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between the two circles. But this distance is the same for all points P on
ection. Therefore, the curve is an ellipse.

Problem 4-2
If the cutting plane has the same inclinatién to the base of the cone as the
generators, there is a single sphere tangent t0 the cone along a circle and tangent
to the plane at a point. Show that thi§ point is the focus of the parabola and
that the directrix is the line in which the plane of the circle cuts the plane of the
parabola.
Furthermore, show that when the plane cuts both portions of the cone, the
curve of intersection4§ a hyperbola. Note that one sphere is in each portion of
the cone.

-

Si

Parabolic Orbits and Barker's Equation

Except-for the circle, for which the true anomaly is proportional to the
time, the position of a body in orbit at a given time is simplest for the
parabola. The polar equation of a parabola is

N P 21
r = [ Tcos 7 2(1'+ tan® 5 f) (4.9)
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150 Two-Body Orbits and the Initial-Value Problem [Chap. 4
so that from the law of areas
df
25 = =
r ¥r h=/pp
it follows that
4 p_’; dt = sec? 1 fdf

Performing the integration, we obtain ¢
tan® 1 f+3tan 1 f=2B  where B=3,/§(t—fr) (4.10)

and 7 is the time of pericenter passage.
This relation between the true anomaly f and the time ¢ is called
Barker’s equation.t The solution for f when t is given requires the root

of a cubic equation in tan % S and it is easy to show that one and only one

real root exists. To obtain it, we substitute

tan%f:z—l : (4.11)
z

and derive, thereby, a quadratic equation in 23

25-9B3 _1-0

for which
1 ks
z=(B:i:\/BZ+1)§ :

Either sign produces the same solution for tan 1 f. Therefore,

tan%f:(B-l-\/l—}-BQ)%—(B+\/1+B2)_% (4.12)

which is in accord with the classic formula of Jerome Cardan.t

Many variations of the solution of Barker’s equation are considered in
the following subsections which are both interesting and useful.

v

t The parabolic form of Kepler’s equation is called Barker's equation after Thomas
Barker (1722-1809) who published extensive tables for its solution in 1757. It contained
values of the expression 75tan % f + 25tan3 % S for the true anomalies at intervals of
five minutes of arc from 0°to 180°. Although, Halley (1705) and Euler (1744) did
essentially the same thing; nevertheless, it is still referred to as Barker’s equation.

} Gerolamo Cardano (1501-1576) published the method for solving cubic equations
Which he obtained from Niccolo Fontana of Brescia (14997-1557). Fontana is better
known as Tartaglia, which means “Stammerer’—an unfortunate name he acquired be-
cause of a speech defect. Tartaglia had a method for solving the cubic which he revealed
to Cardan in 1539 after a pledge from Cardan to keep it secret. Despite the pledge,
Cardan published his version of the method in his Ars Magna in 1545.
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si Hyperbolic Orbits and the Gudermannian

An a.ria.logous procedure for hyperbolic orbits can be formulated which
parallels the discussion presented for elliptic orbits. We begin with the
equation of the hyperbola expressed in parametric form as

T =asec¢ y=btan¢ (4.44)

in an z,y cartesian coordinate system with origin at the center. Clearly,
if ¢ is eliminated, the standard form of the hyperbola results.
To express the radius to a point P in terms of the parameter ¢, we
again use Eq. (4.4) to obtaint
nep-2R r=a(l— esecg) (4.45)
Now, if in the equation of orbit

r+recos f =p=a(l —e?)
we express the first 7 in terms of ¢ using Eq. (4.45), it follows that
—asec¢ + rcos f = —ae

Thus, the angle ¢ and the true anomaly f are related as shown in Fig.
4.12. Therefore, when ¢ is used in the analytical description of hyperbolic
orbits it has a direct geometric analogy with the eccentric anomaly of the
ellipse. In both cases auxiliary circles, whose centers are at the center of
the orbit and whose radii are the semimajor axes of the orbits, play similar
roles in the analysis. y

™
>
O

Fig. 4.12: Geometrical representation of the Gudermannian ¢.

t It is important to remember that o is a negative number and e is greater than
one.
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166 Two-Body Orbits and the Initial-Value Problem | [Chap. 4

The identities relating ¢-and the true anomaly follow as before:

cosf_____e—secg sec¢ = g+oos] b MH%A%
esecs — 1 $= T¥ecoss RO S
(4.46)
veZ —1tan¢ ve2 —1sin f
sin f = ——— tan¢ = ——
esec¢ —1 1+ecosf
Then since
21, _ole+1) . 9 21,_ _ale=1) o,
S g f S = O 58 cos® 3 f = m—— 5¢  (4.47)
we have
e+1
tanif= tan 1 4.48
an 3 o7 tan 3¢ (4.48)

