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Andrea Milani 2CHAPTER 1:CANONICAL TRANSFORMATIONSThis 
hapter dis
usses dynami
al equations of the Hamilton type:dqdt = �H�p ; dpdt = ��H�q (1:1)(where q; p are N{ve
tors) and the way they 
an be transformed by 
oordinate
hanges whi
h preserve the hamiltonian 
hara
ter of the equations. No spe
i�
appli
ation is presented in this 
hapter; the theory is developed only to the extentwhi
h will later be needed to dis
uss the perturbation theories a
tually used inCelestial Me
hani
s, and 
omputational tools are readied for su
h theories.1.1 LOCAL CANONICAL TRANSFORMATIONSA 
oordinate transformation� : (q; p) 7�! (x; y) (1:2)is 
anoni
al if the equations of motion (1.1), as seen in the new 
oordinate system(x; y), are again hamiltonian with as hamiltonian K = H Æ ��1, the fun
tion withthe same values in 
orresponding points, that is:dxdt = �K�y ; dydt = ��K�x (1:3)K(�(q; p)) = H(q; p) (1:4)The 
ondition for a map to be lo
ally 
anoni
al, in the neigbourhood of somepoint, 
an be simply stated in terms of the matrix of partial derivatives:D� = �(x; y)�(q; p) (1:5)To simplify the formulas, we assemble the 
oordinates q and the momenta pin a single 2N{ve
tor r = (q; p) and rewrite the Hamilton equations:drdt = J rHT (1:6)



Perturbation methods 3with J a 2N � 2N matrix: J = � 0 I�I 0� (1:7)and rH = �H=�(q; p) the gradient of the Hamiltonian; rT is the gradient trans-posed, that is used as a 
olumn ve
tor. The time derivative of z = (x; y) 
an be
omputed by the 
hain rule:dzdt = D� drdt = D� � J rHT (1:8)The gradient 
an also be 
omputed by the 
hain rule from (1.4):rH = rKD� (1:9)and upon substitution into (1.8):dzdt = �D� � J �D�T �rKT (1:10)whi
h is equivalent to the new Hamilton equations dz=dt = JrKT provided:D� � J �D�T = J (1:11)If (1.11) holds in every point, the map � is lo
ally 
anoni
al . Sin
e J is non{singular,(1.11) also implies that det(D�) = �1. In the 
ase of a 2� 2 matrix, det(D�) = 1is equivalent to (1.11); for larger matri
es, this is not the 
ase.It is easy to 
he
k wether 
ondition (1.11) is veri�ed for any given �, but itis not easy to �nd non{trivial 
anoni
al maps, even lo
ally. A standard pro
edureis the use of a generating fun
tion S = S(q; y) to de�ne a map in an impli
it way:p = �S�q (q; y) ; x = �S�y (q; y) (1:12)If the impli
it de�nition (1.12) 
an be untangled in a well de�ned map (1.2), atleast lo
ally, then su
h a map is lo
ally 
anoni
al (this 
an be shown by the dire
t
omputation of (1.11) by means of the impli
it fun
tion theorems, and also provenindire
tly by using variational prin
iples; see Arnold, 1976, 
hap. 9). However all thetopologi
al diÆ
olties are somewhat hidden in the impli
t map (1.12) and emerge inthe attempt to make it expli
it, so this method is often of little help in understandingthe global properties of the 
oordinate 
hange.



Andrea Milani 4A further problem arises when we need to 
onsider a time dependent 
anoni
altransformation. It is indeed possible to develop a separate formalism of 
onta
ttransformations (see Abraham and Marsden, 1967; Arnold, 1976, App. 4), butthis is not really needed for the appli
ations to Celestial Me
hani
s. The simplestway is the so{
alled homogenous formalism, by whi
h the time is 
onsidered as anextra 
oordinate t = q0 and a new momentum p0 is added. Then the Hamiltonequations with a (possibly time dependent) Hamiltonian H = H(q; t; p) are handledas time{independent Hamilton equations with the homogeneous Hamiltonian H =H(q; q0; p) + p0 with the equations (1.1) plus the extra ones:dq0dt = �H�p0 = 1 ; dp0dt = ��H�q0 = ��H�t (1:13)where the last equation shows that the meaning of p0 is simply p0 = �H. Then a
anoni
al transformation 
an be de�ned by a time{dependent generating fun
tion:S = S(q; t; p) ; x = �S�y ; p = �S�q (1:14)just by thinking to the 
orresponding homogeneous generating fun
tion:S = S(q; q0; y; y0) = S(q; q0; p) + y0q0 (1:15)
onstru
ted in su
h a way that x0 = �S=�y0 = q0 = t; the new Hamiltonian is �y0,related to H = �p0 by: p0 = �S�q0 = y0 + �S�t (1:16)that is the new Hamiltonian is K = H � �S=�t. The homogeneous formalism 
analso be used to allow for 
hanges in the independent variable, whi
h is often useful.1.2 RUDIMENTS OF TOPOLOGYTo understand the properties of global 
anoni
al maps we need to borrowsome 
on
epts from di�erential topology. Two spa
es are said to be topologi
allyequivalent if there is a map between them whi
h is one{to{one and di�erentiable,with the inverse map di�erentiable as well; su
h a map is 
alled a di�eomorphism.Spa
es with quite di�erent metri
 properties 
an be equivalent, an example beingthe equivalen
e of the half line R+ with the real line R. There are however nonequivalent spa
es, su
h as the real line R and the 
ir
le S1 (e.g. it 
an be shownthat the latter is 
ompa
t and the former is not).



Perturbation methods 5Another 
on
ept from di�erential topology widely used in the theory of Hamil-tonian system is that of a lo
al di�eomorphism, a map whi
h is lo
ally a di�eomor-phism in the neigbourhood of ea
h point; by the inverse fun
tion theorem, this isequivalent to the matrix of partial derivatives of the map being non{singular at ea
hpoint. It must be stressed that a lo
al di�eomorphism 
an exist even between spa
eswhi
h are not toplogi
ally equivalent, the simplest example being a map R �! S1su
h as the one whi
h is 
onstru
ted whenever angles are measured with numbers,e.g. in radians. The notion of an angle variable, whi
h is simply a 
opy of the mapR �! R=(2�Z) ' S1 in whi
h two values of the angular measure are said to de�nethe same angle if they di�er by an integer multiple of 2�, is 
entral to the study ofintegrable dynami
al systems.A third useful 
on
ept is that of a di�eomorphism isotopi
 to the identity , ortrivial ; it refers to a map of a spa
e onto itself whi
h not only is a di�eomorphism,but also 
an be obtained by di�erentiable deformation from the identity map. By nomeans all di�eomorphisms are trivial, the simplest example being the map � 7�! ��of the real line onto itself (if � is regarded as an angle variable, the same formulade�nes a di�eomorphism of S1 whi
h is also non trivial).So far we have only used examples with 1{dimensional spa
es, and of 
oursethe variety of the possible topologi
al stru
tures in
reases dramati
ally with thedimension of the spa
e. However, for the purpose of the study of integrable Hamil-tonian systems and their small perturbations we 
an limit ourselves to the 
onsidera-tion of spa
es whi
h are either of dimension 1 or 
artesian produ
ts of 1{dimensionalspa
es. Sin
e the 
artesian operator preserves topologi
al equivalen
e, that is A ' Band C ' D implies A�C ' B�D (with ' used as a symbol for topologi
al equiva-len
e), the 
lassi�
ation of su
h produ
ts of simple spa
es is easy: e.g. in dimension2 we 
an have only the plane R � R = R2, the 
ylinder R � S1 and the torusS1 � S1 = T 2; in dimension N we may en
ounter the N{torus S1 � TN�1 = TN ,et
.. However, even simple produ
t spa
es su
h as tori 
an have subtle topologi
alproperties. Let us 
onsider as an example {whi
h is 
hosen be
ause it will be neededlater in the study of resonan
es{ the 
lassi�
ation of the non{trivial di�eomorphismsof an N{torus. Let us assume the torus TN to be de�ned by N angle variables� = (�1; �2; : : : ; �N ); when does a linear transformation of RN :� = A� (1:17)de�ne a map of the torus onto itself? The answer is that this requires the 
oeÆ
ientsof the matrix A to be integers, and 
an be understood by the simple example of themap �1 7�! 12�1, whi
h results in �1 = 0 and �1 = 2�, the same angle, that isthe same point on the 
ir
le, mapped into two di�erent angles 0 and �. The samemap is also a di�eomorphism of TN if the inverse matrix A�1 exists and has integerentries as well; this is possible if and only if A is an integer matrix with detA = �1.Matri
es with integer 
oeÆ
ients and determinant +1 are 
alled unimodular .Unimodular transformations have surprising geometri
 properties; the mostimportant for our purposes is that no unimodular transformation (di�erent form the



