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THE N–BODY PROBLEM

This chapter presents the basic theory of the gravitational N -body problem,
the coordinate systems used for both theoretical investigations and practical
applications, and how to select the dynamical model for a Solar System orbit.

4.1 Equation of motion and integrals
By (N+1)-body problem we mean the ordinary differential equation defining
the motion of N +1 point masses with positions rj , velocities ṙj , and masses
mj , interacting only through the mutual gravitational attraction

mj r̈j =
∑

i !=j

Gmimj

|ri − rj |3
(ri − rj), j = 0, . . . , N (4.1)

where the dots indicate time derivatives and G is the universal gravitational
constant; this is the equation of motion in Newtonian form. We need to
express it in another form, more suitable both to discuss symmetries and in-
tegrals and to perform coordinate changes. The mutual gravitational forces
admit a potential, thus we can define the potential energy

V = −
∑

0≤i<j≤N

G mi mj

|ri − rj |
;

we introduce the kinetic energy T and the Lagrange function (or
Lagrangian) L:

T =
1
2

N∑

i=0

mi |ṙi|2, L = T − V. (4.2)

The Newton equation of motion is equivalent to the Lagrange equation

d

dt

(
∂L

∂ṙj

)
− ∂L

∂rj
= 0 (4.3)
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34 THE N–BODY PROBLEM

with two important properties. The first one has to do with integrals of
motion, the second is discussed in Section 4.2. A first integral of the
Lagrange equation (4.3) is a function of all the positions and velocities

I = I(R, Ṙ), R = (r0, r1, . . . , rN ), Ṙ = (ṙ0, ṙ1, . . . , ṙN )

such that the total time derivative along the solutions is identically zero:

dI

dt
=

∂I

∂R
Ṙ +

∂I

∂Ṙ
R̈ = 0;

thus the value of I is constant along the orbits.

Symmetries and integrals

A one-parameter group of symmetries of the Lagrange function L is a
diffeomorphism Fs of the positions R depending (in a differentiable way)
upon a parameter s ∈ R so that Fs ◦Fz = Fs+z and the Lagrange function
is invariant:

L

(
Fs(R),

d

dt
F s(R)

)
= L

(
Fs(R),

∂Fs

∂R
Ṙ

)
= L(R, Ṙ).

F 0 is the identity transformation; we also assume the mixed derivatives
∂2Fs/∂R∂s are continuous. A local one-parameter group of symmetries of
the Lagrange function is defined by the same properties for s in a neighbor-
hood of 0. The main result we need is the Noether theorem, stating that if
the Lagrange function L admits a local one-parameter group of symmetries
Fs then

I(R, Ṙ) =
∂L

∂Ṙ
· ∂Fs(R)

∂s

∣∣∣∣
s=0

(4.4)

is a first integral of the Lagrange equation (4.3).
To apply this theorem to the (N + 1)-body problem we look for symme-

tries of the Lagrange function in (4.2), a function of the mutual distances
|ri−rj | and of the velocities |ṙj |. Thus every isometry of the space of posi-
tions, preserving distances and independent of time, preserves the Lagrange
function. The isometries of the Euclidean space R3 are the functions

G(x) = R x + q,
dG

dt
(x) = R ẋ,

where R is an orthogonal matrix (RT R = I) and q a constant vector, both
independent of time. The symmetry group of three-dimensional space has




























































































































4.1 Equation of motion and integrals 35

dimension 6 and is generated by six one-parameter subgroups.1 There are
three one-parameter symmetry groups of translations (R = I):

Fs(x) = x + s v̂h,
∂Fs(x)

∂s
= v̂h

where v̂h is the unit vector along one coordinate axis, for h = 1, 2, 3. If
equal translations are applied to all bodies, then the integral of (4.4) is

ph = v̂h ·
N∑

j=0

mj ṙj ,

the component along the axis v̂h of the total linear momentum p. The
latter is a vector integral, and the center of mass b0 moves with constant
velocity:

b0 =
1

M0

N∑

j=0

mj rj ; M0 =
N∑

j=0

mj (total mass); b0(t) =
t

M0
p + b0(0).

