, the derivatives so obtained were
valid only at the instantaneous pericenter.) We now derive the variational

>~
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equations appropriate to various choices for component resolutions of the
disturbing acceleration vector.

All of the equations derived in the following subsection and attributed
to Gauss can also be obtained more simply from the equations of Sect. 10.5.
Because of the complexity of the results, it is useful that they be derived
using two different methods. It is left for the reader to verify that the two
sets of variational equations so obtained are, indeed, equivalent.

Gauss' Equations in Polar Coordinates

The rotation matrix
Loy
R=|m;, m, my
ny Ny ng

will affect an orthogonal transformation of vector components from oscu-
lating orbital plane coordinates i, i,, 1 to the reference coordinates i_,
iy, 1,. The direction cosine elements of R are related to the Euler angles
through Egs. (2.9).

Using the asterisk to distinguish a vector resolved along reference axes
from the same vector resolved along osculating axes, we have

z & Qg Agr
r=ily r= {0 ag = | ag, a; = | agg
2 0 Gy, Qgp
so that
The rotation matrix
cosf —sinf O (a/r)(cosE —€) —(b/r)sinE O
R;=|sinf cosf O0f= (b/r)sin E (a/r)(cosE —¢) O
0 0 1 0 0 1

provides the necessary transformation from local osculating polar coordi-
nates i, ig, i, to the orbital plane coordinates i,, i, 1.

Let o be any one of the six orbital elements. Then, to derive the
variational equations in terms of the osculating polar components of the
disturbing acceleration, we may calculate

- * T *
'™ e er0r
da 4T ¢ Ju

and replace the term dR/3a with this quantity in the Lagrange planetary
equations (10.31).
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For the three Euler angle elements, we first obtain

m = ll l2 l3
| 0 0 0
SR [ l;sinw  lzcosw  sinQcos:
5 = msSinw mgcosw —cosf)cosi
* | ngsinw  nycosw —sinz
Then,
OR e OT° OR.
is evaluated for a = (1, 7, w. We have
dR . 0
Eﬁ = ad T COS1?
—rcosfsinz
(10.36)
0 0
OR OR
EZEni I B i A
rsin f 0
where
f=w+ f

is the argument of latitude defined in Sect. 3.4.
The vector r* depends on the remaining three elements through the

vector
a(cos E —e)
R T= bsin K

0

The derivatives with respect to a, e, A (following the arguments used in
computing the Lagrangian brackets) are obtained as follows:

P [ cosE — e+ (3ant/2r)sin E
- E_(Rfr) = | (b/a)sin E — (3ant/2r) cos E
a 0 b

e

(r/a)cos f + (3ant/2b)sin f
(r/a)sin f — (3ant/2b)(e + cos [)
0

il
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9 i —(a?/r)sin’ E —a
g(Rfr) = | —(a%e/b)sin E + (ab/r)sin E cos E
0
[ —(a?r/b%)sin® f —a
= | (a®r/b%)sin fcos f
| 0
P [ —(a®/r)sinE —(a?/b)sin f
a—,\(RIr) =.| (ab/r)cosE | = | (a®/b)(e + cos f)
0 0
Then. for a = a, e, A, we evaluate
dR _ . .or* 0 r 0
= zadTg(;‘:adR}rRTRa_a‘(Rfr) = a,R] £(Rfr) (10.37)
and obtain
SR (r/a) — (3ant/2b)esin f
= aj | —(3ant/2b)(1 + ecos f)

0
(10.38)

R TI: (a?/b)esin f }

= (1 + (ar/b%)]asin f

— =a] | (a?/b)(1 + ecos f)
g ax ¢

—acos f
OR _ {
0

Eliminating the Secular Term

Before writing out the complete set of variational equations, let us address
an undesirable complication caused by the presence of the linear function of
time ¢ in the expression for 0 R/0a. If we examine the Lagrange planetary
equations (10.31), we see that R/da appears in, and only in, the equation
for the time rate of change of the element A. An element exhibiting such
behavior is clearly inconvenient at best when large values of t are to be
considered and should, therefore, be avoided if at all possible. Fortunately,
the difficulty can be overcome in the following manner.
Differentiate the mean anomaly

