
7
Secular Perturbations

Past and to come seem best, things present worst.

William Shakespeare, Henry IV, (2), I, iii

7.1 Introduction

In the last chapter we saw how the disturbing function can be expanded in an
infinite series where the individual terms can be classified as secular, resonant,
or short period, according to the given physical problem. We have already stated
in Sect. 3 that the N -body problem (for N ≥ 3) is nonintegrable. However, in
this chapter we will show how, with suitable approximations, it is possible to
find an analytical solution to a particular form of the N -body problem that can be
applied to the motion of solar system bodies. We can do this by considering the
effects of the purely secular terms in the disturbing function for a system of N
masses orbiting a central body. The resulting theory can be applied to satellites
orbiting a planet, or planets orbiting the Sun, and then used to study the motion
of small objects orbiting in either of these systems. This is the subject of secular
perturbation theory.

7.2 Secular Perturbations for Two Planets

Consider the motion of two planets of mass m1 and m2 moving under their mutual
gravitational effects and the attraction of a point-mass central body of mass mc
where m1 " mc and m2 " mc. Let R1 and R2 be the disturbing functions
describing the perturbations on the orbit of the masses m1 and m2 respectively,
where R1 and R2 are functions of the standard osculating orbital elements of
both bodies. Osculating elements, from the Latin verb osculare meaning “to
kiss”, are instantaneous elements derived from the values of the position and
velocity of an object assuming an unperturbed keplerian orbit. The perturbations
on the orbital elements are given by Lagrange’s equations, Eqs. (6.145)–(6.150).
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7.2 Secular Perturbations for Two Planets 275

In the absence of any mean motion commensurabilities between two masses,
the secular perturbations arising from the gravitational perturbations between
m1, m2, and mc are obtained by isolating the terms in the disturbing function
that are independent of the mean longitudes. We can also exclude any terms that
depend only on the semi-major axis since, from Eq. (6.145), these will not make
any contribution to secular evolution. To second order in the eccentricities and
inclinations (and first order in the masses), the only terms in the expansion of the
disturbing function that do not contain the mean longitudes are, from Appendix
B, the terms 4D0.1, 4D0.2, and 4D0.3 with j = 0. Hence the general, averaged,
secular, direct part of the disturbing function is
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where the subscripts 1 and 2 refer to the inner and outer body respectively and
α12 = a1/a2 where a1 < a2. There is no indirect part. In fact, as can be seen
from Appendix B, all the indirect terms involve at least one mean longitude
and hence will never contribute purely secular terms (see Brouwer & Clemence
1961).

When calculating R1 and R2 from R(sec)

D we have to take account of the fact
that R1 arises from an external perturbation by m2 whereas R2 comes from an
internal perturbation by m1. Hence, from Eqs. (6.134) and (6.135), R1 and R2
can be written as

R1 = Gm2

a2
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D (7.2)

and

R2 = Gm1
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D . (7.3)

Using the following relationships between the Laplace coefficients and their
derivatives,

2α
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3/2, (7.4)
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276 7 Secular Perturbations

and the approximations Gmc ≈ n2
1a3

1 ≈ n2
2a3

2, we can write
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and
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, (7.7)

where we have assumed that I1 and I2 are small enough so that the approximations
s1 = sin 1

2 I1 ≈ 1
2 I1 and s2 = sin 1

2 I2 ≈ 1
2 I2 are valid.

The equations for R1 and R2 given in Eqs. (7.6) and (7.7) can be combined
to give
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, (7.8)

where j = 1, 2; k = 2, 1 ( j %= k); and
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where ᾱ12 = α12 if j = 1 (an external perturber) and ᾱ12 = 1 if j = 2 (an internal
perturber). From the definition of the Laplace coefficients given in Sect. 6.4 we
have
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7.2 Secular Perturbations for Two Planets 277

Note that in this case B11 = −B12 and B21 = −B22. However, the situation is
different when we have to take account of terms due to the oblateness of the
central body (see Sect. 7.7). All these quantities are frequencies that can be
thought of as the constant elements of two matrices A and B given by

A =
(

A11 A12
A21 A22

)
and B =

(
B11 B12
B21 B22

)
. (7.15)

Note that the elements of these matrices are only functions of the masses and
the (fixed) semi-major axes of the two bodies and that the rows (or columns) of
the matrix B are not linearly independent.

Taking the lowest order terms in e and I in Eqs. (6.146), (6.148), (6.149), and
(6.150) we can easily derive an approximate form of Lagrange’s equations for
the time variation of the original orbital elements:

ėj = − 1
nj a2
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j ej
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, (7.16)
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. (7.17)

Given the form of the equations above, it is convenient to define the vertical
and horizontal components of eccentricity and inclination “vectors” by:

hj = ej sin "j , kj = ej cos "j (7.18)

and

pj = Ij sin #j , qj = Ij cos #j . (7.19)

These variables have the advantage that they avoid the singularities inherent in
Eqs. (7.16) and (7.17) for low e and I . The general secular part of the disturbing
function can now be written
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]
. (7.20)

Note that when k is used as a subscript it is always equal to either 1 or 2, denoting
the interior or exterior body; this should not be confused with the use of k as the
horizontal component of the eccentricity vector.

