
6
The Disturbing Function

O polished perturbation!

William Shakespeare, Henry IV (2), IV, v

6.1 Introduction

In Chapter 3 we approached the three-body problem from the point of view of the
location and stability of equilibrium points in the restricted problem. However,
we made no attempt to tackle the more general problem of the motion of a third
body under the gravitational effects of the two other bodies for arbitrary initial
conditions. This problem is nonintegrable, but we can make some progress by
analysing the accelerations experienced by the three bodies. If their motions
are dominated by a central or primary body, then the orbits of the secondary
bodies are conic sections with small deviations due to their mutual gravitational
perturbations. In this chapter, we show how these deviations can be calculated
by defining and analysing the disturbing function.

Consider a mass mi orbiting a primary of mass mc in an elliptical path. As we
have seen in Chapter 2, this problem is integrable and the orbital elements ai , ei ,
Ii , !i , and "i of the mass mi are constant, provided the gravitational effect of the
central body can be treated as arising from a point mass. If we now introduce a
third mass, mj , then the mutual gravitational force between the masses mi and mj

results in accelerations in addition to the standard two-body accelerations due to
mc (see Fig. 6.1). These additional accelerations of the secondary masses relative
to the primary can be obtained from the gradient of the perturbing potential, also
called the disturbing function.

This chapter is concerned with a mathematical analysis of the properties of
a Fourier series expansion of the disturbing function. We show how particular
problems in solar system dynamics can be tackled by isolating the appropriate
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226 6 The Disturbing Function
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Fig. 6.1. The position vectors ri and rj , of two masses mi and mj , with respect to the
central mass mc. The three masses have position vectors R, R′, and Rc with respect to
an arbitrary, fixed origin O .

terms in the expansion of the disturbing function and by assuming that the time-
averaged contributions to the equations of motion of all the other terms are
negligible. An understanding of the properties of the disturbing function is the
key to understanding the dynamics of resonance and other long-period motions
in the solar system.

6.2 The Disturbing Function

Let the position vectors with respect to a fixed origin O of the three bodies of
masses mc, mi , and mj be Rc, Ri , and Rj respectively. Let ri and rj denote the
position vectors of the secondary masses mi and mj relative to the primary, where

|ri | = ri =
(

x2
i + y2

i + z2
i

)1/2
,

∣∣rj
∣∣ = rj =

(
x2

j + y2
j + z2

j

)1/2
, (6.1)

and
∣∣rj − ri

∣∣ =
[(

xj − xi
)2 +

(
yj − yi

)2 +
(
zj − zi

)2
]1/2

(6.2)

and the primary is the origin of the coordinate system (see Fig. 6.1).
From Newton’s laws of motion and the law of gravitation we obtain the equa-

tions of motion of the three masses in the inertial reference frame:

mcR̈c = Gmcmi
ri

r3
i

+ Gmcmj
rj

r3
j

, (6.3)

mi R̈i = Gmi mj

(
rj − ri

)

∣∣rj − ri
∣∣3

− Gmi mc
ri

r3
i

, (6.4)

mj R̈j = Gmj mi

(
ri − rj

)

∣∣ri − rj
∣∣3

− Gmj mc
rj

r3
j

. (6.5)
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6.2 The Disturbing Function 227

The accelerations of the secondaries relative to the primary are given by

r̈i = R̈i − R̈c, (6.6)
r̈j = R̈j − R̈c. (6.7)

Substituting the expressions for R̈c, R̈i , and R̈j from Eqs. (6.3)–(6.5) we get

r̈i + G (mc + mi )
ri

r3
i

= Gmj

(
rj − ri

∣∣rj − ri
∣∣3

− rj

r3
j

)

, (6.8)

r̈j + G
(
mc + mj

) rj

r3
j

= Gmi

(
ri − rj

∣∣ri − rj
∣∣3

− ri

r3
i

)

. (6.9)

These relative accelerations can be written as gradients of scalar functions,
that is, we can write

r̈i = ∇i (Ui + Ri ) =
(

î
∂

∂xi
+ ĵ

∂

∂yi
+ k̂

∂

∂zi

)
(Ui + Ri ) (6.10)

and

r̈j = ∇j
(
Uj + Rj

)
=

(
î

∂

∂xj
+ ĵ

∂

∂yj
+ k̂

∂

∂zj

) (
Uj + Rj

)
, (6.11)

where

Ui = G
(mc + mi )

ri
and Uj = G

(
mc + mj

)

rj
(6.12)

are the central, or two-body, parts of the total potential. The subscript i or j is
included in the ∇ operator to emphasise that the gradient is with respect to the
coordinates of the mass mi or mj . The R term in the potential is the disturbing
function, which represents the potential that arises from the other secondary
mass. Since ri is not a function of xj , yj , and zj , and rj is not a function of xi , yi ,
and zi , we can write

Ri = Gmj∣∣rj − ri
∣∣ − Gmj

ri · rj

r3
j

, (6.13)

Rj = Gmi∣∣ri − rj
∣∣ − Gmi

ri · rj

r3
i

. (6.14)

The leading terms in these expressions are called the direct terms while the other
terms that arise from the choice of the origin of the coordinate system are called
the indirect terms. If the origin of the coordinate system was at the centre of
mass, then these indirect terms would not appear.

The above analysis can be extended to any number of bodies. In addition, the
accelerations associated with the disturbing function can arise from any source
and not just from point-mass gravitational forces. They could, for example,
arise from a potential associated with the oblateness of the central mass (see
Sect. 6.11). However, in what follows in this chapter we are mostly concerned
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228 6 The Disturbing Function

with the particular case of two point-mass secondaries of masses m and m ′ and
position vectors r and r′ relative to the central mass, where r < r ′ always. With
this notation, the equation of motion of the inner secondary is

r̈ + G (mc + m)
r
r3 = Gm ′

(
r′ − r

|r′ − r|3
− r′

r ′3

)
(6.15)

and its disturbing function can be written

R = µ′

|r′ − r| − µ′ r · r′

r ′3 , (6.16)

where µ′ = Gm ′ and the associated reference orbit has osculating elements
n2a3 = G (mc + m). Similar equations can be written for the outer secondary
giving

r̈′ + G
(
mc + m ′) r′

r ′3 = Gm
(

r − r′

|r − r′|3
− r

r3

)
. (6.17)

The corresponding disturbing function for the outer secondary is then

R′ = µ

|r − r′| − µ
r · r′

r3 , (6.18)

where µ = Gm and the associated reference orbit has osculating elements n′2a′3 =
G

(
mc + m ′).
Although this is the most straightforward way to derive expressions for R and

R′, it is worth pointing out that this procedure and the resulting expressions are
not unique. For example, it is possible to add an additional term, Gmr′/r ′3, to
each side of the equation of motion for the mass m ′, Eq. (6.17), resulting in an
additional term −µ/r ′ in the expression for R′; however, this requires that the as-
sociated reference orbit for m ′ has osculating elements n′2a′3 = G

(
mc + m + m ′).

6.3 Expansion Using Legendre Polynomials

Consider the configuration shown in Fig. 6.2 where r and r′ denote the position
vectors of the masses m and m ′ respectively. Let ψ denote the angle between the
two position vectors. From the cosine rule we have

∣∣r′ − r
∣∣2 = r2 + r ′2 − 2rr ′ cos ψ, (6.19)

or, alternatively,

1
|r′ − r| = 1

r ′

[
1 − 2

r
r ′ cos ψ +

( r
r ′

)2
]− 1

2
. (6.20)
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6.3 Expansion Using Legendre Polynomials 229

r

r′

m

m ′
mc

ψ

r′ − r

Fig. 6.2. The position vectors r and r′ of two masses m and m′, with respect to a central
mass mc. The angle between the position vectors is ψ .

This can be expanded in Legendre polynomials to give

1
|r′ − r| = 1

r ′

∞∑

l=0

( r
r ′

)l
Pl(cos ψ), (6.21)

where P0(cos ψ) = 1, P1(cos ψ) = cos ψ , P2(cos ψ) = 1
2 (3 cos2 ψ − 1), etc. (see

Sect. 4.2).
Since r · r′ = rr ′ cos ψ = rr ′ P1(cos ψ), the disturbing function for the inner

secondary can be written

R = µ′

r ′

∞∑

l=2

( r
r ′

)l
Pl(cos ψ), (6.22)

where the P0(cos ψ) term has been omitted because it does not depend on r
and, ultimately, we are only interested in the gradient of R with respect to the
coordinates of the inner secondary. Similarly, the disturbing function for the
outer secondary can be written

R′ = µ

r ′

∞∑

l=2

( r
r ′

)l
Pl(cos ψ) + µ

r
r ′2 cos ψ − µ

r ′

r2 cos ψ. (6.23)

Thus, apart from two extra terms (that are actually unimportant for the applica-
tions discussed in the book), the expressions for R and R′ are very similar.

This chapter is concerned with the series expansion of the disturbing functions
R andR′ in terms of the orbital elements (as opposed to the Cartesian coordinates)
of m and m ′. We use the standard orbital elements a, e, I , ! , ", and λ to denote
the semi-major axis, eccentricity, inclination, longitude of pericentre, longitude
of ascending node, and mean longitude, respectively, of the mass m, with similar
primed quantities for the mass m ′. We show that the expansion of R has the form

R = µ′
∑

S(a, a′, e, e′, I, I ′) cos ϕ. (6.24)
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230 6 The Disturbing Function

Here ϕ is a permitted linear combination with general form

ϕ = j1λ
′ + j2λ + j3!

′ + j4! + j5"
′ + j6", (6.25)

where the ji (i = 1, 2, . . . , 6) are integers and

6∑

i=1
ji = 0. (6.26)

This property stems from the azimuthal invariance of the primary’s potential. By
knowing the explicit form of the function S and the permissible combinations of
the angles in ϕ, we can identify those terms that make the dominant contributions
to the equations of motion and, conversely, those that can be neglected.

To illustrate the nature of this expansion let us consider the special case where
the orbits of the two masses m and m ′ lie in the same plane and we can ignore
any terms arising from the inclination. In this case we can write the angle ψ as
the difference of the true longitudes,

ψ = ( f ′ + ! ′) − ( f + ! ), (6.27)

where f and f ′ denote the true anomalies of m and m ′. Hence,

cos ψ = (cos f ′ cos ! ′ − sin f ′ sin ! ′)(cos f cos ! − sin f sin ! )

+ (sin f ′ cos ! ′ + cos f ′ sin ! ′)(sin f cos ! + cos f sin ! ). (6.28)

We have already given series expansions for cos f and sin f in Sect. 2.5 and we
can find similar series for cos f ′ and sin f ′ by substituting M ′ for M and e′ for e.
Taking these expansions to second degree in e and e′ we find

cos ψ =
(
1 − e2 − e′2

)
cos[M − M ′ + ! − ! ′]

− e cos[M ′ − ! + ! ′] − e′ cos[M + ! − ! ′]

+ e cos[2M − M ′ + ! − ! ′] + e′ cos[M − 2M ′ + ! − ! ′]

− 1
8

e2 cos[M + M ′ − ! + ! ′] − 1
8

e′2 cos[M + M ′ + ! − ! ′]

+ 9
8

e2 cos[3M − M ′ + ! − ! ′] + 9
8

e′2 cos[M − 3M ′ + ! − ! ′]

+ ee′ cos[! − ! ′] + ee′ cos[2M − 2M ′ + ! − ! ′]

− ee′ cos[2M + ! − ! ′] − ee′ cos[2M ′ − ! + ! ′]. (6.29)

Even at this stage some properties of the expression for cos ψ are evident. It is
clear that the degree of the eccentricity term associated with each cosine argument
is at least the modulus of the sum of the coefficients of the mean anomalies in
the argument. Another property shows up if we express the angles in terms
of the mean longitudes rather than the mean anomalies using the substitutions
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6.3 Expansion Using Legendre Polynomials 231

M = λ − ! and M ′ = λ′ − ! ′. This gives

cos ψ =
(
1 − e2 − e′2

)
cos[λ − λ′] − e cos[λ′ − ! ] − e′ cos[λ − ! ′]

+ e cos[2λ − λ′ − ! ] + e′ cos[λ − 2λ′ + ! ′]

− 1
8

e2 cos[λ + λ′ − 2! ] − 1
8

e′2 cos[λ + λ′ − 2! ′]

+ 9
8

e2 cos[3λ − λ′ − 2! ] + 9
8

e′2 cos[λ − 3λ′ + 2! ′]

+ ee′ cos[! − ! ′] + ee′ cos[2λ − 2λ′ − ! + ! ′]
− ee′ cos[2λ − ! − ! ′] − ee′ cos[2λ′ − ! − ! ′]. (6.30)

With this choice of angles it is clear that the sum of the integer coefficients of
the longitudes in each argument is zero. This particular property is also true of
the final expansion when the angles are expressed in terms of longitudes and it
allows us to determine the permissible arguments.

