
Chapter 1

THE EQUATION OF MOTION

1.1 The asteroid many-body problem

Given the point masses1 mi located at positions xi, with velocities ẋi, for i = 0, 1, . . . , S, the
forces acting between the two bodies with indexes i and j, due to their mutual gravitational
attraction, are given by

Fij =
Gmj mi

x3
ij

(xj − xi) , Fji =
Gmimj

x3
ji

(xi − xj) (1.1)

where xij = |xj − xi| = xji. They represent the attraction of body j by body i, and of body
i by body j, respectively. Thus the attraction force is along the line joining the positions of
the two bodies, of intensity inversely proportional to the square of the distance, and fulfills the
action-reaction principle, that is Fij +Fji = 0. By the superposition principle the total
force acting on each body i is just the sum of all the force vectors resulting from the attraction
of all the other bodies, forming the equation of motion for body i

mi ẍi =
S
∑

j !=i,j=0

Gmj mi

x3
ij

(xj − xi) ; (1.2)

this applies for each i = 0, 1, . . . , S. Note that by the Einstein equivalence principle the mi

appearing in the left hand side is the same as the one on the right hand side of the equation.
By the action-reaction principle the constant G appearing in Fij and in Fji must be the same,
and by the equivalence principle it is also the same for all bodies. This implies that of the three
possible definitions of mass (inertial, gravitational active and gravitational passive) only one
appears in the equation of motion: to simlify the notation we shall use the gravitational active
masses µj = Gmj. After multiplying the equation of motion above by the constant G, all the
mi and G itself disappear:

µi ẍi =
S
∑

j !=i,j=0

µj µi

x3
ij

(xj − xi) (1.3)

1Point masses are approximations for the gravity field of an extended body, represented by the attraction of
the total mass of the body concentrated in its center of mass. It can be shown that this approximation is good
enough when the dimensions of the bodies are negligible with respect to their mutual distances, that is for long
range perturbations such as the ones acting on asteroids.
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2 CHAPTER 1. THE EQUATION OF MOTION

Indeed the µj are the only masses which can be considered in Celestial Mechanics2, thus we
can solve for the accelerations:

ẍi =
S
∑

j !=i,j=0

µj

x3
ij

(xj − xi). (1.4)

In our solar system, if the index 0 stands for the Sun, the first N positive indexes are for the
major planets, the last M for asteroids and other minor bodies (with S = N+M), and we have
that µ0 >> µj (j = 1, N) >> µk (k = N+1, S). In fact µj < 10−3 µ0 and µk < 5×10−10 µ0, thus
the ratios µi/µ0 are small parameters and our problem belongs to a class of small perturbation
theories. Of course there are two different levels of smallness, the asteroids masses being of
higher order of smallness with respect to the planetary masses.

As a consequence of the dominace of the solar mass µ0, it is convenient to use heliocentric
coordinates:

ri = xi − x0 , ri = |ri| , rij = rj − ri = xj − xi , rij = |rij| = xij ;

then, assuming the masses of the asteroids are negligible to the point that they do not count
as sources of gravitational attraction, the equation of motion (1.4) becomes

r̈i =
N
∑

j !=i,j=0

µj

r3ij
rij −

N
∑

k=1

µk

r3k
rk ,

for i = 1, S. By isolating in the right hand side the largest term, the one with µ0, and noting
that in the heliocentric reference frame ri0 = r0 − ri = −ri, we get

r̈i = −
µ0

r3i
ri +

N
∑

j !=i,j=1

µj

r3ij
rij −

N
∑

k=1

µk

r3k
rk . (1.5)

The three terms on the right hand side are the unperturbed 2-body acceleration3, the
direct perturbation4 and the indirect perturbation5. If the body i is a planet, the last
sum contains also a k = i term; it accounts for the fact that a heliocentric reference system is
not an inertial one, that is the Sun is accelerated by all the planets (but not by the asteroids,
because the corresponding accelerations are neglected).

1.2 Equation of motion for the restricted problem

The equation (1.2) refers to the hypothesis that the orbits of N planets and M asteroids have
to be computed at once, which may be the case in a numerical integration. However, if we

2The gravitational constant G, thus the masses mi, cannot be determined from the planetary orbits. The
only exception are the tests for the violation of the equivalence principle [Milani et al., 2010b].

