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Chapter 2

PERTURBATION THEORY

2.1 Hamilton equations and canonical transformations

Given the Hamilton function H = H(p, q), of momenta p and coordinates q, with p,q € R,
of class C¥, k > 2, the Hamilton equations are
9H(p,q) . _0H(p,q)

—— = BB 2.1
p 9q . q 9 (2.1)

For another function G(p, q) we can compute the derivative along the integral flow! of (2.1) by

dG(p(t),q(t)) 0G. 0G. 0GOH 0GOH
NN, —q = H 2.2
G(p,q) = = oo T 3= "apaq Taqop & HY (22
with {G, H} being the Poisson bracket of G and H. Note that {H,H} =0, and H(p,q) by
(1.27) is a first integral®.

To simplify the presentation, we can also use a notation with a single vector z = [p;q] € R*S
and H = H(z); we use the fundamental symplectic matrix

0 I
[0 ] -
where 0,/ are S x S, the zero and identity matrix respectively. Then (2.1) and (2.2) can be

written as
oG

z=JVH(z) , G= 5,2=VG-JVH = {G, H} (2.4)

where VH = [gradH]" is the gradient of H(z) as a column vector.

We can now discuss the main property of the Hamilton equations, namely the possibility of
coordinate changes: a C* diffeomorphism ¥ : z — z/, with k > 2, is a canonical transforma-
tion with valence « if for every Hamilton function H(z) (also of class C¥, k > 2) the function
K of Z' corresponding by value to aH, that is such that

aH(z) = K (¥(z)) < K(z')=aH (Y'(z)) , (2.5)

IThe integral flow is the solution that maps the initial conditions to the state at any time ¢: ®¢ : [pg; qo] —

[p(t) q(t)]

2We are not considering yet the possibility that H and/or G are also functions of time; see later in Chapter 5
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18 CHAPTER 2. PERTURBATION THEORY

used as Hamilton function in the z’ space, generates equivalent Hamilton equations
2 = JVH{(z) = 2 =JVK(7),

i.e., the integral flows ®%(z), ®% (z') solving the Hamilton equations commute by ¥, for every
z,t:
o &4 (z) = d% 0 U(z) .

The most important characterization of the canonical transformations is the following theorem:
U, a diffeomorphism as above, is canonical with valence « if and only if its Jacobian matrix
DV = 07'/0z is, at each point z, symplectic with valence a:

DV J(DW) =aJ. (2.6)

Proof: by the chain derivatives equ@r’l/__% Yis 25 @

i = dq;iz) = D®(z)z = D®(z) JVH
and by (2.5) a gradH = gradK DV, thus " @ " .
< R wolovway ;
R #=1 D®(z) J [D®(z)]" V?(z') dull oo
( B (07 ey n/(a,aw«gbm

and this equation coincides with the Hamilton equation defined by K in the z’ space, for every (b s
H, thus for every K and every possible vector VK (2z’), if and only if the matrix is the same,
that is if (2.6) holds. QED

A canonical transformation with valence @ = 1 is called a canonical transformation. A
matrix A satisfying (2.6) with a = 1, that is AJ AT = J is called a symplectic matrix;
then the eigenvalues of A have a special property: if A is an eigenvalue of A, then it is also an
eigenvalue of AT, that is there is a non-zero vector v such that

ATv = v = AJATVv = MJv = Jv = AJv= A(Jv) = (1/\) (JV) .

Thus if A # 0 is an eigenvalue of A, also 1/ is an eigenvalue. Note that this applies also for a
complex eigenvalue A, in which case the conjugate X is an eigenvalue, as well as 1/\ and 1/A.

Another way of describing the same result is by using the Poisson brackets: the diffeomorphism
U : (p,q) — (x,y) is canonical if and only if for each ¢,7 = 1,5, when the new variables are
computed as a function of the old ones:

{yi) xj} (pa q) = 6ij ) {SII,;, 'Tj} (p7 q) =0 ’ {yi7 yj} (p7 Q) =0 ) (27)

which is in fact the same condition as (2.6) tested coefficient by coefficient in the matrix
DV JDUT,
Useful examples

The canonical coordinate changes most used in the following are: the change of the canonical
polar coordinates (R, ¢) — (p,q)

p=V2Rcos¢p , q=V2Rsing,
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where it is easy to check that the Jacobian matrix has determinant 1, hence it is a rotation
matrix, and the linear transformations applied separately to the p; and the g;

p=Ax , q=By
where A, B are real S x S matrices; the condition for the 25 x 25 matrix diag[A, B] to be
symplectic is B = [A™1]". %

The most important example of canonical transformations with valence oz # 1 are changes of
unit and/or dimension, such as the one we have implicitly used when dividing by the masses

to transform equation (1.3) into (1.4). Example:
o _y iy NOTA 4 allla fonr Ak
X=X, XX ' Adocumumnlo
is a canonical transformation with valence 1/u;, meaning that if the linear momenta are con-

sidered per unit mass, then the energy (that is the Hamilton function) has to be considered per
unit mass too.

2.2 Integral Flow and Determining Function

The other critical property of Hamilton equations is that the integral flow solving them is
a canonical transformation for every time ¢ (for which the flow is defined). Let us chose a
determining function x(z) of class C¥,k > 2. Then the integral flow @ (z) solves the
Hamilton equations of x with initial conditions z

d®;(z)
ds

where s is the independent variable, not to be necessarily interpreted as time. The state
transition matrix, that is the Jacobian matrix of the flow with respect to the initial conditions,
is

=JVx (®(z) , ¥(z)=1z, (2.8)

sy 005(2) G %
A’(z) = . , A(z)=1
and by taking the partials of (2.8)
dds O(JVx(P2
9 x(2) = CAL x(z))) = JVVx(z) A%(z) ,

0z ds 0z

where VVy is the Hessian matrix of the second derivatives of determining function x. The
question regarding the above equation is whether the partial derivatives on the left hand side
do exist and are continuous. This is indeed true because of the general property of the flow
being differentiable [Hartmann, 1964]. Then the order of the two derivatives, with respect to z
and with respect to s, can be exchanged:

dA*(z) B zd@;(z)
ds 0z ds

Thus we have the variational equation, a matrix differential equation with its initial condi-
tions

= JVVx(z) A%(z) .

%‘gz) =JVVx(z)A%(z) , A%=z)=1I; (2.9)

* L?)uo M e modiwe o Docch 2m x Im Aok da M = (/?) (é> oot A,B,C,D now
ol MoX my. dfo, oot (‘/Z\L M A M/wvrma z ,,o;wmj?m /O.Q/QL condartaiond
CAT = ACT, BDT = DBT, AR"-(CDT =1T.

3; m =1 WL Lo oML AL rudcon’ v b M
ML sl e Ave Adimimonte mnikory'.

4. Mma Aoline, 2 X 2 L AMM\QL/H’JCQL
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20 CHAPTER 2. PERTURBATION THEORY

its solution could also be interpreted as the matrix providing the integral flow of the linear
Hamilton equations defined by H,(v) = 1/2v - VVx(z(s)) v, where v(t) represents a vector

displacement propagated from a change in the initial conditions v(0), when terms of the second ,:l\;
order in |v| are neglected. ANOTA 5
The main result in this context is the theorem of Liouville: A®(z) is symplectic, for every ... )%,m
z, s for which it is defined. ad dovmumbo
Proof: Let C* = A® J[4°]7; note C° = J. Then

dcs A dA®

- = CZ—J (A% + A5 J [ = ] =JVVx A J [A)T + A°J [JVVx AT =

= JVVXC®+C°VVyxJT

because the Hessian matrixVVy is symmetric; this equation is satisfied by C° = J, and because
the solution to the differential equation for C* with initial conditions C° = J is unique, then
C*® = J for all s for which it is defined. QED

Thus, given a determining function x(z), its integral flow ®3 : z + 2’ for a fixed s is a canonical
transformation, with each Hamilton function H(z) transformed into H'(z') corresponding by

value
H'(z') = H (9:°(z)) , (2.10)

because (@;)_1 = ®7° by the semi-group property (cite??). Moreover, ¢ ° = &2, , because a
change in sign of the Hamiltonian implies a change in sign in all the Hamilton equations.

2.3 Lie series to compute the flow

The question is how to actually compute the integral flow of Hamilton equations. The simplest
recipe is to use just the Taylor series, e.g., up to the second order in the independent variable s

1, d?
4+ =52 —®%(z)
s=0 2 d o

For this, we can take advantage of (2.2) to compute the derivatives:

- & RO

—P° (z ={z,x(z , —P°(z
LHE)| =lx@) o
where we have used a “vectorial” notation {z,x} to 1nd1cate the ordinary Poisson bracket
applied to each coordinate of the vector z. In this way the Taylor series becomes a Lie series
for the canonical transformation @7,

+0O(s%) .

/ s d s
2 =0}(z) =z +s a—Sd)x(z) »

2 =ats {5x}+ 3 {mxhx}+O(9), (2.11)

containing only Poisson brackets. The transform of a function H(z) into the one corresponding
by value® is obtained as the Lie series for H'(z') = H (@;s(z’))

H'(s!) = H(Z) — s {H,x} (&) + 5 5" {{H,x}, X} (2) + O() (212)

3This means that the values of the function |are measures of a quantity which is invariant by the transfor-
mation of coordinates, such as the energy.

= H(®5 () = H() - s _H(D (2 | ool b3 <3
(5 (21) = Hiz) - s & HDL(2) v B ey (2) + O(s?)
r)«%sﬁl Jo. durinabe di B di H omanaka o) o ntfbouole de X £

Hpa) = L, H (Pa) = {H,x}(p,q) = -jt-H (®;5 (o))

=90
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where the minus sign in the terms of odd order with respect to s is due to the composition with
the inverse canonical transformation. Note that the symbols H, x are to be interpreted as the
specific analytic expressions of the functions, not their values; however, x is an integral of the
flow defined by itself because {x,x} = 0, thus x has the same analytical expression and the
same value x(z') = x(z)

X(Ps(2) =X(2)=X
2.3.1 Small parameter and homological equations

For a series representation to be meaningful, it is essential that the terms of higher order are
small. For this a necessary (not sufficient) condition is that either s is small (as shown by
the remainder being of higher order in s) or y is small (the O(s®) is also O(x®)). These two

conditions are the same, indeed .
=L, =M s Ao, LA

because rescaling the Hamiltonian by a factor € slows down the solutions with respect to the
independent variable s, maintaining the same trajectories. Thus we can chose either a fixed
value of s, e.g., s = 1, and x including a small parameter ¢, or a small value s = € for
the independent variable and a x which is not small, and the result is the same: following
. [Hori, 1966/, in this book we select s = 1, which disappears from the equations, and leave € as
( a small parameter:

x(z) = ex1(z) + € x2(z) + O(€%) , (2.13)
giving for the transform of the function H(z), which is the function H'(z’) corresponding by
value to H(z), a power series in € \/ dolla. 2.42

! / '3 ' 1 ! !
H'(z) = H(z) — e {H,x1} () + 5 € {H.x1},xa} (2) = € {H,x2} (2) + O(€) . (2.14)
If in turn H can be expanded in powers of the same small parameter e:
H(z) = Ho(z) + e H\(z) + €2 Hy(z) + O(%) (2.15)

and this expansion is substituted into (2.14), then the transformed functions are fully expanded
in powers of e: for the Hamiltonian

H'(z") = Ho(z') + e [Hi\(2') — {Ho(z'), xa(z")}] +
+ & M) — (o) )} — () a)} + 5 ({E) @) + .
= H{(Z')+ecH|(Z) + € Hy(z') + O(e3) .

Since the equality should be identically satisfied for all small €, we can write a separate equation
for each order:

Hy() = Ho) (216)
() = @) - {Hox} () (2.17)
) = ()~ {Hoxe} () - {Hia} (0) + 5 {{Hoaka} @), (219)

L Hovi (4966) & rUKMN\j "g W mung/a‘hw walh }MwngA«L Camonical Warvio ®
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and so on. These equations are called homological equations?, e.g., eq. (2.17) is the homo-
logical equation of order 1. This recursive procedure, in which the equation of order k, which
can be solved to get xx, uses the functions x; for j = 1,...,k — 1, solutions of the previous
ones, could be extended to an arbitrary order: we limit ourselves to O(e?) because this is what
is used in practice in a perturbation theory for the asteroids °.

