
Chapter IX 

Classical Canonical Theory of the Perturbations 
of Elements 

Introduction. The classical elements were introduced in Section 14, 
and one of the aims of this chapter is to establish the differential equations 
describing their variation under perturbations. 

In Section 35 on Delaunay elements the Jacobian integration method 
is applied to the frame of the spherical coordinates. The differential 
equations for the Delaunay elements are established in Section 36, and 
later on they are reformulated in terms of the classical elements. 

35. Delaunay Elements 

Spherical Coordinates. In this section the potential acting per unit 
of mass is assumed to depend only on the distance of the particle 

(1) 

and is thus denoted by F(r). The relations (29,4) to (29, 7) applied to this 
single particle (n = 3) produce the Hamiltonian 

H(x1, X2, X3, Pi, P2, p3) =½(Pi+ P~ + Pn + F(r) (2) 
and consequently the Jacobi-equation 

~(~)
2 +~(~)2 +~( as )2 +F(Vxt+x~+xD=c. (3) 

2 OX1 2 OX2 2 OX3 

The method of integrating this equation by separation, outlined in 
Section 33, required the special form 

S(x 1 , x 2 , x 3) = S1 (x1) + S2 (x2) + S3 (x3) (4) 

of the generating function.Eq. (3) is then transformed into 10 

½S'12 + ½S~2 + ½S32 + F(V xf + x~ + x;) = c. 

10 S1 is an abbreviation for ddSi . 
xJ 

(5) 
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The first step of separation, isolating the couple S'1 , x 1 from the remaining 
terms, is unlikely to succeed, unless the potential F is a sum of the type 

(6) 
By virtue of 

there follows 
1 dF 1 oF 1 dF 1 dF1 --=--~-, r dr x 1 ux1 rdr=x. dx 1 • 

The right-hand side of the last relation depends only on x 1 . This leads 
immediately to the result that both expressions are equal to a constant 
a, hence it follows 

1 dF 
--=a 
r dr ' 

The additive constant b is irrelevant. The proposal of Eq. (6) leads 
therefore to the potential 

a 2 2 2 F= 2 (x1+x2+x3) (7) 

of the harmonic oscillator. Since our regularized theory considers the 
Keplerian motion as a harmonic oscillation the separation of the 
corresponding Jacobi differential equation is feasible in rectangular 
coordinates. 

In contrast the classical Newtonian potential 
K2 

F=-- 00 
r 

does not have this property and in order to achieve separability polar 
coordinates must be introduced. Since any polar coordinate system is 
singular at isolated points (north and south-poles) this fact prevents the 
introduction of elements that are everywhere regular. 

We proceed now to the use of polar coordinates r, 8, 1P, where 8 and 
1P are geographical latitude and longitude respectively. The deeper 
reason for adopting polar coordinates is that then the potential depends 
only on one coordinate, namely r, and this fact thus facilitates the 
separation. 

According to the rule (33, 83) the transformation of the coordinates 

x 1 = r cos8 coslJ) 
x2 = r cos9 sinlp 
x3 =r sin9 

(9) 
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is supplemented to a canonical transformation 

OXk o o · · o p,= L. Pk _::l_ = p1 cos.,. costp + p2 cos.,. smtp + p3 sm.,. 
k=l ur 

OXk n . p"'= L. Pk--= -p1 rcos.,.smtp+p2 rcos8cos1P, 
k= 1 01/) 
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(10) 

where p,, p8 , p"' are conjugated to r, 9, 1P respectively. In matrix-notation 
the set (10) may be written 

Pr cos.9 costp cos8 sintp sin.9 P1 

P1> 
r - sin.9 cos1P - sin8 sintp cos8 P2 

p"' - sin1P COSlp 0 p3 r cos9 
, 

and the orthogonality of this 3 x 3-matrix yields, firstly, the inverse 
transformation 

p1 = p, cos.9 costp-J!!. sin9 coslp- p"' sin1j) r r cos.9 

p2 = Pr cos .9 sin tp _ J!!_ sin 9 sin tp + p"' 9 cos tp ( 11) 
r r cos 

• o Ps n p3 = P, sm.,. + - cos.,.. r 
Secondly, the relation 

New Hamiltonian: 

1 ( 2 Pt H= 2 P, + r2 + 
Corresponding canonical equations: 

r= 8H 
op, , 

p2 ) 
2 "'i9 +F(r). r cos 

8H 
opl}., tp= 

oH 
op"', 

. 8H . oH . oH 
p,=-ar· Ps = - 89 • p"' = - 01P . 