To derive the analog of Kepler’s equation for hyperbolic motion, we
calculate the differential of Eq. (4.48) to obtain

rdf = bsec¢d¢ (4.49)
Hence, in the same manner as for the ellipse, we have
N =etan¢ —logtan(d¢+ i) (4.50)

where the quantity /N is analogous to the mean anomaly of elliptic motion
and is defined as

N = (_‘;)3 (t—1) (4.51)

¢ Problem 4-14
The two straight lines

y = :tg—:c = *(tan )z

through the center C are the asymptotes of the hyperbola where 3 is related to
the eccentricity as

tany = \Ve2 —1 or secy =e

The equation of orbit can then be written as

. P _ pcosy
1+ecosf 2cos 3 (f+)cos i(f— )

.

which clearly displays the behaviour of the hyperbola in the vicinity of the asymp-
totes. Indeed, this equation defines the asymptotes.

Carl Friedrich Gauss 1809
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$ Problem 4-15
Define the quantity u as
u=tan(3¢+ :m)

Equation (4.50) can then be written as

€ 1
N=§(u—a)—logu

with the radius and true anomaly expressible in terms of u as

ae 1 e+1lu—1
=a— = Ut — d tan = f =4/
r 2<u u) an an 3 f e—1lu+1

Problem 4-16
With the angle ¢ defined in Prob. 4-14, the quantity u. defined in Prob.
4-15, can be expressed in terms of the angles f and ¥ as

COSs

<
|
L

where 1<u<oco for f>0

ST S
[
+
=

COS

Carl Friedrich Gauss 1809

The Gudermannian Transformation

The analysis for hyperbolic orbits may be accomplished in terms of hyper-
bolic, rather than trigonometric, functions. Because of the familiar identity

cosh? H —sinh* H =1
the parametric equations of the hyperbola can be written as
z =acoshH y =bsinh H (4.52)
and the radius vector magnitude becomes
r = a(l — ecosh H) (4.53)

The identities between H and the true anomaly are found simply by
substituting

tan ¢ = sinh H sec¢ = cosh H (4.54)
in Egs. (4.46). We can also show that :
tan 3¢ =tanh 3 H (4.55) ﬁ‘
so that Eq. (4.48) becomes ‘
] ;
tan1f=1/< tanh L H (4.56)

e—1
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168 Two-Body Orbits and the Initial-Value Problem [Chap. 4

Applying the definition of the hyperbolic functions in terms of the
exponential function, it follows from Egs. (4.54) that

H =log(tan¢ + sec¢) = logtan(3 ¢+ %) (4.57)

Hence, the relation between time and the quantity H is obtained from Eq.
(4.50) as
N =esinhH - H (4.58)

The inverse function, expressing ¢ in terms of H and written symbol-
ically as ¢ = gd H, is called the Gudermannian of H. Explicitly,

¢ =gdH = 2arctan(e”) — ir (4.59)

This name was given by Arthur Cayleyt in honor of the German mathe-
matician Christof Gudermann (1798-1852) who was largely responsible for
the introduction of the hyperbolic functions into modern analysis.

¢ Problem 4-17
The hyperbolic form of Kepler's equation can be obtained formally from
Kepler’s equation by writing

E=—H and M =:iN
where 7 = 4/—1.

Geometrical Representation of H
If A is the area swept out by the radius vector, then, from Prob. 2-16,
dA = §(zdy — ydz)
Hence, for the unit circle
2 +y2 =1 or z=cosE, y=sinFE
and for the unit equilateral hyperbola
z2—-y*=1 or z=coshH, y=sinhH

we have
dA = 1dE (unit circle)

dA = 32dH  (unit equilateral hyperbola)

Furthermore, as shown in Fig. 4.13, with AQ an arc of the circle and the
shaded area equal to 3 E, there obtains

CR=cos E RQ =sinE AD =tanFE

t Although Sir Arthur Cayley (1821-1895) contributed much to mathematics, he is
is generally remembered as the creator of the theory of matrices. Logically, the idea of
a matriz should precede that of a determinant but historically the order was the reverse.
Cayley was the first to recognize the matrix as an entity in its own right and the first
to publish a series of papers on the subject.
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Fig. 4.13: Geometrical significance of £ and H.