The key point is that this applies to every possible determining function x, provided it is
smooth. Thus we can suitably chose Y, i.e., use the recurrent equations above as conditions to
be satisfied by x. The first order x; can be chosen in such a way to remove as much as possible
of the perturbation H;, x2 can be chosen to remove at least the largest terms of the order 2
perturbations, as given by eq. (2.18).

To understand how the terms of each order can be decomposed into a “removable” portion and
a “non-removable” one, we should use a more specific model of the functions such as H and y,

based on an appropriate choice of coordinates.
vidi NOTA 3 alla fins
. . . /1 v /o\;ouuwum)[,o vk Lugumad
2.4 Action-angle variables and Lie series Ai Tiowrillhy | di Qrenol, -
"ot 2 i moriodidi arcoma,

0,
Let us assume that a coordinate change exists such that z = (p,q) and the unperturbed ~ "™
Hamiltonian Hy(z), thus the Hamilton equations, are reduced to the very simple form:

0Hy . 0Hyp
H = H 5 D= ——— = 0 3 = —=1nN g
o = Ho(p) P 7q =3 (p)
with p a vector of constants, that is integrals, for the dynamics defined by Hy, and q(t) =
n(p)(t —to) + q(to) for solution. Thus the variables g; are each a liner function of time; if they
are real variables, they can for suitable times take arbitrarily large values.

If we have enough topological information on the problem defined by Hj to be able to assume
that the equations p = p(¢p) define a set which is limited, thus compact, then it is possible to
show (see Section 6.1) that such a set must be a torus of the same dimension as the vector q,
that is, each of the variables ¢; is an angle variable, taking values in the quotient R/27Z that
is in a circle. Then each element n; of the vector n is a frequency, such that the angle ¢; makes
a revolution in the time 27 /n;. If this is the case, the variables (p, q) are called action-angle
variables for the Hamiltonian H,.

Then the equations (2.17) and (2.18) are reduced to a much simpler form, containing expressions

such as /, M\JIW\J-L /)JGO' ,(L(L P\
qu( \) 5 T ! / — / axl(zl)
B _ ey, {Hole)1(2)} = —n(p) - 2012)
/‘)P q

These expressions are even more constrained taking into account that the q are angle variable,
thus all the functions Hi(p,q) and x(p,q) need to be periodic of period 27 in each of the

4This name comes from the analogy with sequences of equations used in algebraic topology and other branches
of geometry.

5Even x- either is not used or is not used in full in practical computations, due to a large number of terms
to be handled. Such is the situation with the computation of asteroid mean elements which can be limited to
X1, see Section 2.9
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variables g;. This implies that each of them can be developed in a Fourier series, e.g.:

ZHlk(p cos(k-q) ; x1= lek )sin(k-q) ; Hj =ZH{k(p') cos(k-q'), (2.19)
k

where k is a multi-index, that is each coefficient is an integer (with sign, that is in Z). The
use of cosine terms only for Hy, H| shall be justified in Section 2.8, and the use of sine only for
X1 is explained below. Note that H(z) is expanded in the original variables z, then H(z’) has
the same expansion, but not the same value. To the contrary H'(z') is expanded in the new
variables z’, and H'(z') = H(z). As for x;, it has the property that x(z) = x(z'), see eq. (2.10),
thus it can be expanded in both ways, with no difference.

Then the computation of the Poisson brackets contained in the Lie series expansion can be
performed term by term in the Fourier series: equation (2.17) becomes (%) ntdi rdley

k(P") = Hu(p") + (k- n) xu(p', &)

where we have used the presence of sine functions in y to guarantee cosine functions in { Hy, x1 }-
If H, is given as the first order perturbation function to be added to Hy, we can choose x; to
simplify the term of the same order Hj: we select

Hu(p')

Xlk(pl) = - T n

(2.20)
for each multi-index k for which this division is possible. If we can assume that the divisor
k - n is never zero apart from the case of k = 0, then x; can be selected in such a way that each
Hj, =0, apart from Hj,, and the new Hamiltonian H{ = Hiy(p') is a function of the actions
only, thus it is also trivially integrable. However, the hypothesis k - n 5 0 for all multi-indexes
k # 0 is far from trivial, and,even if it applies,the convergence of the Fourier series for H; and
x1 does not guarantee the convergence of the Fourier series for x; as computed from (2.20).

Anyway, if k-n # 0 is assumed , it is possible to apply recursively the procedure as an operation
on formal series, and push the simplification of H' to higher order; in this task the following
formalism is useful. Let

Y W : x — {Ho, x}

be an operator between suitablejspacess. The kernel of U is a subspace Ker g containing
the Fourier series g such that #(g) = 0, that is, the subset of prime integrals of the dynamics
defined by Hy. Let us assume we can decompose any Fourier series g, into terms belonging to
the kernel of ¥ and terms belonging to the image I'm g of U:

v Y
g=9+g , gEKery , gelmy

If we use, as assumed in this section, an Hy = Hy(p) independent from the angles q, such
decomposition is possible by elementary computations, e.g., if k- n # 0 (for k # 0) can be

assumed . .
Hi = Hy(p) ﬁ1=H1—H10(P), (ILHO)HJS = ‘%1“%’1%)

6These spaces could be functional spaces of smooth functions, but also spaces containing formal series,
without any requirement of convergence, thus not necessarily corresponding to functions.

(%) HI(Z) = Ha(2) - {Ho, X,}(2) =m(p) = Xan(P) Keo? (H-q)

— Hiw (p)wn (1p) = Haw (p) wr (k) + ()H"’“- 2.1
99

wow HOL( ) M(P) P 2 X4,L(P q) = Xﬂu(P.‘) Hm (V»'Q‘)
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that is, the kernel is just the term of the series without the angles, the image contains all the
other terms. For xi, since it is chosen only to satisfy eq. (2.20), we can also assume that

K(pl) = O ) Xl(p/a q,) = X1 -
With this notation, the homological equation of order 1 can be written as
Hi(p',q) = Hi(p') + Hip', ') — {Ho(p), x1(p', 9} = Hi(P') -

Now let us apply the formalism to the second order homological equation (2.18): the right hand
side contains four terms, but by substituting {Ho, x1} = H;

. 1 ¢ -
Hy(p') = Hs+ Hy—{Hp,x2} — {H1,xa} + 3 {Hl,Xl} =

H, - % {ﬁl,xl} - [ﬁ2 —{H,x1} - {Ho,Xz}] ; (2:21)

By introducing the function K = {I-:fl, xl} we get

W = B-3K (2.22)

., - ] =
Hy— {Hy,x1} — §K2 — {Ho, x2}

Hj,

where the decomposition Hy = Fé + ﬁé is much more complex than what happens in the
homological equation of order 1, but was somewhat simplified because the portions inside the
square bracket in (2.21) all belong to the image of ¥, that is all terms contain the angles q'.

Now we can write the equation defining the desired xo by using only ﬁé as portion to be
removed: -~

- — 1 - -
Gy = H2—{H1,X1}—§K2=Gz (2.23)
Hy = Gy—{Ho,x2}=0 (2.24)

where the first equation assumes again k - n # 0 for k # 0. Because Gy = G, is a series
without terms independent from the angles, the coefficients xox of the Fourier series of x»
can be computed from the coefficients Goy of the Fourier series of G5, with the same divisors
appearing in eq. (2.20):
' Gox

Xa(P') = —— - (2.25)
Assuming again the same k - n # 0 condition for k # 0 we can solve for xs in such a way
that it satisfies eq. (2.24). Thus the new Hamiltonian H' can be, at the level of formal series,

normalized (up to order 2 in €) by reducing to an integrable Hamiltonian

H'(p',q') = Ho(p') + € H{(p') + € Hy(p') + O() .

We can easily figure out that the computations would be formally the same, only more com-
plicated, to find a Fourier series for x3 in such a way that also Hj is integrable, and so on,
up to any desirable finite order in €. Of course, the computations can in practice become very
complex and the convergence issue become worse and worse, as the order in € increases.
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2.5 Action-angle variables for the 2-body problem

To be able to apply the Lie series method, as outlined in the previous two sections, to the
gravitational multi-body problem we need to show that suitable action-angle variables can be
found, thus integrating the unperturbed Hamiltonian.

Let r = (z,y,2) be Cartesian coordinates of a point mass moving under the attraction of a
(gravitationally active) mass p fixed at the center in 0; of course this dynamical problem can
be obtained by reducing a 2-body problem as in Section 1.4. The Lagrange function (for unit
point mass) is
1

Lo(@,y,2,8,9,8) = 5 (& +3°+5) + £, (226)
with r the distance from the center, and p can be either the mass of a fixed central body or
the sum of the two masses in a 2-body problem. In spherical polar coordinates

z = rcosfcosp , —-w/2<0<m/2
y = rcosfsing , ¢eS!
= rsinf , >0

the Lagrange function in polar coordinates corresponding by value to (2.26) is
. 1 . .
Ly(r,6,6,7,0,6) = 5 [7‘2 +r? (92 + ¢ cos? 9)] &, (2.27)
r

The Legendre transformation is

. L, ) ;
Pr=%=f~ ) pe=%=r29 ) P¢=8,a—(;:7'“00529¢1 (2:28)

and the corresponding Hamilton function:

1 P P, p
Hy(pr,Po:0ss7,0,8) = 5 |2 + 5 + 5L | = = (2.29)

Commuting integrals

Snce H, does not contain the coordinate ¢, then py = {ps, Hy,} = —0H,/0¢ = 0 and p, is an
integral, which can be interpreted as the component of the angular momentum (of the relative
motion, per unit mass) along the z axis of the current reference system; this we shall denote
D. On the other hand the length of the angular momentum vector C' = |c¢y| is the distance r
from the center times the component of the velocity taagent;a,l to the orbit; by using (2.28)

C= \/(rﬁ) —I-(rgb cosé’) =121/62 + $2cos? 0 = \/ P5 + cos29

We know C' is an integral, as it)is clear also because of the separation of variables:

{C,r}=0={C,p}

WMTW"AM\IL ammvode
dllo, aflocikes (wedi 2.27)
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and the Hamilton function
1|, C| n
Hy=3 [pf +r—z} s
contains only the variables r,p, with no action on C, and C itself (which is a function of
8, pe, py only), thus the functions H, and C have no variable in common, implying {C, H,} = 0.
Moreover, {C,D} = 0 because D = ps and C does not contain ¢. Thus (H,,C, D) are 3

commuting integrals, that is with Poisson bracket zero for each couple of them.

The fact that a Hamiltonian with 3 degrees of freedom has 3 commuting integrals has a lot of
consequences, but for this we need also to check that the integrals are functionally indepen-
dent, that is there is no identically satisfied functional relationship between them. To check
functional independence we need to compute the gradients of all the integrals and check if they
are linearly independent, at each point in phase space.

2 -
P9 D OH, pgsinb

I VHP - pT‘) 27 .9 ¢2 b p) 2¢ 30’
2 r2¢c0s20’ Or 'r2cosdf

2 .
Do Do p¢sm9
vC = = 0
¢ (O’C’CCOSQH’ ’Ccos39’0)

vD = (0,0,1,0,0,0) .
The conditions for parallelism are: 1(__1_@_> o= 0
~20A nd) R oot
0H, . .
VH, || VC(E}Ozpr,0=a—:—p,=—r<=»r=const<:>e=0
'3
vC | VD<=>9=O,W,&=O<:>ZEO<:>Sin[=O.
="L7‘E.7

implying that the inclination I, defined by cosI = D/C, is either 0 or 7. VD||VH, cannot
occur unless all three are parallel, that is e = 0 = sin I. Moreover, no linear combination of
VC and VD could be a multiple of VH, unless e = 0: this implies linear independence.