(12) 

(13) 

(14) 
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Jacobi's Integration Method. The corresponding Jacobian equation 

1 ( as )2 1 ( as )2 1 ( as )2 

2 a;- + 2r2 o,9 + 2r2 cos2 9 a1j) + F(r) = C 
(15) 

is fit for separation: By putting 

S(r, 9, 1J)) = S1 (r) + S2 (9) + S3(tp) 
it is reduced to 

S'? + 2:2 Sl + 2r2 clos2 9 s~2 + F(r) = c. (16) 

For the first separation-step we propose to adopt as the first couple to be 
separated the couple S~, 1J) (this first choice is suggested by the fact that 
1J) does not appear explicitly) 

S',/ = r2 cos2 .9[2c - S'? - 2F(r)] - cos2 9Sl . 

According to (33,97) this relation splits up into 

S~2 =C1' (17) 
r2 cos2 9 [2c - S'? - 2F(r)] - cos2 9S~2 = c 1 . 

As next and last separation-step the couple S 1 , r is put on the left-hand 
side, and the couple S2 , 9 on the right-hand side of the equation 

r2 [2c-S'i2-2F(r)] =S? + ----=-½--9 , 
cos 

whence it follows 

r 2 [2c - S'/ - 2F(r)] = C2 . 

(18) 

(19) 

By solving the ordinary differential Eqs. (17) (18) (19) for S1 , S2 , S3 the 
results 

appear, which lead to the generating function 

S(r,9,1J),C,C1,C2) = sV2c -~ - 2F(r) dr + sVc2 -+ d9 + l 1Z"; 1j). r cos 9 VLi 
(20) 

According to the general theory (Section 33) there remains the choice of 
the functions 

c=g1<Ji1,P2,'fi3), C1=g2<Ji1,P2,P3), Cz=g3<Ji1,P2,'fi3). 
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In order to facilitate the introduction of the classical Keplerian elements 
it is practicable to put 

(21) 

Any other choice would lead, in principle, to the same final results, but 
would lead to elements unfit for geometrical interpretation. 

The lower limits of the integrals in Eq. (20) are still open, and some 
comments on their choice are in order. Let r 0 and O be respectively these 
limits, such that 

S(r,9,tp,p1,p2 ,p3) = f 2p1 - p~ - 2F(Q) dQ + S "ii? - dµ + p3 · tp. V :....z fJ -2 

ro {] O cos-µ 
(22) 

In the application to the perturbation theories some additional freedom 
is obtained by admitting that r0 is a function of the parameters pk; this 
more general point of view does not destroy the fact that (22) is a solution 
of the Jacobi-equation (3). 

As far as the lower limits of integration are concerned we admit that 
r 0 is not a universal constant but that it may depend on p1 , p2 . The 
generated canonical transformation is defined by Eqs. (33, 92) and (33, 103) 

as V _ "ii? p,= Tr =2p1 - --;y -2F(r), (23) 

-2 
-2 p3 
P2 - cos2 9' (24) 

(25) 

(26) 

P2 d 
-2 µ, 

-2 p3 p ---
2 cos2 µ (27) 

as a P3 
X3 = ---;=- = - J----,,=======_=s2;==- dµ + tp 

up3 o cosz µ -2 P3 
P2 - cos2 µ 

(28) 
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where 

The terms containing k are produced by the variability of the lower 
limit r 0 • 
The general theory requires the solution of Eqs. (26) (27) (28) for r, 8, 1P 
but this will be carried out later on, and only in the particular case of the 
Newtonian potential. At this stage a canonical transformation of the set 
r,8,tp,p,,p9 ,p"' into the set x1,x2 ,x3 ,p1 ,p2 ,p3 is constructed, and the 
new Hamiltonian is according to (33,105) 

(29) 

The new canonical equations become 

dx1 = l 
dt ' 

dx2 =0 
dt ' 

dx3 =0 
dt ' 

dpi =0 dp2 =0 dp3 =0 
dt ' dt ' dt . 