Andrea Milani 6identity) of a torus is trivial, that is no one 
an be obtained from another one by a
ontinous deformation. Thus there are in�nite di�erent ways to parametrize a toruswhi
h are not redu
ible to one another by means of a sequen
e of small 
hanges, forevery N{torus with N > 1.Unimodular transformations 
an be, to same extent, taylor{made to performspe
i�
 adaptations to our 
omputing needs. Let us take the simple example of anordinary 2{torus: 
an we �nd a unimodular 2�2 matrix A su
h that one of the newangles � de�ned by (1.17) is a given 
ombination of �1 and �2:�1 = a�1 � b�2 (1:18)with a; b integers? The se
ond 
omponent �2 = 
�1 + d�2 forms a unimodulartransformation together with (1.18) provided that the integers 
; d are su
h thatad + b
 = 1; sin
e we know from elementary algebra that the equation ad + b
 =MCD(a; b) has always a solution with integers 
; d, the only 
onstraint in the 
hoi
eof one of the new angles by an equation like (1.18) is that MCD(a; b) = 1. We shallsee later how su
h a 
hoi
e 
an allow an important step forward in the theory ofresonan
es.1.3 GLOBAL CANONICAL MAPSA global 
anoni
al transformation 
an be de�ned as a di�eomorphism whi
his also lo
ally 
anoni
al, that is ful�lls (1.11) in every point. However, this de�nitionis too restri
tive. Canoni
al maps are often used for the very purpose of 
hangingthe topology, and in this 
ase they must either be singular somewhere, or not beglobally one{to{one, or both.The simplest examples of global 
anoni
al maps 
an be obtained with thegenerating fun
tion formalism. Let us suppose we have 
hosen a transformationof the 
oordinates q: x = f(q) and wish to �nd a 
anoni
al transformation whi
hextends this map to the momenta: this 
an be done by means of the generatingfun
tion: S = y � f(q) ; x = �S�y = f(q) ; p = �S�q = Df(q)T y (1:19)That is, if f is a lo
al di�eomorphism (detDf 6= 0):x = f(q) ; y = �Df(q)T ��1 p (1:20)and the momenta are transformed in a 
ovariant way. However (1.20) is really aglobal 
anoni
al transformation only if f is itself a di�eomor�sm. This is always the



Perturbation methods 7
ase when f(q) = B q is a linear map (with detB 6= 0):S = y �B q ; x = B q ; y = �B�1�T p (1:21)Another interesting example is:S = y �R!t q ; x = R!t q ; y = R!t p (1:22)where R!t is the rotation by an angle j!jt aroung the axis de�ned by the ve
tor ! ofR3. This 
ase must be handled by means of the time dependent (or homogeneous)formalism, and the new Hamiltonian 
an be 
omputed by means of the derivative:�R!t�t q = R!t (! � q) (1:23)where the ve
tor produ
t is the standard way to represent an in�nitesimal rotation.By using (1.23), and taking into a

ount the rotational invarian
e of s
alar andve
tor produ
ts, the new Hamiltonian is found to be:K = H � �S�t = H � ! � (q � p) (1:24)Equations (1.22) and (1.24) allow to derive the equations for the 
ir
ular restri
ted3{body problem in the rotating frame (in whi
h the primaries are �xed); the last of(1.22) shows that the momenta in the rotating frame are not the velo
ities in therotating frame but the rotated velo
ities in the inertial frame.The more interesting 
ases are when the topology a
tually 
hanges. The mostobvious example is the 
hange to polar 
oordinates:S = y1r 
os � + y2r sin � (1:25)whi
h is of 
ourse lo
ally 
anoni
al only for r > 0, that is for (r; �) in R+ � Rand with values (x1; x2) in R2 � (0; 0) ' R+ � S1. Sin
e the two spa
es are nottopologi
ally equivalent, the map 
annot be one{to{one and indeed � is an anglevariable.Another very useful non regular 
anoni
al map is the transformation to Poin-
ar�e variables, the 
anoni
al analogue of the polar to 
artesian transformation whena 
oordinate x and its 
onjugate momentum y are regarded as the 
ouple of 
artesian
oordinates: x =p2p 
os(�q) ; y =p2p sin(�q) (1:26)It is easy to dire
tly 
he
k that det �(x; y)=�(q; p) = 1, with the minus sign in frontof the 
oordinate q playing a surprisingly essential rôle. (1.26) 
ould be lo
ally



Andrea Milani 8de�ned by a generating fun
tion S = 12y2 
otg q, but there is no way to have a singlegenerating fun
tion de�ning the map globally, pre
isely be
ause the topology does
hange. This 
anoni
al map is used to remove the singularity of the angle q forp = 0, and vi
eversa to introdu
e the angle variable when it is needed.With 
anoni
al maps as a tool, integrable hamiltonian systems 
an be expli
-itly solved by redu
tion to a trivial form; this is performed by a sequen
e of 
anoni
almaps, some of whi
h typi
ally do 
hange the topology. The simplest examples 
anbe found with quadrati
 Hamiltonians: let us assume the Hamiltonian fun
tion is ofthe form: H = 12(x �Ax+ y �Ay) (1:27)This parti
ular form arises from symmetry properties of the Hamiltonian, as weshall see in Se
tion 4.1. The symmetri
 matrix A = AT has real eigenvalues �k; k =1; : : : ; N and 
an be diagonalised by means of an orthogonal matrix B = (B�1)T :BT AB = diag[�1; �2; : : : ; �N ℄ (1:28)and by the 
anoni
al linear 
hange x = Bw; y = Bz the Hamiltonian is redu
ed tothe form: H = 12 NXk=1 �k (w2k + z2k) (1:29)whi
h represents a set of N un
oupled linear os
illators with frequen
ies �k. Ea
hos
illator problem 
an be solved by introdu
ing angle variables with the inverse of(1.26): wk =p2�k 
os(��k) ; zk =p2�k sin(��k) (1:30)Then the Hamiltonian is redu
ed to the form:H = NXk=1 �k �k (1:31)with the angle variables �k 
hanging linearly with time, ea
h one with its ownfrequen
y �k, and the a
tion variables �k 
onstants of the motion. This is thesimplest example of an integrable Hamiltonian system, and it already shows mostqualitative features of su
h systems: the level manifolds with all the �k 
onstant arespanned by N angle variables, hen
e they are N{tori TN ; most of the phase spa
e istopologi
ally equivalent to TN � (R+)N , apart from the subsets with some �k = 0where lower dimensional tori o

ur.Non trivial 
anoni
al transformations 
an be used to somewhat lessen thediÆ
ulties arising from simple singularities su
h as the lower dimensional tori of the



Perturbation methods 9above example. Suppose we wish to remove the singularity arising for �1 = 0, where�1 is unde�ned. Then the unimodular matrix :A = � 1 10 1� (1:32)
an be used to 
ombine the angles �1 and �2:�1 = �1 + �2 ; �2 = �2 (1:33)and by (1.21) the matrix (A�1)T gives the 
orresponding 
hange in the a
tion vari-ables: �1 = �1 ; �2 = ��1 +�2 (1:34)The advantage of the new 
oordinates is in that �1 
an be de�ned as �2 for �1 = 0,and this de�nition is regular for �1 7�! 0, that is the map from the a
tion{anglevariables (�;�) to the Poin
ar�e type variables (w; z) is smooth around (w1; z1) =(0; 0). This simple tri
k is standard in Celestial Me
ahni
s, e.g. when the longitudes�;$;
 are used instead of the Delaunay variables `; !;
.Another use of non trivial global 
anoni
al transformations is to highlightresonan
es. Suppose that in the example (1.29){(1.31) above two of the frequen
iesare in a rational ratio, e.g. : �1�2 = ba (1:35)Then a unimodular transformation with �rst 
omponent (1.18) 
an be 
onstru
ted(sin
e we 
an assume MCD(a; b) = 1 anyway), with matrix:A = � a �b
 d � ; detA = 1 (1:36)The a
tions are 
hanged by the matrix (A�1)T :�1 = d�1 � 
�2 ; �2 = b�1 + a�2 (1:37)and the Hamiltonian, 
ontaining �1 and �2 only in the 
ombination �1�1+�2�2 =�1�2=b, does not depend upon �1, thus expli
itly showing that �1 is 
onstant.To summarize our view of 
anoni
al transformations, 
anoni
al maps whi
hare far from the identity (either be
ause they are non trivial, or be
ause they havesingularities, or be
ause they are not one{to{one) are mostly used to set up theappropriate topology of the phase spa
e and a qualitatively suitable parametrisation.Fine tuning of the 
anoni
al 
oordinate system 
an then be performed by near{identity transformations.