M=nt+ )
to obtain
! W snide
d " 2adt " a
since the derivative of the mean motion n = \/u/a3 is simply
in __nda
dt  2adt

e N iri kit
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488 Variation of Parameters [Chap. 10

Then, using Egs. (10.31), we have

M _, 1 (1R OR) b on
- 2a 0\ Oa nale Oe

dt " na

It is apparent from Egs. (10.38) that the parenthesized factor in this
last equation does not contain ¢ explicitly because of the cancellation.
Therefore, an effective artifice for avoiding the difficulty associated with
the choice of A as an orbital element is to replace the variational equation
for A in Lagrange’s equations by

dM ds

_— = — .39
7 n+dt (10.39)

where
df _ 3tdR 2 0R b* AR
dt ~ @20\ nada nale de
The quantity A is then to be regarded as the sixth orbital element instead
of A = —nr.

(10.40)

Summary of Gauss' Equations

Finally, we are ready to summarize the complete set of variational equa-
tions. By substituting Egs. (10.36) and (10.38) into Lagrange’s planetary
equations (noting that p = b?/a and h = nab), we obtain

dQ) __ rsin 9a
dt ~ hsin: %k
di rcosé
ZE = h Q4hn
dw 1 . rsinf cos?
— = —[=pcos fay, + (p+7)sin fay) — ————ay;,
di ke hsint (10.41)
da _ 2a? ( : p -
- daku esin fay, + T aas
de 1 .
o =7 {psin fayz +[(p+7)cos [+ relagy }
dM

- ="t %[(pcosf —2re)ay, — (p+7)sin fay)]
(It should be noted that variational equations for either the eccentric or
true anomaly may be used in place of the sixth equation above for the mean
anomaly. The appropriate equations are the subject of a problem later in
this section.)

If initial conditions are specified for Q, ¢, w, a, e, M, these differ-
ential equations may be integrated by any convenient numerical method.
Needless to say, as a part of the integration process, Kepler’s equation

1
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Sect. 10.3] Gauss' Form of the Variational Equations 489 :
must be solved for the osculating eccentric anomaly and the osculating
true anomaly determined from an appropriate identity; specifically,

l1+e
l1—e

M =FE—esinE and tan 1 f = tan 1 E
Generally, when the disturbing acceleration is small, a relatively large
integration step can be employed. On the other hand, it is necessary to
point out that, for this particular choice of orbital elements, the advantage
of the variational method is lost for orbits of low inclination or small eccen- *
tricity. In these singular cases, the rates of change of (, w and/or 5 will be
large despite the fact that the disturbing acceleration is small. Particular
techniques for avoiding these difficulties are treated in later sections.

${ Problem 10-7
Let agr and agn be the components of the disturbing a.cceleratiO}/in the

plane of the osculating orbit along the velocity vector and perpendigdlar to it.
Show that
asr | _ h esin f —(1+ecosf)| | aa
adg —pv 1+ecosf esin f ad
and then derive the variational equations in the form
dQl _ rsin Ba
dt ~ hsinz
di _ rcos 9a
it~ h "
dw 1 T rsinfcost
— = — |25i 2e + — n| — ———
dt ev[ Smfadt+( e+acos od ] hsinz
da _ 2a2va
di dt
d 1 .
?l% =3 [2(6 + cos f)aa: " smfadn]
dM b ry .
—_—=n- —[2(1 —T) smfad¢+:cosfadn]
dt eav P a

¢ Problem 10-8
The variational e
polar coordinates,

ations for the eccentric and the true anomalies are, in

+ 1 [(cosf —€)agr — (1 + _‘r;) sinfadg]

nae

= — — i[za sin f aq; + r(e + cos f)adn]

R R ak i T ST O

1
g 2 _ 1 [2sinfad, + (2e+ 1cosf) aan]
ev a

TN e
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490 Variation of Parameters [Chap. 10 1

¢ Problem 10-9
The disturbing function for the constant radial thrust acceleration problem
of Sect. 8.8 is simply
R= rary
Derive the variational equations (10.41) for this case directly from the Lagrange
planetary equations.