Similarly, with AQ an arc of the hyperbola and the shaded area equal to
1 H, then

CR =coshH RQ =sinh H AD =tanh H

Trigonometric functions are frequently called circular functions and this
analogy between circular and hyperbolic functions is the reason for the
designation of the latter as hyperbolic.

From this discussion, it is clear that the analog of the auxiliary circle,
used in the analysis of the ellipse, should be the equilateral hyperbola
having the same major axis as the hyperbolic orbit under consideration.

Refer to Fig. 4.14 where the points C and F are the center and focus
of the hyperbola. The point A is the vertex or pericenter position. The axis
through F and A is called the transverse azis. The other axis through
the center, called the conjugate azis, does not intersect the curve. Let
P be the position of a body on the hyperbola and let @ be the point
where the perpendicular to the transverse axis through P cuts the auxiliary
equilateral hyperbola. Then the area CAQ, bounded by the two straight
lines CA, CQ, and the arc AQ, is

Area CAQ = 1d’H (4.60)

Problem 4-18
Derive the hyperbolic form of Kepler’s equatién geometrically, using the
same pattern of argument as for elliptic orbits ther, show that if a fictitious
body starts from C when the real body is.a A and moves along the asymptote

of the equilateral hyperbola with a constant speed equal to the ultimate speed of
the real body, then

= 12 Area FoCP'
a

where FoCP' is a tri

hyperbola, C, t

gle whose vertices are Fp, the focus of the equilateral
Center, and P', the position of the fictitious body.
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/' Fig. 4.14: Orbital relations
for hyperbolic motion.

obtained as
r = a(cosh H —e)i, + /—apsinh H1i,
r— (4.61)
v=-Y"Plsinh i, + Y cosh i,

Og

B

ao
G = —2[1 - cosh(H — H,))
vE (4.62)
F,=- V;“a sinh(H — H,)
0

G, =1~ %[1 — cosh(H — Hy)]
where
r = —a+ (rg+a)cosh(H — Hy) + 0,v/—asinh(H
with the quantity H — H, obtained as the solution of

N = Ny = —(H - Hp) + —2=[cosh(H — H,) — 1]

(4.63)

99

i

+(1- %0) sinh(H — Hy) (4
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The Flight-Direction Angle

The angle v between the position vector r and the velocity vectdr v will be
referred to as the flight-direction angle. This name distinguishes it from the
more traditional flight-path angle which is the complement of ~. Clearly,
from the figure we have

siny = 71&(1 + ecos f)
;}’ . (3.30)
cosy = Eesmf

~ which relate the flight-direction angle and the true anomaly.

$ Problem 3-23

Derive the expressions

_r-v Jpresi’f rvcoswy
= = = = pcot'Y
v VE

h=rvusiny

$ Problem 3-24
From the results of Pfob. 3-23 and the vis-viva integral, derive the following
expressions for the pargimeter p and the velocity vector v in terms of the flight-
direction angle ~:

h .. esin h
V=—(C0t'71r+lg)=#' fir+‘—i9
T h T

toblem 3-25
The quantity Q = o = ,/pcot~ is a solution of Eq. (3.8). Use the method i
of/Sect. 3.2 to expand cot v in a Taylor series. i

The Lagrangian Coefficients

The components of the position and velocity vectors ry and v, at a given
instant of time ¢, serve to describe completely the motion of one body rel-
ative to another. In fact, these components can be used as orbital elements
and, indeed, for some applications may be the most natural choice. When
such is the case, we will require equations for r(t) and v(t) in terms of ry
and v,. For this purpose, we note that the position and velocity vectors
may be expressed in terms of orbital plane coordinates as

r=rcos[i, +rsinfi,

I ST PR T AN ',_. DU

3.31
v=—%5infie+%(e+cosf)ip ( )
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¢ v follows at once from Eq. (3.28) with e = ele and
d at the initial point for

of course, are vali
are ;nverted,

(The equation fo
h = hig) These equations
When they

which the position and-velocity are To and vg-
t vectors ined 1 £ these initial vectors:

the coordinate uni
The inversion is readily accomplished by first observing that the
. ensional matrix of coefficients in Egs. (3.31)

; I To
= 71—2—(64- cos fo) To — —;’;smfov0
B To (3.3'2)