(4.5)
In the above formula, b0(0) is a constant vector which can be obtained as
a combination of positions and velocities, but with coefficients depending
upon time: each of its components is a time-dependent first integral.

The other three one-parameter symmetry groups are groups of rotations
(q = 0). A three-dimensional x rotates by an angle of s radians around an
axis v̂h; the rotation is counterclockwise for s > 0, as seen from the tip of
v̂h,

Fs(x) = Rsv̂h
x,

∂Fs(x)
∂s

∣∣∣∣
s=0

= v̂h × x

and the integral of the Noether theorem

ch =
N∑

j=0

(v̂h × rj) · mj ṙj = v̂h ·
N∑

j=0

mj (rj × ṙj)

is the component along v̂h of the total angular momentum

c =
N∑

j=0

mj (rj × ṙj) , (4.6)

thus the motion preserves the angular momentum vector integral.
There is one additional integral, the total energy integral, which is not

deduced from the Noether theorem.2 By computing the total time deriva-
1 The tangent space to the unit element, the Lie Algebra, is generated by the tangents to these

subgroups. Only orientation preserving isometries are included in the one-parameter subgroups.
2 It could be interpreted, with the Hamiltonian formalism, as a consequence of the invariance

with respect to time, thus it corresponds to the symmetry t #→ t + s.




























































































































36 THE N–BODY PROBLEM

tives

dT

dt
=

N∑

j=0

mj r̈j · ṙj ,
dV

dt
=

N∑

j=0

∂V

∂rj
· ṙj

and by eq. (4.1) they are opposite, thus E = T + V is a first integral.
There is one additional symmetry in the (N + 1)-body problem, which

involves not only the coordinates but also the time and possibly the masses:
the change of scale. It is also associated with a first integral, which is not
independent of the previous ones. If the lengths are changed by a factor λ,
the times by a factor τ , the masses by a factor µ, then

mj r̈j %→
µ λ

τ 2 mj r̈j ,
∂V

∂rj
%→ µ2

λ2
∂V

∂rj
,

and the equation of motion is satisfied by the scaled orbits if and only if

λ3 = µ τ 2, (4.7)

the dimensional version of Kepler’s third law. If τ = 1 it is possible to scale
the lengths compensating with a scaling of the masses λ3 = µ; this may
imply the impossibility of determining masses and lengths (see Section 6.2).

When a scaling with λ3 = µ τ 2 is applied, the energy integral is scaled

T %→ µλ2

τ 2 T, V %→ µ2

λ
V =⇒ E %→ µλ2

τ 2 E

and the angular momentum vector integral scales as c %→ µλ2/τ c, thus the
combination E c2, where c = |c|, scales as

E c2 %→ µλ2

τ 2
µ2λ4

τ 2 E c2 = µ5 E c2;

thus E c2 is invariant if µ = 1, that is, if masses are not scaled.
A deep result obtained by the celestial mechanicians of the late nineteenth

century states that for N ≥ 3 there are no first integrals in the (N + 1)-
body problem independent of the 10 classical ones of the linear and angular
momentum and total energy (seven time independent and three time depen-
dent).

4.2 Coordinate changes
The first integrals have to be exploited to reduce the dimensionality of the
equation of motion, and this is for two reasons. First, the dimensions 3N +3
of the configuration space, and 6N +6 of the phase space (of the initial con-
ditions), are too large to understand the properties of the solutions. Second,
the symmetries associated with the integrals may result in degeneracy of the




























































































































4.2 Coordinate changes 37

orbit determination problem, as discussed in Chapter 6; one of the possible
remedies is to decrease the number of variables. Also for the above purpose,
we need to know how the equation of motion transforms under a coordinate
change: this is easier for the Lagrange equation.