3Acceleration due to gravitational attraction of the central body of the system (e.g. the Sun).
4Acceleration due to all other perturbing bodies in the system (e.g. solar system major planets).
5Acceleration ẍ0 due to the change of position of the coordinate origin (e.g. heliocenter) due to the pertur-

bations exerted on the central body by the other bodies in the system.
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can indeed (because of the level of accuracy required) ignore the attraction from the asteroids6,
we are speaking of the restricted problem, in which the orbit of a given asteroid does not
depend at all upon where the other asteroids are. Thus we can restrict ourselves to developing
the theory of a single asteroid perturbed by the planets (hence the title of this book). If we
are interested in computing the orbit of the asteroid r = rN+1 only, then S = N + 1, and the
equation of motion in heliocentric coordinates becomes

r̈ = −
µ0

r3
r+

N
∑

i=1

µi

|ri − r|3
(ri − r)−

N
∑

i=1

µi

r3i
ri , (1.6)

where r = |r|: the direct and the indirect perturbations have sums of terms with the same
indices, one for each planet.

The restricted problem is a good approximation because the asteroid mass is small, however by
removing the terms with µN+1 in the equations of motion for the planets, the action-reaction
law by Newton is violated. In this way the asteroid does not contribute to the 10 classical
scalar integrals of motion (energy, angular momentum, linear momentum and center of mass,
see Section 1.3) and the equation (1.6) has no exact integral.

The equation (1.6) of the restricted problem can be derived from the Lagrange formalism: let
the kinetic energy T , the gravitational potential U and the Lagrange function L for
unit mass be

T =
1

2
|ṙ|2 , U0 =

µ0

r
(1.7)

UDIR =
N
∑

i=1

µi

|ri − r|
, UIND = −

N
∑

i=1

µi

r3i
ri · r (1.8)

L(r, ṙ) = T + U = T + U0 + UDIR + UIND (1.9)

Then the Lagrange equations of the restricted problem are defined by the conjugate momentum
vector p

p =
∂L

∂ṙ
=
∂T

∂ṙ
= ṙ , ṗ =

∂L

∂r
=
∂U

∂r
= r̈ . (1.10)

The Hamilton function is defined by the Legendre transform (cite?)

H(p, r) = p · ṙ− L =
1

2
|p|2 − U = T − U

and can be decomposed into an unperturbed portion H0 and a perturbation part εH1 with
small parameter ε # Maxi(µi/µ0)

H = H0 + εH1 , H0 =
1

2
|p|2 − U0 , H1 = −

UDIR + UIND

ε
. (1.11)

Thus equation (1.6), with its Lagrange and Hamilton equivalent

r̈ =
∂U
∂r

= −
∂H
∂r

, (1.12)

6This assumption may not be applicable in some extreme accuracy computation, such as the ones about
predictions of impacts of an asteroid with a planet.
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is the basic equation of motion we are discussing in this book. However, we need to assume
that the equation of motion for the planets, that is (1.5) for i = 1, N , has been solved and the
solution is available as a function of time t. Since this is by no means a trivial assumption, we
need first to discuss the orbits of the planets. Thus in the following of this section we will give
a general discussion of the complete equation (1.5) for i = 1, N , hence for the planets, which is
an autonomous equation, that is it does not contain explicitly the time. Once the solution
of the planetary motions is substituted in (1.6), the equation is not autonomous any more. If
the two equations for the planets and the restricted one for the asteroid are considered as a
single equation of motion for both, then it is autonomous.

1.3 First integrals for the planetary problem

1.3.1 Derivation from the equation of motion

To discuss the motion of the planets we have to return to the equation of motion in an inertial
reference system (1.2), restricted to N + 1 bodies (with S = N). There are N + 1 such second
order differential equations, one for each of the i = 0, 1, ..., N bodies. Thus, their complete
integration should give 2(N+1) 3-vector integrals, or 6(N+1) corresponding scalar integrals.

Independently of what is the number of bodies in the system, it is possible to find only three
3-vector integrals and one scalar integral, for a total of 10 scalar first integrals: these are the
first integrals of the many-body problem.

Let us begin derivation of the general integrals by noting that the right hand sides of equations
(1.2), for an arbitrary pair of bodies i and j, consist of “symmetrical” terms Fij and Fji, see
eq. (1.1), which have zero vector sum, and that such couples exist for all the combinations of
indexes. Hence, by summing all (N + 1) the equations (1.2) up, we get

N
∑

i=0

µi ẍi = 0 . (1.13)

Setting M0 =
∑N

i=0 µi, the total mass, the integration of (1.13) gives

N
∑

i=0

µi ẋi = M0 ḃ0 (1.14)

where ḃ0 is a constant vector independent from time. Integrating one more time

N
∑

i=0

µixi = M0 (b0 + ḃ0 t) (1.15)

where b0 is another constant vector. The two vectors represent the first two 3-vector integrals
of the many-body problem: they are called the center of mass integrals. b0 is the position
vector at t = 0 of the center of mass which moves with uniform velocity ḃ0. Note that all of
the above is a consequence of the action-reaction principle only.
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Multiplying vectorially equations (1.2) for i = 0, 1, ..., N in turn with x0,x1, ...,xN , and sum-
ming them up, each symmetrical couple on the right hand side gives

µi µj

x3
ij

{xi × (xj − xi) + xj × (xi − xj)} =
µi µj

x3
ij

{xi × xj + xj × xi} = 0 .