Let us define a manifold V = V(E, o 5) by assigning a fixed value to each of the 3 integrals:

Py ~ n
H,=E , 2 =g = I} §
P Po T os? 0 4
because of the independence of the gradient vectors V is a smooth manifold at each of its points,

provided e > 0 and sin/ > 0. If the energy integral is negative: £ < 0, then we can solve for
pr from the equation H, = E T"%(“ﬂ

2 : > W
pr=ﬂ:\/2E+27u—%-, Pm=i’\/»¥w) ( N\

and find that under the square root the polynomial in v = 1/r has 2 positive roots and a
negative degree 2 term, thus real values of p, are possible only in the interval between the
roots, which are the distance ¢ at pericenter and ) at apocenter: the values of both r and p,
are limited, on V, to closed intervals. E < 0 implies that the eccentricity e < 1 (see Section 1.4).
We do not need to set limits to the angle variables because they belong to a circle; on V, p, = D
is fixed and |pg| < C. Thus V(E,C, D) for E < 0 is a closed, limited set.

2€ +2}LM«—-C2M‘2=O -y Clw_2pm -2E =0

Aga =£Lt ‘}'G*'ZECI - -
e c? N 1/9
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In conclusion, for £ < 0, 0 < e < 1, sin/ > 0 the set V(E,C, D) is a compact, smooth
3-manifold, and the following inequalities apply:

2EC?
0<e=1+ &

<1
e

C>|D|.
The entire domain in the phase space of positions and velocity corresponding to the conditions
0 <e<1,sin/ > 0 is the Delaunay domain, foliated in smooth 3-manifolds V(E, C, D).

Angle variables i radurwns o profiioma A
Kpare

To extend the map (r,0, @, pr, po,ps) — (E,C, D) to a six dimensional|[canonical coordinate

change we can exploit the well known fact that the solutions of the fixed center problem can be

represented by Keplerian elements (a, e, I, ¢, w, 2), where the angle € is the longitude of the

ascending node and ¢ is the mean anomaly, an angle which is 0 at pericenter and 7 at apocenter

and moves with a constant rate, the mean motion n, such that Kepler’s third law applies:

(={¢,H}=n , n?dd=p. (2.30)

The angle variables (¢,w, §2) are suitable to complete the coordinate system together with the
action variables (E,C, D). To show this we can use the notion of conjugated variables, in % 3,
particular the coordinate conjugated with C is w, and the coordinate conjugated with D is
Q (apart from constants, which we are allowed to set to 0 in both cases). Indeed D is the

. NOTA 1

Hamiltonian of a rotation around the z axis: the Hamilton equations with D as Hamiltonian "ﬂfh r}—méf 1
are just d¢/ds = 0D /0po= 1, all the other derivatives being 0. allo. i
oooammo’

As for the dynamics defined by C, we can consider it in a cartesian reference system in which
the z axis is the axis of the angular momentum (as in Section 1.4). In this reference system,
C = D and its dynamics is again a rotation around the z axis, which is the axis of the angular
momentum. Thus the Poisson brackets

w.Cl=1 , {&,D}=1 {9upsh = iy

but also the ones indicating that the action of C, D change nothing else but the conjugated
variables

{w,D}y=0 , {Q,C}=0 , {C}=0 , {¢,D}=0.

Action variables

Now we need to find a conjugated variable to ¢, which we are going to call L. After the
coordinate change
U:(a,e,[,l,w,Q)— (L,C,D,l w,N)

K(L) = H, is the function corresponding by value, such that there are constant frequencies
(on a given V(E, C, D)) for each angle variable

;  OK(L)
t=—5L
= T Homidlon ,{AAM:):L,OY\, xb/gm\m e Hamilbon urwlwm whidh ore Uhs apolions p{z rdion
0N ovlgAAme~/\,,o$ Fovan, (Lob.m an MAAA/'«AMM /\m’\mﬂr&,), 77 wm,)?n, duntiled )?r\ﬁ P rbokivamd
Fhok (H,£) orw mzv)mfb"k norvaliln 3~ww@ofk%, dhun m\l,w[m% rom S Fokom or %/m/u&o,\,
W‘fw, M, /,wmiz wibh WU OO "Momilbon I.AY\AKJI’QO“\'\/D bhe mdion mmdun Phe adion
a{, A- 1wmmulim momvwxd}uj‘ .va j 4 g D s e Momidbomuam amovokid b Fhu rudokicon aroumd
Phe 7 oo of Phe ongle 1, weill, QL (4 readiomtn) @ indapumeint aroniode.

_ . _OK(L) . OK(L)
=n(L) , w= 50 = , 9= 5D =0,
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To find the analytic expression of the single variable function K(L) we use the third Kepler
law (2.30) and the relationship between a and the energy E- of the 2-body problem (1.37)

K (—2 E )3/2 E L

e i

By using the correspondence by value K(L) = E

dK(L) _ (=2K(L))* . wdK(L)

dL p (—2K(L))*?

with solution (unique apart from a constant we set to 0)

B _ e
L= Jia ., K(L)

The following Poisson brackets are consequences of {¢, K'} = n(L)

{L}=1 , {wL}=0 , {QL}=0

We already know the integrals are commuting, and L is functionally dependent on H,, thus
the action variables (L, C, D), with C = Lv/1 — €2 from eq.(1.38), then D = Lv/1 —e? cos |,
are commuting

{L,c}y=0 , {L,D}=0 , {C,D}=0.

In conclusion, the Delaunay variables (L, C, D, ¢, w, ) are action-angle variables; to complete
the proof that they are canonical variables, that is the check of the symplectic condition, eq.
(2.7), we need only to compute the few missing Poisson brackets. vdic NOTA 3 oo,

{t,w}y=0 , {£,Q}=0 , {w,Q}=0. /?M\LMAMMMM

[If we assume the Arnold-Jost theorem is known, then the action-angle canonical variables exist
and it is possible to adapt the standard proof, based on the generating function method, in such
a way that they coincide with the Delaunay variables. This section was meant as a separate
proof of this theorem for the special case of the Kepler problem. NO]

[The three zero Poisson brackets above are zero if the choice of the origins for the angle variables,
which is of course arbitrary and is not dictated in an unique way by the Arnold-Jost theorem,
are such that they do not depend at all from the action variables. See the proof of the canonical
nature of the Delaunay variables in (Moser and Zehnder). Eind-eitation)

L « Notes on Dynamical Srjs'rem'?>
2.5.1 Delaunay variables with mass

The Delaunay action variables, as defined in this Section, are per unit mass of each planet. To
handle a set of simultaneous 2-body problems, which is used as unperturbed Hamiltonian H
for a multi-body problem, we need to define variables such that the action variables have the
dimension of an action, containing also the mass of the body; in this way it is possible to sum
the action variables to obtain the integrals, such as the angular momentum from (1.52).
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Thus we define Delaunay variables with mass for each planet 2 = 1, NV and asteroid i = N+1

Li = KiV/ (/J:() + /J,i) a; ’ Ci = Li \/ 1-— 6? y Di = Ci COS(I,;) (231)

where a;, €;, I; are the relative 2-body elements for each planet and pg + p; is the active central
mass for the corresponding fixed center problem”. The angles \;,w;, ©; are just the same defined
for each 2-body subset.

The transformation for each 2-body sub-problem with index ¢ from the Delaunay variables per
unit mass to the variables with mass (L;, C;, D;, £;,w;, §2;) is canonical with valence p;, thus
for each 2-body problem with index ¢ the corresponding unperturbed Hamiltonian, with value
multiplied by u;, and the mean motion are

+ ;)2 ‘?
Hy = —%—25—}—&- (2.32)

_ OHu  (po+ps)* 13 (o + )iy (po+ )
S T L3 T3 3/2 ,3/2 3/2 (2.33)
i i 12 (po + p:)*? a; a;

(2

as in the Third Kepler law. If we use a suitable coordinate system for the handling of all
the planets, and for the removal of the center of mass, such as the Heliocentric Canonical of
Section 1.6, then it is possible to express the total angular momentum (scalar and z component)
as sum of the contributions from each 2-body Sun-planet subsystem®. The simplest consequence
of this approach is that the z component of the total angular momentum is ¢, = Zf\gl D;,
where the 1 = N 4 1 term gives a negligible contribution but has to be kept to generate the
appropriate symmetry involving also the asteroid; the same applies to the scalar total angular
momentum ¢ = Zf\:;l C;, see Section 1.6. Note that this scaling of the action variables does not
change the fact that (C;,w;) and (D;, §2;) are couples of conjugated variables for all i = 1, N+1,
because the scaling applies equally to the momenta and to the 2-body Hamiltonian in each group
of 6 variables referring to one planet/asteroid.

2.6 Lie series in Delaunay variables

Let us use action-angle Delaunay variables for all bodies, N planets and 1 asteroid:
LZ(Ll)""LN;LN-i-l) ) ®=(ClaDly"'aCNaDchN+11DN+1)

Z = (51, i .,EN,€N+1) 3 9 = (wl,Ql, o ooy WNs QN,U)N+1,QN+1) . (234)

The Hamilton function for the complete N + 2 body problem expressed as a function of these
variables is:

H(L,©,2,0) = Hy(L) + ¢ H (L,©,2,6) .

"For i = N + 1, that is the asteroid, we can neglect pn4; with respect to the much larger po, thus Ly =
[N +1+/Ho a7; similar simplifications occur in the formulas for the Hamiltonians. ‘

8 Also the Jacobian Coordinates [Milani and Gronchi 2010][Section 4.4] have this property of simplifying the
formulas for the angular momentum.
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The unperturbed part, the Hamiltonian of N + 1 2-body problems each evolving as if there
were no other perturbing bodies, is just the sum (without any coupling terms):

N+1 N+1

Hy(L) = Z Hoi(L;) = Z —(u—o;;l)ﬁi .

i=1

Let also the determining function x = ex; + € x2 be a function of the same action-angle
variables, and the canonical map defined by x

1 1 gl pl
o (L,0,¢,0) = (L',0,£,6) .
Then the transformed Hamiltonian is, to first order, from eq. (2.16), (2.17):
H'(L',©',2,0") = Hy(L') + ¢ [Hi(L',©,£,8") — {Ho(L'), (L', ©', £, 0"} + O(e?)

and the possible simplification of the Hamilton function in the new coordinates is described by
the homological equation of order 1 in €

Hl_{HO)Xl}:Fl ) {Ho,ﬁl}=0, (2-35)

where the null Poisson bracket with Hy = Hy(L) implies that H; = H,(L, ©, 8) is independent
from £.

To solve explicitly the homological equation (2.35) we use a Fourier series expansion of the
perturbing Hamilton function H;, where the arguments contain all the angle variables:

Hy =Y Hyji(L,©)cos(j- £+k-6) (2.36)
ik
where j € ZV*! and k € Z*¥*? are multi-indexes. The fact that H; is even in the angles, thus

we can use only the cosine function, will be justified later in Section 2.8.

Since x; must contain terms corresponding to the ones of H; to be able to solve (2.35), we also
expand
x1 =Y X1k(L, ©)sin(j- £+ k- 6) (2.37)
ik
and compute
N+1

Ox1
Hoxi} = - m 2t
{ 0, Xl} ; n aez
with n; = Hy;/OL; the mean motion of the body i = 1, N + 1, from eq. (2.33). By using the
expansion (2.37)

N+1
{Ho,x1} = — Z 7 Z Jixijxcos(j-£+k-0)
=1 3k

where j; is the i-th coordinate of j. In order to reduce the complexity of the transformed
Hamiltonian H’, as many as possible terms in this expression need to be the same as their
counterparts in the expansion of H; from (2.36), thus term by term:
Hyx

n-j

Hije =—n-j, X156k <> Xijk = — (2.38)
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where n = (ny,...,nn41) is the vector of mean motions, and each scalar product (integer
combination of mean motions) is a divisor.

The conclusion from (2.38) is that the only obstruction to solving for the coefficients X1k can
arise from zero divisors n - j = 0. These can occur in two ways. First case: j = 0, that is the
corresponding term in H is a secular term, not containing £; in this case the term containing
the coefficient Hjg ) must be included in Hy; the term X10,k can be set to 0 because it does not
reduce in any way the complexity of H'.

The other case of zero divisor, namely n -j = 0 with j # 0, indicates a mean motion
resonance. This needs to be handled in special way, by keeping the resonant terms in the
reduced order 1 perturbation Hi, see Chapter 8.