Let B = (b0,b1, . . . ,bn) be another set of coordinates for the positions
of the N + 1 bodies, and R = R(B) a coordinate change which is a diffeo-
morphism (with continuous second derivatives) of the (3N +3)-dimensional
space; we are thus assuming that the Jacobian matrix A(B) = ∂R/∂B is
invertible at each point B. The corresponding change in the velocities is

Ṙ =
∂R
∂B

(B) Ḃ = A(B) Ḃ.

Let L(R, Ṙ), L(B, Ḃ) be Lagrange functions corresponding by value:

L(B, Ḃ) = L
(
R(B), Ṙ(B, Ḃ)

)
= L

(
R(B), A(B) Ḃ

)
;

then the left-hand side of the Lagrange equation is transformed as follows:

d

dt

(
∂L
∂Ḃ

)
− ∂L

∂B
=

[
d

dt

(
∂L

∂Ṙ

)
− ∂L

∂R

]
A(B). (4.8)

The Lagrange equations in the two coordinate systems are equivalent

d

dt

(
∂L
∂Ḃ

)
− ∂L

∂B
= 0 ⇐⇒ d

dt

(
∂L

∂Ṙ

)
− ∂L

∂R
= 0;

solutions of one are transformed by R = R(B) into solutions of the other.

Reduction of the two-body problem

We shall start from the simplest case, the two-body problem, to get some
ideas to be exploited in the general case. The Lagrange function is

L =
1
2
m0 |ṙ0|2 +

1
2
m1 |ṙ1|2 +

Gm0 m1

|r0 − r1|
.

We can change coordinates by using, in place of r0, r1, the coordinates of
the center of mass and the relative position of r1 with respect to r0

b0 = µ1 r1 + (1 − µ1)r0, µ1 =
m1

m0 + m1
, b1 = r1 − r0. (4.9)

Then V = V(b1) = −Gm0m1/b1, with b1 = |b1|; to write T as a function of
b0,b1 we express ṙ0 and ṙ1 as a function of ḃ0, ḃ1 and substitute in T :

2T = m0 ṙ2
0 + m1 ṙ2

1 = (m0 + m1) ḃ2
0 +

m0m1

m0 + m1
ḃ2

1




























































































































38 THE N–BODY PROBLEM

the mixed terms canceling. The Lagrange function as a function of b0,b1 is

L =
1
2

M0 ḃ2
0 +

1
2

M1 ḃ2
1 +

GM0 M1

b1

with M0 = m0 + m1 the total mass and M1 the reduced mass:

M1 =
m0m1

m0 + m1
. (4.10)

Then the Lagrange function L can be decomposed as the sum of two La-
grange functions L = M0 L0(ḃ0) + M1 L1(b1, ḃ1), one containing only b0,
the other containing only b1, and the Lagrange equation decouples:

M0 b̈0 = 0, M1 b̈1 = −∂V(b1)
∂b1

.

The first equation states that the center of mass moves with constant velocity
along a straight line, the second equation is the Kepler problem, with a
particle of mass M1 attracted by a fixed center of mass M0.

By repeating the same computations done for T , we find that also the
angular momentum has a simple expression in the B coordinates:

c = m0 r0 × ṙ0 + m1 r1 × ṙ1 = M0 b0 × ḃ0 + M1 b1 × ḃ1.

When b0(t) from eq. (4.5) is substituted, the b0 contribution is constant

c0 = b0 × ḃ0 =
1

M0
b0(0) × p, c = M0 c0 + M1 c1

and the contribution from b1 is c1 = b1 × ḃ1, the angular momentum per
unit (reduced) mass of r1 with respect to the center r0, which is also a vector
first integral. Thus b1, ḃ1 will lie for each t in the orbital plane normal
to c1.