Hence
N
∑

i=0

µi (xi × ẍi) = 0 . (1.16)

Since, in general,
d

dt
(xi × ẋi) = xi × ẍi ,

the equation (1.16) can be replaced with

d

dt

N
∑

i=0

µi (xi × ẋi) = 0 ,

which is straightforwardly integrated to give

N
∑

i=0

µi (xi × ẋi) = c . (1.17)

The obtained constant 3-vector c is called the area integral7.

Multiplying scalarly equations (1.2) for i = 0, 1, ..., N in turn with dx0, dx1, ..., dxN , and sum-
ming them up, the couples on the right hand sides give

µi µj

x3
ij

{dxi · (xj − xi) + dxj · (xi − xj)} = −
µi µj

x3
ij

(xj − xi) · (dxj − dxi) .

Since

(xj − xi) · (dxj − dxi) = xij dxij = xijd xij ,

each couple reduces to

µi µj

x2
ij

dxij

and we end up with

N
∑

i=0

µi ẍi · dxi = −
N−1
∑

i=0

N
∑

j=i+1

µi µj

x2
ij

dxij . (1.18)

7xi× ẋi in the two-body problem (Section 1.4) represents twice the oriented area which position vector xi of
the mass µi sweeps in unit time. Equation (1.17) states that the vectorial sum of these oriented areas, sweeped
by vectors xi and multipled with corresponding masses µi, is a constant vector.
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In the right hand side of the equation above every combination of masses µi and µj appears
only once, because each of the above couples provides a single term.

The equation (1.18) can also be easily integrated. Its right hand side is equal to the differential
of the scalar expression

U =
N−1
∑

i=0

N
∑

j=i+1

µi µj

xij
(1.19)

which is called the force function of the material system. Since

d2xi

dt2
dxi =

dẋi

dt
dxi = ẋi dẋi = ẋi dẋi

equation (1.18) can be replaced with

N
∑

i=0

µi ẋi dẋi = dU

which upon integration gives
N
∑

i=0

µi ẋ2
i

2
= U + E (1.20)

where E represents the integration constant.

The scalar integral (1.20) is called the vis viva (energy) integral. Together with 3-vectors
b0 from (1.15), ḃ0 from (1.14), and c from (1.17), it completes the list of 10 scalar general
integrals of the many-body problem.

1.3.2 Derivation via the Lagrange function

Again we have to begin from the equation of motion in an inertial reference system (1.2),
for which we have to find the corresponding Lagrange function L, with kinetic energy T and
gravitational potential U . Note that to compute the integrals of motion we assume all bodies
have mass, that is either S = N , or if an asteroid is included S = N + 1, although the terms
with µN+1 give a negligible contribution.

T =
1

2

N
∑

j=0

µj|ẋj|2 , U =
∑

0≤j<i≤N

µi µj

|xi − xj |
, L = T + U , (1.21)

where L is a function of all the positions xj and all the velocities ẋj . The momenta vectors
and Lagrange equations are

pj =
∂T

∂ẋj
= µjẋj , ṗj =

∂U

∂xj
= µjẍj . (1.22)

It is easy to check that this Lagrangian is invariant with respect to a group of symmetries,
namely the tranformations of the 3 dimensional space of each xj that are isometries. Let
R : R3 → R3 be a linear map x %→ Ax + d, with A a 3 × 3 matrix in the group O(3) of
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orthogonal tranformations, that is A−1 = AT , and d a constant vector. If this transformation
is applied to the positions of all the N + 1 bodies, and the map ẋ %→ A ẋ to all veocities, then
all the distances xij are conserved, and the length of the velocity vectors ẋi are conserved too;
this implies that also the Lagrange function is invariant

L(x0, . . . ,xN , ẋ0, . . . , ẋN ) = L(Ax0 + d, . . . , Axn + d, A ẋ0, . . . , A ẋN) .