(30) 

From these relations it follows that x1 is an element varying linearly, 
whereas the five remaining variables are constant elements. The motion 
of the particle in polar coordinates r(t), 9(t), tp(t) is obtained from the 
transformation formulae (26) (27) (28) after having inverted them. The 
guiding principle for performing this task is the introduction of the 
classical symbols (14, 56) Q, w, J, a, e, M, E (eccentric anomaly), <p (true 
anomaly) as auxiliary variables and the establishment of their relations 
with the canonical variables. This will be carried out in the next subsection. 

Remark. The canonical transformation (23) ... (28) depends, of course, 
on the choice of the function r0 (pj). 

Canonical and Classical Elements. Now we restrict ourselves to the 
Newtonian potential 

K2 
F=--

r 
(31) 

and we make use of the properties of the pure elliptic Kepler-motion 
explained in Section 10. Our aim is to establish the connections between 
the canonical elements defined above by the Jacobian method and the 
classical elements which were described in Section 14. 

Fig. 15 is essentially a copy of Fig. 6 in Section 14. The text of this 
section, and in particular the list (14,56) of symbols, should be consulted. 
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First, the canonical elements p1 , p2 , p3 are discussed. From (29) and 
(29, 7) it is seen that Pi is the total energy 

- h 1 (p2 2 2 K2 K2 
Pi= - k = 2 i + P2 + p3)- -,- = - 2a (32) 

where a is the semi major-axis. These relations follow from Eqs. (2, 10) 
and (11, 64). Next observe that p2 is a constant during the motion; its 
value may be determined, therefore, by inserting the distance rp of the 

Fig. 15 

pericentre11 into Eq. (23). The radial velocity on the left-hand side vanishes, 
thus 

or 
K2 Pi K2 

----2-+2-=0, 
a rp rp 

-2 2 K2 2 K2 P2 = - rp -- + rp , a 

(32a) 

and by remembering the distance rp = a(l - e) of the pericentre 

p2 = KVa(l - e2) =KVP, (33) 

where pis the semi latus rectum. Similarly the significance ofp3 is obtained 
by inserting the highest point of the orbit into (24). Here 8 is the inclina-

11 For the application to perturbation theory by "pericentre" is meant the 
pericentre of the osculating orbit, which varies under the influence of the perturbing 
forces. This is the reason why we admit a variable lower limit r0 in the integral (22). 
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tion J and p9 vanishes 
p3 = p2 cosJ = KVP cosJ. (34) 

We add the remark, that p2 has the interpretation of the total angular 
momentum, whereas p3 is its component in the direction of the x3-axis. 

It still remains to evaluate the integrals in Eqs. (26) (27) (28). We begin 
with Eq. (28) and we observe that the lower limit O corresponds to the 
node N. Again the fact that x3 is constant is helpful, and thus the integral 
can be evaluated at any convenient point of the orbit. As such a point 
we choose again the node N where the upper limit of the integral vanishes. 
Hence the value ofx3 is the longitude Q of the node 

~=Q. 0~ 
By fixing the lower limit r 0 of the integrals in (26) (27) as the distance 
r 0 = rp of the pericentre it follows at first that the function k(p) by virtue 
ofEq. (32a) vanishes; secondly there results from Eq. (27) 

r - 9 

x2= - J V P:..2 2K2 de+ I 
rp 2 2- P2 + o Q Pi--2 --

Q Q 

P2 
-2 dµ, 

-2 p3 
P2 - cos2 µ 

This relation may be evaluated for instance at the node N where the 
second integral vanishes 

- •sN P2 d (36) 
rp z 2- P2 2K X2= - V -2 2 Q' 

(! p,- -+--
(22 Q 

rN is the distance of the node. Whereas the foregoing results used only 
the fact that the motion is planar and periodic, the computation of this 
integral needs information about the shape of the orbit. Therefore we 
make use of Eq. (11, 66) 

{} = p 
1 +ecos<p · (37) 

for substituting the integration variable Q by the true anomaly <P; also 
the values (32) (33) of p1 and p2 are used for this transformation of the 
integral. The square root reduces by virtue of the relation p = a(l - e2 ) to 

K . VP e sm<p, 

and thus the value of the integral is 
-o, 

x2 = - J d<p = w. 
0 

Here w is the angular distance from the node to the pericentre. 

