
Chapter 5

SECULAR PERTURBATION
THEORY

5.1 The secular perturbation Hamiltonian

As shown in Section 2.6, after removal of the short periodic terms the Hamiltonian would be
reduced to the normal form:

H ′ = H ′
0 + εH ′

1 + ε2 H ′
2 +O(ε3) ,

where all the H ′
j are functions of the mean elements.

If we assume the Hamiltonian in mean elements is expressed by means of the mean Poincaré
variables (Λ′, ξ′,α′,λ′,η′,β′) then

H ′ = H ′
0(Λ

′) + εH ′
1(Λ

′, ξ′,α′,η′,β′) + ε2 H ′
2(Λ

′, ξ′,α′,η′,β′) +O(ε3) .

This series contains the mean mean longitudes λ′ only in the O(ε3) term. Thus, if we truncate
the series after the O(ε2) term, we obtain a secular Hamilton function, not depending
at all on the variables λ′, that is such that all the variables Λ′ are integrals at this level of
approximation. In other words, we can claim that if we were able to compute mean variables
Λ′ from which all the short periodic perturbations are removed1, then they would be constant,
thus each corresponding mean a′i would be also an analytic proper semimajor axis. Of
course this goal can actually be achieved only up to some level of approximation; it needs to be
explicitly described by the rules by which the terms in the determining function χ = ε χ1+ε2 χ2

are selected to be explicitly computed.

As a consequence, the components of Λ′ are not anymore dynamical variables, but they appear
just as parameters in H ′, which can be reinterpreted as the Hamiltonian providing the equations
of motion in the space of the 4N + 4 variables (ξ′,α′,η′,β′).

This would be a big step in the direction of computing an approximate solution for the equation
of motion for N + 1 planets (asteroid included) problem, but there is a problem. In such a

1As pointed out in Section 2.10, secular perturbations in the semimajor axes (thus also Λ′) O(ε2) are
introduced by beats between short periodic perturbations O(ε), and these need to be removed to compute
accurate integrals.
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88 CHAPTER 5. SECULAR PERTURBATION THEORY

context, the order zero portion H ′
0(Λ

′) is just a constant and has no dynamical effect. Thus we
can use as Hamilton function just

H ′ = εH ′
1 + ε2 H ′

2 (5.1)

which cannot be described as a “perturbed” Hamiltonian, that is it does not appear as the sum
of an integrable portion plus a perturbation containing a small parameter. Indeed, ε is not a
small parameter, it just sets the order of magnitude for the entire function H ′.

This is best expressed as a change in scale for the time: indeed, if the Hamiltonian (5.1) is
divided by ε, this is equivalent to a change of the time coordinate by a factor ε, that is by
setting τ = ε t, the slow time, the Hamiltonian equations with τ as independent variable have
as Hamiltonian H ′/ε = H ′

1 + εH ′
2:

dξ′

dτ
= −

∂(H ′/ε)

∂η′
,

dη′

dτ
=
∂(H ′/ε)

∂ξ′

dα′

dτ
= −

∂(H ′/ε)

∂β ′
,

dβ ′

dτ
=
∂(H ′/ε)

∂α′
. (5.2)

Anyway the problem is: how can we use a perturbation approach to solve the problem defined
by the secular Hamilton function? To answer to this question we can go back to the third
D’Alembert rule, and to the approach already used in Section 2.9: we use ei, sin Ii as small
parameters, all considered to beO(ε1/r) for some r > 0, and expand into homogeneous functions
of these small parameters, e.g.,

H ′
1 = K(0)

0 (;Λ′) +K(2)
1 (ξ′,α′,η′,β′;Λ′) +K(4)

1 (ξ′,α′,η′,β′;Λ′) +O(ε6/r) ,

where K(k)
1 is the portion of H ′

1 homogeneous of degree k in the small parameters ei, sin Ii; odd
k terms are not allowed by D’Alembert rules. Now the integrable portion of H ′ has appeared
again, because a quadratic homogeneous Hamiltonian implies linear Hamilton equations, and
those can be integrable. As for K(0)

1 it does not matter, unless the time evolution of λ′ has to
be computed: indeed, the notation ;Λ′ indicates that the variables connected with the mean
semimajor axes appear just as non-dynamical parameters.