A 1–parameter group of symmetries of the Lagrange function L is a diffeomorphism Fs of
the positions X = (x0, . . . ,xN) depending (in a differentiable way) upon a parameter s ∈ R

so that Fs ◦ Fz = Fs+z, F0 is the identity transformation, and F−s = [Fs]−1. Moreover, the
Lagrange function is invariant:

L

(

Fs(X),
d

dt
Fs(X)

)

= L

(

Fs(X),
∂Fs

∂X
Ẋ

)

= L(X, Ẋ) .

We also assume the mixed derivatives ∂2F s/∂X∂s are continuous. A local 1–parameter group of
symmetries of the Lagrange function is defined by the same properties for s in a neighborhood
of 0. The main result we need is the Noether theorem, stating that if the Lagrange function
L admits a local 1–parameter group of symmetries F s then

I(X, Ẋ) =
∂L

∂Ẋ
·
∂Fs(X)

∂s

∣

∣

∣

∣

s=0

(1.23)

is a first integral of the Lagrange equation (1.22).

To prove this, let us compute the change in L because of Fs by a Taylor series expansion in s

L(Fs(X),
d

dt
Fs(X))− L(X, Ẋ) = s

[

∂L

∂X
·
∂Fs(X)

∂s

∣

∣

∣

s=0
+
∂L

∂Ẋ
·
∂

∂s

d

dt
Fs(X)

∣

∣

∣

s=0

]

+O(s2) .

Since this change in L is identically zero by hypothesis, the first order (in s) term must be zero:
by exchanging the derivatives d/dt and ∂/∂s

0 =
∂L

∂Ẋ
·
d

dt

∂Fs(X)

∂s

∣

∣

∣

s=0
+
∂L

∂X
·
∂Fs(X)

∂s

∣

∣

∣

s=0
= (by the Lagrange equation)

=
∂L

∂Ẋ
·
d

dt

∂Fs(X)

∂s

∣

∣

∣

s=0
+

d

dt

∂L

∂Ẋ

∂Fs(X)

∂s

∣

∣

∣

s=0
=

d

dt

[

∂L

∂Ẋ
·
∂Fs(X)

∂s

∣

∣

∣

s=0

]

and the function defined in Eq. (1.23) is an integral.

Therefore Noether theorem applies to all the 1–parameter subgroups of the group of linear
isometries. The simplest case is that of the 1–parameter groups of translations, e.g. the
translations along one coordinate axis: F s(x) = x+ s eh, with eh the unit vector along the axis
xh, h = 1, 3. If the symmetry group Fs(X) is defined by applying equal translations F s to all
bodies, then the first integral described by Neother’s theorem is

Ph =
N
∑

j=0

∂F s(xj)

∂s

∣

∣

∣

s=0
· pj = êh ·

N
∑

j=0

mj ẋj = êh ·P ,
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that is the component along the axis h of the total linear momentum P. Thus P is a
3-vector integral, and the center of mass b0

b0 =
1

M0

N
∑

j=0

µjxj , (1.24)

where M0 is the total mass, moves with uniform velocity:

ḃ0 =
1

M0
P . (1.25)

This leads to 3 scalar first integrals independent from time (the coordinates of ḃ0), plus 3
integrals dependent from time (the coordinates of b0).

Other 1–parameter subgroups of the group of isometries are the groups of rotations around a
fixed axis. If F s is the rotation by an angle of s radians around the unit vector v

∂F s(x)

∂s

∣

∣

∣

s=0
= v × x

and the corresponding integral is:

ch =
N
∑

j=1

∂F s(xj)

∂s

∣

∣

∣

s=0
· pj =

N
∑

j=1

(v × xj) · pj = v ·
N
∑

j=1

xj × pj = v ·
N
∑

j=1

µj(xj × ẋj) ,

namely, the component along v of the total angular momentum

c =
N
∑

j=1

xj × pj , (1.26)

which is also a 3-vector integral, that is another 3 scalar integrals, for a total of 9 integrals
deduced from the symmetry group of isometries.

The 10-th integral is the energy integral which can be computed as Hamilton function

H(p0, . . . ,pN ,x0, . . . ,xN) =
N
∑

j=0

pj · ẋj − L =
1

2

N
∑

j=0

|pj |2

µj
− U(x0, . . . ,xN) = E . (1.27)

It is well known (cite Poincaré) that besides these 10 integrals the N + 1 body problem, as
defined by either (1.21) or (1.27), has no other integrals. It also follows that the equation of
motion of the restricted problem has no integrals, because the contribution of the asteroid to
the integrals has been neglected (TBC?).