- sin foro* 3 cos fo Vo

P
(3.31) gives the desired result in the form

i

and substitution into EQ.
r= Ftg+ Vo
3.33
v = Ftro + GtvO ( )
The two—dimensional matrix of coefficients
F G .
d =

nsition matriz and the matrix elements are the Lagrangla®
are simply the respective

acts as a tré
Clearly, the coefficients Fy and G

coefficients-
time derivatives of F and G-
Two basic properties of ® are readily established:
1. The value of the determinant
|®@| = FG;— GF,=1 (3.35)

the conservation of angular momentum

follows from
rxv=I(FG— GF,)ro

X vo=To X Vo

The inverse of @ 1s simply
o) = X G “GX (3.36)
_F, F
so that @ isa symplectic matrix.
9. For any three points on an orbit g, Fys T2
@507 ‘1’2,1‘1’1,0 (331
ed by successive applications of Egs. (3.33)-
& do not generally exist in

) which is prov
Closed-form equations for the elements of
. Bowever, they are rea ily obtained as functions

terms of the times t, to

any two-

4 in Chapter g. It is shown there that
is symplect'xc.

lectic matrix ig define
is equal to one,

t+ The symp
dimensional matrix, whose determinant

s
RERS

R -"‘mﬁ.'u‘f' »‘W@T@%‘f& (5
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130 The Problem of Two Bodjes [Chap. 3
of the trye anomalies f Jfo by multip

lying the two matrices composed of
the coefficients of Egs. (3.31) and (3.32).
t is mor

€ convenient tq €Xpress the Lagrangian coefficients in terms
of the trye anomaly difference

6 = f- fo (3-38)
For this burpose, write
€os f = cos (6 + Jo) = cosbcos Jo —sin@sip To
Then, obtajp €os f, from the €quation of orpjt and sin Jo by calculating
the scalar Product of the twq €quations in (3 31). Thus,
ecos fo = = _ and esin Jo = @ (3.39)
To
where o, | which oceurs frequently ip other contexts ;g defined by
=To vy
o, =-0"Y 3.40)
°="7 (
Then the polay form of the €quation of orbjt Eq (3.20) may be written
as pry
Fa (3.41)
"ot (p~1,)cosd = VP 0oy sin @
and the Lagrangian Coefficients ag
r rr
F=l~—1—cos¢9 G =—0 gny
D ( ) VHD -
JE . (3.42)
F, :&[ao(l—cosﬂ)-\/ﬁsin0] G, —1—~°(1~cosﬁ)
ToD p
Equationg (3.41) and (3.42) are of major importance in our later work
T
are dyadie Products. Then, the
ar momentum h and a vector w.
4 w..; l'
7
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174 Two-Body Orbits and the Initial-Value Problem [Chap. 4

Universal Formulas for Conic Orbits

Thus far we have been obliged to use different formulations to describe the
motion of a body in each of the various possible orbits. However, a gen-
eralization of the problem is possible using a new family of transcendental
functions. With these functions, universally applicable formulas can be
developed which are simultaneously valid for the parabola, the ellipse, and
the hyperbola.

To motivate the development, the key differential relationships, de-
rived in the previous three sections, can be summarized as

1
il e [ peltanz))
VAN, aled
e bdH
Since, for the three kinds of orbits, we have, respectively,
i .02 s_.j &_ [k
p Vop b Va bV —a
then we may write
d(\/ptan 3 f)
Vidt=r< d(\/aE) = % (4.70)
d(v—-a H)

where x is to be regarded as a new independent variable—a kind of gen-
eralized anomaly. It is remarkable that when y is used as the independent
variable instead of the time ¢, then the nonlinear equations of motion can
be converted into linear constant-coefficient differential equations.

The transformation defined by

dt

is called a Sundman transformationt and we shall now demonstrate that r.
T. 0,and t can all be obtained as solutions of simple differential equations.
To begin, we differentiate the identity

T =r-r

and obtain
dr dr _ dt dr T

L RTTR X T

r-v=ro

t Karl Frithiof Sundman (1873-1949), professor of astronomy at the University of
Helsinki and director of the Helsinki Observatory, introduced this transformation in
his paper “Mémoire sur le Probléme des Trois Corps” published in Acta Mathematika,
Vol. 36, 1912.

SaALE e ax’ oA T SECRINR P
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Cancelling the factor r and differentiating a second time, we have
dr do rd

__.3=._a=——(r-v)=£(v2+r"d—v>=£ Q—u—li—y—- -':]._"z
dx dx pdt L dt L\r a T

It is convenient here and in the sequel to write « for the reciprocal of
a so that ¢ is defined as

(0%

Il
ISH R
R

2
v (4.72)
U

and may be positive, negative, or zero.
In summary, then

dr -
=TV
dzr_da_ d3t_1
dx?  dx 'udx3_ —or

a3r  d%c d4t dr d*t
oF " d T VhaE T gy T T Ve g

so that o, r, and t are solutions of the equations

2 3 4 2
Z—;nhao—:o 572+a%=0 572 aj—)(i:@ (4.73)
The derivatives of the position vector r
dr r d’r o 1
& = —\/_ﬁ ' E)? = —\7_; V= ';I'
lead to e .
W + C!E;(- =0 (4.74)

in a similar manner.