NO
Nonsingular Elements

For orbits of zero inclination angle, the line of nodes does not exist. For
orbits of zero eccentricity the line of apsides is meaningless. Therefore, it
is not surprising to find singularities in the variational equations for those :
elements associated with the node or pericenter. These are the longitude J
of the node 2, the argument of pericenter w, the time of pericenter pas- 4
sage 7 (or A = —n7), and any of the anomalies which are measured from
pericenter.

To find variational equations which are nonsingular, we must search for
combinations of the usual orbital elements which do not depend on either
the line of nodes or the apsidal line. For example, if we add the variational
equations for (] and w, the resulting equation exhibits no singularity for
vanishing inclination angle ¢. Specifically, from the first and third of Egs.
(10.41). we have

dw 1

. LA .
o E= E[—pcosfadr + (p+7)sin fag) + Zsmﬂtan 314,

where

z=04w (10.42)
is the longitude of pericenter as defined in Sect. 3.4.

The singularity due to zero eccentricity is still present so that = itself
is not a suitable nonsingular orbital element. However, by adding together
the variational equations, for @ and M, we obtain an equation devoid of
either singularity. Since

b 1 _b—a b2 — o2 ae

ahe he  ahe  ahe(a+b) h(a +b)
it follows that

d ae R N 20r rsinftan 31 '
dt = " h(a+b) PO Gar T \PHTISIN] Qapl = rlay + " 0ap
where ~

l=w+M (10.43)

is the mean longitude defined in Sect. 4.3.
Clearly, ! should replace M in our set of nonsingular variables, but the
equation just obtained is not yet suitable since it involves the true anomaly g

e Tl Ty

4|
.
1

i

"

|

&



RORRAIVEs"Y IS
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f which is referenced to pericenter. To pursue the question further, let us
examine the augmented form of Kepler’s equation

l=w+M=w+E—esink

If we define
K=w+E (10.44)

as the eccentric longitude, corresponding to the mean longitude [, then
Kepler’s equation becomes

=K +esinwcos K —ecoswsin K

Furthermore, the equation of orbit may be written either in terms of K or
in terms of the true longitude

L=w+f (10.45)
also defined in Sect. 4.3. We have

r=a(l —ecosE) =a(l —esinwsin K — ecos w cos K)
or

— P _ p
r= l+ecosf 1+esinwsinL +ecoswcosL
Observe that both in the equation of orbit and in Kepler’s equation the
eccentricity e and the longitude of pericenter w appear only in the com-
binations esinw and ecosw. These functions are, therefore, promising
candidates for new elements to replace ¢ and w.
Therefore, define P, and P, as orbital elements, where

P, =esinw and P, =ecosw (10.46)

and obtain variational equations by differentiating and using the variational
equations already obtained for e and w. Hence,

ﬂ = ecoswd—uz +sinwde
dt dt dt

rsinftan L1

1
=_E[pCOSLadr"(p+r)SinLad6—Tplad6]+ 3 2-Pyag

with a similar expression for P,.