[Of course the Hamilton function defines the Hamilton equations, which are the equations of
motion as a function of the time variable (taken as independent variable); this can be described
by the statement that H, t are conjugated variables. Similarly, other integrals can be taken
as Hamilton functions, and provide with the corresponding Hamilton equations the motion
under the action of 1–parameter symmetry groups, e.g., ch is the Hamiltonian of the rotation
around the êh axis for h = 1, 3, with the rotation angle s (in radians) as independent variable,
that is ch, s are also conjugated variables; also Ph,b0 · êh for h = 1, 3.] [Maybe to be stated
later in Chap.5, together with a formal definition of homogenization of time]
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1.4 The 2-body problem

As the simplest example of the use of the first integrals to reduce the number of scalar equations
in (1.22), and also for later reference, let us consider the 2-body problem with Lagrange function

L =
1

2
µ0 |ẋ0|2 +

1

2
µ1 |ẋ1|2 +

µ0 µ1

|x1 − x0|
.

We can change coordinates by using, in place of x0,x1, the coordinates of the center of mass
and the relative position of x1 with respect to x0

b0 = ε1 x1 + (1− ε1)x0 , ε1 =
µ1

µ0 + µ1
, b1 = x1 − x0 . (1.28)

Then U(b1) = Gµ0µ1/b1, with b1 = |b1|; to write L as a function of b0,b1 we express ẋ0 and
ẋ1 as a function of ḃ0, ḃ1 and substitute in T

ẋ0 = ḃ0 − ε1ḃ1 , ẋ1 = ḃ0 + (1− ε1)ḃ1

2T = µ0 |ẋ0|2 + µ1 |ẋ1|2 = (µ0 + µ1) |ḃ0|2 +
µ0 µ1

µ0 + µ1
|ḃ1|2

the mixed terms canceling. The Lagrange function as a function of the new coordinates is

L(b0,b1, ḃ0, ḃ1) =
1

2
M0 |ḃ0|2 +

1

2
M1 |ḃ1|2 +

M0M1

b1
(1.29)

with M0 = µ0 + µ1 the total mass, and M1 the reduced mass (harmonic mean):

M1 =
µ0 µ1

µ0 + µ1
⇐⇒

1

M1
=

1

µ0
+

1

µ1
. (1.30)

Then the Lagrange function L can be decomposed as the sum of two Lagrange functions L =
M0 L0(ḃ0) + M1 L1(b1, ḃ1), one containing only b0, the other containing only b1, and the
Lagrange equations decouple:

M0 b̈0 = 0 , M1 b̈1 =
∂U(b1)

∂b1
= −

M0M1

b31
b1 .

The first equation states that the center of mass moves with constant velocity along a straight
line, the second equation is the Kepler problem, with a particle of mass M1 attracted by a
fixed center of mass M0.

By repeating the same computations done above for T , we find that also the angular momentum
has a simple expression in the (b0,b1) coordinates:

c = µ0 x0 × ẋ0 + µ1 x1 × ẋ1 = M0 b0 × ḃ0 +M1 b1 × ḃ1 .

When b0(t) = ḃ0 t+ b0(0) and eq. (1.25) are substituted, this reveals that the b0 contribution
is constant and angular momentum decouples

c0 = b0 × ḃ0 =
1

M0
b0(0)×P , c = M0 c0 +M1 c1 .

The contribution from b1 is c1 = b1 × ḃ1, the angular momentum per unit (reduced) mass of
x1 with respect to the center x0; c1 is also a vector first integral, thus b1, ḃ1 will lie for each t
in the orbital plane normal to c1.
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The Laplace-Lenz vector and the energy integral

The 2-body problem has another vector integral, not occurring in the N +1 ≥ 3-body problem:
the Laplace-Lenz vector

e =
1

M0
ḃ1 × c1 −

1

b1
b1 . (1.31)

which lies in the orbital plane and is directed towards the pericenter.

This can be shown by using a reference frame formed by three orthogonal unit vectors:

vz = c1/c1 , vr = b1/b1 , vθ = vz × vr ,

where c1 = |c1|; we also use the time derivatives

v̇r = θ̇ v̇θ , vθ = −θ̇ vr , v̇z = 0 .