If we now turn our attention to the radially dependent parts of the disturbing
function Eq. (6.22), we can write

R = µ′

a′

∞∑

l=2
αl

(
a′

r ′

)l+1 ( r
a

)l
Pl(cos ψ), (6.31)

where
α = a

a′ < 1 (6.32)

is the ratio of the semi-major axes of the masses m and m ′.
If we consider the terms with l = 2 then the series expansion for r/a given in

Sect. 2.5 gives
( r

a

)2
≈ 1 − 2e cos M +

(
1
2

)
e2(3 − cos 2M), (6.33)

(
a′

r ′

)3

≈ 1 + 3e′ cos M ′ +
(

3
2

)
e′2(1 + 3 cos 2M ′), (6.34)

with
( r

a

)2
(

a′

r ′

)3

≈ 1 + 3
2

e2 + 3
2

e′2 − 2e cos M + 3e′ cos M ′

− 1
2

e2 cos 2M + 9
2

e′2 cos 2M ′

− 3ee′ cos[M − M ′] − 3ee′ cos[M + M ′]. (6.35)

Since P2(x) = (1/2)(3x2−1), P3(x) = (1/2)(5x3−3x), etc., considerable effort
is required to calculate the Pl(cos ψ) given the complexity of our expression for
cos ψ . In fact, for l = 2 there are fourteen separate arguments, while for l = 3
there are thirty-six arguments. However, since the series for (a′/r ′)l+1(r/a)l

only involves sums and differences of the mean anomalies, this means that their
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232 6 The Disturbing Function

product with the terms in the Pl(cos ψ) series will always preserve the property
that the sum of the coefficients of the longitudes in any cosine argument is zero.

It is clear, even from this simple analysis, that the expansion of the disturbing
function is a nontrivial task best undertaken with the assistance of computer
algebra systems. The end result is a series in α involving a large number of
different arguments. Before considering how best to deal with this series, it
is essential to generalise the expansion to three dimensions and introduce the
inclinations and nodes of the two orbits.

The disturbing function R can be expanded in terms of standard orbital ele-
ments using the method developed by Kaula (1961, 1962), in which the disturbing
function for an inner secondary is expanded in an infinite series in the osculating
(i.e., instantaneous) elliptic elements referred to the equator of the primary. The
expression for R in Eq. (6.16) can be written

R = µ′

a′

∞∑

l=2
αl

l∑

m=0
(−1)l−mκm

(l − m)!
(l + m)!

×
l∑

p,p′=0
Flmp(I )Flmp′(I ′)

∞∑

q,q ′=−∞
Xl,l−2p

l−2p+q(e)X−l−1,l−2p′

l−2p′+q ′ (e′)

× cos
[
(l − 2p′ + q ′)λ′ − (l − 2p + q)λ − q ′! ′ + q!

+ (m − l + 2p′)"′ − (m − l + 2p)"
]
, (6.36)

where α = a/a′, λ and λ′ are mean longitudes, ! and ! ′ are the longitudes of
pericentre, and κ0 = 1 and κm = 2 for m '= 0.

The Flmp(I ) are the inclination functions defined as

Flmp(I ) = il−m(l + m)!
2l p!(l − p)!

×
∑

k

(−1)k
(

2l − 2p
k

)(
2p

l − m − k

)
c3l−m−2p−2ksm−l+2p+2k, (6.37)

where i =
√

−1, k is summed from k = max(0, l −m −2p) to k = min(l −m, 2l −
2p), s = sin 1

2 I , and c = cos 1
2 I .

The quantities Xa,b
c (e) are Hansen coefficients, which can be defined by

Xa,b
c (e) = e|c−b|

∞∑

σ=0
Xa,b

σ+α,σ+βe2σ . (6.38)

In this context α = max(0, c − b), β = max(0, b − c), and the Xa,b
c,d are Newcomb

operators, which can be defined recursively by

Xa,b
0,0 = 1, (6.39)

Xa,b
1,0 = b − a/2, (6.40)
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6.4 Literal Expansion in Orbital Elements 233

and, for d = 0,

4cXa,b
c,0 = 2(2b − a)Xa,b+1

c−1,0 + (b − a)Xa,b+2
c−2,0 , (6.41)

or, for d '= 0,
4d Xa,b

c,d = − 2(2b + a)Xa,b−1
c,d−1 − (b + a)Xa,b−2

c,d−2

− (c − 5d + 4 + 4b + a)Xa,b
c−1,d−1

+ 2(c − d + b)
∑

j≥2
(−1) j

(
3/2

j

)
Xa,b

c− j,d− j . (6.42)

Also, Xa,b
c,d = 0 if c < 0 or d < 0. If d > c then Xa,b

c,d = Xa,−b
d,c .

Additional information concerning Hansen coefficients and Newcomb opera-
tors can be found in Plummer (1918) and Hughes (1981). In particular, Hughes
(1981) describes the properties of Hansen coefficients and their various recursive
relations.

We must also consider the expansion of R′. It is interesting to note that this
expansion is curiously absent from the literature. It can only be assumed that
since this form of expansion was developed for handling the perturbations on
artificial satellites due to the exterior orbits of the Moon and Sun, the need for a
similar expansion for R′ never arose.

The expression for R′ is

R′ = µ

a′

∞∑

l=1
αl

l∑

m=0
κm

(l − m)!
(l + m)!

×
l∑

p,p′=0
Flmp(I )Flmp′(I ′)

∞∑

q,q ′=−∞
Xl,l−2p

l−2p+q(e)X−(l+1),l−2p′

l−2p′+q ′ (e′)

× cos
[
(l − 2p′ + q ′)λ′ − (l − 2p + q)λ − q ′! ′ + q!

+ (m − l + 2p′)"′ − (m − l + 2p)"
]

− µa′

a2

1∑

m=0
κm

(1 − m)!
(1 + m)!

×
1∑

p,p′=0
F1mp(I )F1mp′(I ′)

∞∑

q,q ′=−∞
X−2,1−2p

1−2p+q (e)X1,1−2p′

1−2p′+q ′(e′)

× cos
[
(1 − 2p′ + q ′)λ′ − (1 − 2p + q)λ − q ′! ′ + q!

+ (m − 1 + 2p′)"′ − (m − 1 + 2p)"
]
. (6.43)

6.4 Literal Expansion in Orbital Elements

Given the importance of the disturbing function in solar system dynamics, a
number of authors have derived high-order expansions. Peirce (1849) derived
an expansion to sixth order in the eccentricities and mutual inclination. One of
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234 6 The Disturbing Function

the major expansions of the disturbing function, and one of the most commonly
used, is due to Le Verrier (1855), who published a seventh-order expansion;
Boquet (1889) extended Le Verrier’s expansion to eighth order. Although Le
Verrier’s expansion contains a number of trivial errors, most of which were cor-
rected in subsequent volumes of the Annals of the Paris Observatory, a single
nontrivial mistake was found by Murray (1985). Other expansions include the
symbolic development to sixth order by Newcomb (1895) and the low-order ex-
pansions by Brown & Shook (1933) and Brouwer & Clemence (1961). Although
all these expansions were carried out in terms of the individual eccentricities and
longitudes of pericentre of the two orbiting bodies, they all made use of a mu-
tual inclination and a mutual ascending node. The reason for this was probably
to reduce the amount of calculation required, but in the era of computer alge-
bra such restrictions no longer apply. An expansion complete to second order
in the individual eccentricities and inclinations is derived in Sect. 6.5, while
Appendix B contains a literal expansion, which is complete to fourth order.
Both expansions were derived using the method outlined below.

Given the complexity of the expansion, it is customary to distinguish between
the direct and indirect parts of the disturbing function. Using the definitions in
Eqs. (6.16) and (6.18), we can write

R = µ′

a′ RD + µ′

a′ αRE (6.44)

and

R′ = µ

a′RD + µ

a′
1
α2RI, (6.45)

where

RD = a′

|r′ − r|
(6.46)

and

RE = −
( r

a

) (
a′

r ′

)2

cos ψ, (6.47)

RI = −
(

r ′

a′

) (a
r

)2
cos ψ. (6.48)

In these expressions RD is derived from the direct part of the disturbing function,
RE comes from the indirect part due to an external perturber, and RI comes from
the indirect part for an internal perturber. It is clear from Eqs. (6.44)–(6.46) that
we can use an expansion of RD to obtain the direct part of either R or R′.

To isolate the appropriate terms in the disturbing function for any particular
problem in solar system dynamics, we need to obtain a series expansion of R or
R′ in terms of the individual orbital elements of the two orbiting bodies. This
requires separate expansions of the direct part RD defined in Eq. (6.46) and the
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6.4 Literal Expansion in Orbital Elements 235

indirect parts RE and RI defined in Eqs. (6.47) and (6.48) respectively. The
different cosine arguments in the expansion given in Appendix B are labelled D,
E, or I according to which part of the disturbing function they are derived from.

Using Eq. (6.19) we can write

1
+

= RD

a′ =
[
r2 + r ′2 − 2rr ′ cos ψ

]−1/2
, (6.49)

where + = |r′ −r| is the separation of the two masses and ψ is the angle between
the two radius vectors (see Fig. 6.2). Since r · r′ = rr ′ cos ψ we can write

cos ψ = xx ′ + yy′ + zz′

rr ′ . (6.50)

From Eq. (2.122) we have

x
r

= cos " cos(ω + f ) − sin " sin(ω + f ) cos I, (6.51)
y
r

= sin " cos(ω + f ) + cos " sin(ω + f ) cos I, (6.52)
z
r

= sin(ω + f ) sin I, (6.53)

with similar expressions for x ′/r ′, y′/r ′, and z′/r ′.
Each of the above equations can be expanded as a series in M and M ′ using

the series expansions for cos f and sin f given in Sect. 2.5 and hence we can
derive a series expansion for cos ψ . If we define

- = cos ψ − cos(θ − θ ′), (6.54)

where θ = ! + f and θ ′ = ! ′ + f ′ are the true longitudes of the inner and outer
bodies respectively, then, as we shall see later, the resulting series for - is of
second order in sin I and sin I ′ and the expression for +−1 can be expanded as a
Taylor series in -. We have

1
+

=
[
r2 + r ′2 − 2rr ′ (cos(θ − θ ′) + -

)]−1/2

= 1
+0

+ rr ′- · 1
+3

0
+ 3

2
(
rr ′-

)2 · 1
+5

0
+ · · ·

=
∞∑

i=0

(2i)!
(i!)2 ·

(
1
2

rr ′-

)i

· 1
+2i+1

0

, (6.55)

where
1

+0
=

[
r2 + r ′2 − 2rr ′ cos(θ − θ ′)

]−1/2
. (6.56)

Let

ρ0 =
[
a2 + a′2 − 2aa′ cos(θ − θ ′)

]1/2
. (6.57)
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236 6 The Disturbing Function

Using a Taylor series expansion in ρ0, we can write

1
+2i+1

0

= 1
ρ2i+1

0

+ (r − a)
∂

∂a

(
1

ρ2i+1
0

)

+ (r ′ − a′)
∂

∂a′

(
1

ρ2i+1
0

)

+ · · · . (6.58)

Let Dm,n denote the differential operator

Dm,n = ama′n ∂m+n

∂am∂a′n , (6.59)

and let

ε = r
a

− 1, ε′ = r ′

a′ − 1. (6.60)

From the expansion of r/a given in Eq. (2.81), it is clear that ε is of O(e) and ε′

is of O(e′). Hence we have

1
+2i+1

0

=
[
1 + εD1,0 + ε′ D0,1 +

1
2!