Since each of the hj , kj , pj , and qj is a function of two variables we can write
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, (7.21)
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278 7 Secular Perturbations

where, from the definitions given above, the partial derivatives are given by
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,
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and
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After some calculation it can be shown that the perturbation equations can be
written as

ḣ j = + 1
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, k̇j = − 1

nj a2
j

∂Rj

∂hj
, (7.25)

ṗj = + 1
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j
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∂qj
, q̇j = − 1

nj a2
j

∂Rj

∂ pj
, (7.26)

where Rj is as given in Eq. (7.20).
The full equations for the variation of hj , kj , pj , and qj ( j = 1, 2) then become

ḣ1 = +A11k1 + A12k2, k̇1 = −A11h1 − A12h2,

ḣ2 = +A21k1 + A22k2, k̇2 = −A21h1 − A22h2,

ṗ1 = +B11q1 + B12q2, q̇1 = −B11 p1 − B12 p2,

ṗ2 = +B21q1 + B22q2, q̇2 = −B21 p1 − B22 p2. (7.27)

Thus, to lowest order, the equations for the time variation of
{
hj , kj

}
are decoupled

from those of
{

pj , qj
}
. Furthermore, these are linear differential equations with

constant coefficients, and hence the problem of secular perturbations reduces to
two sets of eigenvalue problems. The solutions are given by

hj =
2∑

i=1
eji sin(gi t + βi ), kj =

2∑

i=1
eji cos(gi t + βi ), (7.28)

pj =
2∑

i=1
Iji sin( fi t + γi ), qj =

2∑

i=1
Iji cos( fi t + γi ), (7.29)

where the frequencies gi (i = 1, 2) are the eigenvalues of the matrix A, with
eji the components of the two corresponding eigenvectors, and fi (i = 1, 2) are
the eigenvalues of the matrix B, with Iji the components of the corresponding
eigenvectors. The phases βi and γi , as well as the amplitudes of the eigenvec-
tors, are determined by the initial conditions. This would correspond to making
observations of the osculating eccentricities and inclinations at some time. The
solution described by Eqs. (7.28) and (7.29) is the classical Laplace–Lagrange
secular solution of the secular problem.

With the introduction of the solution to the eigenvalue problem it is easy
to confuse the quantities associated with the two bodies and those associated
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7.3 Jupiter and Saturn 279

with the two eigenmodes of the system. In our notation the subscript j al-
ways denotes the planet number while the subscript i always denotes the mode
number.

It is interesting to note that in our case the characteristic equation for B is

∣∣∣∣
B11 − f B12

B21 B22 − f

∣∣∣∣ = 0, (7.30)

which reduces to

f [ f − (B11 + B22)] = 0 (7.31)

since B11 B22 − B12 B21 = 0 from the definitions given in Eqs. (7.11) and (7.12).
Thus one of the roots of the characteristic equation is f1 = 0 and there is a
degeneracy in the problem. This highlights a subtle difference between the {h, k}
and the {p, q} solutions. Whereas an eccentric orbit introduces an asymmetry
and a reference line into the problem, a spherical or point-mass central body
has no natural reference plane. Physically it is only meaningful to talk about a
mutual inclination and hence the choice of a reference plane is arbitrary. For
example, it is customary to refer satellite orbits to the equatorial plane of the
planet (i.e., the plane perpendicular to its spin vector). However, as we shall see,
the introduction of a nonspherical planet adds terms to the diagonal elements of
B and removes the degeneracy problem.

Another point concerning our solution is that it is independent of the mean
longitudes because these have been deliberately excluded from the averaged
part of the disturbing function. Therefore, although we are able to predict the
variations in the eccentricities, inclinations, pericentres, and nodes of the two
bodies, we have no information about their positions in space.

The solution given in Eqs. (7.28) and (7.29) implies that the resulting motion
of all the masses is stable for all time. However, it is important to remember
the assumptions under which this result was derived: (i) no mean motion com-
mensurabilities, (ii) r1 < r2 , and (iii) the es and I s are small enough that a
second-order expansion of the disturbing function is sufficient to describe the
motion. But the amplitudes of the eccentricity eigenvectors, for example, could
be large enough for the orbits to intersect, violating conditions (ii) and (iii). As
we shall see there may be situations where no mean motion commensurabilities
exist, but where “small divisor” terms are still important. We have derived a
theory that is correct only to the first order in the masses and so it is impor-
tant to realise that there could be significant contributions from a second-order
theory.

7.3 Jupiter and Saturn

We will now apply the theory given above to the case of Jupiter (mass m1)
and Saturn (mass m2) orbiting the Sun (mass mc). In 1983 the system had the
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280 7 Secular Perturbations

following parameters:

m1/mc = 9.54786 × 10−4, m2/mc = 2.85837 × 10−4,

a1 = 5.202545 AU, a2 = 9.554841 AU,

n1 = 30.3374◦y−1, n2 = 12.1890◦y−1,

e1 = 0.0474622, e2 = 0.0575481,

"1 = 13.983865◦, "2 = 88.719425◦,

I1 = 1.30667◦, I2 = 2.48795◦,

#1 = 100.0381◦, #2 = 113.1334◦. (7.32)

Since α = a1/a2 = 0.544493, we can use the definition of Laplace coefficients
given in Eqs. (7.13) and (7.14) to get

b(1)

3/2 = 3.17296, b(2)

3/2 = 2.07110. (7.33)

Using the definitions of the matrix elements given in Eqs. (7.9)–(7.12) we
have

A =
(

+0.00203738 −0.00132987
−0.00328007 +0.00502513

)
◦y−1 (7.34)

and

B =
(

−0.00203738 +0.00203738
+0.00502513 −0.00502513

)
◦y−1. (7.35)

We can now find the eigenvalues of A and B by solving the respective char-
acteristic equations:

∣∣∣∣
A11 − g A12

A21 A22 − g

∣∣∣∣ = g2 − (A11 + A22) g + (A11 A22 − A21 A12) = 0 (7.36)

and
∣∣∣∣

B11 − f B12
B21 B22 − f

∣∣∣∣ = f 2 − (B11 + B22) f + (B11 B22 − B21 B12) = 0. (7.37)

The solutions of the resulting quadratic equations are

g1 = 9.63435 × 10−4 ◦y−1, g2 = 6.09908 × 10−3 ◦y−1 (7.38)

and

f1 = 0, f2 = −7.06251 × 10−3 ◦y−1. (7.39)

The eigenvectors of A and B are the four vectors x1, x2, y1, and y2 that satisfy
the equations

Axi = gi xi and Byi = fi yi (i = 1, 2). (7.40)

However, it is clear from these definitions that if xi is an eigenvector of the
matrix A then so is cxi , where c is a constant. Therefore each eigenvector is only
determined up to some arbitrary scaling constant. If we let ēj i and Īj i denote the
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7.3 Jupiter and Saturn 281

components of these unscaled eigenvectors and let Si and Ti denote the scaling
constant (or magnitude) of each eigenvector, then