In this chapter we shall assume that n-j = 0 does not occur for j # 0; this is a meaningful

assumption if we can assume that the Fourier expansion of H; has just a finite number of

terms, because of some limitation such as ||j|| < Jmaz, Where the norm is just ||j|| = 211\:;1 | 7]

This “ultraviolet cutoff” (truncation for too large multiples of the mean motion frequencies)
is a legitimate approximation because of the fast convergence of the Fourier expansion for
the smooth function H;. Nevertheless the absence of resonances with small coefficients is a
hypothesis, to be tested case by case in each region of, e.g., the asteroid belt.

Anyway, if we can assume the non-resonance hypothesis n-j=0=— j =0, then
H{=H,=H(L,0,60) =) HyoxL,0) cos(k - (2.39)
Kk

a sum of pure secular terms, without any mean anomaly. We use also the notation H, =
H, — H; for the sum of terms in the expansion of H; which contain the fast variables £.

Higher order perturbation theory
Having solved in this way the first homological equation, we can tackle the second one, namely

(2.18), which can be somewhat simplified if we use {Hp, x1} = H; from the first, and also that
Hy = 0 as it is indeed the case in our problem, see Section 1.6:

1
H, = —{H17X1}+§{{H0,X1},X1}—{Ho,Xz}=
- 1 ¢ -
= —{H1+H1,X1}+§{H1,X1}—{HO,X2}
— 1 .
= _{HI)XI}_§{H1aX1}_{HO’X2}-

Pursuing the same idea of reducing the complexity of H’, from this we can write the second
homological equation in the form

5 _ 1 - - -
K2={H1,X1} ) G2=—{H1,X1}—§K2=G2 , Ga—{Ho,x2} =0 (2.40)

where the second order reduced form Hj = K, contains again only secular terms. They can
only arise from beats between non-secular terms contained in H; and y;. To the contrary,
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{ﬁl, Xl} cannot contain secular terms, because all derivatives of H; do not contain £ and all
derivatives of x; do, thus no beat term without £ can occur. Thus

- 17~
Hé = K?(LI’ 6,70/) = _—2_ {Hla XI} )

meaning that Hj is just the collection of the secular terms of K. All of G5, that is all non-secular
terms, can be removed by composing x» with sine terms of the same arguments contained in
the terms of Go = G, and with the same divisors as in the solution of the first homological
equation:

Gajx

Gajpe = =0 -] Xajh €= Xajge = —— o (2.41)

It would be possible to prove by recursion that the same procedure could be repeated up to an
arbitrary order in €, thus pushing the transformation of H into a Hamilton function in the new
variables H' to an arbitrary order:

H =Hy+e¢H|+EHy+...+ H. +0() .

However, before attempting to push these computations to a higher order we need a deeper
understanding of their significance and computational value.

2.7 Non-singular variables, Poincaré domain

The solution of the homological equations such as (2.17) and (2.18) can be computed term by
term in the Fourier series. However, if we wish to understand which, among the terms of the
same order in €, are the most important, then we need to introduce some small parameters,
such as powers of e, I. To do this we need to be able to expand in the neighborhood of circular
orbits e = 0 and planar direct orbits I = 0°, that is to consider a Poincaré domain which
adds e = 0 and I = 0° orbits to the Delaunay domain without giving rise to singularities in
the equations of motion. Thus we need to define coordinates for the Poincaré domain which
are smooth on both e = 0 and I = 0°. Note that planar retrograde orbits / = 180° are not
included: the definition of the Poincaré domain is e < 1,1 < 180°.

To obtain such coordinates we proceed in two steps. First, starting from Delaunay variables
(L,C, D, {¢,w,Q) we perform a global canonical transformation such that the angle variables go
into angle variables (that is, the 3-tori V(E,C, D) are mapped into themselves by a smooth
diffeomorphism), and such that the small quantities L — C and C — D are among the new
action variables. Note that L —C =L [1—V1—€?| =LO(e*) and C — D =C [l —cosI] =
C O(sin?I).

As shown in the examples of Section 2.1, if A is a 3 x 3 matrix then the following is locally a
canonical transformation

A L A ¢
VIi=A\|C
Z D z Q
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for it to be a global canonical transformation both A and A~! need to be matrices with integer
coefficients. Thus A must be a matrix with integer coefficients and® det A = 1. We select

1 00 111
A=|-1 10| , [aAY9'=]011
0 -1 1 00 1

that is we define new action and angle variables

A L A l+w+Q
Vi=|C-L . v | = w+ 0 : (2.42)
Z D-C Z Q

The variables: A, the mean longitude and v = w longitude of pericenter are “broken-
legged”, that is sum of angles which are in different planes, but as we will see they can be
continuously extended to e = 0,1 = 0°. Of course z = () is the longitude of ascending node.

In the second step we define “Cartesian like” canonical variables
£ = V—2Vsinv = V2L\/1-V1 - e sinw = V2L sinw O(e)
n = V—2Vcosv= \/2_L\/ 1—V1—e?cosw = V2L cosw Ofe) (2.43)
a = \/Wsinzz\/ﬁ\/\/-l——ez(l—cosf) sinQ = V2L sin Q O(sin I)
B = \/—_2—Z-cosz=\/ﬁ\/\/f_——e_2(l—cosl) cos Q2 = V2L cosQO(sin 1) ,

in this way we have obtained variables which, unlike Delaunay one, can be used even when

& =mn =0, that is e = 0 and/or @« = f = 0, that is I = 0°. We need to prove that

the coordinates (A, &, a, \,n, B) are actually smooth functions of the Cartesian coordinates of

the position and velocity over the entire Poincaré domain. The simplest way is to use as

intermediaries the equinoctial elements [Broucke and Cefola, 1972). . «On the cqvmocha) Iorb»b‘l B
elements?

(a,\, h,k,p,q) with h=esinw , k=ecosw , p=tan(l/2) sin{, g =tan(l/2) cos

where a, A are semimajor axis and mean longitude as previously defined. Of course A = L =
VIt a is a smooth function of a and the variable ) is the same in both coordinate systems. Since

1-p*—¢°

2 2, 12 2 5 , 2
e“=h"+k* , tan*(I/2)=p°+ , cosl=
(I/2)=p"+4q 1+p2+¢°

the elements (&, 7, o, B) can be computed as a smooth function of (h, k, p,q). By expanding in
e=h=k=I

E=[pa" h+OM>+k) |, n=[pd" k+OMR +K) *

and by expandingin I =p=qg=0

92 + g2
o=v2[pa* [1 —h2—k2]1/4 20°+ ) sinQ = 2 [pa]/* [1—h2—k2]1/4 p+0O(p*+¢%)

Ly pé+ @@
9Actually, det A = —1 would still define a canonical(transformation, but we prefer to use a matrix not
changing the orientation.
— = 45 0(x)
A4+ x

. /\’ “NA-et - e & ohi, . . O(x)
X MMA{&WLJZ\L 4 A-¢ —-—————4+ e m ’\{i+
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and similarly
B=2ua 1-n K" ¢+ 00 +¢)
we find that the map is invertible even where e = 0 and/or I = 0.

Thus it is enough to prove that the equinoctial elements are obtained from the Cartesian
position and velocity with a diffeomorphism smooth on the Poincaré domain. This is a classical
result from [Broucke and Cefola, 1972]; indeed the only singularities occur for e = 1 and/or
I = 180°. On the other hand the map from Cartesian position and velocity to Delaunay
variables is canonical on the Delaunay domain, and the same applies to the map from Delaunay
to Poincaré elements. Note that the extension of both maps to the Poincaré domain, once proven
to exist and be smooth, is also canonical because the Poisson brackets are continuous functions
and the equations proving the map is canonical can be continued to e = 0 and/or I = 0.

2.8 D’Alembert rules —> i ww. balloron i dirtta guordors

MARIO CARPINO < Teorin lineare delle perturbazioni

Now we can exploit both arguments, the existence of commuting integrals (from Section 2.5)
and the expansions in Taylor series around e = 0 and I = 0 (from Section 2.7) to constrain
the expansion of the perturbing Hamiltonian H,; in a Fourier series: these constraints are the
D’Alembert rules.

First rule

The first D’Alembert rule arises from the fact that the perturbing Hamiltonian must be invariant
with respect to the reference system change, for example, if we turn the z,y axes by the same
angle s around the z axis. In other words, it arises from the 1-parameter group of symmetries
generated by the z-component of the angular momentum, that is the Delaunay variable D. Of
course, D and 2 are conjugated variables, that is the action of D (as determining function) on
a 2-body problem expressed in Delaunay variables is just a translation, with frequency 1, of
the variable 2 with all other variables being fixed:

®5(L,C, D, l,w,Q) = (L,C,D, 8w, +5) .

When the same action of D is applied to the same 2-body problem, but as expressed in the
variables (A, V, Z, A\, w, ), then from the definition of these variables (2.42) the one parameter
group changes all the angles in the same way:

LNV, Z N\ w, Q)= (A, V,Z, A+ s,w+5,Q2+3s) .

On the other hand, {H,c,} = {Hj,c,} = 0, where ¢, is the z component of the total angular
momentum of the system, thus the expansion of H; in a Fourier series is constrained. Let us
suppose the expansion (2.36) has been converted to the variables (A;, Vi, Z;, Ai, w;, §2;), one for
each planet and for the asteroid, i = 1, N + 1;

H, =Z Hlj,f,g(A,V,Z) Cos(j'A‘i‘f"w—I—g-Q) )
Jfe

secolari ™
(¢ vma i
M A
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where the vectors A, V,Z, \,w, Q contain the corresponding variable for all N + 1 planets+

asteroid. Then the action of the determining function c, = Zl]\:{l D; on this expansion is

N+1
H]_O@iz:Z Hlj,f’g(A,V,Z) COS (jA'}'f‘w-{—gQ-}-S Z(]’+f’+g’))

if.g i=1

because all angles for all planets (and for the asteroid) are changed by the same amount s.
Since the derivative of the cosine term with respect to its argument is generally not zero, the
only possibility for preserving the value of H; is that the additional part of the argument is
zero, for all the non-zero Fourier terms:

N+1
Hyeg#0 <> (i+fi+g)=0; (2.44)

=1

this is the first D’Alembert rule, stating that the integer coefficients appearing in the angular
arguments of the Fourier series expansion have a zero sum.

Second rule

The second D’Alembert rule arises from the symmetry of the Hamilton function with respect
to mirror transformations: they are also isometries. Let us use the mirror symmetry with
respect to the (z,y) plane, that is ¥ : (z,y,2) — (z,y,—2). Such a transformation implies
that the orbital nodes exchange their places - the ascending one becomes descending, and
conversely; reckoned from a fixed direction, the longitude of ascending node, €2, changes by .
The argument of pericenter, w, reckoned from the new ascending node, changes by the same
amount. When this transformation is written in Keplerian elements, it takes the form

Y:(a,e, [, l,w, Q) (a,e, [, 0w+ 7, Q+7)

To prove the statement above, we can write the Cartesian coordinates of a Keplerian orbit as
a function of the elements by means of the rotation matrix with Euler angles (2, I, w)

z = rcos(v+w) cos§) —sin(v +w) sin cos I]
y = rlcos(v+w)sinQ +sin(v+w) cosQ cosI] (2.45)
z = rsin(v+w)sinl

where the true anomaly is a function of the mean anomaly v = v(¢), both invariant, since
reckoned from the pericenter direction. By adding 7 to both w and 2 there are two changes
in sign in z,y, which remain unchanged, and one in z, changing it to —z. Of course the same
transformation to angles applies in Delaunay variables

Y:(L,C,D,4,w,Q)— (L,C,D,l,w+ 7, Q+ )
and when converted to the non-singular angles

YAV, Z AN @, Q) = (A V,Z N+ 21w + 21, Q + 1),
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thus modulo 27 all the angles are conserved, but Q2 — Q+m. Then a term in H; to be invariant
must be such that

N+1
Hlozzz Hijee(A, V,Z) cos <j-/\+f-w+g-ﬂ+7rz gi> =H, .

if.g =1

This implies that the additional term in the argument must contain an even number of 7, that
is
N+1
Hyjeg #0+= Y g:=0(mod2), (2.46)
i=1
and this also implies that the sum of integer coefficients standing with 2; in the arguments of
the non-zero perturbing terms must be even. This is the second D’Alembert rule.