(
ε2 D2,0 + 2εε′ D1,1 + ε′2 D0,2

)
+ · · ·

]
1

ρ2i+1
0

. (6.61)

However, from Eq. (6.57),

1
ρ2i+1

0

=
[
a2 + a′2 − 2aa′ cos(θ − θ ′)

]−
(

i+ 1
2

)

= a′−(2i+1)
[
1 + α2 − 2α cos(θ − θ ′)

]−
(

i+ 1
2

)

= a′−(2i+1) 1
2

∞∑

j=−∞
b( j)

i+ 1
2
(α) cos j (θ − θ ′), (6.62)

where the b( j)
s (α) are Laplace coefficients, each of which can be expressed as a

uniformly convergent series in α for all α < 1. Since the Dm,n operators act only
on the Laplace coefficients, we can define functions Ai, j,m,n by

Ai, j,m,n = Dm,n

(
a′−(2i+1)b( j)

i+ 1
2
(α)

)
= ama′n ∂m+n

∂am∂a′n

(
a′−(2i+1)b( j)

i+ 1
2
(α)

)
, (6.63)

and we can now write

1
+2i+1

0

= 1
2

∞∑

j=−∞

[
Ai, j,0,0 + εAi, j,1,0 + ε′ Ai, j,0,1 + · · ·

]
cos j (θ − θ ′). (6.64)

If we generalise this expression we obtain

1
+2i+1

0

= 1
2

∞∑

j=−∞

[
∞∑

l=0

1
l!

l∑

k=0

(
l
k

)
εkε′l−k Ai, j,k,l−k

]

cos j (θ − θ ′). (6.65)
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6.4 Literal Expansion in Orbital Elements 237

Care must be taken in the calculation of the partial derivatives with respect to
a and a′ in the Ai, j,k,l−k since a and a′ are still contained implicitly within the
Laplace coefficients b( j)

i+ 1
2
(a/a′).

Substituting Eq. (6.65) in Eq. (6.55) we obtain

RD =
∞∑

i=0

(2i)!
(i!)2

(
1
2

r
a

r ′

a′ -

)i ai a′i+1

2

×
∞∑

j=−∞

[
∞∑

l=0

1
l!

l∑

k=0

(
l
k

)
εkε′l−k Ai, j,k,l−k

]

cos j (θ − θ ′). (6.66)

It is worthwhile noting that the inclinations, I and I ′, are only contained in -

and the eccentricities are only contained in the ε and ε′ terms in Eq. (6.66).
The expansion of the indirect parts, RE and RI, is more straightforward using

the series obtained from expanding cos ψ in Eq. (6.50) and the series given
in Sect. 2.5. Note that the expansion of these terms does not involve Laplace
coefficients.

The literal expansion makes use of Laplace coefficients, which are explicit
functions of α rather than the individual coefficients of powers of α that we
encountered in Kaula’s expansion. The Laplace coefficient b( j)

i+ 1
2
(α) in Eq. (6.62)

is defined by

1
2

b( j)
s (α) = 1

2π

∫ 2π

0

cos jψ dψ

(1 − 2α cos ψ + α2)s
, (6.67)

where s = i + 1/2 is a half-integer (i.e., s = 1/2, 3/2, 5/2, . . .) and α = a/a′.
Alternatively we can write this in series form as

1
2

b( j)
s (α) = s(s + 1) . . . (s + j − 1)

1 · 2 · 3 . . . j
α j

×
[
1 + s(s + j)

1( j + 1)
α2 + s(s + 1)(s + j)(s + j + 1)

1 · 2( j + 1)( j + 2)
α4 + . . .

]
. (6.68)

In the case where j = 0 the factor outside the brackets is equal to unity. It can be
shown that the series definition of the Laplace coefficient is always convergent
for α < 1.

Useful relations between Laplace coefficients and their derivatives are given
in Brouwer & Clemence (1961). These include

b(− j)
s = b( j)

s , (6.69)

Db( j)
s = s

(
b( j−1)

s+1 − 2αb( j)
s+1 + b( j+1)

s+1

)
, (6.70)

Dnb( j)
s = s

(
Dn−1b( j−1)

s+1 − 2αDn−1b( j)
s+1

+ Dn−1b( j+1)

s+1 − 2(n − 1)Dn−2b( j)
s+1

)
, (6.71)

�+� "��"���)��))&��,,,���#�' ����%'���%'��)�'#(���))&����-��% �%'����������������
��������
�%,$"%������'%#��))&��,,,���#�' ����%'���%'�����) %$�"��$ +�'( ).�%��� $��&%'���������%$�	���%+�	�����)�����
��	��(*�!��)�)%�)�����#�' �����%'��)�'#(�%��*(��

http://(null)/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139174817.007
http://(null)/www.cambridge.org/core


238 6 The Disturbing Function

and

αn
(

Dnb( j)
s − Dnb( j−2)

s

)
=

− ( j + n − 1)αn−1 Dn−1b( j)
s − ( j − n − 1)αn−1 Dn−1b( j−2)

s

+ 2( j − 1)
[
αn Dn−1b( j−1)

s + (n − 1)αn−1 Dn−2b( j−1)
s

]
, (6.72)

where n ≥ 2 in the last two relations and D ≡ d/dα is a differential operator.

6.5 Literal Expansion to Second Order

As an illustration of the techniques outlined in Sect. 6.4, we will now derive an
expansion of the disturbing function complete to second order in the eccentricities
and inclinations.

To derive a series expansion for cos ψ we first need to make use of the expan-
sions for sin f and cos f in terms of the mean anomaly M , given in Eqs. (2.84)
and (2.85) respectively. To second order we have

sin f = sin M + e sin 2M + e2
(

9
8

sin 3M − 7
8

sin M
)

, (6.73)

cos f = cos M + e
(
cos 2M − 1

)
+ e2

(
9
8

cos 3M − 9
8

cos M
)

. (6.74)

Hence

cos[ω + f ] = cos ω cos f − sin ω sin f

≈ cos[ω + M] + e
(
cos[ω + 2M] − cos ω

)

+ e2
(

− cos[ω + M] − 1
8

cos[ω − M] + 9
8

cos[ω + 3M]
)

(6.75)

and

sin[ω + f ] = sin ω cos f + cos ω sin f

≈ sin[ω + M] + e
(
sin[ω + 2M] − sin ω

)

+ e2
(

− sin[ω + M] + 1
8

sin[ω − M] + 9
8

sin[ω + 3M]
)

. (6.76)

In keeping with a number of previous expansions (including that by Kaula
discussed in Sect. 6.3) we wish to express the disturbing function in terms of
powers of sin 1

2 I and sin 1
2 I ′ rather than sines and cosines of the inclinations.

Therefore we make use of the relations

cos I = 1 − 2 sin2 1
2

I = 1 − 2s2 (6.77)

and

sin I = 2 sin
1
2

I
(

1 − sin2 1
2

I
) 1

2
= 2s + O(s3), (6.78)
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6.5 Literal Expansion to Second Order 239

where s = sin 1
2 I . Substitution of these expressions and our expansions of

cos[ω + f ] and sin[ω + f ] in Eqs. (6.51)–(6.53) gives
x
r

≈ cos[ω + " + M] + e
(
cos[ω + " + 2M] − cos[ω + "]

)

+ e2
(

9
8

cos[ω + " + 3M] − 1
8

cos[ω + " − M] − cos[ω + " + M]
)

+ s2 (
cos[ω − " + M] − cos[ω + " + M]

)
, (6.79)

y
r

≈ sin[ω + " + M] + e
(
sin[ω + " + 2M] − sin[ω + "]

)

+ e2
(

9
8

sin[ω + " + 3M] − 1
8

sin[ω + " − M] − sin[ω + " + M]
)

− s2 (
sin[ω − " + M] + sin[ω + " + M]

)
, (6.80)

and
z
r

≈ 2s sin[ω + M] + 2es
(
sin[ω + 2M] − sin ω

)
. (6.81)

Similar expressions can be obtained for x ′/r ′, y′/r ′, and z′/r ′ by replacing un-
primed quantities by primed quantities in the above equations. Hence we can
derive an expression for cos ψ using Eq. (6.50). At the same time we can use
the relations M = λ − ! and ω = ! − " to express the expansion in terms of
longitudes. We get

cos ψ ≈
(1 − e2 − e′2 − s2 − s ′2) cos[λ − λ′] + ee′ cos[2λ − 2λ′ − ! + ! ′]

+ ee′ cos[! − ! ′] + 2ss ′ cos[λ − λ′ − " + "′]

+ e cos[2λ − λ′ − ! ] − e cos[λ′ − ! ]

+ e′ cos[λ − 2λ′ + ! ′] − e′ cos[λ − ! ′]

+ 9
8

e2 cos[3λ − λ′ − 2! ] − 1
8

e2 cos[λ + λ′ − 2! ]

+ 9
8

e′2 cos[λ − 3λ′ + 2! ′] − 1
8

e′2 cos[λ + λ′ − 2! ′]

− ee′ cos[2λ − ! − ! ′] − ee′ cos[2λ′ − ! − ! ′]
+ s2 cos[λ + λ′ − 2"] + s ′2 cos[λ + λ′ − 2"′]

− 2ss ′ cos[λ + λ′ − " − "′]. (6.82)

Since θ = ω + " + f we have

cos[θ − θ ′] = (cos " cos[ω + f ] − sin " sin[ω + f ])

× (cos "′ cos[ω′ + f ′] − sin "′ sin[ω′ + f ′])

+ (sin " cos[ω + f ] + cos " sin[ω + f ])

× (sin "′ cos[ω′ + f ′] + cos "′ sin[ω′ + f ′]). (6.83)
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240 6 The Disturbing Function

By comparing this with Eqs. (6.51)–(6.53) we see that the expansion for
cos[θ − θ ′] can be obtained from the expansion for cos ψ by setting I = I ′ = 0.
Since - = cos ψ − cos[θ − θ ′], the expansion of cos ψ shows that - is the
inclination-dependent part of cos ψ and

- = s2 (
cos[λ + λ′ − 2"] − cos[λ − λ′]

)

+ 2ss ′ (cos[λ − λ′ − " + "′] − cos[λ + λ′ − " − "′]
)

+ s ′2 (
cos[λ + λ′ − 2"′] − cos[λ − λ′]

)
. (6.84)

Note that - is of second order in the inclinations.
Since r/a = 1 + O(e) and r ′/a′ = 1 + O(e′), it is clear that, to second order in

the eccentricities and inclinations, we can write
(

1
2

r
a

r ′

a′ -

)
= 1

2
s2 (

cos[λ + λ′ − 2"] − cos[λ − λ′]
)

+ ss ′ (cos[λ − λ′ − " + "′] − cos[λ + λ′ − " − "′]
)

+ 1
2

s ′2 (
cos[λ + λ′ − 2"′] − cos[λ − λ′]

)
, (6.85)

which is independent of e to this order. Since we are only interested in a second-
order expansion, and since - is already of second order, we can ignore second
and higher powers of -.