Andrea Milani 10CHAPTER 2:SMALL TRANSFORMATIONS, SMALL PERTURBATIONSThis 
hapter dis
usses 
anoni
al transformations whi
h are near identiy, thatis ea
h point in the phase spa
e is displa
ed only by a small amount, and their useto solve problems with small perturbations, that is with Hamiltonians 
ontaining asmall parameter ": H = H0 + "H1 + "2H2 + : : : (2:1)In prin
iple a small transformation 
ould be de�ned by a generating fun
tion
lose to the one of the identity transformation:S = q � y + "S1(q; y) + "2S2(q; y) + : : : (2:2)and this formalism has often been su

essfully used; however another formalismleads to easier 
omputations, espe
ially when the theory needs to be 
omputed tohigher order. It is based upon 
anoni
al 
ows, that is transformations F s whi
hform a (lo
al) one{parameter group , with F 0 = Identity and F s a global 
anoni
almap, for s small enough; moreover, F s Æ F z = F s+z whenever de�ned.2.1 INTEGRAL FLOWS AND VARIATIONAL EQUATIONSFor a given Hamiltonian �(q; p), with Hamilton equations for r = (q; p):drds = J � r�(r) (2:3)the solutions of all the initial 
onditions problems 
an be put together in the integral
ow, that is the map: F� : (s; r) 7�! F s�(r) (2:4)su
h that {for �xed r0{ F s�(r0) is the solution of (2.3) with initial 
onditions r = r0at s = 0; that is, F s� satis�es the initial 
onditions problem:��sF s�(r) = J � r�(F s�(r)) ; F 0�(r) = r (2:5)The existen
e and uniqueness theorem for the initial 
onditions problem ensures thatF s� is a lo
al one{parameter group. Moreover the regularity theorem for solutions ofordinary di�erential equations ensures that F is at least as smooth as � is, and in all



Perturbation methods 11the variables. Let us now 
onsider F s�, for a �xed value of the independent variables, as a map of the phase spa
e into itself, sending ea
h initial 
ondition onto thestate of the 
orresponding solution after \time" s has elapsed. Su
h a map is alsodi�erentiable; let the matrix of partial derivatives be As:As(r) = ��rF s�(r) (2:6)Then As(r) satis�es another di�erential equation, the variational equation,whi
h 
an be obtained by taking the derivatives with respe
t to the initial 
onditionsr from both sides of (2.5):��r ��sF s�(r) = ��s ��rF s�(r) = ��sAs(r)where use was made of the possibility of ex
hanging the order of the derivatives fora smooth map, and of the de�nition (2.6);��rJ � r�(F s�(r)) = J � rr� � ��rF s�(r) = J � rr� �As(r)where the 
hain rule for derivatives has been used, and rr� is the symmetri
 matrixof the se
ond derivatives, 
omputed along the orbit starting at r. Thus As(r), for a�xed r, is the solution of the initial 
ondition problem for a linear time{dependentequation: ��sAs(r) = J � rr� �As(r) ; A0(r) = I (2:7)The variational equations (2.7) are themselves Hamiltonian: As(r) is the ma-trix solution of the linear equations de�ned by the quadrati
 and time{dependentHamiltonian 12v � rr�(F s�(r))v. The main property of the solution of (2.7) is thatit always satis�es the 
ondition (1.11): letCs = As � J � [As℄Tthen C is solution of an initial 
ondition problem:��sCs = (J � rr� �As) � J � [As℄T = J � rr� � Cs � Cs � rr� � JC0 = A0 � J � [A0℄T = Jwhi
h has the trivial solution Cs = J ; by uniqueness, As always ful�lls (1.11) andF s� is lo
ally 
anoni
al. It 
an be shown that F s� is a
tually globally 
anoni
alprovided it is globally de�ned. Moreover, the transformations de�ned in this wayare topologi
ally trivial, sin
e they are deformations of the identity 
orrespondingto a time zero 
ow.



Andrea Milani 122.2 LIE SERIESThus any fun
tion � = �(q; p) de�nes a 
anoni
al 
ow; on
e a value of theasso
iated independent variable s is 
hosen, a 
anoni
al tranformation is uniquelyde�ned. However, to expli
itly 
ompute the transformation we have to solve thedi�erential equations (2.3){(2.5). The simplest pro
edure to 
ompute some approx-imation to this solution is the Taylor{Ma
 Laurin formula at s = 0:r0 = F s�(r) = r + s� ��sF s�(r)�����s=0 + s22 � �2�s2F s�(r)�����s=0 + : : : (2:8)A similar formula 
an be used to 
ompute the transform of any fun
tion of the
anoni
al variables g = g(q; p); let us denote the map between the fun
tion spa
esby T s�: T s� : g 7�! g0 = g Æ �F s���1(T s�g)(r0) = g Æ �F s���1(r0) = g(F�s� (r0)) (2:9)Two important remarks on equation (2.9). The transformation of a fun
tionis performed by 
omposition with the inverse map; this is the same rule used totransform the Hamilton fun
tions in a 
anoni
al map (see Se
tion 1.1). Sin
e theinitial and the �nal state are ex
hanged when the sign of the independent variableis 
hanged {or, equivalently, when the sign of the fun
tion � is 
hanged{ the inversemap 
an be obtained by a 
hange in sign; this also follows from the group propertyof the integral 
ow: F s� Æ F�s� = F 0� = Identity. The Taylor formula for T s� 
an be
omputed in essentially the same way:g0(r0) = g(F�s� (r0)) == g(r0) + s� ��sg(F�s� (r))�����s=0 + s22 � �2�s2 g(F�s� (r))�����s=0 + : : : (2:10)However, (2.10) does not look like an easy to use formula. It 
an be
ameeasy to use provided two 
onditions are met: 1) a simple method is available to
ompute the derivatives, in
luding the higher ones, with all the 
hain rules; 2) theseries 
onverges rapidly, so that not too many terms have to be 
onsidered for ana

eptable a

ura
y.The �rst requirement is not too diÆ
ult to ful�ll, espe
ially for the 
ase weare interested in, that is the 
anoni
al 
ows. The derivative of F s� is provided byequation (2.5), in the form of Hamilton equations. A very 
ompa
t notation for thetotal derivative dg=ds of any fun
tion g with respe
t to the independent variable salong the solutions of a set of Hamilton equations is provided by the Poisson bra
ket:fg; �g = �g�q � ���p � �g�p � ���q = ��s�g(F s�(r))�����s=0 = dgds (2:11)



Perturbation methods 13When (2.11) is substituted into (2.10):g0(r0) = g(r0)� sfg; �g+ s22 ffg; �g; �g � s36 fffg; �g; �g; �g+ : : : (2:12)where the double Poisson bra
ket arises from the need to 
ompute the s derivativeof the fun
tion fg; �g, et
.. The alternate signs a

ount for the 
omposition withthe inverse map, and all the Poisson bra
kets on the right hand side have to be
omputed in the new 
oordinates r0 = (q0; p0).The se
ond requirement is not as trivial to ful�ll. For now, we only remarkthat 
onvergen
e 
an o

ur only if either s is small, or the 
ow generated by � isslow {that is, � is small. It turns out that the two 
onditions are one and the same:to multiply � by a small parameter " is equivalent to multiply s by 1=", and we 
aneither 
hange � into "� and set s = 1 or set s = " and leave � as is; there is no usefor two parameters. Sin
e the 
hoi
e is only a matter of taste, we 
hose to set s = 1,so that s disappears from formulas su
h as (2.12), and simplify the notation (e.g.F 1� = F�; T 1� = T�). We ful�ll the smallness requirement by assuming that � is ofpositive order in the small parameter ":� = "�1 + "2�2 + : : : (2:13)thus the Lie transform of a fun
tion g is de�ned by the expansion (formal powerseries): g0 =T�g = g � fg; �g+ 12ffg; �g; �g+ : : : ==g � "fg; �1g+ "2[�fg; �2g+ 12ffg; �1g; �1g℄ + : : : (2:14)A further development o

urs when g is itself expanded in powers of ":g = g0 + "g1 + "2g2 + : : : (2:15)and the result of (2.14) is reordered by powers of ":g0 =T�g = g0 + "[g1 � fg0; �1g℄++ "2[g2 � fg0; �2g � fg1; �1g+ 12ffg0; �1g; �1g℄ + : : : (2:16)That is, the development of g0 is:g00 = g0g01 = g1 � fg0; �1gg02 = g2 � fg0; �2g � fg1; �1g+ 12ffg0; �1g; �1g: : : (2:17)