An interesting property of the secular Hamiltonian H ′
1 is that it does not contain any con-

tribution from the indirect part of the perturbing Hamiltonian H1. If heliocentric canonical
coordinates are used, this implies that T1 of equation (1.51) is such that its Fourier series ex-
pansion in Delaunay variables has no secular part, that is T 1 = 0. For a classical proof see
[Brouwer and Clemence 1961][page 508]. [but for the heliocentric canonical coordinates this
should be easier... or maybe not?] in H ′

2 there are terms arising from beats between indirect
short periodic terms, see Section 5.6.

5.2 Linear secular perturbation theory

As dictated by the third D’Alembert rule, K(2)
1 contains only expressions of the form ξi ξj+ηi ηj

and αi αj +βi βj , where i, j are indexes of the planets (and asteroids), not excluding i = j. The
















































































































































5.2. LINEAR SECULAR PERTURBATION THEORY 89

coefficients of these expressions are just functions of the variables Λi,Λj, that is

K(2)
1 (ξ′,α′,η′,β′) =

1

2

N+1
∑

i,j=1

[

Aij(Λ
′
i,Λ

′
j) (ξ

′
i ξ

′
j + η′i η

′
j) + Eij(Λ

′
i,Λ

′
j) (α

′
i α

′
j + β ′

i β
′
j)
]

=

=
1

2
[ξ′ · A ξ′ + η′ · Aη′ +α′ · Eα′ + β′ · E β′] (5.3)

where A(Λ′) = (Aij), E(Λ′) = (Eij) i, j = 1, N + 1 are real symmetric matrices. Then the

Hamilton equations defined by the Hamiltonian K(2)
1 are, for each i = 1, N + 1

dξ′i
dt

= −
N+1
∑

j=1

Aij η
′
j ,

dη′i
dt

=
N+1
∑

j=1

Aij ξ
′
j

dα′
i

dt
= −

N+1
∑

j=1

Eij β
′
j ,

dβ ′
i

dt
=

N+1
∑

j=1

Eij α
′
j

In vector form

dξ′

dt
= −Aη′ ,

dη′

dt
= A ξ′

dα′

dt
= −E β′ ,

dβ′

dt
= E α′ , (5.4)

or equivalently as second order equations

d2ξ′

dt2
= −A2 ξ′ ,

d2η′

dt2
= −A2 η′

d2α′

dt2
= −E2 α′ ,

d2β′

dt2
= −E2 β′ .

Note that the two sets of equations (5.4) are decoupled, thus we can solve separately first for
the ξ′i, η

′
i, then for the α′

j, β
′
i. The solutions can be expressed by means of matrix exponentials:

by assembling all the equations for ξ′i, η
′
i

d

dt

[

ξ′

η′

]

=

[

0 −A
A 0

] [

ξ′

η′

]

⇐⇒
[

ξ′(t)
η′(t)

]

= exp

[

0 −At
At 0

] [

ξ′(0)
η′(0)

]

.

Note that the matrix of coefficients of the system is antisymmetric, thus the exponential is a
rotation: all the lenghts of the vectors are preserved. Exactly the same applies to the solutions
for α′,β′.

Let R, S be matrices such that RT AR = −diag[g1, . . . , gN+1] and ST E S = −diag[s1, . . . , sN+1]
are diagonal; the coordinate change is orthogonal, that is RT = R−1, ST = S−1; in particular
we can assume that R, S are rotations. The eigenvalues of the matrices A,E are the frequencies
gi, si, respectively, and are secular, in that they appear in the solutions of the equations (5.2)
with as independent variable the slow time τ ; in practice, periods are of the order of tens of
thousands to millions of years. Then by changes of coordinates

ξ′′ = RT ξ′ , η′′ = RT η′ , α′′ = ST α′ , β′′ = ST β′
















































































































































90 CHAPTER 5. SECULAR PERTURBATION THEORY

we can decouple the differential equations, that is the double-primed variables represent the
proper modes of oscillation, solutions of uncoupled harmonic oscillators:

dξ′′

dt
= diag[g1, . . . , gN+1]η

′′ ,
dη′′

dt
= −diag[g1, . . . , gN+1] ξ

′′

dα′′

dt
= diag[s1, . . . , sN+1]β

′′ ,
dβ′′

dt
= −diag[s1, . . . , sN+1]α

′′ .