We have now obtained the first of the two major terms required for the series
for RD (see Eq. (6.66)). We need to derive an expression for cos j[θ − θ ′], where
j is an arbitrary integer. We start by noting that

cos j[θ − θ ′] = cos j[ω + " + f ] cos j[ω′ + "′ + f ′]

+ sin j[ω + " + f ] sin j[ω′ + "′ + f ′]. (6.86)

From Eq. (2.88) we have

f = M + 2e sin M + 5
4

e2 sin 2M + O(e3). (6.87)

If we substitute this expression in cos j[ω+"+ f ] and sin j[ω+"+ f ], transform
to longitudes as before, and carry out a Taylor series expansion we obtain

cos jθ ≈ (1 − j2e2) cos[ jλ]

+
(

1
2

j2e2 − 5
8

je2
)

cos[(2 − j)λ − 2! ]

+
(

1
2

j2e2 + 5
8

je2
)

cos[(2 + j)λ − 2! ]

− je cos[(1 − j)λ − ! ] + je cos[(1 + j)λ − ! ] (6.88)
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and

sin jθ ≈ (1 − j2e2) sin[ jλ]

+
(

5
8

je2 − 1
2

j2e2
)

sin[(2 − j)λ − 2! ]

+
(

5
8

je2 + 1
2

j2e2
)

sin[(2 + j)λ − 2! ]

+ je sin[(1 − j)λ − ! ] + je sin[(1 + j)λ − ! ]. (6.89)

By substituting unprimed quantities for primed ones we can easily obtain similar
expressions for cos jθ ′ and sin jθ ′. The resulting expression for cos j[θ − θ ′] is

cos j[θ − θ ′] ≈
(1 − j2e2 − j2e′2) cos[ j (λ − λ′)]

+
(

5
8

je2 + 1
2

j2e2
)

cos[(2 + j)λ − jλ′ − 2! ]

+
(

1
2

j2e2 − 5
8

je2
)

cos[(2 − j)λ + jλ′ − 2! ]

+ je cos[(1 + j)λ − jλ′ − ! ] − je cos[(1 − j)λ + jλ′ − ! ]

+
(

1
2

j2e′2 − 5
8

je′2
)

cos[ jλ + (2 − j)λ′ − 2! ′]

+
(

5
8

je′2 + 1
2

j2e′2
)

cos[ jλ − (2 + j)λ′ + 2! ′]

− je′ cos[ jλ + (1 − j)λ′ − ! ′] + je′ cos[ jλ − (1 + j)λ′ + ! ′]
− j2ee′ cos[(1 + j)λ + (1 − j)λ′ − ! − ! ′]
− j2ee′ cos[(1 − j)λ + (1 + j)λ′ − ! − ! ′]
+ j2ee′ cos[(1 + j)λ − (1 + j)λ′ − ! + ! ′]
+ j2ee′ cos[(1 − j)λ − (1 − j)λ′ − ! + ! ′]. (6.90)

Although the summation over j in Eq. (6.66) is over all values, in practice we
do not need to carry out this summation (see Sect. 6.9 for an example).

From Eqs. (6.60) and (2.81) we have

ε = r
a

− 1 ≈ −e cos M + 1
2

e2(1 − cos 2M)

= −e cos[λ − ! ] + 1
2

e2 (
1 − cos[2λ − 2! ]

)
(6.91)

and hence

ε2 ≈ 1
2

e2 + 1
2

e2 cos 2M = 1
2

e2 + 1
2

e2 cos[2λ − 2! ], (6.92)

with similar expressions for ε′ and ε′2. No powers beyond the second are neces-
sary for this expansion since ε is of O(e).
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242 6 The Disturbing Function

Finally, before carrying out the summation in Eq. (6.66), we need to calculate
the derivatives of the Laplace coefficients given by the Ai, j,m,n function. This
task can be simplified by noting that, for a given value of i in the summation, we
need to calculate

ai a′i+1 Ai, j,m,n = ai+ma′i+n+1 ∂m+n

∂am∂a′m

(
a′−(2i+1)b( j)

i+ 1
2
(a/a′)

)
. (6.93)

The result of the differentiation is to leave a function of a/a′ alone. In our case
the required values of Ai, j,m,n are:

ai a′i+1 Ai, j,0,0 = αi b( j)
i+ 1

2
(α), (6.94)

ai a′i+1 Ai, j,1,0 = αi+1 Db( j)
i+ 1

2
(α), (6.95)

ai a′i+1 Ai, j,0,1 = −αi+1 Db( j)
i+ 1

2
(α) − (2i + 1)αi b( j)

i+ 1
2
(α), (6.96)

ai a′i+1 Ai, j,2,0 = αi+2 D2b( j)
i+ 1

2
(α), (6.97)

ai a′i+1 Ai, j,1,1 = −αi+2 D2b( j)
i+ 1

2
(α) − 2αi+1(i + 1)Db( j)

i+ 1
2
(α), (6.98)

and

ai a′i+1 Ai, j,2,2 = αi+2 D2b( j)
i+ 1

2
(α) + 4αi+1(i + 1)Db( j)

i+ 1
2
(α)

+ 2αi (2i2 + 3i + 2)b( j)
i+ 1

2
(α), (6.99)

where i will take the values 0 and 1; higher values can be ignored because of the
presence of the - i term in Eq. (6.66).

We are now in a position to carry out the summation over i . To second order
in the eccentricity and inclination we have

RD =
(

1
2

[
a′ A0, j,0,0 + εa′ A0, j,1,0 + ε′a′ A0, j,0,1

+ ε2a′ A0, j,2,0 + εε′a′ A0, j,1,1 + ε′2a′ A0, j,0,2
]

+
(

1
2

r
a

r ′

a′ -

)
aa′2 A1, j,0,0

)

cos j[θ − θ ′]. (6.100)

Using the series that we have already derived for the quantities in this equation,
we get an expansion with twenty-three cosine arguments. These can be cate-
gorised by the order of the argument, which is simply the sum of the coefficients
of λ and λ′. If we write the second-order expansion as

RD = R(0)

D + R(1)

D + R(2)

D , (6.101)

where R(i) denotes the part of the expansion containing the arguments of order
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i , then

R(0)

D =
(

1
2

b( j)
1
2

+ 1
8

(e2 + e′2)
[
−4 j2 + 2αD + α2 D2

]
b( j)

1
2

)
cos[ jλ − jλ′]

+
(

1
8

ee′
[
2 j + 4 j2 − 2αD − α2 D2

]
b( j)

1
2

)

× cos[(1 + j)λ − (1 + j)λ′ − ! + ! ′]

+
(

1
8

ee′
[
−2 j + 4 j2 − 2αD − α2 D2

]
b( j)

1
2

)

× cos[(1 − j)λ − (1 − j)λ′ − ! + ! ′]

+
(

1
4

(s2 + s ′2)[−α]b( j)
3
2

)
cos[(1 + j)λ − (1 + j)λ′]

+
(

1
4

(s2 + s ′2)[−α]b( j)
3
2

)
cos[(1 − j)λ − (1 − j)λ′]

+
(

1
2

ss ′[α]b( j)
3
2

)
cos[(1 + j)λ − (1 + j)λ′ − " + "′]

+
(

1
2

ss ′[α]b( j)
3
2

)
cos[(1 − j)λ − (1 − j)λ′ − " + "′], (6.102)

R(1)

D =
(

1
4

e[2 j − αD]b( j)
1
2

)
cos[(1 + j)λ − jλ′ − ! ]

+
(

1
4

e[−2 j − αD]b( j)
1
2

)
cos[(1 − j)λ + jλ′ − ! ]

+
(

1
4

e′[1 + 2 j + αD]b( j)
1
2

)
cos[ jλ − (1 + j)λ′ + ! ′]

+
(

1
4

e′[1 − 2 j + αD]b( j)
1
2

)
cos[ jλ + (1 − j)λ′ − ! ′], (6.103)

R(2)

D =
(

1
16

e2
[
5 j + 4 j2 − 2αD − 4 jαD + α2 D2

]
b( j)

1
2

)

× cos[(2 + j)λ − jλ − 2! ]

+
(

1
16

e2
[
−5 j + 4 j2 − 2αD + 4 jαD + α2 D2

]
b( j)

1
2

)

× cos[(2 − j)λ + jλ − 2! ]

+
(

1
8

ee′
[
2 j − 4 j2 − 2αD + 2 jαD − α2 D2

]
b( j)

1
2

)

× cos[(1 + j)λ + (1 − j)λ′ − ! − ! ′]

+
(

1
8

ee′
[
−2 j − 4 j2 − 2αD − 2 jαD − α2 D2

]
b( j)

1
2

)

× cos[(1 − j)λ + (1 + j)λ′ − ! − ! ′]

+
(

1
16

e′2
[
4 + 9 j + 4 j2 + 6αD + 4 jαD + α2 D2

]
b( j)

1
2

)

× cos[ jλ − (2 + j)λ′ + 2! ′]
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244 6 The Disturbing Function

+
(

1
16

e′2
[
4 − 9 j + 4 j2 + 6αD − 4 jαD + α2 D2

]
b( j)

1
2

)

× cos[ jλ + (2 − j)λ′ − 2! ′]

+
(

1
4

s2 [α] b( j)
3
2

)
cos[(1 − j)λ + (1 + j)λ′ − 2"]

+
(

1
4

s2 [α] b( j)
3
2

)
cos[(1 + j)λ + (1 − j)λ′ − 2"]

+
(

1
2

ss ′ [−α] b( j)
3
2

)
cos[(1 − j)λ + (1 + j)λ′ − " − "′]

+
(

1
2

ss ′ [−α] b( j)
3
2

)
cos[(1 + j)λ + (1 − j)λ′ − " − "′]

+
(

1
4

s ′2 [α] b( j)
3
2

)
cos[(1 − j)λ + (1 + j)λ′ − 2"′]

+
(

1
4

s ′2 [α] b( j)
3
2

)
cos[(1 + j)λ + (1 − j)λ′ − 2"′]. (6.104)

The arguments in this expansion are not all unique and further simplification
is possible. This is clear from an inspection of the different terms since, apart
from the first term in R(0)

D , they occur in pairs with similar form. Because
the summation in j in Eq. (6.66) is over all values, we can always carry out a
transformation of j of the form j → ± j + k where k is an integer, provided that
we apply it to the argument and its associated term. Also, since only cosines
appear in the expansion we can always change the sign of the argument. We
can then use these procedures to reduce the arguments in the expansion to some
arbitrary standard form. In our case we have decided to make j the coefficient
of λ′ in each argument.