Andrea Milani 14It 
an be seen from (2.17) that the order k part of g, gk, appears in all theg0z with z � k; also the order k part of of � appears in all the g0z with z � k. Thisrelationship 
an be represented by the Lie triangle (Deprit, 1969), and leads to aneasy to use re
ursive formula.We need to point out that there are many versions of this Lie series algorithm;the one we are going to use here is essentially the one due to Hori (1966). Amore general algorithm, allowing for a time{dependent generating fun
tion, 
analso be used (Deprit, 1969). However, the larger group of transformations de�nedby allowing for a time{dependent generating fun
tion is not really needed in theappli
ations to Celestial Me
hani
s dis
ussed in the next Se
tions. The Hori methodhas also the advantage of a mu
h easier 
omputation of the inverse map by meansof the same generating fun
tion with the opposite sign; this will play an importantrôle in simplifying the 
omputations in Se
tions 3.2 and 4.3.2.3 ELIMINATION OF THE ANGLESThe main purpose of a Lie series transformation given by formulas su
h as(2.13){(2.17) is to \solve" the problem, that is to transform the Hamiltonian (2.1)into a simpler one, whose solution 
an be somehow expli
itly 
omputed. Again wehave to remember that this pro
ess does not allow to 
hange the topology (not evento perform a non{trivial topologi
al equivalen
e), thus the 
oordinate system mustalready be adapted to the problem in the topologi
al sense. In most 
ases, the best
oordinate system is su
h that the �rst approximation problem de�ned by the orderzero Hamitonian H0 is already solved:H = H0(p) + "H1(q; p) + "2H2(q; p) + : : : (2:18)However, this leaves little 
hoi
e for the 
oordinates qr (
onjugate to themomenta pr, whi
h are integrals of H0). On the basis of a general result (whi
h weshall dis
uss later, see Se
tion 3.1) all the qr 
an be expe
ted to be angle variables.Then the question is: 
an we 
hoose � in su
h a way that T�H = H 0 is solved,that is H 0 = H 0(p0) ? We 
an look at the analogous of the formulas (2.17) as are
ursive set of equations, where the Hr are given and the �r are to be solved for;the transformed Hamiltonian H 0 is not known, but the 
ondition is imposed thatH 0 = H 0(p0):H 00(p0) = H0(p0)H 01(p0) = H1(q0; p0)� fH0; �1g(q0; p0)H 02(p0) = H2(q0; p0)� fH0; �2g � fH1; �1g+ 12ffH0; �1g; �1g: : : (2:19)
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itly the se
ond of the (2.19) as an equation for �1, we 
omputethe Poisson bra
ket fH0; �1g by means of the ve
tor n of the fundamental frequen
iesappearing in the solution of the integrable approximation H0:nr = �H0�pr (2:20)H1 � fH0; �1g = H1 + n � ��1�q0 = H 01(p0) (2:21)Has (2.21) a solution? To answer, we shall use Fourier series expansions; theanalyti
al equivalent of the statement that the qr are angles is that the HamiltonianH 
an be expanded into a (
onvergent) multiple Fourier series: for the �rst order(in ") part H1: H1(q; p) =Xk H1k(p) 
os(k � q) (2:22)with k a multiindex, that is a ve
tor with integer 
omponents. The presen
e of the
osine terms only arises from the assumption of a dis
rete symmetry, i.e. H is even,as it is often the 
ase in Celestial Me
hani
s; of 
ourse in general there might be sineterms too.A formal series solution is then obtained by a simple algorithm, assuming that�(q; p) is de�ned on the same spa
e, thus has a Fourier series expansion; for the �rstorder part "�1: �1(q; p) =Xk �1k(p) sin(k � q) (2:23)where again the presen
e of the sine terms only arises from dis
rete symmetry prop-erties, and 
osine terms might o

ur in more general 
ases. Then (2.21) translatesinto the following set of equations for the Fourier 
oeÆ
ients:(n � k)�1k = �H1k (2:24)for all multiindex k; for k = (0; : : : ; 0) there is no 
onstraint on �1, and �10 isassigned to guarantee uniqueness: �10 = 0. For k 6= 0 the value of the Fourier
oeÆ
ient �1k is uniquely determined by (2.24) provided (n � k) 6= 0. This non{resonan
e 
ondition will be satis�ed in some subset of the phase spa
e; let us for amoment forget about the problem of where our solution will be de�ned, and de�nethe order one parts of �; H 0 by solving (2.24) as if the non{resonan
e 
ondition wasalways satis�ed: �1k = �H1kn � k (2:25)As for H 01, the k = 0 term 
annot be removed and there is a unique solution:H 01(p0) = H10(p0) (2:26)
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an now look at the third of the (2.19), whi
h 
an be somewhat simpli�ed byusing both (2.21) and (2.26):H 02 = H2 � 12fH1 +H10; �1g � fH0; �2g (2:27)and is of the same general form; again a unique solution is found by expanding H2and �2 in Fourier series, imposing �20 = 0, setting H 02 to be the k = 0 Fourier
omponent of whatever is in the right hand side, and solving for the 
oeÆ
ients �2kby dividing the 
orresponding Fourier 
oeÆ
ient of H2 � 1=2fH1 +H10; �1g by thedivisor n � k. The problem of the divisor being somewhere zero gets worse, sin
e �2
ontains the divisor squared in some denominators; but formally, the se
ond step isnot any more diÆ
ult than the �rst. It is easy to show that the same o

urs withthe higher order parts of � and H 0, that is there is a formal series solution for � su
hthat T�H = H 0(p0). This algorithm was proposed by Hori (1966); Deprit (1969)proposed an algorithm whi
h is not the same, but gives the same results.This allows to 
ompute a formal series solution of the original problem (2.18).In the (q0; p0) 
oordinate system the problem is solved, be
ause H 0 = H 0(p0) :dp0dt = 0 ; dq0dt = �H 0�p0 = n0(p0) (2:28)and the solution is simply given by:p0r = Pr ; q0r = n0(P )(t� t0) +Qr (2:29)with integration 
onstants Pr; Qr whi
h we shall 
all proper elements (for histori
alreasons to be dis
ussed later; see Chapter 4). Then the expli
it 
omputation of asolution with given initial 
ondition takes in prin
iple three steps:[1℄ Given the values of ", and the initial 
onditions of (q; p) at t = t0, use themap F� to 
ompute (q0; p0) at t = t0 and thus (Q;P ).[2℄ Given P and the expression of H 0 = H 00+ "H 01+ : : : as 
omputed along with�, �nd n0(P ), thus the solution (p0(t); q0(t)) is available for every t.[3℄ Use the inverse map F�1� = F�� to 
ompute the solution in the (q; p) 
oor-dinate system: q(q0; p0) = T�q = q0 � fq; �g+ 12ffq; �g; �g : : := q0 � ���p + 12f���p ; �g+ : : :p(q0; p0) = T�p = p0 � fp; �g+ 12ffp; �g; �g : : := p0 + ���q � 12f���q ; �g+ : : : (2:30)
The right hand side of (2.30) has to be interpreted as a fun
tion originally de�nedin terms of the variables (q; p) whi
h has however to be evaluated for q = q0; p = p0.
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e the latter are given by (2.29), ea
h qr 
ir
ulates with average frequen
y n0r(the same as q0r) but with superimposed os
illations 
ontaining all the fundamentalfrequen
ies n0r ; the pr are approximately 
onstant and 
lose to the 
orresponding p0r,with superimposed 
onditionally periodi
 os
illations. This qualitative des
riptionof the solution (traditionally referred to as the epi
y
li
 solution) holds only as longas the singularities of the 
oordinate system are not en
ountered, as we shall dis
ussin Se
tion 4.1. Moreover, the series are handled as if they were 
onvergent, whi
h isa na��ve assumption.The series expansion for both � and the solution belong to the general 
lassoften 
alled Poisson series, whi
h are a
tually double series, Fourier series in somevariables (here the q0r) and power series in others (here "). The problem of the orderin whi
h these series should be sommed has been left open, as well as the 
onver-gen
e and the domain of de�nition problems. These Poisson series are well de�nedmathemati
al obje
ts on whi
h many operations 
an be performed; unfortunately,the most diÆ
ult operation to perform, and even to de�ne, is the evaluation of theseries, that is to �nd a real number 
orresponding to a given set of values for q0; p0; ".2.4 DEGENERACY AND RESONANCESEven at the formal series solution stage the problems really en
ountered inCelestial Me
hani
s are more diÆ
ult than the model problem dis
ussed in the pre-vious se
tion. The main diÆ
ulty arises from the degenera
y of the 2{body problem,i.e. from the simple fa
t that the perihelia and the nodes are integrals. As a result,the non resonan
e 
onditions: �H0�p � k 6= 0 (2:31)
annot be satis�ed for every multiindex k 6= 0; in a sense, resonan
e o

urs in everypoint of the phase spa
e.To understand what 
an be done under these 
ir
umstan
es we �rst des
ribethe elimination pro
edure in a somewhat more abstra
t way: given any order zeroHamiltonianH0, we 
an de�ne a linear operator L a
ting on any fun
tion g = g(q; p)by: Lg = fH0; gg (2:32)It de�nes a de
omposition of the fun
tion spa
e (of the Poisson series) into a dire
tsum of the kernel (null spa
e) of the operator L and of the image of L:g = ~g + g ; ~g 2 ImL ; g 2 Ker L (2:33)Then the existen
e of solutions of the re
ursive equations (2.19) 
an be dis
ussed byde
omposing e.g. H1 = H1 + ~H1 :H 01 = H1 + ~H1 � L�1 (2:34)