Although these equations are nonsingular, the argument of latitude 6
needs to be expressed in terms of the true longitude L. For this purpose,
we write

) f=w+f=L-0
so that
sind = sin L cos ) — cos Lsin )

Now, we know that 2 is not itself a nonsingular element. However, sin§
appears in the variational equation for P, multiplied by tan %z suggesting
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492 Variation of Parameters [Chap. 10

that the functions tan %isin ) and tan .%i cos ) would be suitable candi- .
dates for new elements to replace {2 and 1. !
Again, we are led to define @, and Q, as orbital elements, where :

Q, =tan 3¢sinQ)  and  Q, =taniicosQ (10.47)
and obtain
dQ, L d0 1 di
——= =tan = Q— 4+ = 21, b
> an gicos{l— + 5 Sec 2zsmﬂdt
= 2Lh sec® 27(sin 6 cos Q + cos fsin N)ayy,

T .
= -2—3(1 + Qf + Qg)smLad,l

with a similar result for Q,. The element set is now complete.

Finally, we note that the classical elements are easily recoverable from
the new elements. For example,
2 _ p2 2 21,
e = P} + P% tan® 21 = Q2 + Q3
P
tanw = =L tan() = =L
P, Q.
provided, of course, that P, and @, are not zero.
We now sumimnarize the variational equations for the elements a, P,
P,, @, Q,, | which have recently been named the equinoctial variables by
Professor Roger A. Broucke of the University of Texas. They are, indeed,
nonsingular except for the rectilinear orbit A = 0 and for the orbit whose
inclination angle ¢« = . (These singularities can also be eliminated but we
will not pursue the question further.) ,
With P, P, Q,, and Q, chosen to replace the classical elements e, .
(1, 7, and w and defined ast ;
P, =esinw Q1=tan%i sin (2
P, =ecosw Q4 = tan 37 cos )

1. The equation for the semimajor axis is

da 2a? ) D
yiakea {(P2 sinL — P, cosL)a,, + ;ade] (10.48)
2. The equations for P, P,, Q,, and Q, are
dP r D DY .
d_tl = E{—-T— cosLa,, + [P1 . 2 (1 + ;) s1nL] G40

— Py(Q; cos L — @, sin L)adh} (10.49)

t Lagrange first introduced this element set (using i instead of %i) in 1774 for his
study of secular variations. His notation for the four elements was h, {, p, and g.

wmmsme D e sremaa Lt ol R ERTEY ’
ki TR
)



et 0t s o s i i S PARS 585 8 90 s ey b e ) S i e i s et i e s i A 4 O e $ e AN b NS W' i B nd Pmn e S 18 98 s

Sect. 10.4] Nonsingular Elements 493

i %z%{gsmlﬂldr‘*‘[P2+(1+§)cosL]ado

+ P (@ cos L — Q,sin L)adh} (10.50)

| d% = #(1 +Qi+Q3)sinLay, (10.51)
% = %(1+Q%+Q§)cosLadh (10.52)
3. The equation for the mean longitude is
g—é=n—%{{a+b(g)(PlsinL+P2cosL)+—2;]adr
+—= (1+B) (Prcos L — Pysin L)ag,
s + (@, cos L — @, sin L)adh} (10.53)
where

b =ay/1- P} - P} =

p - 4 2
E=14+P L+ P, 7=

- + P, sinL + P,cos L h ~ u(l+PsinL + PycosL)

4. The true longitude L is obtained from the mean longitude [ by first
solving Kepler’s equation

=K+ P, cosK — P,sin K

for the eccentric longitude K and determining r from the equation of
orbit

r =a(l — P;sin K — P, cos K)

Then, L is calculated from the eccentric longitude according to the
easily derived relations

a

sinL = %[(1 - aibe_,?) sin K + mP1P2 cos K —Pl]
a .

cosL = %[(1 - aL-H)Plz) cos K + a+bP1P2 sin K — P2]

here
whe . y

1
a+b 1+v1-€e 1+1-P:-P?

or alternately expressed as

. _B

atb e
in terms of the parameter § defined in Prob. 4-7.
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494 Variation of Parameters [Chap. 10 g2
Verification of the validity of these equations is left as an exercise for ;“ ; ;
the reader. 2
Problem 10-10
The equinoctial coordinale azes are defined with respect to the reference b
axes as follows:

(1) 2 positive rotation about the vector i, through an angle 2 to establish
the direction of the ascending node i,,

(2) a positive rotation about the vector i, through an angle i to establish
the direction of i, , and

(3) 2 negative rotation about the vector i, through an angle Q.