As an example, consider the two terms in ee′ inR(0)

D . These can be transformed
to the same cosine argument,

jλ′ − jλ + ! ′ − !, (6.105)

by changing j to − j in the first, and then applying the transformation j → j + 1
in each. The resulting term associated with this argument is then

1
4

ee′
[
2 + 6 j + 4 j2 − 2αD − α2 D2

]
b( j+1)

1
2

. (6.106)

Similar procedures can be carried out for the other arguments and the total
number of arguments can be reduced from twenty-three to eleven. In such
transformations we have made use of the fact that b(− j)

s = b( j)
s , as given in

Eq. (6.69). We also point out that, even with our decision to express all the
arguments in a form where the coefficient of λ′ is j , the final form of our expansion
is not unique and transformations of the form j → − j followed by reversal of
the argument produce arguments of a different form.
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The final form of our second-order expansion of the direct part is

RD =
(

1
2

b( j)
1
2

+ 1
8

(
e2 + e′2

) [
−4 j2 + 2αD + α2 D2

]
b( j)

1
2

+1
4

(
s2 + s ′2

) (
[−α] b( j−1)

3
2

+ [−α] b( j+1)
3
2

))

× cos[ jλ′ − jλ]

+
(

1
4

ee′
[
2 + 6 j + 4 j2 − 2αD − α2 D2

]
b( j+1)

1
2

)

× cos[ jλ′ − jλ + ! ′ − ! ]

+
(

ss ′ [α] b( j+1)
3
2

)
cos[ jλ′ − jλ + "′ − "]

+
(

1
2

e [−2 j − αD] b( j)
1
2

)
cos[ jλ′ + (1 − j)λ − ! ]

+
(

1
2

e′ [−1 + 2 j + αD] b( j−1)
1
2

)
cos[ jλ′ + (1 − j)λ − ! ′]

+
(

1
8

e2
[
−5 j + 4 j2 − 2αD + 4 jαD + α2 D2

]
b( j)

1
2

)

× cos[ jλ′ + (2 − j)λ − 2! ]

+
(

1
4

ee′
[
−2 + 6 j − 4 j2 + 2αD − 4 jαD − α2 D2

]
b( j−1)

1
2

)

× cos[ jλ′ + (2 − j)λ − ! ′ − ! ]

+
(

1
8

e′2
[
2 − 7 j + 4 j2 − 2αD + 4 jαD + α2 D2

]
b( j−2)

1
2

)

× cos[ jλ′ + (2 − j)λ − 2! ′]

+
(

1
2

s2 [α] b( j−1)
3
2

)

× cos[ jλ′ + (2 − j)λ − 2"]

+
(

ss ′ [−α] b( j−1)
3
2

)
cos[ jλ′ + (2 − j)λ − "′ − "]

+
(

1
2

s ′2 [α] b( j−1)
3
2

)
cos[ jλ′ + (2 − j)λ − 2"′]. (6.107)

Generating the indirect parts of the disturbing function defined in Eqs. (6.47)
and (6.48) is relatively simple since we have already derived an expression
for cos ψ . Expressions for r/a and (a′/r ′)2 can be obtained from the elliptical
expansions given in Sect. 2.5. To second order,

r
a

= 1 − e cos[λ − ! ] + 1
2

e2(1 − cos[2λ − 2! ]) (6.108)

and
(

a′

r ′

)
= 1 + 2e′ cos[λ′ − ! ′] + 1

2
e′2 (

1 + 5 cos[2λ′ − 2! ′]
)

(6.109)
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246 6 The Disturbing Function

and hence

RE = − r
a

(
a′

r ′

)2

cos ψ

≈
(

−1 + 1
2

e2 + 1
2

e′2 + s2 + s ′2
)

cos[λ′ − λ]

− ee′ cos[2λ′ − 2λ − ! ′ + ! ] − 2ss ′ cos[λ′ − λ − "′ + "]

− 1
2

e cos[λ′ − 2λ + ! ] + 3
2

e cos[λ′ − ! ] − 2e′ cos[2λ′ − λ − ! ′]

− 3
8

e2 cos[λ′ − 3λ + 2! ] − 1
8

e2 cos[λ′ + λ − 2! ]

+ 3ee′ cos[2λ − ! ′ − ! ] − 1
8

e′2 cos[λ′ + λ − 2! ′]

− 27
8

e′2 cos[3λ′ − λ − 2! ′] − s2 cos[λ′ + λ − 2"]

+ 2ss ′ cos[λ′ + λ − "′ − "] − s ′2 cos[λ′ + λ − 2"′], (6.110)

where we have changed the sign of the argument in some cases in order to adopt
the same convention used to derive RD.

We can use similar methods to derive an expression for RI. Alternatively we
can reverse the primed and unprimed quantities in our expression for RE. We
obtain

RI = − r ′

a′

(a
r

)2
cos ψ

≈
(

−1 + 1
2

e2 + 1
2

e′2 + s2 + s ′2
)

cos[λ′ − λ]

− ee′ cos[2λ′ − 2λ − ! ′ + ! ] − 2ss ′ cos[λ′ − λ − "′ + "]

− 2e cos[λ′ − 2λ + ! ] + 3
2

e′ cos[λ − ! ′] − 1
2

e′ cos[2λ′ − λ − ! ′]

− 27
8

e2 cos[λ′ − 3λ + 2! ] − 1
8

e2 cos[λ′ + λ − 2! ]

+ 3ee′ cos[2λ − ! ′ − ! ] − 1
8

e′2 cos[λ′ + λ − 2! ′]

− 3
8

e′2 cos[3λ′ − λ − 2! ′] − s2 cos[λ′ + λ − 2"]

+ 2ss ′ cos[λ′ + λ − "′ − "] − s ′2 cos[λ′ + λ − 2"′]. (6.111)

6.6 Terms Associated with a Specific Argument

The method outlined in Sect. 6.5 permits the calculation of a full expansion of
the planetary disturbing function to any specified order in the eccentricities and
inclinations. Its major disadvantage is that to find the terms associated with a
specific argument one has to carry out a complete expansion to the order of that
argument. However, in Sect. 6.3 we showed that in this respect there are distinct
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6.6 Terms Associated with a Specific Argument 247

advantages to using Kaula’s form of the expansion. The major disadvantage of
Kaula’s formulae is the lack of Laplace coefficients.

Ellis & Murray (1999) derived a variation on Kaula’s expansion that incor-
porates the best features of both approaches. Furthermore, they give explicit
formulae for the finite series associated with a specific argument expanded to a
specific order. Let the argument have the form

ϕ = j1λ
′ + j2λ + j3!

′ + j4! + j5"
′ + j6" (6.112)

and let Nmax be the maximum order of the expansion. Ellis & Murray showed
that the expression for RD associated with ϕ is

RD =
imax∑

i=0

(2i)!
i!

(−1)i

22i+1 αi

×
i∑

s=smin

nmax∑

n=0

(2s − 4n + 1)(s − n)!
22nn!(2s − 2n + 1)!

s−2n∑

m=0
κm

(s − 2n − m)!
(s − 2n + m)!

× (−1)s−2n−m Fs−2n, m, p(I ) Fs−2n, m, p′(I ′)
i−s∑

l=0

(−1)s22s

(i − s − l)!l!

×
2max∑

2=0

(−1)2

2!

2∑

k=0

(
2

k

)
(−1)kα2 d2

dα2
b( j)

i+ 1
2
(α)

× Xi+k, − j2− j4
− j2

(e) X−(i+k+1), j1+ j3
j1

(e′)

× cos
[

j1λ
′ + j2λ + j3!

′ + j4! + j5"
′ + j6"

]
(6.113)

where, as before, κ0 = 1 and κm = 2 for m '= 0.
The following relationships hold throughout the calculation:

q = j4, (6.114)

q ′ = − j3, (6.115)

2max = Nmax − | j5| − | j6| , (6.116)

pmin = −( j5 + j6)/2, p′
min = 0 if j5 + j6 < 0, (6.117)

pmin = 0, p′
min = ( j5 + j6)/2 if j5 + j6 ≥ 0, (6.118)

smin = max
(

pmin, p′
min, j6 + 2pmin, − j5 + 2p′

min
)
, (6.119)

imax = [(Nmax − | j3| − | j4|) /2] , (6.120)

where the square brackets in Eq. (6.120) denote the integer part of the expres-
sion. A number of intermediate definitions are required for the summation. These
are:

nmax = [(s − smin) /2] , (6.121)

mmin = 0 if s, j5 are both even or both odd, (6.122)

mmin = 1 if s, j5 are neither both even nor both odd, (6.123)

�+� "��"���)��))&��,,,���#�' ����%'���%'��)�'#(���))&����-��% �%'����������������
��������
�%,$"%������'%#��))&��,,,���#�' ����%'���%'�����) %$�"��$ +�'( ).�%��� $��&%'���������%$�	���%+�	�����)�����
��	��(*�!��)�)%�)�����#�' �����%'��)�'#(�%��*(��

http://(null)/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139174817.007
http://(null)/www.cambridge.org/core


248 6 The Disturbing Function

p = (− j6 − m + s − 2n)/2 with p ≤ s − 2n and p ≥ pmin, (6.124)

p′ = ( j5 − m + s − 2n)/2 with p′ ≤ s − 2n and p′ ≥ p′
min, (6.125)

j =
∣∣ j2 + i − 2ā − 2n − 2p + q

∣∣ . (6.126)

Note that q and q ′ are determined directly from ϕ and remain fixed over all the
summations. However, p and p′ change with s, n, and m but the relationships
given in Eqs. (6.124) and (6.125) always hold.

Ellis & Murray (1999) showed that the summations involved in the definitions
of the functions of eccentricity and inclination in Eq. (6.113) need only be
evaluated to a finite order that is at most equal to Nmax. The Hansen coefficient
in e need only include terms up to order Nmax − | j3|− | j5|− | j6| in e; similarly the
Hansen coefficient in e′ need only include terms up to order Nmax−| j4|−| j5|−| j6|
in e′. The F inclination function in I need only include terms up to order
Nmax − | j3| − | j4| − | j5| in I ; similarly the F function in I ′ need only include
terms up to order Nmax − | j3| − | j4| − | j6| in I ′.

For the indirect parts we have

RE = −κm
(1 − m)!
(1 + m)!

F1, m, p(I )F1, m, p′(I ′)X1, − j2− j4
− j2

(e) X−2, j1+ j3
j1

(e′)

× cos
[

j1λ
′ + j2λ + j3!

′ + j4! + j5"
′ + j6"

]
(6.127)

and

RI = −κm
(1 − m)!
(1 + m)!

F1, m, p(I )F1, m, p′(I ′)X−2, − j2− j4
− j2

(e) X1, j1+ j3
j1

(e′)

× cos
[

j1λ
′ + j2λ + j3!

′ + j4! + j5"
′ + j6"

]
, (6.128)

where each of the quantities p, p′, and m must be integers and equal to 0 or
1. If these conditions are not satisfied then the given argument does not appear
in the expansion of the indirect part. As with RD we can reduce the extent of
the series expansions in powers of the eccentricity and inclination, and the same
modifications apply. An analysis of the integers involved in the expansion of
this indirect part gives the following relationships:

q = j4, (6.129)

q ′ = − j3, (6.130)

p = ( j2 + j4 + 1)/2, (6.131)

p′ = −( j1 + j3 − 1)/2, (6.132)

m = j5 − 2p′ + 1. (6.133)

6.7 Use of the Disturbing Function

The complete expansions for RD, RE, and RI contain an infinite number of
cosine arguments. However, in practice we are only interested in certain cosine
arguments and we can neglect all others. Our basis for doing this is the averaging
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6.7 Use of the Disturbing Function 249

principle whereby we assume (with some justification) that all the unimportant
terms will be of short period and therefore their effects will average out to zero
over the longer-period motion. This concept is illustrated in Sect. 6.9. All
that concerns us here is that the averaging principle allows us to isolate those
terms in the disturbing function that are appropriate for a particular problem
and to ignore the infinite number of remaining terms. Effectively we move
from a consideration of the infinite series of the full disturbing function, R, to a
finite series of the averaged disturbing function, 〈R〉. This concept is the basis
of our analysis of secular perturbations in Chapter 7, resonant perturbations in
Chapter 8, and their applications to chaotic motion in Chapter 9 and planetary
rings in Chapter 10. This approach to the use of the planetary disturbing function
permits us to carry out analytical studies when we move beyond the simplicity
of the two-body problem.

The procedure for determining the appropriate term, 〈R〉 or 〈R′〉, in the dis-
turbing function is as follows:

1) Decide which combination of angles, ϕ, is applicable to the problem at hand.
This requires knowledge of the physical problem and will be discussed in
Sect. 6.9.

2) Determine the “order”, N , of the argument. This is equal to the absolute
value of the sum of the coefficients of λ and λ′ in ϕ.