Linear differential equations with constant coefficients present no
particular difficulty in their solution. Nevertheless, it is advantageous in
this case to develop the solutions in a form utilizing a family of special
functions defined solely for this purpose.

The Universal Functions U, (x; @)

To construct the family of special functions, we begin by determining the

power series solution of

d*o

d—x—2+(10=0

by substituting
[e e}
o= ax"
k=0

BRI E F ~
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and equating coefficients of like powers of x. We are led to
a

“%+2 T T 1)(k+2)*

as a recursion formula for the coefficients. Hence

2 2)2 2 2y2
_ ax® | (ex®) ax® | (ax?)
a—ao[l— o1 + 41 —---]+a1x[1— 3l + s
where a, and a, are two arbitrary constants. We shall designate the two
series expansions by Uy(x; @) and U, (x; ) so that

for k=0,1,...

o = agUp(x; ) + a,U, (x; @)

The function U, is simply the integral of U, so that we are motivated
to define a sequence of functions

X X X
U, =/ Upgdx U, =/ Uydx U= / Uydx  ete.
0 0 0

The nt® function of such a sequence is easily seen to be

2 2\2
viied =2 [ g+ L -]

A basic identity for the U functions is at once apparent from the series
definition of U, (x: «). Since Eq. (4.75) may be written as

V o) = XD gyt 1 ax® ()
Un(xi0) = 7 — ox [(n-{-?)! (n+4) " (n+6)!
we have n
Unlxi@) + el (0) = % (4.76)

It is clear, from the manner in which the family of functions was con-
structed, that

du.
-g;—‘ =U,_, for n=12,... (4.77)
and, by differentiating the series for U),, we can easily show that
au,
E = —al, (4.78)

Now, if we differentiate the identity (4.76) m+1 times, where m > n,
and use Eq. (4.77), we obtain
dmt1y. 7 il 8
dxm“n +a 1 =0 for n=0,1,...,m (4.79)
It follows that U, and U, are each solutions of the second-order differential
equation satisfied by o, and we recall that ¢ was, indeed, found to be a
linear combination of Uy and U, .

YT o
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Finally, by applying the identity (4.79) to the other two differential
equations in (4.73), we conclude that r is a linear combination of Uy, U; -
U, while ¢ is a linear combination of Uy, U;, U,, U;. These will be
the general solutions provided, of course, that the U functions are linearly
independent.

Linear Independence of U, (x; @)

The functions Uy, U,, ..., U, will be linearly independent if no one of
the functions can be expressed as a linear combination of the others, or,
equivalently, if no linear combination of the functions is identically zero

" over any interval of x under consideration.

It is known that the functions will be linearly independent if the as-
sociated Wronskian determinantt is not identically zero. The elements of
the first row of this determinant are the functions Uy, Uy, ..., U,. The
second row consists of the first derivatives of these functions, the third
row. the second derivatives, and so forth with the last or (n + 1)*® row
containing the n'P derivatives.

For example, if n = 3, the Wronskian is

Uy U, Up U
-alU, U, u, U,
-aU, —-aU, U, U
U, —-olU, —alU, U,

where we have used the identities (4.77) and (4.78) to replace the derivatives
by the appropriate U functions.

To evaluate the determinant, we multiply the first row by o and add
to the third row. Then, the second row is multiplied by a and added to the
fourth row. Where appropriate, we utilize the identity (4.76) and obtain

Uy U, U, U
-aU, U, U, U,
0 0 1 x
0 0o 0 1

W =

W =

Hence, the value of W is simply U2 + aU}. Indeed, it is easy to see that
W will have this value for any n > 0. Therefore, the question of linear
independence will be resolved when we show that

U2 +alUk=1 (4.80)

for all values of x.