Solution of the two-body problem

The two-body problem has another vector integral, not occurring in the
N ≥ 3-body problem: the Laplace–Lenz vector

e =
1

GM0
ḃ1 × c1 −

1
b1

b1. (4.11)

This can be shown by using a reference frame formed by three mutually
orthogonal unit vectors, vz = c1/c1 (c1 = |c1|), vr = b1/b1, and vθ such
that ḃ1 ·vθ > 0. If θ is the angle between the vector vr and a fixed direction
in the orbital plane, and r = b1, we have

c1 = r vr ×
d

dt
(r vr) = r vr × (ṙ vr + rθ̇ vθ) = r2 θ̇ vr × vθ = r2 θ̇ vz ,




























































































































4.2 Coordinate changes 39

GM0 e = −r2 ṙ θ̇ vθ + (r3 θ̇2 − GM0) vr. (4.12)

Along the solutions we have

ċ1 = 0, 2ṙθ̇ + rθ̇2 = 0, r̈ = −GM0

r2 +
c2
1

r3 ,

so that

GM0 ė = b̈1 × c1 − G M0 θ̇ vθ = −G M0 θ̇ (vr × vz + vθ) = 0.

Thus e contains two integrals independent of c1 (not three because e·c1 = 0).
We define the true anomaly v as the angle between e and vr on the orbital
plane, that is

e cos v = e · vr =
r3 θ̇2

G M0
− 1 =

c2
1

GM0 r
− 1

where r2θ̇ = c1 is the (scalar) angular momentum of b1 and is constant.
From this we find the familiar formula of a conic section

r =
c2
1/GM0

1 + e cos v

and the interpretation of the two additional two-body integrals as eccen-
tricity e = |e| and argument of pericenter ω, that is the angle of e with
a fixed direction in the orbital plane, in such a way that θ = v + ω. The
eccentricity e is an integral depending upon angular momentum and energy.
The energy integral of the two-body problem in (b0,b1) coordinates is

E(B, Ḃ) = M0 E0 + M1 E1, E0 =
1
2
|ḃ0|2, E1 =

1
2
|ḃ1|2 −

GM0

|b1|

and the eccentricity squared, computed from eq. (4.12), is

e2 = e · e =
r4 θ̇2 ṙ2 +

(
r3 θ̇2 − G M0

)2

G2 M2
0

= 1 +
2 E1 c2

1
G2 M2

0
.

If the energy of the relative motion E1 is negative, then e < 1 and the
trajectory of b1 is an ellipse with semimajor axis

a =
q + Q

2
=

1
2

[
c2
1/GM0

1 + e
+

c2
1/GM0

1 − e

]
=

GM0

−2 E1
,

where q, Q are the pericenter and apocenter distances, and the scalar angular
momentum of the relative motion is c1 =

√
G M0 a (1 − e2). Formulae to

express explicitly the solutions of the two-body problem are available in
Appendix A.




























































































































40 THE N–BODY PROBLEM

4.3 Barycentric and heliocentric coordinates
The set of positions of the N + 1 bodies can be represented in different
coordinates; we are interested in the linear coordinate changes of the form

bj =
N∑

i=0

aji ri, A = (aji), i, j = 0, N (4.13)

where the matrix A is a function of the masses only. The purpose is to
exploit the integrals of the center of mass to reduce the number of equations,
generalizing the results of the two-body case. A natural choice is to use the
center of mass as b0, thus by (4.5) the first row of the matrix A is

a0i =
mi

M0
, i = 0, N. (4.14)

The choice of the other bi, i = 1, N , is not as simple as in the two-body case.
Different choices have different advantages, and can be used for different
purposes. We shall review in this and in the next section the most common
coordinate systems used for the (N + 1)-body problem.