The Hamiltonian is even in the angles

The next rule!® is implied by the possibility of a symmetry with respect to a line, namely
Y:: (z,v,2) = (z,—y, —z). In Delaunay variables

Y (L,C,D,8,w,Q)— (L,C, D, -4, —w, Q)
all angles change in sign, and in the non-singular angles the same:
S (AMV,Z N w, Q)= (MV,Z, -, —w,—Q) .

The proof is as above, from the Cartesian position as a function of the elements, eq. (2.45): the
change of sign in all angles implies the change of sign in y, z, containing one sine (with angle
variables as arguments)!! in all terms, but not in z, containing only cosines and even number
of sines in all terms. In order for the Hamilton function to be symmetric with respect to a line,
each term in the Fourier series for H; must be even in the argument (i.e. f(z) = f(—z)), and

the series can thus contain only cosines, not sines!'2.

As for the determining function xy = ex; + €2x2 + ..., when used to solve the homological
equation, the first order part y; is obtained from a derivative, with respect to some angle
variable, of H, thus it must contain only sines in place of cosines of the arguments, and it must
be odd in the angles; the same for x, and so on.

Third rule

The third D’Alembert rule arises from the regularity of the Hamilton function, as expressed
in the Poincaré variables, on the points corresponding to e = 0,1 = 0 (for each A, \): then it
must be possible to expand it in a Taylor series either in the variables &,7, a, 8, centered at
& =n=a= =0, or equivalently, in the variables h,k,p,q at h = k = p = ¢ = 0. However,
not all monomials in these variables are allowed, because of (2.44), (2.46), and the cosine rule.

10Some authors, e.g., [Morbidelli, 2002], consider this also as a D’Alembert rule, thus he lists four of them.
Note that I is not an angle variable.
12This is not considered a D’Alembert rule in the literature, but it is analogous to the second one.
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As the simplest case, let us consider secular terms like those in (2.39): for these, from the first
and second D’Alembert rules:

N+1 N+1 2N+2

j =0 ’ Z kgi = O(mod 2) ) Z kgi_l = O(mod 2) " Z ki =0

i=1 i=1 i=1

because, according to (2.34), the even secular angles are the longitudes of node €2; and the odd
ones are the arguments of perihelion w;. As an example, the arguments which can be expressed
as combinations of basic arguments w; — w; and §2; — ), are allowed, and the corresponding
basic expressions, appearing in the Hamiltonian, in non-singular elements are

ei e cos(w; —wy) = hhy + kiky ,  tan(Z;/2) tan(l;/2) cos(€% — SU) = pipi + iqu

and similar expressions in Poincaré elements. In the portion of the secular Hamiltonian H,
of homogeneous degree 2 in h;, k;, p;, ¢; (also in the canonical &, n;, s, B;) there are no other
possible terms, because only two angles are allowed and the combinations like w; — §2; are
forbidden by the second D’Alembert rule.

To extend this analysis to an arbitrary degree homogeneous polynomial in the non-singular
variables we need to use the representation of

cos(f -w+g-N) = P(w,N)

as a trigonometric polynomial containing sines and cosines of all the angles. It is easy to prove
by recursion that P is a homogeneous trigonometric polynomial of degree

2N+2

s= (k) ,

i=1

with each monomial containing |ks;_; | sines/cosines of w; and |ks;| sines/cosines of €;, for each
i. From this we can deduce that the term containing P(zo, §2), when expressed in non-singular
variables, must contain a homogeneous polynomial in h;, k;, p;, ¢; of at least the same degree
s. There are further constraints on the powers of h;, k; and p;, ¢; contained in each monomial:
e.g., the powers of either h; of k; must add to at least |ky;_;|, the the powers of either p; of ¢;
must add to at least |ko;|. This is the secular version of the third D’Alembert rule.

[Can we give a set of exhaustive rules? that is, each terms consistent with the rules actually
exists?]

As an example, a prominent term of degree 4 contains
e? tan®([;/2) cos(2w;) = €7 tan?(I;/2) cos(2w; — 2Q;) = (h? — k2) (0} — ¢7) ,
which is not a product of the expressions appearing in the degree 2 portion: the argument is a

combination of w; + w; and §2; + 2;, with the opposite sign.

In particular the third D’Alembert rule implies that there are no terms in H, of degree odd in
the non-singular variables, because they would correspond to trigonometric terms with odd s,
which do not satisfy the first D’Alembert rule.

[How to define exactly the functions generating the algebraic functions of h;, k;, p;, g; allowed
by all the D’Alembert rules?|
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The third D’Alembert rule for the terms containing the mean longitudes is based on the def-
inition of order of resonance, which is just |j| = Y. j; (note that it can be assumed to be
positive, given that the argument appears in a cosine term). Then [f| = SN+ ky; must be
even by (2.46) and |g| = Z?gl kgi—1 is such that |j|+|f| = —|g|. From this we can deduce that
the monomials in h;, k;, p;, ¢; have at least degree |j| when appearing as factors of cos(j - A).

There are even more strict rules, that is the argument k; w; cannot appear without efi in front
of the cosine, the same with h;Q; and tan®(I;/2).

Thus, as the simplest example, the terms corresponding to a 2/1 resonance between the asteroid
and planet i of the lowest degree contain a factor either e cos(A—2\;+w) or e; cos(A—2\; +w;);
the nodes €2, 2; are not allowed to appear alone, thus there is no term containing the first powers
of I,I;. (Here we are using a notation in which the index N + 1 is dropped, and the elements
without indexes are those of the asteroid).

Decomposition of the perturbation in 2-body portions

One additional rule on the terms occurring in the expansion of H; depends upon the superpo-
sition principle for the gravitational forces, which implies the gravitational potential is just a
sum of 2-body terms. Given the particular form assumed by the indirect perturbation function
in the case of Heliocentric canonical coordinates, see (1.51), the same applies to the indirect
portion of H;. Then the terms contained in H; are all of the form

Hljijrfifrgigr (Az; Ar> Vi, Vi, Zi, Zr) COos (]z>\z + j?”>\r + fzwz + frwr + ngz + grQr>

where 1 <1i < r < N+1 are the two bodies whose interaction is considered (note that this rule
applies not just to U; but also to 7). It follows that there cannot be terms corresponding to 3-
body resonances, with j;\; + 7, A + j, A, in the argument, in the first order Hamiltonian H;, and
because of the homological equation such terms cannot arise in the first order perturbations.
But of course at the second order in € such terms with three mean longitudes can appear, as a
result of Poisson brackets between terms with two longitudes.

[Why so many secular terms of degree 4 with frequencies from 2 planets occur in the secular
terms of our own theory? There are even terms with fundamental frequencies from 3 planets.|

2.9 Mean elements and mean semimajor axis

The mean elements could be defined by a canonical transformation; e.g., by using the non-
singular action-angle variables, a canonical map

U: (A, V,Z\v,z)— (AN, V Z XN V. 2)

such that
HoW (A V' Z N v',2)= H(N V. Z v .2) + O

would define mean elements to order 1. Because the new Hamilton function H' does not contain
the fast variables X', the evolution in time of the mean elements would not contain, at order
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1 in €, any short periodic perturbation resulting from terms with mean longitudes (that is,
containing mean anomalies).

The question is whether this could be defined by a Lie series. This question has two different
answers depending upon the context.

If the idea was to achieve a total removal of the short periodic terms, containing combination
of mean longitudes j- X for all values of |j|, then the corresponding Lie series needs to have an
infinite number of terms for each order and the problem would be whether the series converge,
both as Fourier series for each order and as a power series in €. As we will discuss later,
this would not be the case unless the original problem is integrable, that is admitting a set of
canonical action-angle variables.

If the idea was to remove all the terms whose size, as estimated from D’Alembert third rul: is
below an assigned order of magnitude, then a series expansion for y containing a finite number
of terms would be needed. A classical way to do this is to assume that there is an integer r
such that O(el) = O(sin" I;) = O(e); e.g., for low e, I we can assume r = 2, for example

ce? cos(A — 3\ +2w) = O(e?) ,  ee? sin’ I cos(2w — 2Q) = O(€) .

This assumption is often used by the classical authors in panetary dynamics. However, € ~
s/ 1o =~ 1073, thus e < /€ ~ 0.03 is appropriate only for a small portion of the asteroid belt.

Thus [Milani and Knezevi¢, 1990] use implicitly » = 4 and select all the terms in the perturbing
Hamiltonian H; with order of resonance < 4 for the direct portion Up;r and < 3 for the indirect
portion U;yp. Thus for each couple of mutually perturbing bodies they compute 189 direct
and 62 indirect terms'®. They perform these computations in Delaunay variables, and limited
to order 1 in €, that is they use only a determining function € x; expanded as in (2.37).

With this limited accuracy approach (see Section 9.1), and with the methods of expansion
discussed in Chapter 3, we can explicitly compute a finite number of coeflicients x1;x(L, ®) for
values of the action variables corresponding to the ordinary instantaneous'* orbital elements.
Then the transformed mean elements are computed as in (2.11), note the + sign in the first

order term 15:20' 5 \ Z =2 +5S {z,‘)d +
‘3““’,’“’\,‘"‘ > L' = Lie{ly}=L-c .
Bll:hograf!a A 0 %S"{{Z,X}, X3 + O(s?)

1? ;,d,{{‘h e = @—I—e{@,xl}:@—e%
(MTAA)Z&&M 9 = 0+€{0,X1}:0+6% X4| = ZX"SK(L)@)

Pl ) © 5% em (54 + k-0)

where by x; we indicate just the sum of the finite number of terms which are available from
the theory. Then the new Hamilton function in the space of the mean elements is H' =
Ho+e [Hy — {H,, x1}| from which the “large” short periodic terms, containing the fast variables
£, have been removed. Then it is possible to approximate the dynamics of the mean elements

13Tn Knezevié¢ (1993) the indirect part has been expanded to r = 4, to include 192 indirect terms. Some direct
terms were also added to end up with 197 of these in the final version of the theory.

14Usually called osculating, but this expression does not actually apply to heliocentric canonical elements.

15The + sign is due to the use of the direct map to compute mean elements from instantaneous ones.

* i birmivu, di griade mnimiond olls il " 1
Ww‘ :34):*':32)\"':53%\"':3&'6+'SSQ\+.§69_¢7
uguals al praddt NEIIENINLE NG

Dalbre |33] + 154l + [3s] + [ 3¢l 2 154 + %]
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by using (2.39) and the truncated Hamiltonian H' as a function of the mean elements

H' = H\(L)+eH\(L,0,0)=HyL)+ecH (L, 0 0) = (2.47)
= Hy(L')+¢) Higx(L',©) cos(k- '), (2.48)
k

where the summation is limited again to a finite number of terms explicitly computed. This
method is conceptually simple (although the computation of the coefficients is far from trivial,
see Chapter 3), and provides mean elements which, at least in the simplified dynamics defined
by the Hamiltonian (2.48), have L’ as integrals. Thus the corresponding semimajor axes a’, a;
are mean semimajor axes, integrals of an approximation of the N + 2 body problem, and
it is reasonable to assume that these quasi-integrals shall change slowly with time. In this
approach, it is not even necessary to compute the “mean mean anomalies” £’ because they are
not used in the following computations based upon mean elements.

2.10 Secular perturbations in semimajor axis

The simple, first order and truncated, method to compute mean elements of the previous section
is anyway a step in the right direction, and indeed for a large portion of the asteroid main belt
it leads to a useful approximation. However, it is clear that it contains many simplifications
and therefore can lead to poor approximations in some cases.