+ The name was given by Thomas Muir in 1882 to honor the Polish mathemat‘icia.n
and philosopher Jézef Maria Hoené-Wroriski (1776-1853) who first used this determinant
in his studies of differential equations.
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178 Two-Body Orbits and the Initial-Value Problem [Chap. 4

To this end, we multiply the identity [Eq. (4.76) with n = 0]
Uy +alU, =1
by U, and integrate with respect to x. We have
U +aU? =2U,

or
U +U,(1-U,) =2U,

Hence

Substituting this, for U, in the equation U, + aU, = 1, yields
= Uy + aU} = Uy(1 - Uy)
= U§ + aU?

and the identity (4.80) is established.

Lagrangian Coefficients and Other Orbital Quantities

Since the U functions are linearly indepehdent, the general solution of the
differential equation for ¢ may be written as

VE(t = to) = agUy + a, U, + ayU, + a3Us

If we require t = t, when x = 0, then we find that ¢, must be zero. The
derivative of this expression, according to Eq. (4.71), yields

r=a,Uy + aU; +a3U,
Setting x =0, gives a, = r,. Differentiating again produces
o = —argU, + a,U, + a3U,
so that a, = 0. Finally, calculating one more derivative, we have
1 —oar =—aryUy — aoyU, + a3U,

from which a; = 1.
In this manner, we obtain the generalized form of Kepler’s equation

-Vt —ty) = roUs (x5 ) + 0Us (x; @) + Us(x; @) (4.81)
together with

r = roUg(x; @) + ooU; (x; @) + Us(x; @) (4.82)
o =aaUy(x; @) + (1 — ary)U (x; @) (4.83)
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In a similar fashion, we write
v =—-alU,a, +Uya, +U,a,

Bk

o 1

VHE T

and determine the vectors a,, a;, a, by setting x = 0. Thus, we obtain
the following expressions for the Lagrangian coefficients

1 T 0o ..
F =1-—U,(x;) G = XU, (x:a) + —=U,(x; @)

0 : ‘/711 Ve (4.84)
F=-Y20,060) G, =1-1U,0x0)

Ty

These equations are “universal” in the sense that they are valid for all
conic orbits and are void of singularities. For this reason the U functions
are referred to as universal functions. As we indicated at the beginning of
this section, x is a generalized anomaly and is related to the classical ones
by

JP(tan 3 f —tan 3 fo) = 0 — o
X =19 Vva(E - E,) (4.85)

Finally, an important relation for x can be derived. If we multiply

Eq. (4.81) by o and add Eq. (4.83), we have

Hence, using Eq. (4.76),
X = a/u(t — tg) + 0 —0g (4.86)

is obtained as an explicit expression for x which does not involve any of
the U functions.}

t The case of the parabola was considered separately in Sect. 4.2.

t Equation (4.86) was discovered in August of 1967 by Charles M. Newman—a staff
member of the MIT Instrumentation Laboratory during the era of Apollo. His derivation
was more involved than the one presented here.
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¢ Problem 4-21
The U functions are, of course, related to the elementary functions but the
particular relations depend on whether the orbit is a parabola a = 0, an ellipse
a >0, or a hyperbola o < 0. The first four of the U functions are given by

4 1 ( .
Uo(x;a) ={ cos(vax) Ui(xe) = 4 sin(\/\g&x)
| cosh(v=ax) \ %{_—;a_x)
r _X_2 ; X—3
. 6
Uxia) = =20 Us(x; @) = | ‘/EX;ii/l‘;r(\/aX)
cosh(y=ax) — 1 sinh(v=ax) - v ax

a \ —a/—a

Problem 4-22
If we define a new universal anomaly 1 as

b= —2X

VHE(t = to)

then the universal form of Kepler’s equation may/be written either as

+ nUs(¥;¢)
where
£ = \/;_L(t —tg)oo _ ap(t — to)2
= rg
or as
+ EU2(%; ¢) + AUs (5 )
where

A=n-—g

Observe that/for parabolic orbits the second form of Kepler’s equation
becomes

L=9+ 360"+ §29°

the solution of which provides a good initial approximation for the near parabolic
case.

Also, for circular orbits, the solution is simply + = 1, providing a good
approximation for near circular orbits.