The position and velocity vectors are expressed in components along the
equinoctial axes as

cos L h —P; —sinL
r=r|sinL and v=—| Py+4cosL
0 P 0

and the rotation matrix, to transform from equinoctial coordinates to reference
coordinates, in terms of the equinoctial elements is

1 [1—Q?+Q§ 2QéQ2 \ 2Q: J
= — 20:1Q2 14+Q7i-Q32 -2Q2
14+Q%2+Q2 —2Q1 26122 1-Q7-Q3

$ Problem 10-11

The equations of motion for the constant radial thrust problem of Sect. 8.8
can be written as the following set of nonsingular variational equations:

i N cosfar

a "

i S NP
dat  pu e

da 2a?

5= —h—(P2 sin @ — P; cosf)ar,
d

== %(1 + Pysinf + P, cos6)?

where

h=Via(l= P~ )
with the _initia.l conditions at ¢ = {p obtained from
PP=P,=6=0

and
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NO

@ The Poisson Matrix and Vector Variations

The Lagrange matrix L defined in Eq. (10.19) can be written in a more
compact form which renders obvious the proper expression for its inverse.
Define a six-dimensional state vector s whose partitions are the position
and velocity vectors r and v:

r
= .54
s [V:I (10.54)
Then, we can readily show that
0s]T _ Os
L=|—-— iy 10.55
' [60:} 4 Ja ( )
where the 6 X 6 matrix J, introduced in Sect. 9.5, is defined by
10 I
3= [-1 o} (10.56)

The vector s is, of course, a function of both the time ¢ and the orbital
elements o« . Therefore,
s =s(t, a) (10.57)

may be thought of as a transformation from element space to state space.
The matrix 0s/0 « is called the Jacobian matriz of the transformation.
The inverse transformation

a = aft,s) (10.58)

certainly exists and the associated Jacobian matrix d /s is the inverse
of ds/0c. Indeed, the matrix da/ds is frequently called the matrizant
of the two-body problem. Therefore,

0s da _1 and da 0s
da 0s ds dax
Since J? = —I, it is now trivial to construct the inverse of the Lagrange

matrix from the form given in Eq. (10.55).

The Poisson Matrix

The matrix -
da _ [Ja
P=_"= hhad 10.59
Js J [ Js ] ( )
is called the Poisson matriz.t Clearly, we have
LP=PL = -1

t Siméon-Denis Poisson (1781-1840) was one of the greatest of the nineteenth century
analysts and mathematical physicists. Although he was urged by his father to study
medicine, he entered the Ecole Polytechnique first as a student and then as a professor
of mathematics. He was one of the founders of the mathematical theory of elasticity
and a major contributor to the theories of heat conduction and water waves.
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496 Variation of Parameters [Chap. 10

so that
P=-L"1

Since L is skew-symmetric, so also is P and, further, the transpose of the
Poisson matrix is the inverse of the Lagrange matrix
P* =]t (10.60)

The element in the :*® row and 5*® column of the matrix P is denoted
by (a;, @;) and called a Poisson bracket. Now, from the expanded form of
Eq. (10.59)

da [0a]® OBa [8al”
= | = —_—— e 10.61
P or [ ov J ov [ or ] ( )
it follows that the Poisson brackets are obtained from
)= — |2 |2 10.62
(e 0y) = 5 {Bv] Bv [Br] 10523

Furthermore, they have properties identical to those demonstrated for the
Lagrangian brackets in Sect. 10.2.