The main cause of these unsatisfactory results are mean motion resonances. Let us take as an
example the 2/1 mean motion resonance with Jupiter, with main H; term

Hyp = Hs g(a,as)e cos(A — 25 + w) ,
Ho

where p5/p9 ~ 1073 is the mass of Jupiter in solar masses, and g(a,as) is a function of the
semimajor axes. By assuming e > e5 this term is larger than the similar one containing ws. In
Delaunay-like variables the argument of the trigonometric term is £ —20542(w—ws) +2(Q2—25).
The corresponding term in € x;

M5 g(a,as)e

X2/1 = n— 2n5 sin()\ — 2)\5 —+ W) . (249)

Then the mean element A can be computed with the addition of a single selected second order
term by using a x; term computed as in eq. (2.38):

0 1 (0
s At e
_ aXl 1 2 2 g((I,CL5) g((I,CL5) .
= A—Ea—iﬂ56 mCOS()\—Q/\5+w>,n_ s SIH(A—2>\5—|—W) + ...

To compute the main portion of the Poisson bracket in the formula above we can neglect
the part containing derivatives with respect to e,w because they contain the denominator
(n — 2n5)?, while the portion containing derivatives with respect to A (that is a) has a much
smaller denominator (n — 2ns)3.
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We need to take into account that the important contribution to the order of magnitude of the
second order correction arises from the divisor n — 2n;: indeed, in the neighborhood of the 2/1
resonance it can be O(y/€). In computing the Poisson bracket of the formula above, the terms
with derivatives with respect to A and A contain the inverse cube of the divisor and either
sin?(\ — 25 + @) or cos?(A — 2\5 + @). When averaging over the argumentwe we get secular
terms with mean 1/2, with amplitude enhanced by the inverse cube of a small quantity.
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Figure 2.1: Energy of Uranus and Neptune over the 10 million years of the LONGSTOP 1A numerical
integration (performed in 1984).

We would like to discuss two examples of secular perturbations on the semimajor axes, which
remain in the mean elements after removing only the first order short periodic terms. The first
one is amplified by the near-resonance 2/1 of the mean motions of Uranus and Neptune. The
small divisor n; — 2ng is about 51 times smaller than n;, while u{/ fo = 4.4 x 1075, thus the

small parameter s 2
n 3 H( 2
l;] {—f’] ~25x 107"
ny —2ng Ho

has to be multiplied by €2 with a mean value of 2.3 x 107 and, by using a full computation of
the quantities appearing in the second order effect due to the main term, [Milani et al. 1987b]
have succeeded in predicting, although only approximately because of a simplified computation
with very few terms, the values of the corresponding spectral line with frequency g; — gs in the
semimajor axis of Uranus, which is 3.7 x 107% a; (the other coefficients result in an increase by
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Figure 2.2: Mean semimajor axis, computed by digital filtering, for the asteroid (24) Themis, as a function
of time over 100000 years.
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Figure 2.3: Mean eccentricity, computed by digital filtering, for the asteroid (24) Themis, as a function of
time over 100000 years.
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about an order of magnitude). Figure 2.1 shows the exchange in 2-body energy between M; E;
and Mg Fyg as obtained by the 10 Million years integration LONGSTOP 1A [Milani et al. 1987b].

The second example is the secular change of the mean semimajor axis of the asteroid (24)
Themis, affected by the n — 2n5 divisor, which is smaller than ns by a factor ~ 7.4; the main
second order term with the inverse cube of the divisor contains €?. [Milani and Knezevié¢, 1990]
show that it is possible to approximately predict the amplitude of the secular change in a.
These effects are anyway at the level of few parts in 10~* au, thus their removal is not essential
for the study of asteroid families.

In both examples, however, to measure these small secular perturbations on the semimajor
axis we have been forced to use the digital filtering methods from Chapter 4, thus obtaining
for (24) Themis the Figure 2.2. The accuracy of the analytic removal is not really enough to
allow detection of these secular second order effects. The strict correlation between the secular
perturbations in a and in e is apparent by comparing with Figure 2.3.

2.11 Iterative mean elements
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Figure 2.4: Semimajor axis of the asteroid (2114) Wallenquist, as a function of time over 100 000 years.

To understand the performance in the computation of mean elements, e.g., the mean semimajor
axis a’, let us chose an asteroid very close to the 2/1 mean motion resonance with Jupiter,
namely (2114) Wallenquist. This asteroid has values of a lower then the one corresponding to
the resonance, thus n — 2ns > 0, but this divisor is very small.

The short periodic oscillations in the elements, especially in the osculating semimajor axis a,
are very large, see Figure 2.4, and would create difficulty in the family classification, actually
the highest values would place (2114) right in the Kirkwood gap, while the lowest values would
place this asteroid right in the middle of the family of (24) Themis.
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Figure 2.5: Mean semimajor axis, computed by an explicit first order theory, for the asteroid (2114) Wallen-
quist as a function of time over 100000 years.

The mean elements computed with the first order theory [Milani and Knezevié, 1990] exhibit
a lower excursion, in particular avoiding the values too close to the resonance, see Figure 2.5.
Still there are negative peaks with values > 0.02 au smaller than the average.

To understand this behavior, the best way is to look at the Figure 2.6 which allows to appreciate
the way the correction, which should approximate a’ — a, behaves as a changes. Indeed, if
osculating a has a large value, very close to the resonance, such as 3.24 au, then the divisor
n — 2ns is still positive but small, and from the y,/; term a correction containing —0dx2/1/0A
is introduced, containing the inverse of the divisor, thus quite large. But then this results in
overshooting, that is the computed value is @’ ~ 3.18 au, forming one of the negative peaks.

To the contrary, if the osculating value is a ~ 3.18 au, then the divisor is much larger and the
correction results in an undershooting, that is it is not enough to bring the computed a’ to the
intuitively right value, which should be just above 3.20 au.

The above empirical observation of the behavior of the computation of a’ by a first order theory
suggests a method which could give better results [Milani and Knezevi¢, 1999]. Let us suppose
that we knew the values of the mean semimajor axes, both for the planet and for the asteroid,
namely af; and @, thus we can compute the values of the mean mean motion for both, nf and
n’; then the divisor would have a value n' —2n{ which would change little with time. Then we
could use a value of x5/ containing the divisor as n’ —2nj, and the computed correction could
be subtracted from @’ to give a with better accuracy. (We assume here we know af, although to
compute it a similar argument should be applied, taking into account the perturbations from
the other planets.)

This is not an algorithm for computing @', since we use its value to start with. However, if we
assume we know the map
o X2 (A, X)

A=A B\ :
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Figure 2.6: Mean semimajor axis, computed by an explicit first order theory, and osculating semimajor axis
for the asteroid (2114) Wallenquist, over a time span of 100000 years.

and that it is close to the identity, its inverse can be computed by using the fixed point method!®,
that is an iterative procedure starting from A©® = A and A®) = X\ with recursive equation

\(k) \
_ Dxen (AW, A0) AED — ) Dot (A, X)) :

o\ ’ OA

For € small enough the iterations may converge, then the limit for & — +o0o0 would give (A’, \').

A(k—l—l) — A

The formulas above are somewhat simplified, because in a real computation we cannot consider
just the resonant term, but also all the others, including the one with argument A — 2 A5 +
ws. The changes in the elements e, I between osculating and mean are relevant too, thus the
iteration should be done on all the coordinates, including A, while in the first order theory X\
does not need to be computed. Moreover, the convergence of the iterations cannot always be
guaranteed, e.g., if the divisor changes sign then divergent iterations can be expected; indeed,
there are resonant orbits, for which the divisor is permanently very close to zero.

The results of the iterative method are shown in Figure 2.7, which indicate there is still an
effect not completely removed by the iterations. However, the values of a’ at convergence are
closely clustered, and Figure 2.8 shows that, although not all the short periodic perturbations
have been removed, still the maximum excursion is now ~ 0.005 au, more than an order of
magnitude smaller than the excursion of the osculating a. For comparison, the mean semimajor
axis computed by digital filtering, plotted in Figure 4.3, clearly shows the higher order long
period changes, which are of the same nature as those for (24) Themis but almost an order of
magnitude stronger, due to the asteroid being closer to the 2/1 resonance.

16[Milani and Knezevi¢, 1999] have actually tested several different methods, finding that the iterative fixed
point method best suits this specific application.
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Figure 2.7: Mean semimajor axis, computed by an iterative theory, and osculating semimajor axis for the
asteroid (2114) Wallenquist, over a time span of 100000 years.

A more global view of the situation with the computation of mean elements can be appreciated
from Figure 2.9, where crosses mark values of mean (a’, ¢’) for which the computation with the
first order theory and with the iterative theory results in a difference > 1073 au in /. The
location of the crosses near the main Kirkwood gaps excavated by the strongest resonances
indicates that the simple model, based on just the largest resonant term, used above is a
correct qualitative explanation.

All the above is a purely empirical argument, and indeed it leaves many open problems: first
and most important, why should a computation of the inverse map @’ — a work better than
the computation of a — d’, the one we are actually looking for? Does this contradict the
statement we have made previously that the map defined by the determining function —x(z’)
is the inverse of the one defined by x(z)?

In fact we have shown that the main term x5/, has a very different values when computed in
the mean elements space. How can a smooth function y have zero derivative with respect to
the one-parameter group of transformations determined by itself, that is {x, x} = 0, and then
not be invariant? The answer, of course, is that y(z) does not exist at all as a smooth function,
but only as a formal series. In fact, y(z’) might be in some sense better defined. To understand
all these apparent paradoxes, please wait until Chapter 6.
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Figure 2.8: Mean semimajor axis, computed by an iterative theory, for the asteroid (2114) Wallenquist, as a
function of time over 100 000 years.
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Figure 2.9: The mean semimajor axis and mean eccentricity computed for 13,345 asteroids. The crosses
indicate cases in which the difference between the mean a computed by a first order theory and the one
computed with an iterative theory exceeds 0.001 au. These cases are concentrated near the 2/1, 3/2 and 5/2
resonances with Jupiter, and in the outer part of the main belt, where there are many mean motion resonances.
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IL PROBLEMA RISTRETTO
DEI TRE CORPI

Il problema che intendo trattare qui si riallaccia idealmente alla discussione del capi-
tolo 2. Avendo studiato in dettaglio la dinamica di un sistema a due corpi sembrerebbe
naturale, volendo procedere passo passo senza gettarsi immediatamente nello studio
del problema planetario in forma generale, tentare anzitutto di studiare un problema
a tre corpi. A tale conclusione, dopotutto, era gia arrivato Lagrange, che pur avendo
ottenuto i brillanti risultati sulle perturbazioni secolari che ho esposto nel capitolo 6,
non aveva rinunciato all’idea di cercare soluzioni in forma generale, e aveva appunto
iniziato con uno studio accurato del problema dei tre corpi, proseguendo delle ricerche
gia iniziate da Eulero.

Lasciando la discussione del problema generale pe il capitolo successivo, mi oc-
cupero qui del problema ristretto dei tre corpi. Si tratta di una versione per cosi dire
semplificata del problema generale. B appena il caso di sottolineare che 1’aggettivo
“semplificata” non ¢ da intendersi nel senso di “semplice”: ¢ vero che il numero di
gradi di liberta viene ridotto in modo drastico, ma cio serve solo a ridurre la comp-
lessita del calcolo, e non le reali difficolta che restano tutte ben presenti.

Il problema si enuncia come segue.

Due punti materiali, detti corpi primari, si muovono nello spazio su
un’orbita Kepleriana (ellittica o circolare). Un terzo punto P di massa
trascurabile rispetto ai primi due, detto planetoide, si muove sotto 1’azione
della forza Newtoniana esercitata dai primari, senza influenzarne il movi-
mento. Si chiede di studiare la dinamica del punto P.

In altre parole, si suppone che i primari si comportino come un sistema a due corpi la
cui dinamica non viene influenzata dal planetoide. A sua volta, il planetoide si muove
sotto ’azione di un ambiente esterno, rappresentato appunto dai primari.
Nell’ambito della Meccanica Celeste il problema dei tre corpi si presenta come lo
schema pit naturale in cui inquadrare, almeno in prima approssimazione, problemi
quali il moto dei pianeti interni all’orbita di Giove (Mercurio, Venere, Terra, Marte)
o degli asteroidi quando si tenga conto dell’azione di Giove e del Sole. Si tratta ovvi-
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amente di un’approssimazione: si assume che le perturbazioni piu consistenti siano
dovute al pianeta di maggior massa, ossia Giove, ignorando gli effetti dovuti a Saturno,
Urano e Nettuno. Nel caso dei pianeti interni e degli asteroidi della fascia principale cio
puo giustificarsi ulteriormente in considerazione del fatto che gli altri pianeti maggiori
sono molto piu lontani di Giove. Lo schema del modello ristretto puo applicarsi anche
allo studio della dinamica dei satelliti naturali e artificali.