Si ēji = eji and Ti Īji = Iji (i = 1, 2). (7.41)

The values of ēj i and Īj i are obtained by solving four sets of two simultaneous
linear equations in two unknowns. The four resulting (unscaled) eigenvectors
are

(
ē11
ē21

)
=

(
−0.777991
−0.628275

)
,

(
ē12
ē22

)
=

(
0.332842
−1.01657

)
,

(
Ī11
Ī21

)
=

(
0.707107
0.707107

)
,

(
Ī12
Ī22

)
=

(
−0.40797
1.00624

)
. (7.42)

The scaling factors Si and Ti are determined from the boundary conditions. At
time t = 0 we have

h1 = 0.0114692, h2 = 0.0575337, k1 = 0.0460556, k2 = 0.00128611
(7.43)

and

p1 = 0.0224566, p2 = 0.0399314, q1 = −0.00397510, q2 = −0.0170597,

(7.44)

where we have converted the inclinations from degrees to radians. Substituting
t = 0 in our general solution given in Eqs. (7.28) and (7.29) we get

hj = S1ēj1 sin β1 + S2ēj2 sin β2, kj = S1ēj1 cos β1 + S2ēj2 cos β2 (7.45)

and

pj = T1 Īj1 sin γ1 + T2 Īj2 sin γ2, qj = T1 Īj1 cos γ1 + T2 Īj2 cos γ2, (7.46)

where the subscript j (= 1, 2) denotes the planet (Jupiter or Saturn). These can
be considered as four sets of two simultaneous linear equations in the eight
unknowns Si sin βi , Si cos βi , Ti sin γi , and Ti cos γi with (i = 1, 2). In our case
the solutions are

(
S1 sin β1
S2 sin β2

)
=

(
−0.0308089
−0.375549

)
,

(
T1 sin γ1
T2 sin γ2

)
=

(
0.0388876
0.0123566

)
,

(
S1 cos β1
S2 cos β2

)
=

(
−0.0472469

0.027935

)
,

(
T1 cos γ1
T2 cos γ2

)
=

(
−0.0109598
−0.00925221

)
.

(7.47)

These give

β1 = −146.892◦, β2 = −53.3565,◦ γ1 = 105.74◦ γ2 = 126.825◦ (7.48)

and

S1 = 0.0564044, S2 = 0.0468053, T1 = 0.0404025, T2 = 0.0154366.

(7.49)
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The resulting, scaled eigenvectors are
(

e11
e21

)
=

(
−0.0438821
−0.0354375

)
,

(
e12
e22

)
=

(
0.0155788
−0.047581

)
,

(
I11
I21

)
=

(
0.0285689
0.0285689

)
,

(
I12
I22

)
=

(
−0.00629766

0.015533

)
, (7.50)

where the Iji are expressed in radians.
We have now determined all the constants in Eqs. (7.28) and (7.29). Therefore

we can obtain h, k, p, and q for Jupiter and Saturn at any time t . The solution is
of the form

hj = ej1 sin(g1t + β1) + ej2 sin(g2 t + β2),

kj = ej1 cos(g1t + β1) + ej2 cos(g2 t + β2),

pj = Ij1 sin( f1t + γ1) + Ij2 sin( f2 t + γ2),

qj = Ij1 cos( f1t + γ1) + Ij2 cos( f2 t + γ2), (7.51)

where j = 1 for Jupiter and j = 2 for Saturn. From these solutions we can derive
the orbital elements of the two planets at any time t . For example, the relation
ej (t) = (h2

j + k2
j )

1/2 is used to calculate the eccentricity of planet j . Using our
results we obtain

e1(t) =
√

0.00217 − 0.00137 cos(93.5◦ + 0.00514 t),

e2(t) =
√

0.00352 + 0.00337 cos(93.5◦ + 0.00514 t),
(7.52)

where the phases are in degrees and the frequencies in degrees per year. This
implies a fixed periodicity of ∼ 70,100 y in the variation of the eccentricity
of each planet. Figure 7.1a shows the evolution of the eccentricities of the two
planets over a time span of 200,000 y derived from our secular solution; the
periodicity in the variation is clear. The different signs in the magnitude of the
cosine imply that a maximum in Jupiter’s eccentricity coincides with a minimum
in Saturn’s eccentricity and vice versa.

0 100000
0

0.04

0.08

-100000
Time (years)

Saturn

Jupiter

0 100000
0

1

2

3

-100000
Time (years)

Saturn

Jupiter

e I

Fig. 7.1. The (a) eccentricities and (b) inclinations of Jupiter and Saturn derived from
a secular perturbation theory calculated over a time span of 200,000 y centred on 1983.
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7.4 Free and Forced Elements 283

Similarly the relation Ij = (p2
j + q2

j )1/2 is used to calculate the inclination of
planet j at any time t . Our results (in radians) give

I1(t) =
√

0.000856 − 0.00360 cos(21.1◦ − 0.00706 t),

I2(t) =
√

0.00106 + 0.000888 cos(21.1◦ − 0.00706 t).
(7.53)

In this case the associated period of the secular variation in each planet is
∼ 51,000 y; since f1 = 0, this period is just 360◦/ f2. The variation for each
planet is shown in Fig. 7.1b.

The secular solution that we have derived for Jupiter and Saturn is only an
approximation to the actual variations in their orbital elements. In reality the
perturbations from the planets Uranus and Neptune exert considerable influence
on their orbits. A further complication is that the orbits of Jupiter and Saturn
are close to a 5:2 commensurability. This introduces additional perturbations on
timescales that are shorter than those associated with the secular variation.

7.4 Free and Forced Elements

We have shown that under certain conditions we can construct a secular solution
to the motion of two orbiting bodies moving under their mutual gravitational
effects; at any time we can obtain the eccentricities, longitudes of pericentre,
inclinations, and longitudes of ascending node of both bodies. We can make use
of this solution to study the motion of an additional body, of negligible mass,
moving under the influence of the central body and perturbed by the other two
bodies.