Then we can define action-angle variables V ′′
i , v

′′
i and Z ′′

i , z
′′
i such that

ξ′′i =
√

−2V ′′
i sin v′′i , η′′i =

√

−2V ′′
i cos v′′i

α′′
i =

√

−2Z ′′
i sin z′′i , β ′′

i =
√

−2Z ′′
i cos z′′i ,

and the actions are integrals for the linear equations, while the angles circulate with frequencies
gi, si. Indeed, the expression for K(2)

1 as a function of the new variables is

K(2)
1 =

1

2

∑

i

(−gi) (ξ
′′
i ξ

′′
i + η′′i η

′′
i ) +

1

2

∑

i

(−si) (α
′′
i α

′′
i + β ′′

i β
′′
i ) =

∑

i

(gi V
′′
i + si Z

′′
i )

and the Hamilton equations in the double primed variables are

dV ′′
i

dt
= 0 ,

dZ ′′
i

dt
= 0

dv′′i
dt

= gi ,
dz′′i
dt

= si

and (V ′′
i , Z

′′
i , v

′′
i , z

′′
i ) are action-angle variables for the proper mode i. Thus the linear portion of

the secular Hamilton equations is integrable, not only in the sense of having a solution expressed
by elementary analytic functions, but also in the sense of having action-angle variables. These
double primed variables can be called linear proper elements.

However, there is an important difference in the system of linear differential equations for
α′,β′, with respect to the one for ξ′,η′: namely one of the eigenvalues of E must be zero, for
all values of Λ′. [Brouwer and Clemence 1961][page 518] show this result for two planets only,
by the argument that one possible solution needs to be the one in which the two planets have
the same inclination and nodes, I1 = I2, Ω1 = Ω2, then the coplanar orbits remain coplanar.
[B&C claim that no general proff is available at that time (1961)]

Our way of showing the same property for an arbitrary number of planets is to argue that the
components of the angular momentum cx, cy in the reference plane are integrals, thus since this
property applies for all ei, Ii then it must apply already at the lowest order, that is

{

cx, K
(2)
1

}

= 0 ,
{

cy, K
(2)
1

}

= 0 .

The contribution to cx from the body i is

c(i)x = Ci sin Ii sinΩi = Ci 2 sin
Ii
2

cos
Ii
2

sinΩi
















































































































































5.3. SECOND ORDER TERMS FROM MEAN MOTION RESONANCES 91

and by using
√

(1− cos Ii) =
√
2 sin Ii

2 and the relationships with α′
i, β

′
i eq.(2.44)

c(i)x =
√

Ci/2 cos
Ii
2
β ′
i =

√

Li/2 β
′
i +O(e2i , I

2
i )

c(i)y = −
√

Ci/2 cos
Ii
2
α′
i = −

√

Li/2 α
′
i +O(e2i , I

2
i ) .

Then we can compute the lowest order (in ei, Ii) Poisson brackets

{

cx, K
(2)
1

}

=
∂cx
∂β′

·
∂K(2)

1

∂α′
=

1√
2

√
Λ′ · E α′ = 0 ,

and similarly for
{

cy,
(2)
1

}

. Because the equation above must be true for all possible α′, it

follows that the vector forming a scalar product with α′ is 0, thus

ET
√
Λ′ = E

√
Λ′ = 0 ,

that is the symmetric matrix E has one zero eigenvalue, and the matrix of the linear dynamical
system for α′,β′ has two zero eigenvalues [note: matrices linear Hamilton equations have an
even equation for eigenvalue, being of the form JB with B symmetric; prove here?]. This
implies that one of the frequencies sk is zero; conventionally, this frequency is associated to
Jupiter, that is s5 = 0.

If the reference system for which the computations are performed is such that the reference
plane (x, y) is orthogonal to the total angular momentum vector, then it coincides with Laplace
invariable plane and cx = cy = 0. In this case the linear proper action Z ′′

5 corresponding to
the frequency s5 is zero. Then the amplitudes of all the terms containing the angle variable z′′5
is also zero. From this a new D’Alembert rule arises, namely, the Fourier terms of K1, at all
degrees, cannot contain z′′5 ; this applies to the transformed series appearing in Section 5.4.

Thus the solutions belong to invariant tori of dimension N + 1 in the space of ξ′,η′ and
to invariant tori of dimension N in the space of α′,β′. [reference to next chapter, also a
more extensive discussion is needed on why there are neither perturbative terms nor secular
resonances containing s5.]

[Problem: why are the frequencies, computed at this level of truncation, gi all > 0, si all ≤ 0?
This should be explained; see [Brouwer and Clemence 1961], where there is proof for 2 planets
that g1, g2 > 0 and s2 < 0, s1 = 0, but only numerical results for more planets.]