Andrea Milani 18has solution with �1 2 ImL providedH 01 = H1 (2:35)whi
h is the generalisation of (2.26) when the non{resonan
e 
ondition is not as-sumed. The se
ond order equation:H 02 = H2 � 12fH1 +H1; �1g � L�2 (2:36)gives the de�nition of H 02 and the equation for �2 by using the de
omposition (2.33):H 02 = H2 � 12f ~H1; �1g (2:37)L�2 = ~H2 � fH1; �1g � 12f ~H1; �1g+ 12f ~H1; �1g (2:38)and the solution �2 2 ImL exists and is unique, and so on and so forth. At the endof the in�nite re
ursion on the order, or rather when the pro
ess is arrested be
ausethe remainder 
ontaining "r is 
onsidered negligible, the Poisson series H 0 and � areuniquely determined, with: � 2 ImL ; H 0 2 Ker L (2:39)In other words, the ma
hinery works all the same, but the results are not the same,be
ause H 0 is not ne
essarily a trivial Hamiltonian; H 0 = H 0(p0) o

urs if and onlyif the non{resonan
e 
onditions (2.31) are satis�ed for every k 6= 0. However, H 0 issimpler than H in the sense that some of the Fourier 
omponents have been removed.To understand whi
h ones we shall 
ompute two useful examples.Our �rst example is just the N+1{body problem as presented in the 
anoni
al
oordinates whi
h solve the zero order approximation. The latter is one form oranother (depending upon the 
hosen 
oordinate system, see Laskar, this volume) ofthe 2{body problem 
opied N times. The angular variables q = (�; �) are the meanlongitudes �r; r = 1; : : : ; N and the longitudes of the perihelia and of the nodes�r; r = 1; : : : ; 2N . The momenta are Delaunay{type variables p = (�;�) with the�r; r = 1; : : : ; N fun
tions of the semimajor axes only and the �r; r = 1; : : : ; 2Nrelated to the angular momenta of the 2{body subsystems, hen
e to the e

entri
itiesand the in
linations. Then the order zero approximation H0 is a suitable linear
ombination of 2{body Hamiltonians:H0 = H0(�) =Xr �� Kr2�r� (2:40)with Kr some 
oeÆ
ients depending only upon the masses (for the meaning of these
oeÆ
ients, see Message, 1982; Milani and Nobili, 1983). All the derivatives are zerobut for the mean motions: �H0��r = Kr�3r = nr (2:41)
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tion is on the 
ontrary dependent upon all the variables:H = H0(�) + "H1(�; �;�;�)+ : : : (2:42)with the small parameter " a fun
tion of the masses (and possibly of distan
e s
alingparameters). Thus the elimination pro
edure 
an be 
arried out essentially in thesame way des
ribed in Se
tion 2.3. The e�e
t of the elimination 
an be easily
omputed if the further assumption is made that the mean motions ful�ll a non{resonan
e 
ondition: n � k 6= 0 ; for every k 6= 0 (2:43)The 
ondition (2.43), forbidding resonan
es in mean motion, is not the same as thegeneral non{resonan
e 
ondition (2.31) assumed in Se
tion 2.3. As a result, Ker Ldoes not only 
ontain the fun
tions of the momenta; all the fun
tions g independentfrom the longitudes are su
h that Lg = 0; g = g:Lg = fH0; gg = �n � �g�� (2:44)It 
an be shown, in a suitable fun
tion spa
e (e.g. in the spa
e of formal Poissonseries), that (2.42) implies that the long periodi
 fun
tions depending only upon(�;�;�) are the ones and the only ones in Ker L; this arises from the possibilityof solving equations for the Fourier 
oeÆ
ients of the form (2.24). On the 
ontrarya short periodi
 fun
tion depends upon � and has all the Fourier 
oeÆ
ients ofthe arguments k � � equal to zero; that is, the de
omposition (2.33) 
an be simplyperformed by splitting the Fourier series into the terms with and without the �r.Therefore the end produ
t of the elimination pro
ess is a new Hamiltonian inthe new variables (�0; �0;�0;�0):H 0(�0;�0;�0) = H0(�0) + "H1(�0;�0;�0) + "2�H2 + f ~H1; �1g�+ : : : (2:45)whi
h de�nes the se
ular perturbations problem (Message, 1976; 1982; Milani andNobili, 1987). Is the Hamiltonian (2.45) any better than the original one? Thenumber of variables has essentially been redu
ed, sin
e the �0r are integrals. Giventhe initial value of �0, if a solution is known to the problem given by H 0 as a fun
tionof (�0;�0) , then �0 
an be 
omputed by quadrature, and again the inverse map F�1�gives the solution in the original 
oordinate system as in (2.30). However the se
ularperturbations problem is not integrable, be
ause it has (in general) more than oneangle variable; thus the problem is only displa
ed. The se
ular perturbation problem
an in turn be atta
ked with more or less the same method, as we shall dis
uss inSe
tion 4.2; anyway to represent the solution of the N+1{body problem as a Poissonseries there is no way to avoid this double 
omputation, one for the elimination ofthe mean longitudes, one for the solution of the se
ular problem.
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ond example is the single resonan
e problem (see Message, 1988). Letus assume that the order zero Hamiltonian is as in (2.40), and that the non{resonan
e
onditions are satis�ed for all k but one, that is there is a multiindex ~k su
h that:n � k 6= 0 for every k 6= r~k (2:46)The only multiindexes whi
h 
an possibly generate a null divisor are multiples ofthe single generator ~k; it follows that the MCD of al the integeres ~kr is 1. Then itis possible to �nd a unimodular transformation of the longitudes su
h that the �rst
omponent is: � = ~k � � (2:47)The 
onstru
tion of a suitable unimodular matrix has been dis
ussed in Se
tion 1.3for the 
ase of 2 bodies only parte
ipating in the resonan
e; it 
an be shown thatthe 
ondition for su
h a matrix A to exist is anyway MCD(~k) = 1. Let��� � = A� ; ��T � = [A�1℄T� (2:48)be the 
anoni
al transformation thus de�ned. A di�erent elimination pro
ess, spe-
ially adapted to this 
ase, is obtained by just splitting the set of angle variables in adi�erent way: the fast angles are now the �r; r = 1; : : : ; N �1, while the slow anglesare (�; �1; : : : ; �2N). Then the fun
tion � 
an be re
ursively 
omputed. Ea
h Fourier
oeÆ
ient of � 
an be solved for in an equation with some divisor n � k whi
h isnonzero be
ause k 6= r~k, and the �nal produ
t is an Hamiltonian in the transformed
oordinates (primed):H 0 = H 0(�0; �0;�0; T 0;�0) = H0(�0; T 0) + : : : (2:49)whi
h is useful to transform the single resonan
e problem to a 
anoni
al form (seeHenrard, this volume). Again the problem has been simpli�ed only in that the mo-menta T 0r 
onjugate to the fast angles are integrals, and the fast angles �r themselvesare 
y
li
 variables to be later 
omputed by quadratures. However to further dis
ussthis problem the setting of this se
tion, based entirely upon formal series, is notenough; order of magnitude 
onsideration must play an essential rôle (see Henrard,this volume; Ferraz{Mello, this volume).