Following the example given in Sect. 7.2 for the secular theory for two bodies,
the disturbing function R for a test particle with orbital elements a, n, e, I , " ,
and # is given by

R = na2
[

1
2

Ae2 + 1
2

B I 2

+
2∑

j=1
Aj eej cos(" − "j ) +

2∑

j=1
Bj I Ij cos(# − #j )

]
, (7.54)

where

A = +n
1
4

2∑

j=1

mj

mc
αj ᾱj b

(1)

3/2(αj ), (7.55)

Aj = −n
1
4

mj

mc
αj ᾱj b

(2)

3/2(αj ), (7.56)

B = −n
1
4

2∑

j=1

mj

mc
αj ᾱj b

(1)

3/2(αj ), (7.57)

Bj = +n
1
4

mj

mc
αj ᾱj b

(1)

3/2(αj ) (7.58)
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284 7 Secular Perturbations

and

αj =
{ aj/a if aj < a,

a/aj if aj > a,
(7.59)

ᾱj =
{ 1 if aj < a,

a/aj if aj > a.
(7.60)

If we now transform to a new set of variables h, k, p, and q for the test particle
and hj , kj , pj , and qj ( j = 1, 2) for each perturbing body, where

h = e sin ", k = e cos " (7.61)

and

p = I sin #, q = I cos # (7.62)

and the other elements are already defined in Eqs. (7.18) and (7.19), we have

R = na2
[

1
2

A(h2 + k2) + 1
2

B(p2 + q2)

+
2∑

j=1
Aj (hhj + kkj ) +

2∑

j=1
Bj (ppj + qqj )

]
. (7.63)

The equations of motion are

ḣ = + 1
na2

∂R
∂k

, k̇ = − 1
na2

∂R
∂h

, (7.64)

ṗ = + 1
na2

∂R
∂q

, q̇j = − 1
na2

∂R
∂p

. (7.65)

Substituting for R from Eq. (7.63) we can write the equations of motion as

ḣ = +Ak +
2∑

j=1
Aj kj , k̇ = −Ah −

2∑

j=1
Aj hj , (7.66)

ṗ = +Bq +
2∑

j=1
Bj qj , q̇ = −Bp −

2∑

j=1
Bj pj , (7.67)

where the values of hj , kj , pj , and qj are derived from the secular solution given
in Eqs. (7.28) and (7.29). Substituting from these equations we get

ḣ = +Ak +
2∑

j=1
Aj

2∑

i=1
eji cos(gi t + βi ), (7.68)

k̇ = −Ah −
2∑

j=1
Aj

2∑

i=1
eji sin(gi t + βi ), (7.69)
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7.4 Free and Forced Elements 285

ṗ = +Bq +
2∑

j=1
Bj

2∑

i=1
Iji cos( fi t + γi ), (7.70)

q̇ = −Bp −
2∑

j=1
Bj

2∑

i=1
Iji sin( fi t + γi ). (7.71)

By taking another time derivative of each equation and using Eq. (7.26) again
we have

ḧ = −A2h −
2∑

i=1
νi (A + gi ) sin(gi t + βi ), (7.72)

k̈ = −A2k −
2∑

i=1
νi (A + gi ) cos(gi t + βi ), (7.73)

p̈ = −B2 p −
2∑

i=1
µi (B + fi ) sin( fi t + γi ), (7.74)

q̈ = −B2q −
2∑

i=1
µi (B + fi ) cos( fi t + γi ), (7.75)

where

νi =
2∑

j=1
Aj eji and µi =

2∑

j=1
Bj Iji . (7.76)

The solutions to the uncoupled differential equations in Eqs. (7.72)–(7.75) are

h = efree sin(At + β) + h0(t), k = efree cos(At + β) + k0(t),

p = Ifree sin(Bt + γ ) + p0(t), q = Ifree cos(Bt + γ ) + q0(t),
(7.77)

where efree, Ifree, β, and γ are constants determined from the boundary conditions
and

h0(t) = −
2∑

i=1

νi

A − gi
sin(gi t + βi ), (7.78)

k0(t) = −
2∑

i=1

νi

A − gi
cos(gi t + βi ), (7.79)

p0(t) = −
2∑

i=1

µi

B − fi
sin( fi t + γi ), (7.80)

q0(t) = −
2∑

i=1

µi

B − fi
cos( fi t + γi ). (7.81)

Note that h0, k0, p0, and q0 are only functions of the (constant) semi-major axis
of the particle and do not involve any of its other orbital elements. However,
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286 7 Secular Perturbations

since the values of h0, k0, p0, and q0 also depend on the secular solution for the
two perturbing bodies, they will vary with time.

If we define the quantities

eforced =
√

h2
0 + k2

0, Iforced =
√

p2
0 + q2

0 (7.82)

then the solutions given in Eq. (7.77) have a simple geometrical interpretation
(Figs. 7.2 and 7.3). In the case of the h–k solution, the values of k and h for the
particle define a point in the k–h plane. The vector from the origin to this point
has a length e and it makes an angle " with the k axis. In the light of our solution
given above, this vector can also be thought of as the vector sum of two other
vectors: The first goes from the origin to the point (k0, h0); it has a length eforced
and makes an angle "forced with the k axis. The second goes from (k0, h0) to the
point (k, h); it has a length efree and makes an angle "free = At + β with the k
axis. This implies that the particle’s motion can be thought of as motion around
a circle with centre (k0, h0) at a constant rate A while this point itself moves in
some complicated path determined by the secular solution for the two perturbing
bodies. This is illustrated in Fig. 7.2. The quantities eforced and "forced are derived
from h0 and k0 and they are called the forced eccentricity and forced longitude of
pericentre of the particle. Their values are determined solely by the semi-major
axis of the particle and the secular solution for the two perturbing bodies. In
contrast, efree and "free, the free eccentricity and free longitude of pericentre of
the particle, are derived from the boundary conditions and denote fundamental
orbital parameters of the particle. These quantities are also referred to as the
proper eccentricity and proper longitude of pericentre of the particle’s orbit.

e

e cos "

e sin "

"
eforced

"forced

efree

"free

Fig. 7.2. The geometrical relationship among the osculating, free, and forced eccen-
tricities and longitudes of pericentre for the case efree > eforced.
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I

I cos #

I sin #

#
#forced

Ifree

#free

Iforced

Fig. 7.3. The geometrical relationship among the osculating, free, and forced inclina-
tions and longitudes of ascending node for the case Ifree < Iforced.