Let θ be the angle between the vector vr and a fixed direction in the orbital plane, and r = b1,
then have

c1 = r vr ×
d

dt
(r vr) = r vr × (ṙ vr + rθ̇ vθ) = r2 θ̇ vr × vθ = r2 θ̇ vz

ḃ1 = ṙ vr + r θ̇ vθ ,

which gives

M0 e = (ṙ vr + r θ̇ vθ)× r2 θ̇ vz −M0 vr = −r2 ṙ θ̇ vθ + (r3 θ̇2 −M0) vr . (1.32)

For e to be an integral its derivative must be equal to zero. Along the solutions we make use
of the well know equations for the tangential and the radial acceleration, which give

ċ1 = 0 =⇒ 2 ṙ θ̇ + r θ̈ = 0 , r̈ = −
M0

r2
+

c21
r3

,

so that

M0 ė =
d

dt

[

ḃ1 × c1 −M0 vr

]

= b̈1 × c1 −M0 θ̇ vθ =

= −M0/r
2 vr × r2 θ̇ vz −M0 θ̇ vθ =

= −M0 θ̇ (vr × vz + vθ) = 0 .

However, e corresponds to only two additional scalar integrals (not all components of e are
independent from c1 because e · c1 = 0). We define the true anomaly f as the angle between
e and vr in the orbital plane, that is

e cos f = e · vr =
r3 θ̇2

M0
− 1 =

c21
M0 r

− 1

where r2θ̇ = c1 is the (scalar) angular momentum of b1 and is constant8. From this there
follows the familiar formula of a conic section

r =
c21/M0

1 + e cos f
, (1.33)

8Note that r2 θ̇ is equal to twice the sectorial velocity, thus c1 = r2 θ̇ vz represents the Kepler’s second law
in vector form.
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and the interpretation of the two additional two-body integrals as eccentricity e = |e|
and argument of pericenter ω, that is the angle of e (direction of pericenter) with a fixed
direction in the orbital plane, in such a way that θ = f + ω.

The eccentricity e is an integral depending upon angular momentum and energy. The energy
integral of the 2-body problem in (b0,b1) coordinates is

E(b0,b1, ḃ0, ḃ1) =
1

2
M0 |ḃ0|2 +

1

2
M1 |ḃ1|2 −

M0 M1

|b1|
= M0 E0 +M1 E1 (1.34)

E0 =
1

2
|ḃ0|2 , E1 =

1

2
|ḃ1|2 −

M0

|b1|
=

1

2
(ṙ2 + c1θ̇)−

M0

r
, (1.35)

and the eccentricity squared, computed from eq. (1.32), is

e2 = e · e =
r4 ṙ2 θ̇2 +

(

r3 θ̇2 −M0

)2

M2
0

= 1 +
2E1 c21
M2

0

. (1.36)

If the energy of the relative motion E1 is negative, then e < 1 and the trajectory of b1 is an
ellipse with semimajor axis a; its relation with energy and angular momentum can be derived
from (1.33) and (1.36:

a =
q +Q

2
=

1

2

[

c21/M0

1 + e
+

c21/M0

1− e

]

=
c21/M0

1− e2
=

M0

−2E1
, (1.37)

where q, Q are the pericenter (f = 0, q = a(1 − e)) minimum and apocenter maximum (f =
π, Q = a(1+e)) distances. The scalar angular momentum per unit mass of the relative motion,
from the same equation, is

c1 =
√

M0 a (1− e2) . (1.38)

1.5 Barycentric coordinates

The set of positions of the N + 1 bodies can be represented in different coordinates; we are
interested in the linear coordinate changes of the form

bi =
N
∑

j=0

aij xj , A = (aij), i, j = 0, N (1.39)

where the matrix A is a function of the masses only. The purpose is to exploit the integrals
of the center of mass to reduce the number of equations, generalizing the results of the 2-body
case. A natural choice is to use the center of mass as b0, thus by (1.24) the first row of the
matrix A is

a0i =
µi

M0
, i = 0, N ,M0 =

N
∑

k=0

µk . (1.40)

The choice of the other bi, i = 1, N , is not as simple as in the 2-body case. Different choices
have different advantages, and can be used for different purposes. We shall review in this and
in the next section some coordinate systems especially useful for the (N + 1)-body problem.



12 CHAPTER 1. THE EQUATION OF MOTION

The barycentric coordinate system uses the Galileo equivalence principle, stating that
that two reference systems related by a constant velocity translation lead to the same equation
of motion, implying that a system moving with a constant velocity translation with respect
to an inertial system is also inertial. Thus a reference system with b0 = 0 as origin and
barycentric positions bi = xi − b0 = xi for i = 1, N is inertial; the equation of motion is the
same as eq. (1.2). However, in this approach the barycentric coordinates s of mass index 0 (i.e.
the Sun) are not independent dynamical variables, but are deduced from the coordinates of the
other bodies and b0, by eq. (1.24). Noting that in the barycentric system:

N
∑

i=0

µi xi = 0 ⇒ µ0x0 = −
N
∑

i=1

µi xi

we get the equation for the barycentric coordinates of the Sun:

s = sB(b1, . . . ,bN) = x0 − b0 = x0 = −
N
∑

i=1

µi

µ0
bi . (1.41)

The change to the barycentric system is not just a change of coordinates, but also a reduction
of the dimension of the problem: we write 3 differential equations less (the ones for mass i = 0);
moreover, the differential equations do not contain the indirect perturbation term. The reduced
equation of motion is

µi b̈i =
µ0 µi

|bi − s|3
(s− bi) +

N
∑

j !=i,j=1

µj µi

|bj − bi|3
(bj − bi) i = 1, . . . , N (1.42)

and can be expressed in conservative form

µi b̈i =
∂U(s,b1,b2, . . . ,bN)

∂bj
, i = 1, N , (1.43)

where U is the same potential defined in (1.21), and the partial derivatives of U have to
be computed before substituting s = sB(b1, . . . ,bN). The integrals of energy and angular
momentum have less simple expressions when written as a function of (b1, . . . ,bN), because
they include the contributions from ṡ.

Barycentric coordinates are efficient to be used for numerical integrations9: only the 3N equa-
tions (1.42) have to be integrated, and the only additional computation to be performed at
each step is s according to (1.41). On the other hand, barycentric coordinates are seldom used
in analytical developments and in theoretical discussions, because of the lack of symmetry of
the equation and of the less simple expressions for the classical integrals. This is not a problem
because the numerically computed orbit does not need to be used in barycentric coordinates:
to change the output back to heliocentric coordinates is the standard procedure.

9As an alternative approach, in a numerical integration it is possible to compute the full solution of eq. (1.2),
then use b0 = ḃ0 = 0 as accuracy check. Besides the small increase in efficiency, which is not important with
current computers, there are advantages in describing the general relativistic effects in barycentric coordinates,
although the very definition of barycenter has to be modified to remain an integral.
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1.6 Heliocentric Canonical Coordinates

To derive equation (1.5) from a single Lagrange (or Hamilton) function is not immediate, mostly
because of the asymmetric indirect term. To solve this, Poincaré invented the heliocentric
canonical coordinates (ri, µiḃi), in which the positions are heliocentric and the linear mo-
menta are barycentric [Laskar 1989]. To show their properties, let us use a linear coordinate
change

ri =
N
∑

j=0

aijxj , A = (aij), i, j = 0, N

such that r0 = x0 = s, that is a0j = δ0j and the others are heliocentric vectors: ri = xi −x0 for
i = 1, N , that is aij = δij − δi0 for j = 0, N (the notation δij stands for the Kronecker δ, δij = 1
if i = j, = 0 otherwise). To complete the transformation of the coordinates xi with a linear
change of the momenta µiẋi such that the new coordinates are canonical (see later in Section
2.1), we need to use the matrix B

pi =
N
∑

j=0

bijµjẋj , B = (bij), i, j = 0, N

such that B = (A−1)T , that is b0j = 1 and bij = δij for i += 0. Then p0 = P = M0ḃ0 is the linear
momentum integral. The other momentum vectors pi = µiẋi, for i = 1, N , are unchanged with
respect to the previous, inertial coordinate system..

To perform the reduction to 3N differential equations, we assume that the coordinates xi had
already been translated in such a way that b0 = 0 for all times t, thus also ḃ0 = 0 = p0. Thus
the momentum vectors pi = µiẋi, for i = 1, N , are barycentric, and r0 = s = x0 is given by
a formula similar, but not the same as (1.41), because it is a function of heliocentric position
vectors:

µ0s = −
N
∑

i=1

µi (ri + s) ,

by solving for s:

sH(r1, . . . , rN) = −
N
∑

i=1

µi

M0
ri . (1.44)

The Lagrange function L = T +U in the coordinates (ri, ṙi) has to have the same value as the
one in the (xi, ẋi) coordinates: for the kinetic energy

T =
1

2

N
∑

i=0

µi|ẋi|2 =
1

2

N
∑

i=1

µi|ṙi + ṡ|2 +
1

2
µ0|ṡ|2 , (1.45)

and by replacing ṡ with the value constrained by (1.44)

ṡH(ṙ1, . . . , ṙN) = −
N
∑

j=1

µj

M0
ṙj (1.46)
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we get T = T (ṙ1, . . . , ṙN); we can check that

pi =
∂L

∂ṙi
= µi (ṙi + ṡH)

as claimed. U has the same expression as in the heliocentric coordinates, since xi−xj = ri−rj .
Thus it is possible to derive the Lagrange equations and check that they are the same as (1.5):
by collecting together the direct attraction from the Sun and the indirect term from the same
planet being attracted:

r̈i = −
µ0 + µi

r3i
ri +

N
∑

j !=i,j=1

µj

r3ij
rij −

N
∑

k !=i,k=1

µk

r3k
rk . (1.47)