Perturbation methods 21CHAPTER 3:INVARIANT TORIIn this 
hapter we dis
uss a 
ommon feature of Hamiltonian systems, namelythe existen
e of invariant manifolds topologi
ally equivalent to an N{dimensionaltorus. We shall also dis
uss the related question of the non 
onvergen
e of theseries arising in perturbation theories for an Hamiltonian system perturbed from anintegrable one.3.1 INTEGRABLE SYSTEMSAn Hamiltonian system de�ned by the Hamiltonian H = H(q; p) on a domainD is said to be integrable if there is a global 
anoni
al transformationF : D 7�! D0(q; p) 7�! (x; y) (3:1)su
h that the transformed Hamiltonian depends only upon the momenta:H(F�1(x; y)) = K(y) (3:2)If the map F�1 
an be expli
itly 
omputed, the integrable system 
an besolved by transforming into the (q; p) spa
e the trivial solution in the (x; y) spa
e:( y(t) = y(0)x(t) = �t+ x(0) where � = �K�y (y(0)) (3:3)It must be stressed that the de�nition requires the 
anoni
al map to be global;lo
ally, for a small enough D, every Hamiltonian system is integrable (this followsfrom the existen
e of a smooth integral 
ow whi
h is also 
anoni
al, see Se
tion2.1). Thus the very meaning of the de�nition depends upon the topology of thede�nition domain D. As an example, quadrati
 Hamiltonians are integrable over allof R2N (see Se
tion 1.3). However, the other 
ase relevant for Celestial Me
hani
s,namely the 2{body problem, has a di�erent topology. A very interesting result wasobtained independently by Arnold and by Jost; it des
ribes suÆ
ient 
onditions foran Hamiltonian system to be integrable, and it also pres
ribes the toplogy of D, andthis applies (with a small modi�
ation) to the 2{body problem as well.The 
onditions of Arnold and Jost require the existen
e of N integrals, whereN is the number of degrees of freedom (i.e. the number of 
omponents of both q and
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tions f1(q; p); : : : ; fN(q; p) de�ned on D whi
h are 
onstantalong the solutions of the Hamiltonian system, parametrised by time t:dfidt = ffi; Hg = 0 (3:4)Of 
ourse one of the fi, let us say f1, 
an 
oin
ide with H. The integralsfi are assumed to be smooth and fun
tionally independent (i.e. their gradientsrfi are linearly independent in ea
h point od D); thus for ea
h set of 
onstants
i; i = 1; : : : ; N the level set M(
) de�ned by assigning a value to ea
h integralfi(q; p) = 
i; i = 1; : : : ; N is a smooth N{dimensional manifold (if not empty). Onefurther assumption is that the integrals 
ommute:ffi; fjg = 0 i; j = 1; : : : ; N (3:5)Then the �rst part of the Arnold{Jost theorem 
onstrains the topology of D:[1℄ If a (non{empty) level manifold M(
) is 
ompa
t, that is it is limited anddoes not tou
h the boundary of D, then M(
) is topologi
ally equivalent to an N{torus. If all the level manifolds are 
ompa
t, then D is toplogi
ally equivalent tothe produ
t of an N{torus and some N{manifold W : D ' TN �W . If the levelmanifoldM(
) is not 
ompa
t, but it is 
omplete (that is, ea
h orbit on M(
) of thesystem with either H or any of the fi as Hamiltonian is de�ned for every time t,�1 < t < +1) then M(
) is a generalised 
ylinder M(
) ' TN�j �Rj .This applies in a straightforward way to the 2{body problem: in polar 
oor-dinates in the orbital plane (r; �; pr; p�) the Hamiltonian is:H = 12 (p2r + p2�r2 )� k2r (3:6)with integrals H and p�, and they 
ommute sin
e fp�; Hg = ��H=�� = 0 is auto-mati
ally satis�ed. The only problem 
an o

ur where the gradients rH and rp�are parallel; the 
onditions for this to o

ur are:pr = drdt = 0 ; k2r2 = p2�r3 = r(d�dt )2 (3:7)whi
h imply a 
ir
ular orbit. Thus the Arnold and Jost result applies to the entirephase spa
e ' S1 � R3 provided the set of initial 
onditions belonging to 
ir
ularorbits (r = p2�=k2; pr = 0) are ex
luded (this de�nes the so{
alledDelaunay domain).To �nd out whi
h of the level manifolds (with �xed values of H = E and p� = J)are 
ompa
t we 
an solve for pr from (3.6):p2r = 2E + 2k2r � J2r2 (3:8)



Perturbation methods 23and a simple study of the quadrati
 polynomial in 1=r in the right hand side showsthat to have a real solution for pr the value of r is bounded away from both +1and 0 (that is from the boundaries of D, 
orresponding to es
ape to in�nity and
ollision respe
tively) if and only if E < 0 and J 6= 0. Thus all the ellipti
 orbitswith the same E; J , that is with the same a; e, form a 2{torus in phase spa
. Asfor the 
ir
ular orbits, by using (3.8) and (3.7) we �nd they are the level manifolds
orresponding to 
ouples of values of E; J su
h that 2EJ2 = k4, 
onsistently withthe de�nition of the e

entri
ity: e2 = 1 + 2EJ2k4Thus the values of E; J ful�lling e = 0 de�ne a level manifold whith a lowerdimensionality (' S1). For either E � 0 (that is, e � 1) or J = 0 the level manifoldis not 
ompa
t, but it is 
omplete, and is a 
ylinder S1 � R; for 1 + 2EJ2=k4 < 0(3.8) has no real solution pr and the level manifold is empty.The extension to three dimensions is not very diÆ
ult. The HamiltonianH itself and the three 
omponents of the angular momentum ve
tor are of 
ourseintegrals, but they do not 
ommute; the Hamiltonian, the 
omponent of the angularmomentum along a �xed dire
tion, and the length of the angular momentum ve
tordo 
ommute and the Arnold{Jost result applies. The only 
ompli
ation arises fromthe fa
t that for orbits in the referen
e plane the angular momentum s
alar 
oin
ideswith the sele
ted 
omponent, thus their gradients are not independent. The levelmanifolds are mostly T 3, degenerating into T 2 for either 
ir
ular in
lined or ellipti
zero in
lination orbits, and into S1 for 
ir
ular zero in
lination. For either paraboli
,hyperboli
 or 
ollision orbits the level manifolds are mostly T 2 � R, degeneratinginto S1 �R for zero in
lination.The proof of the statement [1℄ is interesting but beyond our s
ope; it is basedon an argument about 
anoni
al 
ows (see Arnold, 1976, Chap. 10; Arnold andAvez, 1968). Namely, ea
h one of the fi de�nes a 
ow on the level manifold M , andthis de�nes a map between the spa
e of the asso
iated independent variables si andM whi
h is a lo
al toplogi
al equivalen
e. If the manifold M is 
omplete, this mapis surje
tive and this is enough to show that M ' TN�j �Rj .The se
ond half of the Arnold{Jost theorem de�nes a 
anoni
al 
oordinatesystem whi
h a
tually integrates the system in the sense of (3.2):[2℄ If some level manifoldM(
) is 
ompa
t, it has a neighbourhood of the formD1 ' TN � RN on whi
h a 
anoni
al transformation F with the property (3.2) isde�ned. If all the level manifolds are 
ompa
t, the transformation F 
an be de�nedon all of D ' Tn �W .The new 
oordinate system is 
alled angle{a
tion variables; the angle vari-ables x parametrize ea
h torus and the a
tion variables y are integrals. The proofof this se
ond part of the Arnold{Jost theorem is essentially a global version of Li-ouville theorem (see Ferraz{Mello, this volume), and 
an be expressed by means ofline integrals of the kind used in Henrard, this volume, for the N = 1 
ase (see