It is important to note that the circle shown in Fig. 7.2 need not encompass the
origin. If efree is small enough or the value of eforced for the particle’s semi-major
axis is large enough, the motion of the particle around the circle might be such
that " or # (the osculating longitudes of pericentre or ascending node) vary over
some fixed range of angles.

The p–q solution is shown in Fig. 7.3, where Iforced, #forced, Ifree, and #free
denote the forced and free inclinations and nodes of the particle. Here we illustrate
a situation where the forced inclination is larger than the free one, such that the
circle does not enclose the origin. As stated above, this is an outcome of the
boundary conditions.

Because the expressions for eforced and Iforced given in Eq. (7.82) depend on
the definitions of h0, k0, p0, and q0 given in Eqs. (7.78)–(7.81), it is clear that
potentially large values of eforced or Iforced can arise if either of the conditions
A − gi ≈ 0 or B − fi ≈ 0 is satisfied. The gi and fi are the eigenfrequencies of
the system of two interacting bodies whereas, from Eqs. (7.55) and (7.57), the
quantities A and B are functions of the semi-major axis of the test particle. This
implies that at certain locations in semi-major axis there will be singularities in
the forced eccentricities or inclinations. We will consider a specific example of
this in Sect. 7.5.

Another important point concerns the limiting values of eforced and Iforced as
the orbit of either of the two perturbers is approached. Since the A, Aj , B, and
Bj in Eqs. (7.55)–(7.58) as well as the definitions of the νi and µi in Eq. (7.76)
involve the Laplace coefficients b(1)

3/2(αj ) or b(2)

3/2(αj ), which all approach infinity
as αj → 1, it is not obvious that there are finite limiting values for eforced and
Iforced at the orbits of the perturbers. Let us assume that we are considering the
behaviour of eforced in the vicinity of a perturbing body denoted by subscript
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288 7 Secular Perturbations

j = l. In this case

b(1)

3/2(αl) → ∞ and b(2)

3/2(αl) → ∞ as αl → 1 . (7.83)

At the orbit of the perturber A + gi for i = 1, 2 and Al + Ai , where i %= l.
Therefore

A − gi ≈ A ≈ 1
4

n
ml

mc
αl ᾱlb

(1)

3/2(αl) (7.84)

and

νi =
2∑

j=1
Aj eji ≈ Aleli . (7.85)

This implies that

h0(t) ≈ −
2∑

i=1

Aleli

A
sin(gi t + βi ) = +

b(2)

3/2(αl)

b(1)

3/2(αl)

2∑

i=1
eli sin(gi t + βi ). (7.86)

Since the definition of the Laplace coefficient given in Eqs. (6.67) and (6.68) can
also be written as

1
2

b( j)
s (α) = s(s + 1) . . . (s + j − 1)

j!
α j F(s, s + j, j + 1; α2), (7.87)

where F(a, b, c; d) is the standard hypergeometric function, we have

lim
αl→1

b(2)

3/2(αl)

b(1)

3/2(αl)
= lim

αl→1

[
5
4

αl
F(3

2 , 7
2 , 3, α2

l )

F(3
2 , 5

2 , 2, α2
l )

]

= 1 (7.88)

from the properties of hypergeometric series and their relationship with elliptical
integrals. Therefore

lim
αl→1

h0(t) =
2∑

i=1
eli sin(gi t + βi ) = hl . (7.89)

Similarly

lim
αl→1

k0(t) =
2∑

i=1
eli cos(gi t + βi ) = kl . (7.90)

Therefore, as the orbit of perturbing body l is approached,

eforced =
√

h2
0 + k2

0 →
√

h2
l + k2

l = el . (7.91)

This implies that the forced values of the eccentricity and longitude of pericentre
at the orbit of the perturber are equal to the equivalent osculating values of these
elements for the perturber. A similar result for the forced values of the inclination
and longitude of ascending node can be shown using the same method as given
above. However, we have to be careful not to make too many generalisations
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7.5 Jupiter, Saturn, and a Test Particle 289

about the nature of the particle’s orbit in the vicinity of the orbit of a perturber.
We have already seen in Fig. 3.30 that particles near the L1 and L2 points acquire
an eccentricity from their encounter with the satellite, despite the fact that the
satellite is moving in a circular orbit. Therefore our result concerning the forced
eccentricity and inclination is really only valid for particle orbits far from L1 and
L2 with low values of e and I .

7.5 Jupiter, Saturn, and a Test Particle

We can illustrate the results derived in Sect. 7.4 by calculating the forced orbital
elements on a test particle moving under the effects of secular perturbations
from Jupiter and Saturn. In Sect. 7.3 we obtained the secular solution for the
Jupiter–Saturn system and so we have values of hj , kj , pj , and qj ( j = 1, 2) at
any time t . This allows us to calculate the forced elements of a test particle at
any location in the solar system.

Before proceeding it is important to point out that this entire analysis ignores
the effect of mean motion resonances. We have already seen in Sect. 6.9.2 that
at certain locations the particle is subjected to additional perturbations over an
above those due to the secular terms in the disturbing function. A more complete
analysis of the resonant terms is given in Sect. 8. Here we content ourselves with
the warning that our results on forced elements do not take account of the effects
of mean motion resonances.

The first step in the secular theory for the particle’s motion is to calculate the
value of the frequency, A, given in Eq. (7.55). Note that in the case of two bodies
orbiting a spherical or point-mass central object, we have B = −A. The value of
A depends on (i) the masses of the perturbers and (ii) the semi-major axis of the
perturbed particle.