Barycentric coordinates

The barycentric coordinate system uses the fact that a reference system
with a constant velocity translation with respect to an inertial system is
also inertial. Thus a reference system with b0 = 0 as origin and barycentric
positions bi = ri − b0 for i = 1, N is inertial, and the equation of motion
is the same as eq. (4.1). The change to barycentric is not just a change of
coordinates, but also a reduction of the dimension of the problem: we write
three differential equations less. The barycentric coordinates of body 0 (e.g.,
the Sun) are not dynamical variables, but are deduced from the coordinates
of the other bodies and b0, by eq. (4.5):

s = s(B) = r0 − b0 = −
N∑

i=1

mi

m0
bi, (4.15)

where the first term is assumed to be zero. The equation of motion is

mj b̈j =
N∑

i !=j,i=1

Gmi mj

|bi − bj |3
(bi − bj) +

Gm0 mj

|bj − s|3 (s − bj) j = 1, . . . , N

(4.16)
and can be written in conservative form

mj b̈j = −∂V(s,b1,b2, . . . ,bn)
∂bj

, j = 1, N,




























































































































4.3 Barycentric and heliocentric coordinates 41

with the potential energy V(B) = V (R(B)), where the partial derivatives
of V have to be computed before substituting s = s(B). The integrals of
energy and angular momentum have a less simple expression, including the
contributions from ṡ.

Barycentric coordinates are efficient to be used for numerical integrations:
only the 3N equations (4.16) have to be integrated, and the only additional
computation to be performed at each step is s according to (4.15). The
computed orbit does not need to be used in barycentric coordinates: to
change the output back to heliocentric coordinates is the normal procedure.

Barycentric coordinates need to be used when the inertial velocities are
directly observable: this is the case when the radial velocity of some star
is measured (either by radio astronomy, for pulsars, or by spectroscopy, for
normal stars). This is used to detect the small velocity of the star as a result
of the presence of a small companion, such as a planet, see Section 6.5. The
measured radial velocity is the difference between ṡ of the star and ḃ3 of
the Earth; to use heliocentric coordinates for the Earth would result in a
serious mistake.3 The barycentric coordinates also play a role in the general
relativistic corrections to the Newton equation, see Section 6.6.

On the other hand, barycentric coordinates are seldom used in analytical
developments and in theoretical discussions, because of the lack of symmetry
of the equation and of the less simple expressions for the classical integrals.

Heliocentric coordinates

A possible choice to represent the motion of planets and asteroids is the use
of heliocentric coordinates. These follow the same idea used in the two-
body case, eq. (4.9), namely use the motion of bodies j = 1, N relative to the
one with index 0, usually the Sun. Since m0 * mj, j = 1, N , the Sun moves
little, but this motion cannot be neglected in the differential equations. The
positions are thus represented by the vectors bi = ri − r0 and the equation
of motion can be simply derived from eq. (4.1), taking into account the
non-inertial frame, that is adding the apparent force exactly opposite to the
acceleration of the Sun times the mass of the body:

mj b̈j =
N∑

i !=j,i=0

G mi mj

|ri − rj |3
(ri − rj) − mj r̈0.

3 It would lead to a pretended discovery of a companion with a period of one year!




























































































































42 THE N–BODY PROBLEM

The equation can be written in terms of the heliocentric vectors, since they
contain only the differences bi − bj = ri − rj and bi = ri − r0

mj b̈j = −Gm0 mj

|bj |3
bj +

N∑

i !=j,i=1

Gmi mj

|bi − bj |3
(bi − bj) − mj r̈0.

The value of the acceleration of the Sun, resulting from the gravitational
attraction of all the planets, is obtained from eq. (4.1) for j = 0; by substi-
tuting into the equation and removing the common factor mj

b̈j = −Gm0

|bj |3
bj +

N∑

i !=j,i=1

G mi

|bi − bj |3
(bi − bj) −

N∑

i=1

Gmi

|bi|3
bi. (4.17)

The equations above allow us to compute a solution for each heliocentric
vector bi, i = 1, n, without the need to compute the position of the Sun in
an inertial frame. Taking into account that in the acceleration of the Sun
there is also a component due to the same planet

b̈j = −G (m0 + mj)
|bj |3

bj+
N∑

i !=j,i=1

G mi

|bi − bj |3
(bi−bj)−

N∑

i !=j,i=1

Gmi

|bi|3
bi. (4.18)

In this way the equation of motion is split into the two-body part, with the
planet orbiting around a fixed center with mass m0 +mj (as in the reduction
of a two-body problem with the Sun and the planet j only), the direct
perturbations by the attraction of the other planets, and the indirect
perturbations, resulting from the other planets accelerating the Sun.