5.3 Second order terms from mean motion resonances

Let us compute the second order terms (O(ε2), that is those containing µ2
5) generated by χ2/1

in the second order transformed Hamiltonian

ε2H ′
2 = −

1

2

{

H2/1,χ2/1

}

=

= −
1

2
µ2
5 e

2

{

g(a, a5) cos(λ− 2λ5 +!),
g(a, a5)

n− 2n5
sin(λ− 2λ5 +!)

}

+ . . . ;
















































































































































92 CHAPTER 5. SECULAR PERTURBATION THEORY

by the same argument as above, the largest contribution to the secular portion of the Poisson
bracket is from the product of the ∂/∂λ of the first argument and the ∂/∂Λ of the second
argument, which contains a n/(n− 2n5)2 factor.

However, here the conclusion is opposite from the one about the secular terms in semimajor axis,
that is the inclusion of these second order terms in the computation of the proper eccentricity
and inclination is necessary, in particular near the 2/1 resonance with Jupiter, but also near
the 3/1 one, because the additional terms change significantly the secular frequencies.

Thus the secular Hamiltonian H ′ should be computed by adding at least the largest second
order terms, resulting from Poisson brackets of terms with small divisors:

H ′ =
[

K(0)
1 +K(0)

2

]

+
[

K(2)
1 +K(2)

2

]

+
[

K(4)
1 +K(4)

2

]

+
[

K(6)
1 +K(6)

2

]

+ . . .

As an example, (Brouwer and Van Woerkom 1950) added some terms belonging to K(6)
2 arising

from the small divisor 2n5 − 5n6 of the “great inequality”, that is near resonance, between
Jupiter and Saturn to their otherwise linear secular perturbation theory for the major planets.
[also others? [Knežević 1986] says that B&VW used also second order terms from secular
perturbations 2g5 − g6 and 2g6 − g5]

[[Knežević 1989] and maybe others for the specific terms added in our theory]

[need to mention that s5 = 0 and reduction to the invariable plane also apply to K(2)
2 , and no

terms with s5 also applies to K(
j2s)]

5.4 Lie series for proper elements

After solving for the linear proper elements, a perturbative approach to solve the equation of
secular motion can again be based on the Lie series algorithm, with the difference that both
the Hamiltonian H ′ and the determining function χ′ need to be expanded in (even) powers of
the Poincaré variables: the Hamiltonian begins with the integrable term of degree 2

H ′ = K2 +K4 +K6 + . . .

where the dots indicate terms of order 8 and more; note we have simplified the notation,
removing the distinction between the terms arising from O(ε) and those from O(ε2). The
determining function begins with terms of order 4

χ′ = χ′
4 + χ′

6 + . . .

and the transformed Hamiltonian can be described by the Lie series

H ′ ◦ Φ−1
χ′ = H ′ − {H ′,χ′}+

1

2
{{H ′,χ′},χ′}+ . . .

= K2 +K4 +K6 − {K2 +K4,χ
′
4 + χ′

6}+
1

2
{{K2,χ

′
4},χ′

4}+ . . . ,

where the terms included in . . . are all of degree ≥ 8 in eccentricities and inclinations.

Now we need to analyse the series above by separating the terms of homogneous degree
2, 4, 6, . . .; to do this we use the simple rule that the degree of {Kr,χ′

s} is r + s − 2: this
















































































































































5.4. LIE SERIES FOR PROPER ELEMENTS 93

implies that the terms not listed in the formula above are of degree ≥ 8. Thus the homological
equations are for degree 2 just K2 = K2, for degree 4

K4 = K4 − {K2,χ
′
4} , (5.5)

where K4 is the portion of K4 commuting with K2, that is
{

K2, K4

}

= 0.

For degree 4, the determining function can be searched for in Delaunay variables (V′′,Z′′,v′′, z′′),
starting from the expansion of the secular Hamiltonian H ′ in a Fourier series with respect to
the linear proper angles v′′, z′′.

K4 =
∑

j,h

K4jh cos(j v
′′ + hz′′) .

Then the determining function for the same degree is

χ′
4 =

∑

j,h

χ′
4jh sin(j v

′′ + hz′′) ,

and the Poisson brackets can be computed term by term

{K2,χ
′
4} = −

∑

j,h

(j · g + h · s) χ′
4jh cos(j v

′′ + hz′′) .