[TBC: computations checking this from [Laskar 1989] pages 7-8, but the notations are different]

The improvement with respect to the conventional heliocentric variables is in the Hamilto-
nian formulation. To espress the kynetic energy T (ṙ1, . . . , ṙN) as a function of the momenta
Tp(p1, . . . ,pN) we substitute in T given by (1.45) the relationships

pi = µi(ṙi + ṡH) ,
N
∑

i=1

pi = −µ0ṡH

(the first is a consequence of pi = µiẋi, the second of the constraint ḃ0 = 0): we get

Tp(p1, . . . ,pN) =
1

2

N
∑

i=1

|pi|2

µi
+

1

2µ0

∣

∣

∣

∣

∣

N
∑

i=1

pi

∣

∣

∣

∣

∣

2

=
1

2

N
∑

i=1

|pi|2
[

1

µi
+

1

µ0

]

+
∑

1≤i<j≤N

pi · pj

µ0
,

(1.48)
which is convenient because of the especially simple expression (just a sum of scalar products
of the pi vectors) for the indirect term, which has been moved in the T part.

Because the function Tp is homogeneous and quadratic in the variables pi, the Legendre trans-
form has a simple expression:

H =
N
∑

i=1

pi · ṙi − L = 2Tp − Tp − U = Tp − U ,

that is the value of the Hamiltonian is the total energy. The Hamilton equations (see Section 2.1)
are

ṗi = −
∂H

∂ri
= −

∂U

∂ri
, ṙi =

∂H

∂pi
=
∂T

∂pi
; (1.49)

they are equivalent to the second order equation (1.5) and (1.47), with the indirect part arising
from the kinetic energy rather than from the potential.

To decompose the Hamilton function into an unperturbed part H0, given by the sum of N
Hamiltonians of the 2 body problem, corresponding to Lagrangians as in eq. (1.29), and a
perturbation H1, we include the indirect portion of the kynetic energy in the perturbation:

H0 = T0 − U0 =
1

2

N
∑

i=1

|pi|2
[

1

µi
+

1

µ0

]

−
N
∑

i=1

µ0 + µi

ri
(1.50)

H1 = T1 − U1 =
∑

1≤i<j≤N

pi · pj

µ0
−

∑

1≤i<j≤N

µi µj

|ri − rj |
. . (1.51)
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In this way the unperturbed part H0 contains the sum of the 2-body Sun-planet relative motion
energies, as in eq. (1.35); this we will need in Section (2.5).

1.6.1 The angular momentum integral

The heliocentric canonical coordinates have another advantage in an especially simple expres-
sion for the angular momentum integral: by starting from the expression of c in barycentric
coordinates, then by using (1.44) and (1.46)

c =
N
∑

i=0

xi × µi ẋi = sH × µ0 ṡH +
N
∑

i=1

sH × µi ẋi +
N
∑

i=1

ri × µi ẋi

= sH ×

[

N
∑

i=1

µi ẋi + µ0 ṡH

]

+
N
∑

i=1

ri × µi ẋi ,

where the portion between square brackets is just M0 ḃ0 = 0, thus

c =
N
∑

i=1

ri × µi ẋi =
N
∑

i=1

ri × pi . (1.52)

Hence the total angular momentum is just the sum of the ones of the 2-body Sun-planet
subsystems; this we will need in (2.6). Note that it would be the same if the sum was to
include i = 0, since p0 = 0.

1.7 Dynamic Model and Consistency of the Approxima-
tion

1.7.1 Jacobian coordinates and barycentric correction

[Question: do we need Jacobian coordinates at all? What about correction of initial conditions
for asteroids propagated with 4 major planets only? NO! We can cite Jacobian coordinates and
justify the barycentric correction by quoting [Milani and Gronchi 2010] Section 4.4].

Small parameters and perturbations by small bodies

[Do we need Roy-Walker εik? Yes, but without proof, citing [Milani and Gronchi 2010] Section
4.5; then we discuss the possibility of excluding asteroid-asteroid interaction, referring to later,
Section 4.10.]

Consistency of the approximation

[Do we need to discuss the ratio between gravitational and non-gravitational perturbations?
The PPN orders of magnitude ofr relativistic corrections? Yes, but without proofs, citing
[Milani and Gronchi 2010], Sections 4.6 and 6.6.]

 