3) By looking at the appropriate order terms in the expansion of RD, determine
the value of the integer j that gives agreement with the desired argument, ϕ.

4) Calculate the combination of Laplace coefficients for that value of j to give
the explicit form of the term of interest, 〈RD〉 say.

5) Decide whether an external or an internal perturbation is being considered.
This is determined by the nature of the problem.

6) If the perturbation is external, then look at the appropriate order terms in
the expansion of the indirect part, RE, and isolate a matching argument, if it
exists, and read off the corresponding indirect term 〈RE〉.

7) If the perturbation is internal, then look at the appropriate order terms in
the expansion of the indirect part, RI, and isolate a matching argument, if it
exists, and read off the corresponding indirect term 〈RI〉.

8) If the perturbation is external then

〈R〉 = µ′

a′ (〈RD〉 + α〈RE〉) . (6.134)

9) If the perturbation is internal then

〈R′〉 = µ

a

(
α〈RD〉 + 1

α
〈RI〉

)
. (6.135)

Use of the explicit expansion of the indirect part in steps 6 and 7 can be avoided
altogether since the averaged indirect part of the disturbing function, 〈RE〉 or
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250 6 The Disturbing Function

〈RI〉, can be obtained from the averaged direct part, 〈RD〉. The procedure is as
follows: To obtain 〈RE〉 replace every occurrence of αn Dn A1 (n = 0, 1) in 〈RD〉
by −1 and replace every occurrence of αn Dn B0 (n = 0, 1) in 〈RD〉 by −2; all
other terms are ignored. To obtain 〈RI〉 replace every occurrence of αn Dn A1
(n = 0, 1, 2, . . .) in 〈RD〉 by (−1)n+1(n + 1)! and replace every occurrence of
αn Dn B0 (n = 0, 1, 2, . . .) in 〈RD〉 by (−1)n+1(2n + 2)n!, ignoring all other terms.

Throughout this analysis we have assumed that r ′ > r (i.e., that the orbits do
not intersect). The convergence of the resulting series will therefore depend on
how close the orbits are to intersection. Obviously if the orbits intersect there will
be a singularity since r = r′ at some longitude and the first term in Eq. (6.16) or
(6.18) becomes undefined. Hence an approximate condition for convergence is

a(1 + e) < a′(1 − e′), (6.136)

or that the apocentric distance of the inner orbit has to be less than the pericentric
distance of the outer orbit.

Another advantage of the Legendre-type expansion given in Eq. (6.113) is that
it is easy to see the form of the lowest order terms in the expansion. We have
already stated in Sect. 6.3 (and shown in Sect. 6.5) that the potential associated
with the perturbations of the orbit of the mass m by the mass m ′ can be written as

R = µ′
∑

S cos ϕ, (6.137)

where S is a function of the semi-major axes, eccentricities, and inclinations of
m and m ′. From the definitions of mean longitude and longitude of pericentre,
the general form of the argument ϕ can be written as

ϕ = (l − 2p′ + q ′)λ′ − (l − 2p + q)λ − q ′! ′ + q!

+ (m − l + 2p′)"′ − (m − l + 2p)", (6.138)

where, in this case, l, m, p, p′, q, and q ′ are all integers. We can calculate the
valid arguments by using the property that the sum of the integer coefficients of
the angle variables in each argument is zero. If we write the general form of an
argument as

ϕ = j1λ
′ + j2λ + j3!

′ + j4! + j5"
′ + j6" (6.139)

then our condition on the coefficients implies that

6∑

i=1
ji = 0. (6.140)

This is the d’Alembert relation and it does not apply to any choice of angles –
we must use angles that are referred to a fixed direction (i.e., longitudes rather
than anomalies). The longitudes λ, λ′, ! , ! ′, ", and "′ form an appropriate set
of angles. Hamilton (1994) provides an overview of the d’Alembert rules that
determine such relationships.
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6.8 Lagrange’s Planetary Equations 251

Now consider the form of S, the “strength” of an individual term. From the
properties of Xl,l−2p

l−2p+q(e) and Flmp(I ) we can calculate the lowest order terms in
the eccentricities and inclinations. Use of Eqs. (6.37)–(6.42) gives

Xl,l−2p
l−2p+q(e) = O(e|q|), X−l−1,l−2p′

l−2p′+q ′ (e′) = O(e′|q ′|) (6.141)

and

Flmp(I ) = O(s|m−l+2p|), Flmp′(I ′) = O(s ′|m−l+2p′|), (6.142)

where s = sin 1
2 I and s ′ = sin 1

2 I ′. Therefore we can write

S ≈ f (α)

a′ e|q|e′|q ′|s|m−l+2p|s ′|m−l+2p′| = f (α)

a′ e| j4|e′| j ′
3|s| j6|s ′| j5|, (6.143)

where f (α) can be expressed as a function of Laplace coefficients. Hence the
lowest power of e, for example, in a given term is at least equal to the absolute
value of the coefficient of ! . Similarly the lowest powers of e′, sin 1

2 I , and
sin 1

2 I ′ are greater than or equal to the absolute value of the coefficients of ! ′, ",
and "′ respectively in ϕ. This property is clear from the second-order expansion
given in Sect. 6.5 and the fourth-order expansion in Appendix B.

6.8 Lagrange’s Planetary Equations

The expansion of the disturbing function gives us the dependence of the per-
turbing potential on the orbital elements. Now we need to quantify the resulting
orbital variations of the perturbed body. To do this we make use Lagrange’s
planetary equations. These are best derived using a Hamiltonian formulation
(see Sect. 2.10). Here we confine ourselves to a statement of the equations. Full
derivations can be found in Brouwer & Clemence (1961) and Roy (1988).

The use of Lagrange’s equations require the introduction of an additional
angle. If we write

λ = M + ! = n(t − τ ) + ! = nt + ε, (6.144)

where λ is the mean longitude, M is the mean anomaly, ! is the longitude of
pericentre, t is time, and τ is the time of pericentre passage, then the new angle ε

denotes the mean longitude at epoch (i.e., the mean longitude of the mass m at the
moment from which time is measured). Lagrange’s equations for the variations
of the orbital elements are

da
dt

= 2
na

∂R
∂ε

, (6.145)

de
dt

= −
√

1 − e2

na2e
(1 −

√
1 − e2)

∂R
∂ε

−
√

1 − e2

na2e
∂R
∂!

, (6.146)

dε

dt
= − 2

na
∂ R
∂a

+
√

1 − e2(1 −
√

1 − e2)

na2e
∂R
∂e

+
tan 1

2 I

na2
√

1 − e2

∂R
∂ I

, (6.147)
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252 6 The Disturbing Function

d"

dt
= 1

na2
√

1 − e2 sin I

∂R
∂ I

, (6.148)

d!

dt
=

√
1 − e2

na2e
∂R
∂e

+
tan 1

2 I

na2
√

1 − e2

∂R
∂ I

, (6.149)

dI
dt

=
− tan 1

2 I

na2
√

1 − e2

(
∂R
∂ε

+ ∂R
∂!

)
− 1

na2
√

1 − e2 sin I

∂R
∂"

. (6.150)

A problem arises if we consider the expression for ε̇ given in Eq. (6.147) (see,
e.g., Brouwer & Clemence 1961). Since the right-hand side of the equation
contains a factor ∂R/∂a we have to be aware that the semi-major axis occurs
explicitly in the Laplace coefficients of the disturbing function and implicitly in
the arguments of the cosine terms as the mean motion since λ = nt + ε. This
gives rise to the time occurring as a factor when the partial derivative is taken.
The problem can be overcome if we define a new mean longitude at epoch, ε∗, by

dε∗

dt
= dε

dt
+ t

dn
dt

. (6.151)

Hence
dλ

dt
= n + dε∗

dt
(6.152)

and

λ =
∫

n dt + ε∗. (6.153)

This can also be written as

λ = ρ + ε∗, (6.154)

where
dρ

dt
= n,

d2ρ

dt2 = dn
dt

= −3
2

n
a

da
dt

(6.155)

or
d2ρ

dt2 = − 3
a2

∂R
∂ε

. (6.156)

In this case we should consider any derivatives of ∂/∂ε, such as those that occur
in the expressions for ȧ, ė, and İ , to mean ∂/∂λ. In practice the variation of ε

can usually be neglected since it is a small effect.
The variation of the orbital elements of the mass m ′ can be expressed by

equations similar to Eqs. (6.145)–(6.150), withR replaced byR′ and all unprimed
variables exchanged for primed ones. The derivation of Lagrange’s planetary
equations does not assume that R arises from perturbations by an external mass.
Therefore we can equally well use these equations to study the perturbations
on the mass m due to, for example, a nonspherical central mass. This will be
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6.9 Classification of Arguments in the Disturbing Function 253

considered in Sect. 6.11. Similarly the equations are equally applicable if we
use the averaged disturbing functions 〈R〉 and 〈R′〉.

We have already seen in Sect. 2.9 that the variations in the orbital elements
can be expressed in terms of the radial, tangential, and orthogonal forces act-
ing on an orbiting object. However, Lagrange’s equations allow us to derive
similar variations but based on the Fourier series expansion of the disturbing
function discussed in this chapter. As such they provide the basis for most of
the perturbation calculations that follow.

6.9 Classification of Arguments in the Disturbing Function

We can now approach the subject of the physical significance of the expansion
of the disturbing function. So far we have expressed the perturbing potential as
a series involving an infinite number of permissible combinations of angles. But
which angles are important in any given problem? In other words, which of the
infinite terms in the expansion are important and which can be ignored? To a
large extent the answers to these questions depend on the semi-major axis of the
perturbed orbit. We can classify all arguments by considering the frequencies
or periods associated with the cosine arguments in the expansion.

Each cosine argument contains a linear combination of the angles λ′, λ, ! ′,
! , "′, and ". We know that in the unperturbed problem the mean longitudes,
λ′ and λ, increase linearly at rates n′ and n respectively. In contrast, all the other
angles are constant in the unperturbed problem. Therefore, when we consider
the perturbed system λ′ and λ are rapidly varying quantities, whereas all the
other angles undergo slow variations. Therefore, any valid arguments that do
not involve mean longitudes are slowly varying. These give rise to secular terms,
from the Latin verb saeculum meaning century, or long period. This does not
imply that all other arguments are of short period. Consider a general argument
of the form ϕ = j1λ′ + j2λ + j3! ′ + j4! + j5"′ + j6" with

λ′ ≈ n′t + ε′ and λ ≈ nt + ε (6.157)

(see Eq. (6.144)). Therefore j1λ′ + j2λ ≈ ( j1n′ + j2n)t + constant and so, if the
semi-major axes are such that

j1n′ + j2n ≈ 0, (6.158)

then this argument also has a period longer than either orbital period. Equation
(6.158) is satisfied when there is a commensurability between the two mean
motions or orbital periods (see Sect. 1.7). We classify such arguments as giving
rise to resonant terms in the expansion. If we consider the semi-major axes, the
equivalent condition is

a ≈ (| j1|/| j2|)
2
3 a′. (6.159)
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254 6 The Disturbing Function

Because of the dependence on semi-major axis, resonant terms are localised.
Whereas a particular combination of angles may be slowly varying at one semi-
major axis of the perturbed body, the same combination would be varying rapidly
at another. In contrast the secular terms can be considered as global.

Any argument that is neither secular nor resonant is considered to give rise to
a short-period term. In practise the application of the averaging principle men-
tioned in Sect. 6.7 allows us to ignore the infinite number of short-period terms
in the expansion and accept that the dynamics is dominated by the appropriate
secular and resonant terms.