Figure 7.4 shows the variation in A from 0 to 30 AU. The singularities close
to 5 and 10 AU arise from the fact that the Laplace coefficients tend to infin-
ity as αj → 1. On the same diagram the three, nonzero eigenfrequencies of
the system are denoted by the solid and dashed horizontal lines. Two of them,
namely g1 = 0.00096◦y−1 and g2 = 0.0061◦y−1, are the eccentricity–pericentre
eigenfrequencies while the third one, f2 = −0.0071◦y−1, is the single nonzero
inclination–node eigenfrequency. The intersection of these lines with the curve
showing the variation of A identify the semi-major axes where large forced
eccentricities or inclinations can be expected.

Since the value of A only depends on the semi-major axes and masses of the
planets and the particle, and since all these quantities are constant (recall that
there is no secular change in the semi-major axes), the value of A is constant at
any given semi-major axis. It is also independent of time.

The values of the forced eccentricity and longitude of pericentre as a function
of semi-major axis for a given time can be calculated using Eqs. (7.76) and
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Fig. 7.12. The precession rate of a test particle as a function of semi-major axis in
the (a) inner and (b) outer parts of the solar system according to the theory of Brouwer
& van Woerkom (1950). The solid and dashed horizontal lines denote the gi and − fi

eigenfrequencies of the system taken from Table 7.1. The intersections of three of these
lines with the precession rate in the region of the asteroid belt are indicated by circles.
The letters above each plot denote the locations of the eight planets and their associated
singularities.

(the location of the asteroid belt) there are three values of the semi-major axis
where such intersections occur: Two of them are close to 2 AU where the g6
and − f6 frequencies match the rate, and another is near 2.6 AU where the g10
frequency matches. These are indicated in Fig. 7.12.

7.10 Hirayama Families and the IRAS Dust Bands

The analysis given in Sect. 7.4 and Sect. 7.9 implies that the osculating eccentric-
ity of a small mass object, such as an asteroid or a dust particle, moving under the
gravitational effects of the planets can be thought of as having two components:
(i) a free or proper eccentricity, which reflects the “inherent” eccentricity of the
object, and (ii) a forced eccentricity, which is a result of its current semi-major
axis and the relative positions of its perturbers. The same arguments apply to the
inclination of the object. Therefore the free or proper elements provide infor-
mation on the body’s natural elements rather than those that are matters of its
circumstances.

Hirayama (1918) derived proper elements for the limited number of asteroids
known at the time. He showed that some asteroids tended to cluster in groups in
(a, e) and (a, I ) space and that the clustering was more pronounced when plotted
using free rather than osculating elements. He proposed that each cluster, or fam-
ily, represented objects that had a common dynamical origin and were the rem-
nants of the breakup of a parent body. It is customary to name an identified family
after its largest member. Today, soon after a valid orbit has been determined, an
asteroid’s proper elements are calculated and family associations are examined.
On this basis almost half of all asteroids are thought to be family members.
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Fig. 7.13. A plot of (a) the proper (or free) eccentricity and (b) the proper inclination
of asteroids in the range 2.0 ≤ a ≤ 3.5 AU that have been identified as family members.

Figure 7.13a shows the proper eccentricity as a function of semi-major axis
for those asteroids that have been identified as belonging to families. The equiv-
alent diagram for proper inclination is shown in Fig. 7.13b. There are a number
of obvious clusterings of asteroids and it is important to realise that these are
groupings in three-dimensional (a, e, I ) space.

We have already shown that the variation of the orbital elements can be thought
of as motion around a circle with a centre determined by the forced component
(see Figs. 7.2 and 7.3). In Fig. 7.14 we illustrate this by plotting osculating values
of k = e cos ! versus h = e sin ! and q = I cos " versus p = I sin " for the
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Fig. 7.14. (a) A plot of the osculating values of k = e cos ! and h = e sin ! for all
the asteroids shown in Fig. 7.13a. A number of “rings” are clearly visible. (b) A plot
of the osculating values of q = I cos " and p = I sin " for all the asteroids shown in
Fig. 7.13b. A number of “rings” are clearly visible, although most have a small radius
(i.e., a low inclination).
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Table 7.4. The proper and forced orbital elements of the Koronis, Eos, and Themis
asteroid families.

Family a (AU) eproper(
◦) Iproper(

◦) eforced !forced(
◦) Iforced(

◦) "forced(
◦)

Koronis 2.875 0.049 2.12 0.037 6.2 1.16 96.1
Eos 3.015 0.071 10.20 0.037 7.6 1.19 97.1
Themis 3.136 0.152 1.42 0.038 8.7 1.22 97.8

family members in our sample. In each case the presence of “circles” of asteroids
is clearly visible. This implies that members of a given asteroid family do indeed
have a common forced eccentricity and inclination (determined by their semi-
major axis) and a common free eccentricity and inclination with randomised free
pericentres and nodes. Note that, as predicted from secular theory, the centres of
these circles are not identical.

Three of the largest clusterings are associated with the Koronis, Eos, and
Themis families, all of which are thought to be the fragments of larger bodies
that suffered catastrophic collisions at least 107 years ago. The proper and forced
orbital elements of these families are listed in Table 7.4. The data used in this
table are taken from Dermott et al. (1985). If these families were formed by the
collisional breakup of a larger body then such an event would have produced
a large amount of asteroidal dust. Dramatic evidence for the collisional theory
for the origin of the Hirayama families came with the discovery by the Infrared
Astronomical Satellite (IRAS) of dust bands in the solar system (Low et al. 1984,
Neugebauer et al. 1984).

IRAS carried out an all-sky survey at wavelengths of 12, 25, 60, and 100
µm. Surveys at these wavelengths are particularly adept at detecting infrared
radiation from dust in the solar system. The background flux detected by IRAS
at 25µm is shown in Fig. 7.15a. In this plot the IRAS dust bands are barely
detectable as small “bumps” in the distribution close to ecliptic latitudes of 0◦

and ±10◦. However, if the background component of the curve is removed and the
smoothed residuals are plotted (Fig. 7.15b), then the bands are clearly visible –
there is a central band that appears to be split and two side bands at ±10◦. But
how do we know that these bands originate from the collisions that formed the
main families? The answer lies in an understanding of secular perturbations and
orbital geometry.