Si possono considerare diverse varianti. Si distingue anzitutto il caso circolare,
in cui i due primari ruotano a velocita uniforme rispetto al baricentro comune, dal
caso ellittico. Si distingue poi il caso piano, in cui il planetoide ¢ vincolato a muoversi
nel piano dell’orbita dei primari, da quello spaziale. Combinando tra loro queste due
scelte si hanno quattro casi possibili, e comunque tutti non integrabili (o, per essere
pignoli, non integrati).

7.1 L’Hamiltoniana e le equazioni

Iniziamo con lo scrivere le equazioni del problema ristretto circolare in forma Hamilto-
niana. A tal fine e particolarmente comodo far uso di un sistema di riferimento in cui
i primari occupino delle posizioni fisse. Inoltre ¢ conveniente fissare le unita di misura
in modo da minimizzare il numero di costanti.

7.1.1 Scelta delle unita di misura

E uso comune, del resto conveniente, scegliere le unita di misura in modo da ricondurre
il problema alla forma piti semplice possibile. Come misura di lunghezza si sceglie il
semiasse maggiore dell’orbita kepleriana dei primari, che nel caso circolare ¢ la distanza
tra i due. Si sceglie poi I'unita di massa pari alla somma delle masse dei primari (quella
del planetoide ¢ trascurabile), e si denota con p la massa di uno dei due primari
(solitamente la piu piccola), sicché I’altra massa risulta essere 1 — p. Infine si pone la
costante di gravitazione G = 1, il che equivale a fissare I'unita di tempo.

Ricordiamo che per la soluzione Kepleriana del problema dei due corpi vale la
relazione tra semiassi e periodi

a®  G(my+my)

T2 472 ’
dove mi, mo sono le masse. Ne segue che nelle unita di misura che abbiamo scelto
la soluzione Kepleriana circolare per il moto dei due primari ha periodo T = 27, e
dunque frequenza angolare w = 1.

7.1.2 L’Hamiltoniana e le equazioni canoniche nel caso circolare

Il procedimento tradizionale, e in effetti anche il piti comodo, consiste nel considerare
un sistema di riferimento solidale coi primari, e quindi in moto rotatorio uniforme
attorno al baricentro dei primari. In questo sistema di riferimento si pongono le due
masse sull’asse z, con la massa maggiore dal lato positivo, come illustrato in figura 7.1.
Dunque, la massa 1 — u occupa la coordinata p e la massa p occupa la posizione —1+
sull’asse x.
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Figura 7.1. Ad illustrazione del problema dei tre corpi nel caso ristretto, cir-
colare e piano.

Consideriamo anzitutto un sistema di riferimento fisso, e denotiamo con &, 7, ¢
le coordinate cartesiane del planetoide. In un primo momento scriviamo in modo
esplicito tutte le costanti, riservandoci di tener conto piu avanti della scelta delle
unita di misura. L’Hamiltoniana si scrive

1
(7.1) H(&,m, ¢ pe, pyy pest) = %@2 + 0+ )+ V(E ¢ t)

L’energia potenziale ¢ quella gravitazionale, e sara la somma dei due termini dovuti
all’interazione del planetoide con i primari, ossia

G(1—pym _ Gum
1 r2

(7.2) V=-—

dove ry e la distanza tra il planetoide e il primario di massa 1 — p e ro la distanza
dal secondo primario. La dipendenza dal tempo deriva dal movimento dei due primari
nel sistema di riferimento assoluto. QQui non serve scrivere 1’espressione esplicita della
distanza: vedremo subito che nel sistema rotante la forma e alquanto pit semplice, e
si scrive in modo diretto.

Dette x,y, z le coordinate in un sistema di riferimento rotante uniformemente in
senso antiorario intorno all’asse ( con velocita angolare w, e scegliendo 1’origine del
sistema rotante coincidente con quella del sistema fisso (sicché gli assi z e ¢ coincidono)
si hanno le relazioni geometriche

(7.3) £ =xcoswt—ysinwt, n=uzsinwt+ycoswt, (=z,
e le relazioni inverse
xr=~&coswt+nsinwt, y=—Esinwt+ncoswt, z=(.

Si tratta di una trasformazione puntuale dipendente dal tempo, e possiamo estenderla
a trasformazione canonica mediante la funzione generatrice

S(PzsDys P2, &, M, C) = pe(§ coswt 4+ nsinwt) + p, (=& sinwt + ncoswt) + p.¢ ,
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ma dovremo ricordare che ’Hamiltoniana trasformata ¢ H + %, come abbiamo visto
nella proposizione 3.7. La trasformazione sui momenti si scrive

(7.4) Pe = Py cOSwt — pysinwt ,  p, = pysinwt + p,coswt , pc =p. .

Dobbiamo poi calcolare

08
ot
dove abbiamo sostituito la trasformazione (7.3) sulle coordinate.

Otteniamo dunque I’Hamiltoniana del problema circolare ristretto nel sistema
rotante (che con un piccolo abuso di notazione indicheremo ancora con H)

= wpy (=& sinwt + ncoswt) — wp, (€ coswt + nsinwt) = —wpyT + WPy -

1
H(2,y,2,p2: Dy, 02) = =—— (P2 + p5 + p2) — wapy + wyp,
2m
G(1—p)m Gum

V-t +22 V@t l-p)? 42
Nella scrittura dell’energia potenziale si e tenuto conto del fatto che nel sistema di
riferimento solidale con i primari questi occupano due posizioni fisse, con la massa
maggiore 1 — p nel punto (u,0,0) e la massa minore p nel punto (—1 + p,0,0). Ora
teniamo conto delle unita di misura che abbiamo scelto all’inizio, sicché porremo G = 1,
w = 1. Infine possiamo eliminare la massa m mediante la trasformazione di scala

Pz =mpy , Py =mp,, p.=mp,,

e lasciando inalterate le coordinate x,y,z. La trasformazione non & canonica in
senso stretto, e occorre dividere per m I'Hamiltoniana trasformata (si veda il para-
grafo 3.2.1). Nel nostro caso cio corrisponde di fatto ad eliminare un fattore m comune
a tutti i termini, sicché si ottiene (rimuovendo gli apici) la forma comunemente usata

1
H(2,y,2,ps, Py =) = 5 (P2 + Py +P2) = 2Py + Ypa
_ 1—p _ L

V-2 +y2+22 e+l -p)2ry2+22

Scriviamo infine le equazioni canoniche

(7.5)

T=py+y
y:py_x
é:pz
b= o I-—pw@—p) px+1—p)
(7.6) S e AR (CR R VI CE R CR D
. (1—p)y 1y
[(x — p)? +y? + 27 [(x+1—p)?+y?+ 22
S (1 —p)2 _ w2
ps = 57 75 -

[(z = p)? +y? + 2] [(z+1—p)?+y?+ 2]
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Si vede subito che ponendo come dati iniziali z(0) = 0 e p,(0) = 0, con dati
arbitrari per la altre variabili, allora la terza e I'ultima equazione hanno la soluzione
banale z(t) = 0, p.(t) = 0. In tal caso ci si riduce a considerare il problema piano,
descritto dalle sole equazioni

x.:pm+y
y:py_x
: (1—p)(z—p) plx+1—p)
7.7 r = y 2 2
S s T e R
o (1-wy B 1y
Dy = —Da

(@ — w2+ 2% [(r+1-pw2+y2*?

72 Gli equilibri lagrangiani

Vogliémgo ora cercare le soluzioni di equilibrio per il sistema (7.6). Dal momento che
le equaziwpi per z, p, ammettono z = p, = 0 come unico punto di equilibrio potremo
restringere‘lq nostra attenzione al problema piano, come descritto dalle equazioni (7.7).
Il lettore noté‘r@ che gli equilibri sono le posizioni in cui il planetoide sta fermo in un
sistema di riferithento che ruota uniformemente. Nel sistema fisso si vedranno i tre
corpi girare con veIOg}ta uniforme mantenendo la stessa posizione relativa.

)
)

7.2.1 Calcolo degli eqﬁ"rl.i‘bri relativi

. .9, . . . . . .
Occorre annullare i secondi Wembri delle equazioni. Ponendo & = 3 = 0 otteniamo
.

)
)
)

p“i:_y’ by = .

Le altre due equazioni diventano s,
-

Q- patlop)

7“3 ~ 7“3
(7.8) ! L
A=y my _
U 3% 3 Yo
T, T2
dove .
(7.9) M=@—pn)’+y’, rB=(+1-+y°
sono le distanze del planetoide dai due primari. “\‘
Per il seguito ¢ conveniente anche fattorizzare z e y al numebgtore, e riscrivere le
equazioni nella forma .
1— 11
x(1——3“—ﬂ3)+u(1_u)<_3——3):0

L} ) T Ty RN

(7.10) .
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where ay, ..., a, are the Liouville coordinates conjugated to ®.

Proof. (i) The functions ¥ are independent in view of condition (3.15);
moreover, they are obviously in involution, being functions only of ®.
(ii) Recall the extended point transformation, Example 2.25. The generating

function is written as
B) =) T;(®)B;
j=1
from which (3.16) immediately follows. Q.E.

3.2 Liouville’s Theorem

For a generic system of differential equations on an n-dimensional manifold a
complete integration by quadrature can be performed when n—1 independent
first integrals are known, n being the dimension of the space. Thus, one
expects that in the Hamiltonian case, the dimension of phase space being 2n,
one needs 2n —1 first integrals. However, the canonical structure allows us to
perform the complete integration if only n first integrals are known, provided
that they fulfil the further condition of being in involution. The proof exploits
Liouville’s canonical coordinates introduced by Proposition 3.12.

Theorem 3.15: Assume that an autonomous canonical system with n de-
grees of freedom and with Hamiltonian H(q,p) possesses n independent first
integrals {®1(q, p), - .., ®r(q,p)} forming a complete involution system. Then
the system is integrable by quadratures. More precisely, one can construct the
generating function S(®,q) of a canonical transformation (g,p) = x(c, ?)
such that the transformed Hamiltonian depends only on the new momenta

®,,...,P,, and the solutions are expressed as
OH
(3'17) a] (t) a.’lvo + ta? El J == 17 * L,
I 1(®12,05+®n,0)
with a; o and @0 determined by the initial data.
Pre sition 3.12 there is a canonical transformatlon (g,p) =

x(a, <I>) such that @4, ..., ®, are the new momen
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(i) Find the cyclesv; (j =1,...,n).
(ii) Compute the actlon varlables by quadrature, calculatnncr the ing

integration of th€ system via Liouville’s algorithm applied to the involution
., ®,. However, in the most commonly considered examples the
integrals have a nice form, so that the cycles are easily determined.

3.5 The Arnold—Jost Theorem

We turn now to the statement of the of Arnold—Jost Theorem.

Theorem 3.34: Let the Hamiltonian H(q,p) on the phase space % possess
an involution system @, ...,®, of first integrals (so that it is integrable in
Liouville’s sense). Let ¢ = (c1,...,¢n) € R™ be such that the level surface
determined by the equations ®;(q,p) = ci,...,Pn(q,p) = ¢, contains a
compact and connected component M,. Then in a neighbourhood U of M,
there are canonical action-angle coordinates I,Y mapping ¥ xT™ to U, where
¥ € R™ is an open set, such that the Hamiltonian depends only on Iy, ..., I,,
and the corresponding flow is

ﬁj(t)=’l9j,o+tw_-i(I1’o,...,In,o) s Ij(t‘)z o, J=1,...,n,

where 90 and I are the initial data, and w; = Z4.
The proof is a straightforward application of Proposition 3.31. Just proceed
as in the proof of Liouville’s theorem, using the actions I,...,I, as first

integrals.