(38) 
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Finally, the first equation of the set (30) is integrated 

x 1 = t - con st . 

and by virtue of Eq. (26) there follows : 
r 

x1 = t - const = J V2pl - Pi + 2K 2 

r/ (! 

rp 

This relation, evaluated at the pericentre yields 

const = tp 

where tp is the time ofpericentre passage. Consequently we have 

x1 =t-tp. 

By collating results there follows the list of canonical elements 
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(39) 

(40) 

(41) 

Comment. After Eq. (28) we mentioned that the complete theory 
of the canonical transformations at hand requires the solution of 
Eqs. (26) (27) (28) for r, 9, ip. This is now feasible, in principle, by adopting 
the following detour. From the canonical elements xi, Pi the classical 
elements are computed by means of the Eqs. (40) (41). Then the elementary 
theory of the Kepler-motion (c.f. collection of formulae at the end of 
Section 14) enables us to compute the position of the particle by solving 
Kepler's equation. Some of the complications encountered in the 
foregoing theory are explained by the fact that Kepler's equation is a 
transcendental equation. Such difficulties are avoided in the canonical 
KS-theory which uses the eccentric anomaly as independent variable. 

Delaunay Elements. The element x 1 is the time elapsed since peri-
centre-passage. It is to our advantage to replace this element by the mean 
anomaly M which is, according to Eq. (10,28) 

K 
M = t (t - tp). (42) a 

Another reason for this slight modification is explained in Section 42. 
The introduction of M will be achieved by a further canonical 

transformation of the actual variables xi, Pi• As always the new canonical 
set is composed of three variables of the first category, denoted by 

(43) 
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and their conjugates of the second category which are denoted by 

(44) 

Observe that we choose the mean anomaly as first variable of the first 
category and write Eq. (42) in terms of the canonical variables 

(45) 

At this stage, the special transformations considered at the beginning 
of Section 33 are helpful, they are characterized by two properties: 

1. The variables of one category are transformed among themselves. 

2. The variables of the other category are transformed linearly. 

In relation (45) we are faced with a linear transformation of x1 into 
lv which is a linear transformation of the variables of the first category. 
We thus try to find a transformation of the variables of the second 
category among themselves of the type 

(46) 

which, supplemented to a canonical transformation, yields in particular 
the desired relation (45). This proposal is compatible with the generating 
function of type II (Table (32, 71)) 

since 

_ as G 
Pz= ,=i- = v, vx2 

as was required. According to the rules (32.71) this implies 

as _ 
gD= i}G =Xz, 

D 

By comparison with the requirement (45) the differential equation 

is obtained, yielding 

K4 
f(Lv)= - 2Lz =iii· 

D 
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To sum up, the wanted transformation is 
K4 

Pi=- 2L1,' P2=Gn, p3=H0 , 

- 1 l 3 
X1 = K4 DLD, Xz=gD, X3=hD. 

The new Hamiltonian is, according to Eq. (29), 
K4 

H=---2Lt. 
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(47) 

(48) 

(49) 

The six elements LD, GD, H 0 , ID, gD, hD are the Delaunay elements, in 
terms of the classical elements they may be written 

L 0 =K0z, G0 =KVP, HD=KVJ1cosJ, (50) 

l0 =M, g0 =w, hD=Q, (51) 

where M is the mean anomaly and 

p=a(l -e2). (52) 

36. Perturbation of Elements 

Perturbation of the Delaunay Elements. Bearing in mind the canonical 
perturbation theory of Section 33, we assume now that the moving particle 
is subjected to a perturbing potential V and a remaining perturbing 
force P with rectangular components P1 , P2 , P3 (c.f. collection of for-
mulae (3, 16)). The foregoing canonical transformations to polar coordi-
nates and to Delaunay elements give rise to canonical forces 

(53) 

In principle these forces should be computed from P by the rules (31, 48) 
and (31, 49) in the following way 

(54) 

We do not carry out the rather lengthy computation of the partial 
derivatives in this set. 