We have already noted that a test particle’s forced elements are a function of its
semi-major axis alone. Figure 7.16 shows the values of the forced elements in the
region of the asteroid belt according to the theory of Brouwer & van Woerkom
(1950). Fragments from the breakup of an asteroid would have approximately
the same free eccentricity and free inclination but would quickly have acquired
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Fig. 7.15. (a) The IRAS background infrared flux at a wavelength of 25µm. The spikes
close to ecliptic latitudes −60◦ and +50◦ are caused by residual contributions from the
galactic plane. (b) The smoothed, residual data showing the flux associated with the dust
bands (solid line) together with the model data (dashed line) obtained by assuming that
the signal comes from dust in the same distribution of orbits as the Themis, Eos, and
Koronis families of asteroids.

randomised free pericentres and free nodes. Having the same forced inclination
means that all the fragments precess about a common mean plane determined by
the forced inclination and forced node. Because the vertical component of the
their motion with respect to this plane is simple harmonic in form, the asteroids
will spend most of their time at the extremes of their motion, giving rise to a
bunching at these locations. The result is that, viewed from the Sun, the asteroids
will give the appearance of lying in two bands separated by 2Iforced in latitude
(see Fig. 7.17).
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Fig. 7.16. Forced orbital elements as a function of semi-major axis using the secular
theory of Brouwer & van Woerkom (1950). (a) The forced eccentricity (solid curve,
left-hand axis) and forced longitude of perihelion (dashed curve, right-hand axis). (b)
The forced inclination (solid curve, left-hand axis) and forced longitude of ascending
node (dashed curve, right-hand axis).
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Sun

Ecliptic Iforced

Fig. 7.17. A vertical cross-sectional view of a distribution of asteroids with the same
free and forced inclination but randomised free nodes. The radial extent of the cross
section is due to the eccentricity of the asteroids.

However, there is also an effect due to the eccentricity. This is shown in
Fig. 7.18. Orbits with the same forced and free eccentricities and the same forced
pericentre but randomised free pericentres generate an orbital distribution that
is symmetrical with respect to a point C that is not the Sun (denoted by the
point S in Fig. 7.18). If we envisage asteroidal dust moving in these orbits then
the combined effect of the inclination and eccentricity is to produce a cloud of

P

C
S

D

!forced

Fig. 7.18. The distribution of eccentric orbits having the same semi-major axis a, the
same forced eccentricity eforced and proper eccentricity eproper, the same forced pericentre
!forced, but randomised proper longitudes of pericentre. S denotes the position of the
Sun and C is the centre of symmetry. An individual orbit with pericentre at P and centre
at D is highlighted. In the diagram the lines CS, DS, and DC have lengths aeforced, ae,
and aeproper respectively, where e is the eccentricity of the orbit. Note that the centre of
symmetry is not the Sun.
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314 7 Secular Perturbations

material that is not symmetrically placed with respect to the Sun and the ecliptic.
The added complication of the spacecraft’s geocentric view implies that the
appearance of the bands should change depending on the time of year (i.e., the
position of Earth in its orbit).

Observations of the varying appearance of the dust bands and the implied
forced orbital elements have been used by Dermott et al. (1992) to model the
distribution of material. Using sources of dust associated with the Themis,
Koronis, Eos, Nysa, Dora, and Gefion families Dermott et al. (1992) used an
iterative procedure to produce a model profile (dashed line in Fig. 7.15b) that
gives excellent agreement with the observations. The implied association of the
dust with the collisions that formed the major Hirayama families appears to be
confirmed.

7.11 Secular Resonance

In our study of Brouwer & van Woerkom’s (1950) secular perturbation theory
for the solar system (Sect. 7.9) we noted that there are problems in calculating
the forced elements of test particles at those locations in semi-major axis where
either of the proper precession rates (denoted by A or B) of the particle equals
one of the eigenfrequencies of the system. In the case of the asteroid belt we
noted three such locations: two near 2 AU and one near 2.6 AU. The latter
explains the obvious singularity in the calculation of the forced eccentricity and
forced longitude of pericentre shown in Fig. 7.16a. This is an example of secular
resonance.

A resonance arises when two periods or frequencies are in a simple numerical
ratio. We have already seen examples of this in Sect. 5.4 where the frequen-
cies in question were the orbital and spin rates of a satellite (or planet). In the
case of secular resonance the relevant frequencies are the rates of change of the
proper longitude of pericentre (A = !̇proper) or proper longitude of ascending
node (B = "̇proper) of the test body (usually an asteroid) and one of the eigen-
frequencies of the system of perturbing bodies. Unfortunately the techniques
required to analyse these resonances are not as simple as in the spin–orbit case.
The basic secular theory used throughout this chapter is based on an expansion
of the disturbing function to second degree in the eccentricities and inclinations
and use of Lagrange’s equations in their lowest order form. This produces a
system in which the (e, ! ) solution is completely decoupled from the (I, ")

solution. Although this is sufficient to allow us to suggest where secular res-
onances might occur, a more complete theory requires that higher order terms
be taken into account. Furthermore, it is also necessary to take into account
terms of the second order in the masses, whereas we have only considered a
first-order theory. This makes the mathematics more difficult and introduces a
coupling between the eccentricity and inclination terms. For further details see
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7.11 Secular Resonance 315

the review articles by Knežević & Milani (1994) and Froeschlé & Morbidelli
(1994).

Williams (1969) derived a semianalytical secular theory without using an
expansion of the disturbing function. His calculation of proper elements and
subsequent identification of asteroid families (Williams 1979) were fundamen-
tal advances in modern studies of asteroid dynamics. Because of coupling the
location of secular resonances actually correspond to surfaces in (a, e, I ) space
rather than being centred on a single semi-major axis. The location of these sur-
faces for the asteroid belt has been calculated by Williams (1969) and Williams
& Faulkner (1981). They studied the secular resonances where the frequencies
A − g5, A − g6, and B − f6 are all approximately zero. These are referred to
as the linear secular resonances and, as we have noted, their existence is sug-
gested by the secular perturbation theory developed in this chapter. These are
also known as the ν5, ν6, and ν16 secular resonances, where the suffix denotes
the i th value of the eigenfrequency involved (ν1 = g1, . . . , ν10 = g10, ν11 =
f1, . . . , ν18 = f8).