The heliocentric coordinates are a natural choice for Solar System orbits.
The relative positions rj −rk = bj −bk generate the only quantities observ-
able inside our Solar System, e.g., the direction angles in optical astrometry
and the range and range-rate in radar observations. The center of mass b0
and the barycentric position s of the Sun are derived quantities containing
the mass ratios mj/m0. Thus, a catalog of asteroid orbital elements, com-
puted from Cartesian coordinates in a barycentric system, would contain
values dependent upon the planetary masses: every time the masses are
corrected, the catalog should be revised. If the orbital elements are com-
puted from heliocentric coordinates, there is no need for revision when the
estimated values of the planetary masses change, with the exception of the
asteroids having close approaches to a planet whose mass has been revised.




























































































































4.4 Jacobian coordinates 43

4.4 Jacobian coordinates

The Jacobian coordinates are obtained by selecting, among the linear
coordinate changes of the form (4.13), the ones with the center of mass as
first vector, thus fulfilling eq. (4.14), with the simplest equation of motion.
This requires a matrix A, thus a set of Jacobian vectors b0,b1,b2, . . . ,bN ,
and a set of reduced masses M0, M1, M2, . . . , MN with the properties

[1] the first vector b0 is the center of mass, M0 is the total mass;
[2] the Lagrange equation in the R coordinates is transformed into the

Lagrange equation in the Jacobian coordinates of the same form:

mi r̈i = −∂V

∂ri
⇐⇒ Mi b̈i = − ∂V

∂bi

where V(B) = V (R) is the potential energy in the Jacobian coordinates.

The conditions on A resulting from [1] are given in (4.14), the ones resulting
from [2] require that the kinetic energy remains in diagonal form:

2T =
N∑

i=0

mi |ṙi|2 =
N∑

j=0

Mj |ḃj |2;

then the Jacobian momentum is Mj ḃj and the equation is in the simple
form required by [2]. By substituting eq. (4.13) in the above formula

2T =
N∑

i,k=0

ṙi · ṙk

N∑

j=0

ajiMjajk =
N∑

i,k=0

ṙi · ṙk miδik

where δik = 1 for i = k, and δik = 0 for i += k. Thus the equations for A are

miδik =
N∑

j=0

ajiMjajk i, k = 0, N. (4.19)

In matrix form, if m, M are the diagonal matrices with the masses and the
reduced masses, respectively, as coefficients

m = diag[m0, m1, . . . , mN ], M = diag[M0, M1, . . . , MN ]

then eq. (4.19) can be written with AT , the transposed matrix

m = AT M A. (4.20)




























































































































44 THE N–BODY PROBLEM

The Jacobian coordinates have another property, which is a consequence
of [2]: the total angular momentum (4.6) has also a simple expression

c =
N∑

i=0

ri × mi ṙi =
N∑

j=0

bj × Mj ḃj ,

i.e., the total angular momentum of the (N +1)-body system is the angular
momentum of the free motion of the center of mass b0 × M0 ḃ0 plus the
sum of the angular momentum of the two-body subsystems bj × Mj ḃj ,
j = 1, . . . , N .