Below we provide predictions of motion under secular and resonant terms in
the context of the elliptical restricted three-body problem with small inclination,
and we compare the answers with the results of numerical integrations. Here
we assume that the mass m is negligible and that the orbit of m ′ is a fixed ellipse
in the reference plane. Our starting point is a set of the lowest order form of
Lagrange’s equations for ȧ, ė, !̇ , and "̇ derived from inspection of Eqs. (6.145),
(6.146), (6.149), and (6.148). The equations of motion are

da
dt

= 2
na

∂〈R〉
∂λ

, (6.160)

de
dt

= − 1
na2e

∂〈R〉
∂!

, (6.161)

d!

dt
= + 1

na2e
∂〈R〉
∂e

, (6.162)

d"

dt
= + 1

na2 sin I
∂〈R〉
∂ I

, (6.163)

where 〈R〉 is the averaged part of the disturbing function for an external perturber.

6.9.1 Secular Terms

Secular terms arise from those arguments that do not contain the mean longitudes.
Inspection of the direct part of the second-order expansion in Eq. (6.107) shows
that secular terms are obtained by setting j = 0 in those cosine arguments
containing jλ′ − jλ. This gives

〈RD〉 = C0 + C1(e
2 + e′2) + C2s2 + C3ee′ cos(! ′ − ! ), (6.164)

where

C0 = 1
2

b(0)
1
2

(α), (6.165)

C1 = 1
8

[
2αD + α2 D2

]
b(0)

1
2

(α), (6.166)

C2 = −1
2

αb(1)
3
2

(α), (6.167)

C3 = 1
4

[
2 − 2αD − α2 D2

]
b(1)

1
2

(α). (6.168)
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6.9 Classification of Arguments in the Disturbing Function 255

Note that there are no ss ′ or s ′2 terms in 〈RD〉 because we are taking s ′ = 0
and that C0 is a function of α only. Furthermore, inspection of the terms in RE
(Eq. (6.110)) shows that all the arguments contain at least one mean longitude
and so there are no secular contributions from the indirect part of the disturbing
function. Hence the low-order version of Lagrange’s equations becomes

(
da
dt

)

sec
= 0, (6.169)

(
de
dt

)

sec
= nα(m ′/mc)C3e′ sin(! − ! ′), (6.170)

(
d!

dt

)

sec
= nα(m ′/mc)

[
2C1 + C3(e

′/e) cos(! − ! ′)
]
, (6.171)

(
d"

dt

)

sec
= nα(m ′/mc)(C2/2), (6.172)

where we have used the fact that µ′ = Gm ′ ≈ n2a3(m ′/mc), where mc is the mass
of the central object. If we assume that e 0 e′ then the approximate solutions to
these equations are

a = a0, (6.173)

e = e0 − nα

!̇
(m ′/mc)C3e′ [cos !0 − cos ! ] , (6.174)

! = !0 + nα(m ′/mc)2C1t, (6.175)

" = "0 + nα(m ′/mc)(C2/2)t, (6.176)

where the subscript 0 denotes the initial (t = 0) value of a quantity, and we have
taken ! ′ = 0. These solutions predict that there is no secular change in a, that e
varies sinusoidally with an amplitude of

(+e)sec =
∣∣(nα/!̇ )(m ′/mc)C3e′∣∣ , (6.177)

and that ! and " will either increase or decrease linearly with time depending
on the signs of C1 and C2.

Figures 6.3a–d show the results of a numerical integration of the full equations
of motion of the elliptical restricted three-body problem with a′ = 1, e′ = 0.048,
! ′ = 0, I ′ = 0, and m ′/mc = 1/1047.355 with starting conditions a0 = 0.192,
e0 = 0.1, !0 = 130◦, "0 = 200◦, λ0 = 300◦, and λ′ = 0◦. Substitution
of α = a/a′ = 0.192 in Eqs. (6.166)–(6.168) gives C1 = 0.0148335, C2 =
−0.0593339, and C3 = −0.00708688; note that 2C1 = −C2/2. Since the mass
ratio is that of the Jupiter–Sun ratio, the integration was designed to mimic the
motion of an asteroid perturbed by Jupiter, and so the time units in the plots are
given as Jupiter periods. However, the semi-major axis was deliberately chosen
to be far away from Jupiter in order to avoid proximity to strong resonances.
In these circumstances the secular perturbations alone should provide a good
approximation to the motion.
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Fig. 6.3. A comparison of the results of a full numerical integration (thick line) with
predictions from analytical theory (thin line) for the variation of (a) semi-major axis, (b)
eccentricity, (c) longitude of perihelion, and (d) longitude of ascending node for a test
particle undergoing predominantly secular perturbations from Jupiter.

The results show that the agreement is excellent over the 20,000 Jupiter periods
of the integration. There are variations in a but these are extremely small; note
that the scale in Fig. 6.3a is enlarged. The fact that the semi-major axis is almost
constant justifies the evaluation of the Laplace coefficients for a fixed value of α.
The eccentricity does vary as predicted, and while ! increases linearly with time
(since C1 > 0), " is decreasing linearly at the same rate (since 2C1 = −C2/2;
cf. Eqs. (6.175) and (6.176)). Prograde motion of the pericentre (or node) is
called precession and retrograde motion is called regression. The behaviour of
! and " is a natural consequence of the secular terms in the disturbing function.

Because of the infinite number of short-period terms in the disturbing function,
which we have neglected, there should be differences between the results of a full
integration and the predictions of our analytical theory. We can see this already
in the Fig. 6.3a, where there are small, but detectable short-period changes in the
semi-major axis from the constant value predicted by theory. Figure 6.4 shows
the difference between the “observed” eccentricity (i.e., the one determined by
the numerical integration) and the calculated value from theory, as a function of
time for the first 1,000 Jupiter periods of the integration. Here again we can see
the effect of the short-period terms inherently included in any full integration.
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Fig. 6.4. Differences between the observed and calculated values of the test particle’s
eccentricity as a function of time. The data are sampled every Jupiter period and show
the short-period variations in e.

6.9.2 Resonant Terms

Now suppose, for example, that we want to study an asteroid’s motion at 3.27 AU,
under the perturbing effect of Jupiter. Since Jupiter’s semi-major axis is 5.20 AU
we have, using Kepler’s third law, that the ratio of their periods is (3.27/5.20)3/2 ≈
0.499. Hence, we have the relation 2n′ ≈ n and we would expect resonant terms
to be important. Therefore, in the vicinity of the 2:1 resonance, as well as
the secular terms discussed above, we also need to consider those terms in the
expansion of the disturbing function that contain 2λ′ −λ (i.e., the resonant terms
for this location).

Inspection of Eq. (6.107) shows that in a second-order expansion there are
two terms in 〈RD〉/a′ that have a cosine argument containing 2λ′ − λ for specific
values of j . The relevant direct part of the averaged disturbing function is

〈RD〉 = C0 + C1(e
2 + e′2) + C2(s

2 + s ′2) + C3ee′ cos(! − ! ′)

+ C4e cos(2λ′ − λ − ! ) + C5e′ cos(2λ′ − λ − ! ′), (6.178)
where the additional constants C4 and C5 are given by

C4 = 1
2

[−4 − αD] b(2)
1
2

(α), (6.179)

C5 = 1
2

[3 + αD] b(1)
1
2

(α). (6.180)

The second of these two resonant arguments makes no contribution to ė, !̇ ,
and "̇ but does contribute a term to ȧ. Inspection of Eq. (6.110) shows that there
is also a −2αe′ contribution to the same argument from the indirect part.
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258 6 The Disturbing Function

Application of the approximate form of Lagrange’s equations gives
(

da
dt

)

res
= 2nαa(m ′/mc)C4e sin(2λ′ − λ − ! )

+ 2nαa(m ′/mc)
(
C5 − 2α

)
e′ sin(2λ′ − λ − ! ′), (6.181)

(
de
dt

)

res
= nα(m ′/mc)C4 sin(2λ′ − λ − ! ), (6.182)

(
d!

dt

)

res
= nα(m ′/mc)(C4/e) cos(2λ′ − λ − ! ), (6.183)

(
d"

dt

)

res
= 0 (6.184)

for the variations in a, e, ! , and " due to the 2:1 resonance. If we consider
approximate solutions for these resonant equations alone we obtain

a = a0 − 2nαa(m ′/mc)C4e
2n′ − n − !̇

[
cos(2λ′ − λ − ! ) − cos(λ0 + ω0)

]

− 2nαa(m ′/mc)(C5 − 2α)e′

2n′ − n

[
cos(2λ′ − λ − ! ′) − cos λ0

]
, (6.185)

e = e0 + nα(m ′/mc)C4

2n′ − n − !̇

[
cos(2λ′ − λ − ! ) − cos(λ0 + ω0)

]
, (6.186)

! = !0 + nα(m ′/mc)(C4/e)
2n′ − n − !̇

[
sin(2λ′ − λ − ! ) + sin(λ0 + ω0)

]
, (6.187)

" = "0. (6.188)

To derive these solutions we have assumed that the only time-varying quantities
on the right-hand side of the equations for ȧ, ė, and !̇ are in the cosine arguments
and that ! increases linearly with time at a constant rate !̇ determined by secular
theory. These equations suggest that a, e, and ! will experience sinusoidal
variations with maximum amplitudes

(+a)res = 2nαa(m ′/mc)

( ∣∣∣∣
C4e

2n′ − n − !̇

∣∣∣∣ +
∣∣∣∣
(C5 − 2α)e′

2n′ − n

∣∣∣∣

)
, (6.189)

(+e)res =
∣∣∣∣
nα(m ′/mc)C4

2n′ − n − !̇

∣∣∣∣ , (6.190)

(+! )res =
∣∣∣∣
nα(m ′/mc)(C4/e)

2n′ − n − !̇

∣∣∣∣ . (6.191)

These are only approximate solutions, particularly in the case of the semi-major
axis where we have just combined the amplitudes of the terms associated with
each of the two resonant arguments.

Figures 6.5a–d show the result of a full integration of the equations of motion
and a comparison with the predicted variations from the combined secular and
resonant theory outlined above. The calculations were done with the same
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Fig. 6.5. A comparison of the results of a full numerical integration (points or thick
line) with predictions from analytical theory (thin line) for the variation of (a) semi-major
axis, (b) eccentricity, (c) longitude of perihelion, and (d) longitude of ascending node
for a test particle near the 2:1 resonance undergoing resonant and secular perturbations
from Jupiter.

starting values as in Sect. 6.9.1, but with a = 0.6 in order to place the test
particle close to (but not in) the 2:1 jovian resonance. The relevant constants are
now C1 = 0.314001, C2 = −1.25600, C3 = −0.447005, C4 = −1.04332, and
C5 = 1.55230. Note that the magnitudes of C1 and C2 have increased by a factor
of ∼ 20 over those in our secular example with a = 0.192. This is because the
separation from Jupiter has decreased, thereby increasing the size of the secular
effects. Examination of Fig. 6.5 shows that there is good agreement between the
predictions and the numerical results, with the amplitudes and frequencies of the
variations in a, e, and ! being close to their predicted values. We would expect
there to be some differences, partly due to our approximate form of Lagrange’s
equations and partly due to the fact that in order to integrate the differential
equations we took the quantities a and e on the right-hand side of Eqs. (6.181)–
(6.183) to be constant, whereas clearly they are varying due to the resonance.

Note from Eqs. (6.189)–(6.191) that all the amplitudes contain a divisor of the
form 2n′ − n − !̇ (i.e., the time derivative of the resonant argument 2λ′ −λ−! ).
This implies that the changes in the elements will become even larger as the

�+� "��"���)��))&��,,,���#�' ����%'���%'��)�'#(���))&����-��% �%'����������������
��������
�%,$"%������'%#��))&��,,,���#�' ����%'���%'�����) %$�"��$ +�'( ).�%��� $��&%'���������%$�	���%+�	�����)�����
��	��(*�!��)�)%�)�����#�' �����%'��)�'#(�%��*(��

http://(null)/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139174817.007
http://(null)/www.cambridge.org/core


260 6 The Disturbing Function

exact resonance is approached. However, it is in such circumstances that the
assumptions in our simple analytical model break down. We consider a more
complete model of resonance in Sect. 8.