Using the Poisson matrix, we may write Lagrange’s variational equa-
tion (10.18) as

da + [0R]T
— —_ 10.63
dt ¥ {8 o:] ( )
in terms of the disturbing function R or as
da +[0r]7
_— = S 10.64
dt P {6&] S ( )

in terms of the disturbing acceleration vector a,. Now, substitute for P~
from Eq. (10.61), and in the first case,

da Jda [OR T da [OR]T
dt ~ dv | or or | ov
But R is a function only of position, so that the result is simply
da 3o [9R]T
dt =~ ov | or

(10.65)

In the second case,
da da [0r]” da [or]”
- dt v |or] M7 5 |5y M
and since the state-vector components are to be regarded as independent
variables, then
or or

— =1 L.
or and 3v O
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Hence, the result
da Oda
dt  ov
This last ‘equation is particularly useful in that it provides a direct
method for determining variational equations of vector orbital elements
as well as scalar elements in vector form—as such they will be indepen-
dent of the coordinate system in which the components of the disturbing
acceleration vector a; might be expressed.

a, (10.66)

Variation of the Semimajor Axis

. We begin with the energy or vis-viva integral, defined in Eq. (3.17), which

is written as
(2 1) 9 -
Hl—-——— | =0v"=v:-vy=Vv'V

T a

Then, we calculate the partial derivative with respect to the vector v and

obtain
L da

a? ov
According to Eq. (10.66), we have
da aaa
dt ~ v ¢
so that the variational equation for the semimajor axis a is simply

2 2
‘;_: - _Z_v La, (10.67)

=92vT

Variation of the Angular Momentum Vector
According to Eq. (3.12), the angular momentum vector is defined as
he=rxy

Paralleling the arguments used in Sect. 2.2, we replace the vector product
by the matrix-vector product

h=S§8_v (10.68)
where the skew-symmetric matrix S, is defined as
0 -z y
- S, =2 0 -z
-y z O
Then, we calculate
oh
=80  =8I=8

e o
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498 Variation of Parameters [Chap. 10

so that Eq. (10.66) gives

dh _on
dt = ov

Thus, the variational equation for the vector angular momentum is

a; =85,3,

% =rxay (10.69)

There are two possible vector forms for the variation of the scalar
angular momentum h. On the one hand, if we write

R2=h-h=hTh

then we have

oh oh
2h— =2h" — =2h"
ov ov " By
so that
dh )
— Tl TXag =i, Xr-a (10.70)
or, alternately,
dh .
= =g a (10.71)

On the other hand,
h?=(rxv)-(rxv)
=(r-r)(v-v)=(r-v)(r-v)

=rTrvTv —rTvrTv

so that
2h% = TP T =2 G
Hence,
% = %rT (rvT —vrT)a, (10.72)
or, alternately,
, B (v~ (- v)(r - ay)] (10.73)
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Variation of the Eccentricity Vector

The eccentricity or Laplace vector was defined in Eq. (3.14) and can be
written in any of the possible forms

pe=vxh-—pui
= —=S,v—pui, =S h—ui,

where the matrices S, and S, are constructed in the same manner as the
matrix S, used for the angular momentum derivation. Again we have

Oe ov ch
— =8, — e
_ Hov h6v+s”6v
so that
de— h x o

Thus, the variation of the eccentricity vector can be expressed in any of
the following forms:

de

p— =ag % (rxv)+(a;Xr)xv (10.74)
de

hoy = 2(v-ag)r—(r-a;)v—(r-v)a, (10.75)
p .

uzi% = (2rvT —vr®T —rTvI)a, (10.76)

By now it should be apparent that each of the variational equations
derived thus far can be obtained formally according to the rule:

Apply the usual rules of differentiation to any two-body identity.
Treat r as constant, orbital elements as variables, and replace the
time rate of change of v by a,.