Then the terms of K4 containing the angles v′′, z′′ can be removed from the normal form K4

by setting the coefficients of χ′
4 as follows:

χ′
4jh = −

K4jh

j · g + h · s
.

If we can assume a non-resonance condition for secular resonances j ·g+h ·s = 0 =⇒ j = h = 0,
at least for degree 4, that is for combinations of ≤ 4 secular frequencies, then K4 consists of
the term without angles

K4 = K400 .

[Problem: the non-resonance condition does not include the coefficient of s5, which is zero by
the additional D’Alembert rule.]

Higher order normalization

To apply the same method to the removal of terms of degree 6 is conceptually the same, but
requires a little more patience. Given that K4 has no angles, while K̃4 = K4 − K4 contains
v′′, z′′, and that K̃4 = {K2,χ′

4}, we can analyse the portion of the homological equation of
degree 6 as follows:

K6 = K6 + K̃6 ,
1

2
{{K2,χ

′
4},χ′

4} =
1

2

{

K̃4,χ
′
4

}

W6 = K6 − {K2,χ
′
6}−

{

K4,χ
′
4

}

−
1

2

{

K̃4,χ
′
4

}

,
















































































































































94 CHAPTER 5. SECULAR PERTURBATION THEORY

with the last term the only one which could contain terms without angles, due to beats of two
terms with the same angles. Thus

W6 = W̃6 +W 6 , W 6 = −
1

2

{

K̃4,χ′
4

}

while the portion with the angles W6 can be removed, assuming the non-secular resonance
condition to be true also for combinations of ≤ 6 secular frequencies:

{K2,χ
′
6} = K̃6 + W̃6

by selecting suitable coefficients for the Fourier series of χ′
6. If this procedure is executed for

all the degree 6 terms, then a transformation is defined by χ′
4 + χ′

6 to proper elements, that
is canonical coordinates (V∗,Z∗,v∗, z∗) in which the transformed Hamiltonian is a function of
action variables only, apart from terms of degree ≥ 8:

K∗ = K2 +K4 +K6 +W 6 = . . .

Then the action variables are approximately constant, and the angle variables have approxi-
mately constant frequencies.

The homological equations and the procedures to solve them in this Section are the same as
in Section 2.6, apart from the use of different small parameters. Thus we need to express
the same doubts and make the same distinction mentioned in Section 2.9: can we consider
this procedure of elimination of terms containing the variables (v′′, z′′) as a way to remove
them all, by means of a convergent perturbative series including all powers of eccentricities
and inclinations, or as a method to remove a finite number of terms to obtain an approximate
equation for secular motion? Also the answer needs to be the same: if the non-secular resonance
condition j · g + h · s = 0 =⇒ j = h = 0 had to apply to all integer combinations of secular
frequencies (satisfying the first and second D’Alembert rules), then the subset of the linear
proper elements space in which this condition is violated is dense2.

The next question, suggested by the analogy with Section 2.11, is whether we should be com-
puting the map

Φ1
χ′ : (V′′,Z′′,v′′, z′′) #→ (V∗,Z∗,v∗, z∗)

from linear proper to proper elements, or rather

Φ−1
χ′ : (V∗,Z∗,v∗, z∗) #→ (V′′,Z′′,v′′, z′′) .

The answer to this question requires some knowledge of KAM theory, which is discussed in the
next Chapter.

5.5 Higher order terms from secular resonances

z1, z2

2To prove this requires to check the non degeneracy condition, see in the next Chapter.












































































































 
 



70 CHAPTER 3. EXPANSION OF THE GRAVITATIONAL POTENTIAL

The results for three coefficients: b(i) = b(i)1/2, c
(i) = b(i)3/2, e

(i) = b(i)5/2, are plotted in Figure 3.3.
The curves indicate the values of i (as a function of α) needed to achieve the relative accuracy
10−8. The plot clearly demonstrates that the convergence is quite slow in the high-α region,
and that, for α larger than ≈ 0.3, one has to include coefficients up to much higher i than
previously thought. The limiting i is slightly different for s = 1

2 ,
3
2 ,

5
2 , but makes possible in all

cases to easily estimate the number of coefficients necessary for an accurate calculation. For
α > 0.86 the number of necessary coefficients increases abruptly, and it is not possible to take
into account all the terms that would guarantee an accurate result.

The values of i for several bins in α used for the practical work with analytical theory are given
in Table 3.1.