Karl Stumpff 1958
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. C"(w)‘ﬁ_(n+2)!+(n+4)7”
together with the recursion formula
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¢ Problem 4-23
Introduce the quantity

% = ax®
so that a family of functions cn (%) can be defined in terms of the U
by
X"cn(¥) = Un(x; )
Indeed, the entire subject of universal functions can be developed in terms of

these alternate functions c.(¥).
(a) Derive the series representation

1 L v’

1
Cn + 'd)cn+2 = 5
n

and the identity
co + et #1

(b) Derive the following derivative formulas

doo __c1
dy 2
dcn 1

‘d—J=ﬂ(0n—1—/ncn) for mn=12,...
=‘;'(ncn.2—0n+1) for n=0,1,...

o
(@]
7]
=
|
AS

V¥ —sin /9
aves

cosh /=9 — 1 sinh /=¥ — /=%

= N

here the alternate representations depend upon the sign of .

t The functions c2(¥) and c3(¢) are identical with the functions C(z) and S(z)
originally defined by the author in his book Astronautical Guidance. Their use in the
Apollo program is documented in the Epilogue of this book.
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¢ Problem 4-24

Consider another form of the Sundman transformation

F=1= G = roUi(x; pe) + ooz (x; pa)

%Ul(x; pa) G: =1- éUz(x;#a)

NOTE: IpAhis form, the solutions of the two-body equations of motion do not
require t,’l{at u be positive so that they are equally valid for repulsive as well as
attractive forces.

William H. Goodyeart 1965

Problem 4-25
Parabolic coordinates £.n are defined by the transformation

=€ -n" y=2n

which provides a mapping of the £.n plane onto the z,y plane. The inverse
transformation is most conveniently expressed in terms of polar coordinates r,6
in the z,y plane.
(2) Show that
§=+/rcos 36 7 = /rsin 36
is the appropriate mapping of the z,y plane onto the £,n plane.
(b) The two-body equations of motion in the z,y plane are transformed into
d’¢ o d’n  «
oz T3¢ oz Tg1=0
in the £,7n plane, where o = 1/a is the reciprocal of the semimajor axis and x
is defined by the Sundman or regularization transformation

dt
ﬁ&;—’

Thus, we see that the two-body motion in parabolic coordinates consists of
two independent harmonic oscillators of the same frequency.

André Deprit 1968

t “Completely General Closed-Form Solution for Coordinates and Partial Derivatives
of the Two-Body Problem,” The Astronomical Journal, Vol. 70, April 1965, pp. 189-192.
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NO
Identities for the Universal Functions

There are a variety of identities involving the functions U, (x; ), many of
which will be required in further applications. These will be developed and
collected in this section to serve as a ready reference when needed.
Because of the direct relationship between Uy, U; and the circular and
hyperbolic functions, as seen in Prob. 4-21, we can immediately recognize

U2 +alUf =1 (4.87)

as the best known identity between sines and cosines or hyperbolic sines
and cosines. Similarly, we can write

Uo(x =) = Upg(x)Up(¥) F ol (X)U, (¥)

Uy (x £¥) = U (x)Us(v) £ Uy (x)U; (¥) (4.88)

and
Up(2x) = UZ(x) — U (x) = 2U¢(x) — 1 = 1 — 2aU7 (x)
U,(2x) = 2Us(x)U, (x)

as counterparts of other familiar identities. Just as Eq. (4.87) was derived
earlier, without resort to its relation with the elementary functions, so also
could these and all identities involving just U, and U, .

For the higher order U functions, the analogy with the elementary
functions is not convenient to exploit and other techniques will have to be
employed.

(4.89)

Identities Involving Compound Arguments
The basic equation, from which all the identities will evolve, is
Xn
Un + ozUn+2 = ? (490)
For n =0, we have
aly(x £ 9) =1 - Up(x £¥) = 1 = Up(x)Up(¥) £ U, (x)U,(¥)

but this equation is not useful to calculate U,(x £ %) since division by o
would be required. (It will be a cardinal rule that we must never divide by
o in any calculation involving universal functions.)

To obtain a proper identity, we write

aU,(x £ ¥) = 1= [1 = aUy(x)|[L — aU,(4)] £ aU, (x)U; ()
so that o may be cancelled as a common factor. There results

Up(x £ 9) = Us(X)[1 = aUs(¥)] + Up () £ Uy (x) U, (¥)
Hence, finally,

Uz(X:tw) =Uz(X)Uo(w)+U2(¢)iU1(X)U1("/J) (4-91)
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¢ Problem 4-26
A generalization of the well-known Euler identity for trigonometric functions
is .
eVeX = Up(x; a) + ivaUi(x; @)
where i = /—1. Use this relation to derive Egs. (4.88).