This convenient rule has general validity.
For example, to obtain the variational equation for the eccentricity,
begin with the expression

p=h/u=a(l-¢"

defining the parameter. Then,

dh 2 da de
] ZhE_ (l—e)gt——Zuaedt
and, substituting from Eqs. (10.67) and (10.73), yields
de 1
O [r-v)(r-a,) + (pa - )(v-2y) (10.77)

dt uae
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500 Variation of Parameters [Chap. 10

Variation of the Inclination and Longitude of the Node

The angular momentum vector h is, of course, normal to the plane of
the osculating orbit and may be expressed in terms of components along
reference axes as

h=hi, =h(sinQsinzi, —cosQsint i, +cosii,)

since the unit vector i, is identical to the vector i, of Eq. (2.6). Applying
the formal rule, i.e., calculating the ordinary time derivative of this two-
body identity, results in

M _ psini®ly _p8; 4y

dt ~ TP
where i,, is a unit vector in the direction of the ascending node and i,
is in the plane of the osculating orbit and normal to i, such that i,
i, , 1, form an orthogonal triad. Expressions for i, and i_, in terms of
components along the reference axes are given in Egs. (2.5) and (2.8).

The appropriate variational equations for the longitude of the node

and the inclination angle 7 are obtained by calculating the scalar product
of the last equation with i, and i,,, respectively. We have

df) 1 rsiné
e i " i, - .78
dt hsiniln XT3y hsing k2 (1078}
di 1. Tcosf ,
G- T pmXriag=——l,-a (10.79)

where § = w + f is the argument of latitude. Note that a third scalar
product with i, produces the same variational equation for A as obtained
previously in Eq. (10.70).

Variation of the Argument of Pericenter

The argument of latitude 6 is defined as the angle between the position
vector and the ascending node. Thus, from

i, =cosQi_ +sin iy
it follows that
cosd =1i,-i, =cosQ(i,-1i) +sin € (i, - i,)
Hence,
15}9)]

_s'mga—v = [~sinQ (i, -i,)+cosﬂ(iy -1,.) v

Next, from the results of Prob. 3-21,

i, -1, = cos{lcosf — sin1sinfcos:
i, -1, =sin{lcosf + cosQsin § cos:
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so that, after substitution and cancellation, we obtain

20 __ o0
N . = —Ccos1? 'a—v
el dQ
Fudd =~ cos1 5 (10.80)

This last expression is the perturbative derivative of @, i.e., the change
in @ due to the change in i, from which the angle # is measured. The
total time rate of change of 4 is the sum

g _ a8 2 a4
dt 0t Odv
where 96/0t represents the change in § due to ordinary two-body motion
with constant orbital elements as specified by Kepler’s second law. Thus,
dad h .dQ)
— e — 10.81
% 2 cos? 5 ( )
with 9€1/dt obtained from Eq. (10.78).
Finally, since § = w+ f, we can use Eq. (10.80) to write the variational
equation for the argument of pericenter as
dw af dQ
o B e g — 10.82
3 T oy 2Ty (10.82)
which involves the perturbative derivative of the true anomaly f. This we
calculate in the next subsection.

Q4

Variations of the Anomalies

By differentiating the equation of orbit

r(l+ecos f) =—

obtain

2h Oh
resin f%;—f; £ 008 fg% = —#—5; (10.83)

Also, from Eq. (3.31), we establish

- Ercsinfzr-v

h
which, when differentiated, yields

of _ de r-voh -
—in = _____+.-r 10.84
1‘ecosf5 rsmf + 5 ( )

o g ——

v mem m——r = Lt
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Now multiply Eq. (10.83) by sin f, Eq. (10.84) by cos f, and add the two.
After some fairly straightforward reduction, we obtain

rch—g—{, =pcos frT — (p+r)sinf-g—’:

Then, substitution for oh/dv produces

as the pertﬁrbative derivative of the true anomaly.