Table 3.1: Value of i as a function of α in the range centered on the asteroid main belt.

α < 0.3 0.3− 0.4 0.4− 0.5 0.5− 0.6 0.6− 0.7 > 0.7
i 11 21 31 43 61 81

Degree 4 terms in the indirect part of disturbing function

The indirect part of disturbing function produces in planetary case only very small short pe-
riodic perturbations, which even in the extreme cases do not contribute significantly to the
total effect. This was, of course, known to Le Verrier who, as shown in Section 3.1, therefore
provided the development of the indirect part of disturbing function up to degree 3 only. The
higher order indirect terms, however, can give rise to significant long periodic perturbations of
the second (and higher) order in perturbing mass, in particular near the resonant surfaces, due
to the squares (and higher powers) of small divisors appearing in the solutions.

For asteroids, the situation is more complicated. The indirect 1/1 resonant term with critical
argument λ′ − λ appears in the equations of motion even at degree one in eccentricity, thus
the motion of Trojan asteroids can be affected by the first order indirect perturbations. Many
asteroids with high eccentricities and/or inclinations are located so close to the mean motion
resonances that even the higher degree indirect terms can produce non negligible effects either
through the first order short periodic effects or via the second order long periodic ones.

As already mentioned in Section 3.2, Knežević (1993a) extended Le Verrier’s development by
adding terms of degree 4 and expressing the expansion with respect to the fixed reference plane
(see eq. 3.34). To investigate the impact of the high degree indirect terms, several tests have
been carried out of relative significance of terms of degrees 2,3, and 4, and of the accuracy
of mean elements computed by taking into account higher degree terms. It was found that
the indirect part of the disturbing function even in the most extreme cases gives rise to very
small short periodic perturbations, with asteroids with high eccentricities/inclinations being
most affected. Hence, indirect perturbations can in almost all cases be computed up to degree
2 terms only, without significant loss of accuracy of the asteroid mean elements. The higher
degree indirect terms can become important because of their contribution to the higher order
long periodic perturbations.

Tupikova et al. (1999) added to the development of the indirect part a few missing terms of
degree 4 in inclinations I, I ′.
















































































































































3.5. THE ASTEROID BELT CASE 71

To make the analytical computation of asteroid perturbations homogeneous in terms of the
expansion used, Milani and Knežević (1994) included all the terms of degree 4 into their theory
thus ending up with a total of 192 indirect terms, as reported in Section 2.9.

[Reminder: do not forget the changes to footnote 10, Section 2.9]

Asteroid proper elements for high e, I

The analytical theory of [Milani and Knežević, 1990], and its upgrades [Milani and Knežević, 1992,
Milani and Knežević, 1994] make use of the literal expansion truncated at degree 4 in eccen-
tricity and inclination in the first order with respect to the perturbing mass, and at degree 2 in
the second order. Thus, the question is how accurate it is when applied to the asteroids with
high orbital e, I.

As for the eccentricity, Fig. 3.2 provides the answer we look for: the convergence of the disturb-
ing function in the region of the asteroid Main Belt occurs for the eccentricities up to about
e & 0.3, with somewhat higher limiting values for the inner belt, and lower limiting values for
the outer belt and for the resonant objects beyond it.

For the inclination. however, a comprehensive test has been carried out to asses the limiting
values for the application of Milani and Knežević analytical theory, above which a specially
adapted semianalytical theory by [Lemaitre and Morbidelli 1994] should be used instead. The
RMS values of the changes with time of proper elements computed by means of the two the-
ories are taken as a measure of the instabiliy. The results of this test have shown that the
analytical elements are more stable than the semianalytical ones below about 15◦ of inclination
(sin I & 0.27), while above 17◦ (sin I & 0.29) the semianalytical ones have superior stability. In
the transition region between 15◦ and 17◦ both theories provide proper elements of the same
stability.

Hence, the proper elements computed by the analytical theory can be safely used up to e, sinI &
0.3, and this limit has been respected in the subsequent computations of proper elements by
means of the analytical theory, as well as in the catalog of asteroid proper elements maintained
on AstSyS. Obviously, the situation changed dramatically when the synthetic proper elements
(Chapter 7) became available.
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[Knežević & Milani, 2000] Knežević, Z. and Milani, A. (2000), Synthetic proper elements for
outer main belt asteroids. Celest. Mech. Dyn. Astron. 78, 17–46.
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