6.9.3 Short-Period and Small-Amplitude Terms

Knowledge of the form of the disturbing function allows us to isolate the per-
missible secular arguments and the resonant arguments that are likely to be
important. In effect, we are assuming that all other terms involving the mean
longitudes are of short period and that their effect will average out to zero; this
is the averaging principle. Our comparison of the analytical theory with the full
integrations in Figs. 6.4 and 6.5 shows that this is a good approximation. There-
fore, although short-period terms exist, their effects appear to be negligible, at
least for the examples we chose.

In Sect. 6.9.2 we showed that if we want to know which terms are going to
dominate the perturbed motion of the asteroid, we should find those terms for
which j1n′ + j2n ≈ 0, where j1 and j2 are integers, because these will contribute
to the creation of a small divisor in Eqs. (6.189)–(6.191). Therefore, in the
vicinity of 3.27 AU the dominant terms are likely to be those with j1 = ±2 and
j2 = ∓1 since we will then have 2n′ − n ≈ 0. However, this implies that we
should also consider the terms with j1 = ±4, ±6, . . . and j2 = ∓2, ∓3, . . . since
these will also give rise to small divisors. Can there be an infinite number of
such terms, all contributing to motion at this resonance? Simple number theory
tells us that we can always approximate the ratio of two real numbers (in our
case the two mean motions) by a rational number, to arbitrary precision. Ought
there be an infinite number of resonances that could contribute large-amplitude
terms to the disturbing function at any semi-major axis?

We can resolve these paradoxes by considering our expression for S, the
“strength” of the disturbing function (see Eq. (6.143)). For simplicity consider
the case of a near commensurability of mean motions in the planar, circular,
restricted, three-body problem. Let the resonant argument be

ϕ = ( j + k)λ′ − jλ − k! (6.192)

and let us assume that there is a near commensurability such that

( j + k)n′ − jn ≈ 0, (6.193)

where j and k are integers. This means that arguments which contain expressions
of the form ( j + k)λ′ − jλ − k! can vary slowly and produce long-period, large-
amplitude perturbations. For example, in the case of the 2:1 resonance we have
j = ±1, ±2, ±3, . . . and k = ±1, ±2, ±3, . . . . However, although there is an
infinite number of possible resonances for each pair of j and k, most of them
are weak. This is because S ∝ e|k| (see Eq. (6.143)) and e < 1. Therefore, as
k increases the strength decreases. In effect these other terms exist but they are
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6.10 Sample Calculations of the Averaged Disturbing Function 261

of small amplitude. By a similar argument we can overcome the difficulty of
always being arbitrarily close to a resonance. For example, the 21:10 resonance
is close to the 2:1 resonance, yet in this case S ∝ e11 and so the resonance is
weak. Therefore the “nearly resonant” terms corresponding to higher orders in
the eccentricities and inclinations can be discarded in the same way as all the
other short-period terms.

The order k of a resonant term is identical to the order N = | j1 + j2| of
an argument in the disturbing function. Thus, if we require all the arguments
that could contribute to a given second-order resonance, we should look at the
arguments labelled D2 and E2 (or I2) in the expansion of the disturbing function
given in Appendix B. We may need to consider other arguments as well, because
if we require a fourth-order expansion in the orbital elements we should also
look at the D4 and E4 (or I4) arguments. Similarly, because the secular terms do
not contain mean longitudes, we only need to consider arguments labelled D0
in Appendix B.

6.10 Sample Calculations of the Averaged Disturbing Function

Here we consider the calculation of the appropriate terms in the disturbing func-
tion for two commensurabilities. In the first case, that of a second-order com-
mensurability, we make use of the literal expansion given in Appendix B. In the
second case the commensurability is of eleventh order and we resort to the form
of the expansion for explicit arguments derived by Ellis & Murray (1999) and
given in Sect. 6.6.

6.10.1 Terms Associated with the 3:1 Commensurability

Here we derive the terms required for a study of asteroid motion at 2.50 AU,
close to the 3:1 commensurability with Jupiter. This will be used in our study of
this resonance in Sect. 9.5.2. If we assume that the asteroid mass in negligible
(m 5 m ′) and that its eccentricity and inclination are small enough to allow us
to use a second-order expansion of the disturbing function (i.e., we can ignore
higher order terms in the fourth-order expansion given in Appendix B), then
the necessary secular terms in the expansion are 4D0.1, 4D0.2, and 4D0.3 with
j = 0, while the resonant terms are 4D2.1, 4D2.2, 4D2.3, 4D2.4, 4D2.5, 4D2.6
with j = 3, and 4E2.5. This gives an expression for the averaged disturbing
function of the form

a′

µ′ 〈R〉 = A0 + A1e2 + A2s2 + A3ee′ cos(! ′ − ! ) + A4ss ′ cos("′ − ")

+ A5e2 cos(3λ′ − λ − 2! ) + A6ee′ cos(3λ′ − λ − ! ′ − ! )

+ A7e′2 cos(3λ′ − λ − 2! ′) + A8s2 cos(3λ′ − λ − 2")

+ A9ss ′ cos(3λ′ − λ − "′ − ") + A10s ′2 cos(3λ′ − λ − 2"′), (6.194)
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262 6 The Disturbing Function

where the Ai (i = 0, 1, . . . , 10) now denote combinations of Laplace coefficients
and their derivatives. Note that there are other terms in the secular part of the
expansion that contain expressions of second order in e′ and s ′. However, since
we are interested in studying the motion of the asteroid (not Jupiter) we can
take the orbital elements of Jupiter to be fixed and hence these expressions are
effectively constants. The explicit forms of the constants Ai are

A0 = 1
2

b(0)
1
2

(α), (6.195)

A1 = 1
8

[
2αD + α2 D2

]
b(0)

1
2

(α), (6.196)

A2 = 1
2

[−α] b(1)
3
2

(α), (6.197)

A3 = 1
4

[
2 − 2αD − α2 D2

]
b(1)

1
2

(α), (6.198)

A4 = [α] b(1)
3
2

(α), (6.199)

A5 = 1
8

[
21 + 10αD + α2 D2

]
b(3)

1
2

(α), (6.200)

A6 = 1
4

[
−20 − 10αD − α2 D2

]
b(2)

1
2

(α), (6.201)

A7 = 1
8

[
17 + 10αD + α2 D2

]
b(1)

1
2

(α) − 27
8

α, (6.202)

A8 = 1
2

[α] b(2)
3
2

(α), (6.203)

A9 = [−α] b(2)
3
2

(α), (6.204)

A10 = 1
2

[α] b(2)
3
2

(α). (6.205)

Note that, for the reasons given above, we have excluded the terms in 4D0.1
that only contained primed quantities. The −(27/8)α term in A7 comes from the
indirect term 4E2.5.

A numerical value for each of the Ai shown above can be calculated at a given
value of α, the ratio of the semi-major axes. It is customary to fix this value of α

when the asteroid is known to be in close proximity to the resonance such that
the resonant terms in the expansion dominate. This is a good approximation,
especially when the asteroid is actually inside the resonance. We can find the
value of α for the nominal location of the resonance from the formula

α3:1 = a3:1

a′ =
(

1
3

)2/3 (
mc

mc + m ′

)1/3

, (6.206)

where mc is the mass of the Sun and m ′ is the mass of Jupiter. This gives
α3:1 ≈ 0.480597. The values of the constants Ai in this case are given in Table 6.1.
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Table 6.1. The values of the constants Ai for the 3:1 jovian commensurability.

i Ai

0 1.06671
1 0.142097
2 −0.568387
3 −0.165406
4 1.13677
5 0.598100
6 −2.21124
7 0.362954
8 0.330812
9 −0.661625

10 0.330812

By fixing a and a′, the term in our expression for 〈R〉 associated with A0
becomes effectively a constant and can be neglected since ultimately we will be
taking partial derivatives of 〈R〉.

6.10.2 Terms Associated with the 18:7 Commensurability

Consider one of the terms relevant to a study of the motion of minor planet (2)
Pallas. If n′ and n denote the mean motions of Jupiter and Pallas respectively,
then observations show that

18n′ − 7n = −0.45◦y−1. (6.207)

Therefore Jupiter and Pallas are close to a 18:7 resonance. In an eleventh-order
expansion of the disturbing function there are 182 arguments associated with this
resonance. Here we follow the example of Ellis & Murray (1999) and derive the
terms associated with one of these arguments, namely

ϕ = 18λ′ − 7λ − 5! − 6". (6.208)

Applying the definitions given in Eq. (6.114)–(6.120) gives q = −5, q ′ = 0,
2max = 5, pmin = 3, p′

min = 0, smin = 3, and imax = 3. Since smin = imax the
only contribution will come from i = s = 3 and hence l = 0. Similarly, since
nmax = [(s − 3)/2] = 0 we must have n = 0. Hence, from Eq. (6.124) the only
valid value of p is p = 3; hence m = 3 and so from Eq. (6.125) p′ = 0; we also
have j = 15. We can now write the simplified form of Eq. (6.113) as

〈RD〉+ = α3

720

5∑

2=0

(−1)2

2!

2∑

k=0

(
2

k

)
(−1)kα2 D2b(15)

7
2

(α)F3,3,3(I ) F3,3,0(I ′)

× X3+k, 12
7 (e) X−(4+k), 18

18 (e′) cos
[
18λ′ − 7λ − 5! − 6"

]
. (6.209)
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264 6 The Disturbing Function

To complete the calculation we need to investigate the possibility that there
are terms associated with the negative of our original argument, namely ϕ =
−(18λ′ − 7λ − 5! − 6"). In this case inspection of Eq. (6.114)–(6.126) shows
that there are no contributions and 〈RD〉− = 0.

We only require two evaluations of the inclination function and twelve evalu-
ations of Hansen coefficients. Although our expansion is to eleventh order, ac-
cording to the approximations given in Eq. (6.141)–(6.142) the function F3,3,3(I )
will produce terms of O(I 6) and X3+k, 12

7 (e) will produce terms of O(e5). Thus
we are only concerned with the lowest order terms in all function evaluations.
This means we can ignore the higher order terms in F3,3,0(I ′) = 15 +O(I ′2) and
X−(4+k), 18

18 (e′) = 1 + O(e′2) for k = 0, 1, . . . 5. We have

F3,3,3(I ) = 15s6, (6.210)

X3,12
7 (e) = −1577149

1280
e5, (6.211)

X4,12
7 (e) = −1473703

960
e5, (6.212)

X5,12
7 (e) = −7280077

3840
e5, (6.213)

X6,12
7 (e) = −1486337

640
e5, (6.214)

X7,12
7 (e) = −10842187

3840
e5, (6.215)

X8,12
7 (e) = −409031

120
e5, (6.216)

and the resulting expression for 〈RD〉 is

〈RD〉 = − e5s6

12288

[
4731447α3 + 1163365α4 D + 110950α5 D2

+ 5130α6 D3 + 115α7 D4 + α8 D5
]

b(15)
7
2

(α)

× cos
[
18λ′ − 7λ − 5! − 6"

]
. (6.217)

Application of the algorithm given in Sect. 6.6 for the indirect parts shows that
none exist in this case; furthermore, there are no indirect terms associated with
any of the 182 possible arguments to eleventh order at this resonance. Therefore
the averaged part of the disturbing function associated with this argument is
given by 〈R〉 =

(
Gm ′/a′) 〈RD〉.

6.11 The Effect of Planetary Oblateness

When the disturbing function was introduced in Sect. 6.2 it was in the context of
the perturbing potential experienced by an orbiting mass due to the gravitational
effect of another body. More generally it can be thought of as the terms in the
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