Equation (4.20) implies det(m) = det(M) det(A)2, where the determi-
nants of m, M are the product of all masses and the product of all reduced
masses, respectively. Thus [1] and [2] allow rescaling of the masses; a change
of orientation is also possible. To avoid this, two additional properties have
to be added to the definition of Jacobian coordinates:

[3] the product of the masses is equal to the product of the reduced masses

N∏

i=0

mi =
N∏

j=0

Mj ; (4.21)

[4] the linear transformation defined by A preserves orientation: det(A) > 0.

Properties [2], [3], and [4] imply det(A) = +1.

Existence and conditional uniqueness of Jacobian coordinates

If the transformation (4.13) fulfills [1], [2], [3], and [4], it defines a system
of Jacobian coordinates. Matrices A with all these properties exist but they
are not unique for a given N and for the given set of masses mi. To obtain
a unique selection we proceed as follows.

Let bN
0 , . . . ,bN

N be a set of Jacobian vectors satisfying [1]–[4], with re-
duced masses MN

0 , . . . , MN
N . Let mN+1, rN+1 be the mass and position of

an additional body. Then there are unique Jacobian coordinates, satisfy-
ing [1]–[4], with N unchanged Jacobian vectors and N unchanged reduced
masses

bN+1
j = bN

j , MN+1
j = MN

j j = 1, N.

The new reduced masses are

MN+1 =
mN+1MN

0

MN+1
0

, MN+1
0 = MN

0 + mN+1 (4.22)




























































































































4.4 Jacobian coordinates 45

and the new Jacobian vectors are

bN+1 = rN+1 − bN
0 , bN+1

0 =
1

MN+1
0

N+1∑

j=0

mj rj . (4.23)

This can be shown by comparing eqs. (4.19) and (4.21) for N +1 and N +2
bodies (Milani and Nobili 1983).

The solutions (4.23) and (4.22) can be described as follows. A Jacobian
coordinate system is a way to decompose an (N + 1)-body system into free
motion of the center of mass and N two-body subsystems. To add a new
body, the new Jacobian vector is the position of the new body rN+1 relative
to the center of mass bN

0 of the previous system, and the new reduced mass
is the harmonic mean of the new mass mN+1 and of the previous total mass
MN

0 . This generalizes the reduction of the two-body problem (4.9), (4.10).
As for uniqueness, the reduction of the two-body problem to the central

force problem gives the Jacobian coordinates for N +1 = 2 bodies. However,
if the list of bodies was {r1, r0} the Jacobian vector would be b1 = r0 − r1.
For N + 1 = 3 the standard solution is to first couple (m0, m1), that is

b1 = r1 − r0, M1 =
m0 m1

m0 + m1

then use the vector b2 relative to the center of mass of (m0, m1), that is

b2 = r2 −
m0

m0 + m1
r0 −

m1

m0 + m1
r1, M2 =

m2 (m0 + m1)
m0 + m1 + m2

.

This solution is not unique: it is possible to form first the binary (m2, m0),
that is b1 = r0 − r2 and then join r1 to the center of mass of (m2, m0).
A third solution corresponds to the sequence of couplings ((m1, m2), m0);
there are three more solutions violating [4].

The choice of a solution depends upon the sequence of coupling operations,
which can be represented by a symbol like ((m0, m1), m2) for the standard
three-body solution. At a purely formal level, each of the (N + 1)! ways to
order the N +1 bodies results, by applying recursively the procedure above,
in a set of Jacobian coordinates. When the relative size of the perturbation is
computed, as in the next section, the solutions are found to be by no means
equivalent. As an example, if m0 corresponds to the Sun, m1 to the Earth,
m2 to the Moon, the best Jacobian system is the one with ((m1, m2), m0),
that is the center of mass of the Earth–Moon system is orbiting around the
Sun, while the Moon is orbiting around the Earth–Moon center of mass.
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Fig. 4.1. Three examples of hierarchies and of the corresponding Jacobian vectors. The planetary
hierarchy and the double binary hierarchy are described in the text. The hierarchy in the lower
part of the figure could be used to describe a planetary system around the star r0 , with planets
r2 , r3 , r5 and r6 ; planet r3 has one satellite, planet r6 has two satellites.