3.6 Delaunay Variables for the Keplerian Problem

A remarkable application of the Arnold—Jost Theorem is the calculation of
action-angle variables for the motion in a central field of force, with particu-
lar reference to the case of the Keplerian potential.!> The latter problem

12 The action-angle variables for Kepler’s problem were discovered by Delaunay.
His aim was to replace the orbital elements of a Keplerian orbit, which were used
since Lagrange’s time in perturbation theory, with an appropriate set of canon-
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is known to possess four independent first integrals (see Examples 1.20
and 1.21). A complete involution system of first integrals has been con-
structed in Example 3.3. Let us recall that in spherical coordinates r, 9, ¢
with the conjugated momenta p., py, p, the functions are

sin®9 ’ 2m
where m is the mass of the point. In Kepler’s case the potential V() is

(3.53) V) =-2,

IO IR WA g
(3.52) J=p,, IM“=py+ E = p,.+r2 +V(r),

where k is a positive constant. We also recall the expression of the
Hamiltonian
2

1 2 p129 p(p
(3.54) 2m (pr * 2 + r2sin’ 9 Vit

this actually coincides with the third integral presented earlier when the
explicit expressions of I'? and J are substituted.

3.6.1 Determination of Cycles

We consider the canonical flows generated by the three functions (3.52).
The discussion here is quite plain, because each function involves only two
conjugated variables. This considerably simplifies the construction of cycles.

The function J is a trivially integrable Hamiltonian: the conjugate variable
 is actually an angle which parameterizes the cycle -,.

The function I'? can be considered as the Hamiltonian of a point with
unit mass, moving on the segment (0,7) under the action of the potential
V(9) = J?/sin?9. For I'2 > I'2. = J? the orbit in the phase plane ¥, py
is a closed line, giving the second cycle vy (see Fig. 3.10). Note that the
construction of the cycles v, and vy does not depend on the form of the
potential V (r).

The peculiar character of the Keplerian problem shows up when we come
to consider the third function. It represents the Hamiltonian of a point
moving on the half-line 7 > 0 under the action of the potential

2

V*(r) = +V(r) .

2mr2

In the Keplerian case, setting Emin = —mk?/(2I'?), the motion is bounded
for Eqmin < E < 0, while for E > 0 it is unbounded. In the former case

ical variables. A deduction of Delaunay variables using the Hamilton-Jacobi
method is found in Poincaré’s treatises [188] and (more detailed) [190]. The
calculation in the present notes reflects the exposition in M. Born’s book [28].
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Figure 3.10 The construction of the cycles vo and v for the problem
of motion in a central field under the Keplerian potential.

the orbit in the phase plane r,p, is a closed curve, and this gives the third
cycle v, (see Fig. 3.10). The cycle actually describes the motion of a planet
on an elliptic orbit, in full agreement with Kepler's first law. Conversely,
no cycle can be found for E > 0: the radial motion is unbounded, and the
invariant surface in phase space for the complete problem is not compact.
In the latter case, in agreement with Proposition 3.25, the invariant surface
is the product T? x R, and angular variables can be introduced only for the
cycles «,, and 7y. The orbit is either a parabola, for E = 0, or a hyperbola,
for £ > 0.

3.6.2 Construction of the Action Variables

Here we restrict our consideration to the Keplerian potential, with the con-
dition E,i, < E < 0. By inversion of (3.52) we get
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= [omE-vi) -5

(3.55) 2 \}
Dy = (FZ - & ) P

« 92
sin® 9

p(p=c].

We should integrate the differential form p, dr+py d+p,, dyp over the cycles
Vo> Yo and .. This gives the actions I,, Iy and I as functions of J, I" and
E | namely

1
_[ = — =
=5 prdw J,
Iy = 1 ?{ d9=T—|J|
(3.56) 9= 5 4 ppdd = ;

1 m
. = — cdr = =T +ky/——— .
I oy %p dr + \/ 5E

The explicit expression as a function of the canonical coordinate is readily
found by replacing the expressions of J, I', and E in (3.52).

3.6.3 Delaunay variables

By a straightforward inversion of the third part of (3.56) we calculate the
Hamiltonian as

mk?2

AR T AT

It is immediately seen that the Hamiltonian actually depends on the sum of
the action variables. This implies that the three frequencies of the system
coincide, which justifies the fact that in the Keplerian description of the
planetary motion only one frequency does actually appear. A better set
of action variables is constructed by introducing the variables of Delaunay
L, G, © defined by the linear transformation

L=1I+1Iy+|I,|,
(3.58) G=1ILy+|I,|,

8 =l -
It is immediately clear that G and © coincide with I and J, respectively.
Since the transformation is performed via a unimodular matrix, the corre-

sponding transformation on the angles preserves the periods, as stated by
Lemma 3.33. The Hamiltonian in Delaunay’s variables takes the form

(3.57) H=
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mk?

252
Denoting by ¢, g, h the angles conjugated to the actions G, G, ©, we can
write Hamilton’s equations as

(3.59) = —

. mk2 L
Thus, the motion is periodic with a single frequency
mk?

3.6.4 Construction of the Angle Variables

The canonical transformation should now be completed by constructing the
angle variables associated to the actions L, G and ©. To this end we must
first write the generating function

S = /(prdr + pyd? + p,dp)

%2 omk
:/ - +ﬂ——d +/\/G2 — d19+/®dcp

The angle variables are then given by
‘2 k‘2

f=22 =

/ \/ m2k? _|_2mk S ’
. G/ dd /
g_ G2 — 62 \/ m"’k:2 +2mk G2 ’

sm-

of o
sin?9,/G2 — ﬁ;—ﬁ Y

Thus, the calculation of the angle variables is reduced to a quadrature; the
actual calculation presents minor differences with respect to the case of the
integrals (3.55).

It may also be useful to recall the relation between the Delaunay actions
and the so called orbital elements. Without entering into the details, here
are the relations:

(3.60) L=vVmka, G=LV1-¢€¢2, ©=Gcost,

where a is the semimajor axis, e is the eccentricity, and ¢ is the inclination of
the orbital plane. Concerning the conjugated angles: £ is the so-called mean
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anomaly, namely an angle which evolves uniformly, thus averaging in some
sense the true anomaly, which is the angle giving the actual position of the
planet with respect to the Sun; the angles g and h are the longitude of the
perihelion and the longitude of the node, respectively.

3.7 The Linear Chain

In the first half of the eighteenth century, a strong discussion arose about
the dynamics of a string with fixed ends, for example, a string of a musical
instrument such as a harpsichord. Among the mathematicians involved in
the discuss\m)?l we find Daniel Bernoulli and Jean le Rond D’Alembert. It
was in this congection that D’ Alembert discovered the string equation known
under his name&id found the solution which describes the wave propagation
along an infinite string. The problem relates to the one of propagation of
sound, already raised by Newton ([182], Liber II, sect. VIII). In the case
of a string with fixed ends, the problem under discussion was whether the
solution could be writteh_as a superposition of sinusoidal stationary waves
with shape sin k%, where Y, is the length of the string (see [134], §25).
Lagrange had written two, long memoirs on the subject of propagation
of sound [132][133]. Concernin}, the problem of the string with fixed ends,
he exploited Newton’s idea of investigating the dynamics of particles. In a
further memoir [134] he started hisNinvestigations introducing a discrete ap-
proximation of the continuous string\representing it as a system of N + 2
particles on a line, with the two particles at the ends kept fixed and subject
to a first-neighbours interaction, as represented in Fig. 3.11. The simplify-
ing hypothesis is assumed that the particles move orthogonally to the rest
line. Moreover, the interaction between two neighbouring particles is uniform
along the whole chain. Therefore, by symmetry\the equilibrium configura-
tion is the one with the jth particle placed at distance J—V% from, say, the
left end, where L is the length of the string, and the configuration of the
chain is determined by the vertical displacement z;. Thus, denoting by y;
the canonical momentum conjugated to x;, the equations\may be written as
a canonical system with Hamiltonian

N N
S+ Vizjp—z;), wo(t)=2zneNt) =0.
i=1

Jj=0

(361) Hz,y) =

N —

The simplest choice, made by Lagrange, consists in assuming an el
teraction, namely substituting V(r) = kr2/2 in Eq. (3.61), with a constant
k which we may set to one, for simplicity. We are thus led to study tke
quadratic Hamiltonian
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ii) They will have only one degree of freedom, i.e. H(v,z). In this case
Hamiltonian system is integrable because it has one consta motion,

le because it has n independent constants of
Uly- -y Uk—1y Uk+1,---,VUn and H. The motion evolves
g the value of vy, ..., Vk—1,Vk+1,-- -, Un, and follows level curves
‘H on the plane (vg, zk).

1.9 Action—angle variables

For integrable Hamiltonian systems, of crucial importance is the Arnold-
Liouville theorem, an extension of Liouville’s theorem (see Section 1.8) found
by Arnold (1963a).. Arnold proved that, in the hypotheses of Liouville’s the-
orem and if the n-dimensional surface implicitly defined by the constants of
motion ®q,...,P, is compact, it is then possible to introduce canonical mo-
menta p and coordinates q such that

i) The coordinates q,-..,q, are angles, cyclically defined on the interval
[0, 2], and the canonical transformation from the original momenta and
coordinates, i.e. v(p,q),x(p,q), is 2r-periodic on the angles q1,...,qx-

ii) In the new variables, the Hamiltonian is a function of the momenta p
only, i.e. H =H(p).

The momenta p are usually called the actions of the system. A set of canonical
variables (p, q), where the coordinates q are angles will be generically called
action—-angle variables. Although action—angle variables had been previously
used by several authors (Epstein, 1916; Sommerfeld, 1922; Born, 1927) on
specific problems, the Arnold-Liouville theorem is very important because it
shows that basically any integrable Hamiltonian can be written, in suitable
action—angle variables, as a function of the sole actions. Therefore, in the light
of the Arnold-Liouville theorem, one can generically represent the integrable
Hamiltonians by functions H(p), and work out the general theory of quasi-
integrable Hamiltonian dynamics in action-angle variables — as will be done
hereafter in this book.

Moreover, the proof of the Arnold-Liouville theorem also provides a con-
structive recipe for the introduction of action—angle variables in practical cases.
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The existence of n constants of motion for an n-degree of freedom Hamilto-
nian system ensures that the motion evolves on an n-dimensional surface Mg
embedded in 2n-dimensional phase space. The fact that {®;,®;} =0 for i # j
ensures that the motion can be decomposed in n independent flows, generated
by the functions @, ..., ®,, each considered as a one-degree of freedom Hamil-
tonian. This means that the evolution of the motion at time ¢, i.e. v(t),x(¢),
can be obtained following the flow of ®; for a time ¢, from the initial condition
v(0),x(0) to a point vi,x1, then following the flow of ®5 for a time ¢, from
vi,X; to another point va, X9, and so on. The final point v,,x, will coin-
cide with v(t),x(t). The condition that the surface Mg is compact implies
that the individual flows of ®;,...,®,, and hence the global motion, can be
decomposed into independent periodic cycles, which we denote by v1,...,7x.
The actions p are then introduced by

1 n
=5 7{ > vjda; . (1.55)
v

ij=1

Then, writing v as functions of p and x, the integral generating function

S(p,x) = / S v;(p, x)dz; (1.56)
j=1
is defined, and the new coordinates q are introduced as
as
= —\P,X) . 1.57
%= 5 (p,x) (1.57)

The transformation (v,x) — (p,q) so defined is of the form (1.41) and there-
fore is, by construction, canonical. One can prove that qi, ..., g, are angles,
namely g; is increased by 27 when a complete cycle +y; is followed, and that
the Hamiltonian H is dependent on the actions p only (see Arnold, 1963a).

1 Delaunay variables

As an example 0 lication of the Arnold-Liouville theorem, let’s proceed
to introduce the action—an riables for the integrable Hamiltonian of the
two-body problem. They will be the variables that we will later use to study
the dynamics of the restricted problem and o anetary problem using
Hamiltonian perturbation techniques. We follow here the ach of Born
(1927), elaborated for the equivalent problem of classical motion of an'e
around the core of the hydrogen atom.
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