This last expression for 3f/8v can be used in Eq. (10.82) to complete
the variational equation for the argument of pericenter w. It may also be
used to obtain the total time rate of change of the true anomaly as

g _h _C'Z._f_a (10.86)

AR T
Thus far, the formulas in this section are equally valid for hyperbolic
as well elliptic osculating orbits. In the remainder of this subsection, we
consider the eccentric and mean anomalies which, of course, apply only to
the ellipse and leave as an exercise the parallel arguments for the hyperbola.
From the identity relating the eccentric and true anomalies

s S8 te
1+ecosf
we obtain, in the usual manner,
O0E _ 3f ra . _Oe
b—a—v- = TE-‘—, — ;51nf—8—v
which, after substitution and reduction, results in
oFE r [h T -
o o = i 87
v = e [p (cosf+e)rT —(r+a)sinfv ] (10.87)

Similarly, from Kepler’s equation

M=F —esinE
we obtain
v aov 73

or, in reduced form,

oM b
= = -h—;z—e [cos frT — %(r +p) sinfvT] (10.88)

e

',
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The total time derivatives of the eccentric and mean anomalies are
then

dE na aEa
W _ ha ;
dt T ov (10.89)
dM oM
@ty

st

Applications of the Variational Method

In this section we consider several interesting and important applications
of the concepts thus far developed in this chapter. The first example
utilizes the Lagrange planetary equations to study the average effect of
the J, term in the earth’s gravitational potential on the motion of an
earth orbiting satellite. The second example is an application of Gauss’
form of the variational equations to analyze the effect of atmospheric drag
on the orbital elements of a satellite in earth orbit.

Effect of J, on Satellite Orbits

The disturbing function associated with the J, term in the earth’s gravi-
tational field
Gm

LY
R=-2", (7‘1) Py(cos ¢) (10.90)

is obtained from Eq. (8.92). The colatitude angle ¢ is related to the orbital
elements and calculated from

cos¢ =i, -i, =sin(w+ f)sin¢

using the results of Prob. 3-21. Hence, the Legendre polynomial P, (cos @)
1s expressed as

P,(cos¢) = 1 [3sin®(w + f)sin®i — 1]
so that the disturbing function assumes the form

GmJ,r?
—“sz (1 +ecos f)3(3sin®(w + f)sin?7 — 1] (10.91)

where r has been replaced by the equation of orbit.

The disturbing function can be expanded as a Fourier series in the
mean anomaly M using the technique of Sect. 5.3. The constant term in
the series is simply the average value of R over one orbit, i.e.,

R=

1 2

=50 A RdM
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Since dM = ndt and r2df = hdt, then clearly,

_ 1 21Tn 9

Substituting from Eq. (10.91) and performing the integration yields
n?Jyrl,

y Pt
4(1 — e2)2

(2 — 3sin’1) (10.92)
Thus, the average value of the disturbing function depends only on the
three orbital elements a, €, and 2.

When & is used for R in Lagrange’s planetary equations (10.31),
we have, immediately, expressions for the average rates of change of the
satellite orbital elements during a single revolution. For example, since R
is not a function of Q, w, or A, we see that

da de
— = — = 10.93
dt ¢ dt i ( )
On the other hand, we obtain for the longitude of the node
AT 3. [T\’ .
- = —§J2 (-;) ncos?t (10.94)

Thus, the plane of the orbit rotates about the earth’s polar axis in a
direction opposite to that of the motion of the satellite with a mean rate
of rotation given by Eq. (10.94). This phenomenon is referred to as the
regression of the node.

In a similar manner, we obtain for the mean rate of rotation of the
line cf apsides

a 47

It is apparent that there exists a critical inclination angle

o 3. [Te\?
= J (—;) n(5cos?1—1) (10.95)

i, =63°26'.1

such that, if ¢ exceeds 4,,;, the line of apsides will regress while, if © 1s
smaller than 7., the apsidal line will advance.

$ Problem 10-12
For an earth orbiting satellite, show th
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