Planetary and binary type hierarchies

The non-uniqueness of the Jacobian coordinates becomes more significant
for N + 1 = 4 bodies. Let us assume some Jacobian coordinates have
been selected for the first three bodies, e.g., according to the coupling order
((m0, m1), m2). When a body m4, r4 is added, there are two options. One
is the recursive procedure of the previous subsection, that is b3 = r3 − b3

0.
The other is to set b2 = r3 − r2 and to replace r2 with the center of mass of
the binary (m2, m3), that is to use as b3 the vector joining the two centers
of mass of the binary subsystems (m0, m1) and (m2, m3)

b1 = r1 −r0, b2 = r3 −r2, b3 = [(1−µ2) r2 +µ2 r3]− [(1−µ1) r0 +µ1 r1]

where µ2 = m3/(m2 + m3). Then the reduced mass M2 is the harmonic
mean of the masses m2 and m3, M3 is the harmonic mean of the masses
(m0 + m1) and (m2 + m3):

M1 =
m0 m1

m0 + m1
, M2 =

m2 m3

m2 + m3
, M3 =

(m0 + m1) (m2 + m3)
m0 + m1 + m2 + m3

.

The first option is called a planetary hierarchy and is represented by the




























































































































4.5 Small parameter perturbation 47

coupling symbol (((m0, m1), m2), m3); the second is a double binary hi-
erarchy and is represented by ((m0, m1), (m2, m3)). Formally, both choices
are equivalent, in that both provide a Jacobian coordinate system satisfying
[1], [2], [3], and [4]. The planetary hierarchy suggests that all the “planets”
of masses m1, m2, m3 orbit around the “star” of much larger mass m0, at
increasing distances |r1 − r0|, |r2 − r0|, and |r3 − r0|. The double binary
hierarchy suggests that the “interior planet” m1 orbits around the “star”
m0 at a smaller distance than the “exterior planet” m2, the latter having a
“satellite” m3. To give rigorous meaning to this suggestion, we need to show
that dynamical configurations, with different mass and distance ratios, are
better represented in either one or the other hierarchy.

In general, given two subsystems with N ′ and N ′′ bodies, each with Jaco-
bian coordinates, centers of mass b′

0, b′′
0 and total masses M ′

0, M ′′
0 , respec-

tively, there is a Jacobian system for the joint system of N ′+N ′′ masses with
a new Jacobian vector joining the two centers of mass, and a new reduced
mass equal to the harmonic mean of the two total masses

bN ′+N ′′ = b′′
0 − b′

0, MN ′+N ′′ =
M ′

0 M ′′
0

M ′
0 + M ′′

0
;

b0 is the center of mass of all bodies, and the other (N ′ − 1) + (N ′′ − 1)
vectors coincide with the previously defined ones. This is the only way to
combine the two subsystems, preserving N ′ + N ′′ − 2 Jacobian vectors (not
including the centers of mass of the subsystems). In this way we can build
a Jacobian system for an arbitrary coupling symbol. For example, for the
hierarchy shown in the lower portion of Figure 4.1 the coupling symbol is
(((((m0, m1), m2), (m3, m4)), m5), (m6, m7)).

4.5 Small parameter perturbation
We would like to assess how relevant are the perturbations resulting from
each additional body included in the dynamical model of a planetary system.
The Jacobian coordinates provide a direct way to estimate the relative size
of the perturbations, with the Roy–Walker parameters.

The perturbing function

We shall discuss first a three-body case, in Jacobian coordinates, with stan-
dard hierarchy ((m0, m1), m2). The Lagrange function is

L(B, Ḃ) =
3∑

i=1

1
2

Mi |ḃi|2 +
Gm0 m1

|b1|
+

Gm1 m2

|r2 − r1|
+

Gm0 m2

|r2 − r0|
,



















































































 