Figure 7.19 shows the location in proper semi-major axis–proper inclina-
tion space of the linear secular resonances in the asteroid belt, calculated for
eproper = 0.1 (after Milani & Knežević 1990). These are superimposed on the
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Fig. 7.19. The location of the important ν5, ν6, and ν16 linear secular resonances (cal-
culated using eproper = 0.1) and the numbered asteroids’ Iproper as a function of proper
semi-major axis.
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316 7 Secular Perturbations

actual distribution of the proper elements for asteroids in the main belt. For
sin Iproper < 0.3 the elements were calculated by Milani & Knežević (1990),
using a theory developed by Yuasa (1973), while the elements of Lemaı̂tre &
Morbidelli (1994) were used for larger inclinations. Note the singularities in
Fig. 7.19 close to 2.5 and 3.3 AU. These are the locations of the 3:1 and 2:1
mean motion resonances (see Chapter 8) where the orbital period of the aster-
oid is a simple fraction of Jupiter’s period. At these locations it is necessary to
use a secular theory that incorporates the effect of mean motion resonance. The
additional singularity close to 2 AU has already been mentioned (see above and
Fig. 7.12a). The distribution of asteroids is clearly nonrandom, partly due to the
existence of the Kirkwood gaps at a number of resonant locations (see Fig. 1.7
and Sect. 9.8). However, it is also clear that the inner edge of the main belt in
a–I space is correlated with the location of the ν6 secular resonance for I < 15◦.
At higher inclinations there appears to be a group isolated by the three secular
resonances and the 3:1 Kirkwood gap.

Other secular resonances are possible, subject to a d’Alembert-like relation-
ship on the permitted combinations of frequencies. These are the nonlinear
secular resonances and all involve higher powers of eccentricity and/or inclina-
tion in the equations of motion. Nine of them (A + B − g5 − f6, A + B − g6 − f6,
A + B − g5 − f7, A − 2g6 + g5, A − 2g6 + g7, A − 3g6 + 2g5, B − f6 − g5 + g6,
2A+B−2g6− f6, and 3A+B−3g6− f6) give rise to important secular resonances
in the asteroid belt (Knežević & Milani 1994).

Another form of secular resonance exists for small objects on highly in-
clined orbits, although it does not involve any of the eigenfrequencies of the
system. A Kozai resonance occurs when ω̇ = 0, where ω is the argument of
pericentre. Because ! = ω + ", the resonance condition reduces to A = B.
Note that for low-eccentricity, low-inclination orbits in the absence of oblate-
ness A and B are equal in magnitude and opposite in sign. The circumstances
under which A = B only occur for highly inclined orbits. It can be shown
that the problem of a massless body moving under the gravitational effect
of planets moving in coplanar, circular orbits reduces to a system of one de-
gree of freedom, provided there are no resonances between the mean motions
(see Chapter 8). Kozai (1962) showed that an asteroid perturbed by Jupiter
moving in a circular orbit would have no secular change in its semi-major
axis but its eccentricity and inclination could undergo changes such that the
quantity

HK =
√

1 − e2 cos I (7.151)

always remains constant. Note that for constant semi-major axis this is just
another way of stating that the third Delaunay momentum, H , is constant (see
Eq. (2.176)). This is also related to the Tisserand relation discussed in Sect. 3.4.
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7.12 Higher Order Secular Theory 317

A consequence of this constant is that the eccentricity and inclination of a small
object’s orbit are coupled such that e is a maximum when I is a minimum and
vice versa.

Kozai’s theory was extended by Michel & Thomas (1995) to include the four
giant planets. The theory shows that for low inclinations it is possible for ω to
librate about stable points at ω = 0◦ and ω = 180◦. For inclinations greater that
∼ 30◦ these points become unstable and new stable equilibrium points appear
at ω = 90◦ and ω = 270◦. Thomas & Morbidelli (1996) have shown that the
Kozai resonance can only affect orbits with large e and I . They also confirmed
the conclusion of Bailey et al. (1992) that the Kozai resonance is the mechanism
by which some long-period comets can become sungrazing.

7.12 Higher Order Secular Theory

In this chapter we have used the secular theory of Brouwer & van Woerkom
(1950) as our adopted theory for the long-term variation of the planetary orbits.
This is referred to a linear theory and for the most part it follows the methods of
Sect. 7.7 in that it is only to first order in the masses and is based on an expansion
of the disturbing function to second degree in the eccentricities and inclinations.
Using a treatment due to Hill (1897), Brouwer & van Woerkom made some
attempt to incorporate a higher order theory to account for the Jupiter–Saturn
interactions. These interactions give rise to the g9 and g10 eigenfrequencies and
their associated eigenvectors listed in Tables 7.1–7.3.

Incorporating higher degree terms in the orbital elements, Bretagnon (1974)
developed a secular theory for all the planets except planets to second order in
the masses. A later version incorporated the effects of relativity and lunar per-
turbations (Bretagnon 1982). Following the methods of Duriez (1979), a new
secular theory was devised by Laskar (1985, 1986a). This included the same
perturbations as Bretagnon’s later theory, but with the addition of even higher
order terms in the eccentricities and inclinations. The resulting theory was nu-
merically integrated over a time span of 30 My and Fourier analysed (Laskar
1988). Around the same time a number of researchers undertook extensive nu-
merical integrations of the outer solar system in studies of long-term stability
of planetary orbits (Kinoshita & Nakai 1984, Applegate et al. 1986, Carpino et
al. 1987). There have also been integrations of the orbits of the inner planets.
For example, Quinn et al. (1991) investigated the Earth’s orbit over a timescale
of 3 My. Their results, subsequently extended to 6 My, were compared with the
semianalytical secular theory of Laskar (1989) and were found to be in good
agreement (Laskar et al. 1992). All of these studies provided deep insights into
the secular interactions of the planets. These are examined in more detail in
Sect. 9.10.
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