¢$ Problem 4-27
Derive the following identities for the universal functions of the sum and
difference of two arguments:

Us(x £ 4) = Us(x) £ Us () + Ur(x)Uz(#) & U2(x)U1 ()
Ua(x % ¥) = U2(x)U2(¥) + Ua(x) + Us () = 9Us(x) = U (x)Us ()

Identities for U3 (x; @)
The method used to establish the identity
UT = Uy(1 +Up)

which was derived in the previous section as a part of the calculation of the
Wronskian of the U functions, can be generalized to produce a sequence
of identities. For this purpose. multiply Eq. (4.90) by U, ., and rewrite as
d 2 2 X"
a;(Unﬁ-l +alUy,p) = 2?Un+1
Hence

n

2 _ X X'n—l
U3+1 +aUp o =2 [HUn+2 - (n—_l)!U”H e LR U2n+2]

is obtained by integrating the right-hand side by parts. Then, using Eq.
(4.90) again, we have

Xn Xn—l XTL—2
U721+1 = n+2 ( +Un)~'2 [ _1)!Un+3_ (—IUn+4+'|' (492)

nl (n n—2)
Therefore, by setting n =0, 1, 2, ..., we may establish successively
U2 =U,(1+U,)
U? = Us(x +U,) — 2U, (4.93)

Ug = U4(%X2 + Uy) = 2(xU;s — Ug) etc.

These equations are particularly useful to calculate U,, Ug, Ug, .- -In
terms of the U functions with lower subscripts. Similar explicit relations
for the odd-ordered functions do not seem to exist. Of course, Eq. (4.90)
permits a simple solution to the reverse problem, i.e., calculating lower-
order functions from higher-order ones.

R
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Identities for U, U,y — U,

n+2-n—-m
For any integer m < n, the identity (4.90) may be written as

Xn—m

Now multiply this by U,,,, and multiply Eq. (4.90) by U, ;_,,- Adding
the resulting two equations gives

n

d n—m
—(Un+1Un+1—-m + aUn+2Un+2—-m) = &

X
dx U

momyiln ¥ “TUnt1-m

.Hence

Un+lUn+1—m + C'VUn+2U-n+2—m =

Xn—m Xn—m—l

(n _ m)! Un+2 - (TL —m— 1)!Un+3 ook U2n+2—m
Xn Xn—l
+ —Tl_!Un+2—m = mUn+3_m + .- o = U2n+2—m
or
Un+1Un+1—m - Un+2Un—m =

Xn Xn—l ;

T Unt2-m ~ m0n+3—m +- -t Upnigm
Xn-m—l Xn——m—2

Uizt 7———7Unsa = FUanyo-m (4.94)

T (n—m-1" (n—m-2) "

which agrees with Eq. (4.92) for m = 0. The following identities result for
(m,n) = (1,1}, (1,2), (2,2):

UpUy = UsUy = xU, — Us
UsU, — UU, = 1x*U, — xU, (4.95)
UsUy = UUy = $X°Uy = xUs + Uy

¢$ Problem 4-28
Derive the identity

Un(mx) + @aUns2(mx) = m™[Un(x) + cUn+2(x))
where m is an integer.
¢ Problem 4-29

Show that
Un(kx; @) = k"Ua(x; k@)

obtains for any value of the parameter k.



B B e T T

186 Two-Body Orbits and the Initial-Value Problem [Chap. 4

Problem 4-30
Derive the identity

U= ésts + Us(Ur — x)

$ Problem 4-31
Derive the following double argument identities for the universal functions:

Uz2(2x) = 2U7(x) Ua(2x) = 2U3 (x) + 4Us(x)
Us(2x) = 2Us(x) + 2U1(x)U2(x) = 2U3(x)[x + U1 (x)]
= 2Uo(x)Us(x) + 2xU2(x) Us(2x) = 2U1(x)Us(x) + x*Us(x) + 2Us(x)

Identities Involving the True Anomaly Difference

Important relationships between the functions U, (x; ) and trigonometric
functions of the true anomaly difference § = f — f, can be obtained by
comparing Egs. (3.42) and (4.84). Thus,

Uy(x;a) = %[\/ﬁsin() — 0,(1 — cosf)]

(4.96)
Uy(x;a) = Z%(1 — cos )
Also, by using the identities
Uy(x) = 2Wo(30U:(3x)  and  Up(x) = 2U7(5%)
we find that
T ;
Up(3x: ) = Top(\/z_)cos 30 — 0 sin 36)
(4.97)
TT
Uy(3x;0) =/ —2sin i
D
which may be written alternately as
sin 38 = T—z:——Ul(%x; @)
g (4.98)
1g i )
In particular, we obtain
IE [ & 5
tan 16 = vPUi(5x:0) (4.99)

roUo(3x: @) + 0oUy (3 x5 @)

as a convenient formula for determining # from x.
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