Andrea Milani 24Arnold, 1976; Arnold and Avez, 1968). It is important to stress that the angle{a
tion variables for a given hamitlonian system are by no means unique; given a setof angle{a
tion variables, any unimodular transformation A 
an be applied to theangle variables provided the a
tions are transformed by (A�1)T . However, it 
anbe shown that under the non{degenera
y 
ondition det(�2K=�y2) 6= 0 there are noother sets of angle{a
tion variables than those generated from any one of them byunimodular transformations.For the 2{body problem (3.6) the angle{a
tion variables are the Delaunayvariables `; !; L;G. To remove the indetermination produ
ed by the possibility ofapplying unimodular transformations we 
an spe
ify the following: ` is a variablemaking a 
omplete revolution along the orbit, and not 
hanging at all when thepoints in phase spa
e are subje
ted to a rotation � 7! � + 
onst; ! on the 
ontrarymakes a 
omplete revolution when the points in phase spa
e are rotatetd through 2�,and does not 
hange along the orbit. Then ` is the mean anomaly, ! the argumentof peri
enter, G = p� and L is a fun
tion of the total energy H su
h that:K(L;G) = � k42L2 (3:9)
3.2 KOLMOGOROV THEOREMThe question arises of whether a slightly perturbed integrable system preservesthe property of being integrable, or at least some of the invariant tori. Let us look atthe problem in the 
oordinate system whi
h makes the unperturbed system trivial,namely let us suppose (q; p) are already angle{a
tion variables for all the phase spa
eD ' TN �W : that is, the Hamiltonian H has an \order zero" part H0 whi
h isintegrable, and an \order 1" part whi
h is not, but 
ontains a small parameter � asin (2.18): H = H0(p) + "H1(q; p) + "2H2(q; p) + : : : (3:10)The main idea {going ba
k to Linstedt and Poin
ar�e (see Poin
ar�e, 1893){ isto perform a �xed frequen
y perturbation theory. The best way to understand it isto start from the (false) hypothesis that the system (3.10) is still integrable. Thenthere would be some angle{a
tion system (x; y) su
h that H(q; p) = K(y). Let us
hoose the values of the new a
tions yÆ and the 
orresponding frequen
ies:�Æ = �K�y (yÆ) (3:11)For �xed y = yÆ and x variable, sin
e the latter are angle variables, a torus TNis spanned in the (x; y) spa
e; let us label this torus by the 
orresponding value of thefrequen
y ve
tor �Æ (this is a 
orre
t labelling if we assume that a non{degenera
y
ondition det(�2K=�y2) 6= 0 is satis�ed in the (x; y) spa
e as well, thus the map
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al topologi
al equivalen
e). Then there would be a subset in the(q; p) spa
e whi
h 
orresponds to a torus in the following sense:[1℄ there is an immersion (a map with ja
obian of maximum rank) � : T (�Æ) 7!D su
h that �(T (�Æ)) = T 0(�Æ) is invariant by the 
ow of H.[2℄ � is an equivariant map between the 
ow of K on T (�Æ) and the 
ow ofH restri
ted to T 0(�Æ), that is not only � maps orbit onto orbit, but with the sametimetable: if FH(q; p) is the integral 
ow of H (see 2.1), then provided the initial
onditions (qÆ; pÆ) are on T 0(�Æ):F tH(qÆ; pÆ) = �(�Æt+ xÆ; yÆ) (3:12)for some initial phase ve
tor xÆ. Of 
ourse, if su
h a map � was de�ned not only fory = yÆ but also for all the y in a neigbourhood, then the system would be integrablethereon. However, we do not ask for a map de�ned on an open set in the (x; y)spa
e, but only on a "thin" set of dimension N .To set up an algorithm to 
ompute su
h a map, we 
an pro
eed as in Se
tion2.3. This time however, we pro
eed ba
kward; namely we want to add to the inte-grable Hamiltonian K(y) all the terms depending upon x. That is, we look for afun
tion  (x; y) = � 1 + : : : su
h that it de�nes a map F : (x; y) 7! (q; p) and theHamiltonian is tranformed as follows:T K = K(p)� �fK; 1g+ �2[�fK; 1g+ 12ffK; 1g;  1g℄ + : : : == H = HÆ + �H1 + �2H2 + : : : (3:13)Equation (3.13) is identi
al to (2.14), apart from going the other way round;the main di�eren
e arises in the next step, namely the expansion 
orresponding toformula (2.16) is not performed at this stage, be
ause we do not know a priori theexpansion of K in powers of �. We 
an now set up a re
ursive system of equationswhi
h adds to K(p) the terms depending upon q to re
onstru
t the original Hamil-tonian H: to do this we identify the terms of the some order in � in the two sidesof (3.13), and �nd that there is an obvious mismat
h: HÆ(p) 6= K(p); thus we pushforward the dis
repan
y as an higher order term:K �HÆ = �K1 (3:14)and the order one equation is: K1 + fK; 1g = H1 (3:15)Now the known fun
tion H1 
an be de
omposed: H1 = H1+ ~H1 (as in Se
tion2.4), with respe
t to the linear operator LÆ:LÆg = fK; gg = ��Æ �g�q (q; p) (3:16)
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omposed in the 
omponent belonging toKer LÆ, whi
hagain re
ords a mismat
h: K1 �H1 = �K2 (3:17)plus an equation in ImLÆ: �Æ � 1�q = ~H1 (3:18)The order two equation 
an be similarly de
omposed :K2 + 12f ~H1;  1g �H2 = �K3 (3:19)�Æ � 2�q = ~H2 + 12f ~H1;  1g � 12f ~H1;  1g (3:20)and so on. Thus we re
ursively de�ne  = ~ and �nd the relationship between Kand H: K = HÆ + �H1 + �2[H2 + 12f ~H1;  1g℄ + : : : (3:21)whi
h is formally the same found by means of the inverse pro
edure in Se
tion 2.4.However, the re
ursive pro
edure outlined here is not the same used in Se
tions 2.3and 2.4: LÆ is not L, and the divisors o

urring in the 
omputations (3.18), (3.20),et
. are: k � �Æ = k � �K�y (yÆ) = k � �HÆ�y + �k � �H1�y + : : : (3:22)and are di�erent form k � n = k � �HÆ=�p, unless the point pÆ to 
ompute thefrequen
ies n is 
hosen in su
h a way that n = �Æ; this is indeed possible be
ause ofthe non{degenera
y 
ondition, but (3.22) points out that when this o

urs pÆ 6= yÆ,the di�eren
e being of order �.We 
an now state the theorem announ
ed by Kolmogorov (1954), and whoseproof was published by Arnold (1963): the essential hypothesis is that the divisorsk � �Æ o

uring in the solutions of the equations su
h as (3.18), (3.20) are never zero,nor too small. The 
ondition required for the Kolmogorov{Arnold proof is that thedivisors 
annot go to zero faster than a power of the degree jkj = P jkij of themultiindex k: jk � �Æj > 
kr (3:23)with 
; r positive 
onstants. Under this hypothesis the re
ursive pro
edurede�ning the map � for the given �Æ 
an be shown to 
onverge (however, the proofby Arnold used a di�erent formalism; our presentation is more related to Benettin



Perturbation methods 27et al., 1984). However a further 
ondition is ne
essary to ensure the existen
e of thetorus T 0(�Æ), and it is a global 
ondition. If a ve
tor �Æ of frequen
ies is 
hosen atrandom, there is of 
ourse no guarantee that a solution (3.12) will exist in the domainD with these frequen
ies. The non{degenera
y 
ondition ensures the existen
e ofthese frequen
ies lo
ally, that is, if a point (qÆ; pÆ) in D is known to have frequen
ies
lose to �Æ, then a neigbouring point will be on the solution (3.12) with frequen
iesexa
tly �Æ. But globally we need to ensure that there is some point in D su
h thatthe frequen
ies are at least 
lose. This is obtained by adding a further hypothesis,namely that there is a value pÆ of the a
tion variables for the unperturbed problemHÆ su
h that: n(pÆ) = �HÆ�p (pÆ) = �Æ (3:24)Under these hypothesis, namely (3.23), (3.24) and non{degenera
y, for a regularH, there is an �1 > 0 su
h that for 0 < � < �1 the map � exists, is regular andhas the property (3.12). The exa
t regularity 
onditions 
an 
hange when di�erentdemonstration te
hniques are used, but this of 
ourse does not matter for CelestialMe
hani
s appli
ations where H is anyway real analyti
.It must be stressed that the purpose of the hypothesis (3.24) is to ensure theexisten
e of the image of � within D, and it is by no means true that the torusT 0(�Æ) must 
ontain any point with p = pÆ: as the 
omputation of the higher orderparts of K pro
eeds (by means of formulas su
h as (3.13), (3.16)) the value of yÆneeds to be adjusted to keep the frequen
ies �xed at �Æ. Moreover, p has to be
omputed as a fun
tion of (x; yÆ) by means of a formula su
h as (2.30). There is noguarantee that the torus T 0(�Æ) will interse
t the original unperturbed torus p = pÆ,and it turns out not to be the 
ase in many examples. As dis
ussed by Poin
ar�e(1893), �xed frequen
ies and �xed a
tions are in
ompatible 
onditions and 
annotbe satis�ed simultaneously.After the theorem of Kolmogorov was announ
ed, it appeared that the maindiÆ
ulty in applying it to a realisti
 problem in Celestial Me
hani
s had to do with�nding a realisti
 estimate of the limiting value �1 for the perturbation parameter.Later it was found that this is not the 
ase, as we shall dis
uss below.3.3 DEGENERACY AND ARNOLD THEOREMThe �rst obvious diÆ
ulty in applying Kolmogorov theorem to Celestial Me-
hani
s is that one of the hypothesis, namely non{degenera
y, is not true for theN{body problem. Let us suppose the N{body problem is represented in some 
o-ordinate system derived from Delaunay elements for ea
h planet (
onsidered as aseparate 2{body problem with the Sun); this 
an be done in a number of ways (seeLaskar, this volume), and the result is an order zero Hamiltonian of the form (2.40),whi
h essentially results from a linear 
ombination of 2{body Hamiltonians (3.10)with 
oeÆ
ients depending upon the masses of the planets (and of the Sun). Then:



Andrea Milani 28H(�; �;�;�) = HÆ(�) + �H1(�; �;�;�)+ : : : (3:25)and the non{degenera
y 
ondition does not hold be
ause HÆ depends only uponsome of the a
tion variables, that is upon the semimajor axes only. In terms ofthe global existen
e 
ondition for a Kolmogorov torus with frequen
ies �Æ, sin
e theunperturbed frequen
ies for the perihelia and nodes � are zero, there 
annot be aninvariant torus T 0(�Æ) unless some 
omponents of �Æ are 
lose to zero. However, ifthis global 
ondition is satis�ed, the theorem 
an be used with a transformation ofthe problem introdu
ed by Arnold (1963).Let H1 be the part of H1 not depending upon the mean longitudes �, and~H1 = H1 �H1 as in Se
tion 2.4. Then it is possible to reorder the Hamiltonian inthis way:H(�; �;�;�) = [HÆ(�) + �H1(�;�;�)℄ + � ~H1(�; �;�;�)+ : : : (3:26)and then apply the Kolmogorov theorem to an Hamiltonian whose zero order partis the one en
losed in square bra
kets in (3.26). The non{degenera
y 
ondition, thatis the non{degenera
y of the matrix:�2HÆ + �H1�(�;�)2 = 0� �2HÆ��2 + ��2HÆ��2 � �2H1����� �2H1���� ��2H1��2 1A (3:27)
an be guaranteed for small � if the matrix:D = �2H1��2 (3:28)is non{degenerate. It turns out that the matrix D plays a very important rôle inthe theory of se
ular perturbations, (see Se
tion 4.3), and expli
it 
omputations toshow that it is non{degenerate 
an be performed. Thus it is possible to 
hoosea set of frequen
ies �Æ {with some fast frequen
ies nÆ (
orresponding to some setof unperturbed �Æ) and some slow frequen
ies 
orresponding to possible values of��H1=��{ ful�lling (3.23), and apply Kolmogorov theorem.As a result of the appearan
e of � both in the determinant of the matrix (3.27)and in the perturbation � ~H1, to obtain realisti
 estimates for the limiting value �1is even more diÆ
ult than it already is in the non{degenerate 
ase. Moreover, sin
ethe matri
es (3.27) and (3.28) 
an be expli
itly 
omputed only for zero e

entri
itiesand in
linations, Arnold result applies only to orbits with very small e

enti
itiesand in
linations. Nevertheless it was important to show that invariant tori exist inthe full N{body problem, even though this 
annot be rigorously shown to o

ur forrealisti
 values of planetary masses, e

entri
ites and in
linations.
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t of this se
tion will be a "generi
" perturbed Hamiltonian, by whi
hwe mean H = H0 + �H1 + : : :, the sum of an integrable, non degenerate order zeropart: H0 = H0(p) ; det �2H0�p2 6= 0 (3:29)and a perturbation whi
h 
ontains "all the terms", namely when it is expanded ina Fourier series in the angle variables q:H1 =Xk H1k(p) 
os(k � q) ; H1k � �jkj (3:30)where the � symbol indi
ates an asymptoti
 relationship and � < 1. It is essentialfor what follows that � indi
ates not only an upper bound for the Fourier 
oeÆ
ients{whi
h is needed to ensure the 
onvergen
e of the Fourier series to a real analyti
fun
tion{ but also a lower bound, that is for large enough jkj the Fourier 
oeÆ
ientsH1k are not allowed to be zero.The pro
edure des
ribed in Se
tion 2.3 allows to de�ne a formal Poisson series:�(q; p) = ��1 + �2�2 + : : : ; �i =Xk �ik sin(k � q) (3:31)su
h that the problem is solved in the formal sense, namely a formal series transfor-mation is de�ned by �, su
h that:F� : (q; p) 7! (x; y) ; T�H = H(F�1� (x; y)) = K(y) (3:32)On the other hand, the Kolmogorov theorem of Se
tion 3.2 de�nes anotherPoisson series:  (x; y) = � 1 + �2 2 + : : : ;  i =Xk  ik sin(k � x) (3:33)by whi
h a map is de�ned in the other dire
tion:F : (x; y) 7! (q; p) ; T K = K(F�1 (q; p)) = H(q; p) (3:34)Now the question arises of whether any one of the two formal Poisson series(3.31), (3.33) 
an be 
onvergent, and where. Kolmogorov theorem appears to givea very asymmetri
al answer, namely the series (3.33) for  
an be 
onvergent on a
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e provided �Æ = �K=�y(yÆ) is bounded away fromresonan
es by an inequality like (3.23). On the 
ontrary, the series (3.31) for � isessentially always divergent. The fundamental asymmetry of the two maps arisesfrom the fa
t that in one of the two spa
es, the one with 
oordinates (x; y), thedynami
al system is assumed to be integrable, a
tually integrated: K = K(y). Onthe 
ontrary, the algorithms to generate � and  are the same: at ea
h stage anequation of the formL�i = �n(p)��i�q = g(q; p) ; LÆ	i = ��(y)� i�x = f(x; y) (3:35)is solved, with g; f fun
tions determined by the previous steps of the re
ursive pro-
edure. The frequen
y ve
tors are � = �K=�y (y) and n = �H0=�q (p) respe
tively.By Fourier expansion, the 
oeÆ
ients are solutions of equations of the form:�ik = � gkn(p) � k ;  ik = � fk�(y) � k (3:36)Then the divergen
e of the series 
an be des
ribed by perfe
tly symmetri
statements:[1℄ Let A be a pathwise 
onne
ted set in the (q; p) spa
e; if the series for �
onverges on A, then p = 
onst on A.[2℄ Let B be a pathwise 
onne
ted set in the (x; y) spa
e; if the series for  
onverges on B, then y = 
onst on B.The proof of either [1℄ or [2℄ is very simple: let us assume a point with p = pÆand one with p = p1 belong to A; then there is a 
ontinous path inside A joiningthe two; along this path the frequen
y ve
tor n(p) 
hanges 
ontinously from n(pÆ)to n(p1), thus there is some multiindex k su
h that n(p) � k = 0 somewhere alongthe path (a
tually, there is an in�nite number of su
h k, sin
e rational numbers aredense). Where this o

urs, there is a term in the series for � whi
h is singular and� 
annot be de�ned; this 
ontradi
tion proves that pÆ = p1.The asymmetry arises when the 
onvergen
e of the series is used to solve theproblem. Namely, � 
an be de�ned on some p = pÆ torus and  
an be de�ned onsome y = yÆ torus; however, y = yÆ is an invariant subset, thus  
an be 
onvergenton a full orbit in the (x; y) spa
e, and the map F = � provides a solution with theproperty (3.12). On the 
ontrary, � might well be 
onvergent on some p = pÆ, butthis does not provide a solution be
ause the image by F� of p = pÆ does not 
ontainany solution in the (x; y) spa
e.This leaves us in an embarassing situation, be
ause the algorithm to �nd asolution of the original problem in the (q; p) spa
e as des
ribed in Se
tion 2.3 
annever work; namely, even if the series for � were 
onvergent on a set A in
luding theinitial 
onditions (q(0); p(0)), the image in the (x; y) spa
e is su
h that the solution
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annot be 
omputed on F�(A). On the other handgiven a frequen
y �Æ the series for  
ould be 
onvergent on an invariant set y = yÆ,and this does provide a solution through F ; however, we do not know where thissolution is going to be at the initial time. Even if the initial 
ondition in the (q; p)spa
e a
tually belongs to an invariant torus of the kind des
ribed by the Kolmogorovtheorem, we do not know any 
onstru
tive and 
onvergent algorithm to 
ompute �,thus we do not know how to 
ompute  and the solution. In parti
ular, F is notF�1� = F��, be
ause they are de�ned on di�erent sets in the (x; y) spa
e (for arelated di
ussion, see Milani, 1988).A further remark is needed on the generality of the negative results su
h as theone above. The hypothesis that all the Fourier terms in the perturbation H1 havenon zero 
oeÆ
ients for high enough degree jkj has been used to show that whenevera divisor n � k is zero a (non removable) singularity arises in equation (3.36); evenif H1k = 0, there must be some multiple k of k with a non zero 
oeÆ
ient H1k,and it 
an be shown that the fun
tions g appearing in the right hand side of (3.35)inherit the same property. The N{body problem however does not have su
h aproperty, namely there are D'Alembert rules whi
h pres
ribe some 
onstraints tothe multiindexes k for the Hamiltonian to have H1k 6= 0; this arises from the fa
tthat the Hamiltonian of the N{body problem admits some integrals su
h as the totalangular momentum (see se
tion 4.1). However the proof of [1℄ 
an be 
ompleted byshowing that some k with n � k = 0 must o

ur even among the k ful�lling theD'Alembert rules (see Poin
ar�e, 1892).This problem of the divergen
e of the series has no \perfe
t" solution, be-
ause it arises from intrinsi
 properties of perturbed Hamiltonian systems; roughlyspeaking, any \perfe
t" solution would require integrability of the original problem.However, there 
an be ways out, and approximate solutions, as we shall see in thenext 
hapter.



Andrea Milani 32CHAPTER 4:PROPER ELEMENTSIn this Chapter we dis
uss how to derive proper elements for planetary orbits.As it is already 
lear from the dis
ussion in Chapter 3, the perfe
t proper elements,whi
h should be integrals of the motion, do not exist pre
isely be
ause the N{body problem is not integrable and the series of perturbation theory 
annot be
onvergent on any open set. However, it is possible to perform some �nite a

ura
y
omputations; they are used in two main appli
ations to the dynami
s of the SolarSystem, namely to de�ne proper elements for the purpose of identifying asteroidfamilies and to 
ompute the se
ular perturbations of the orbits of the major planets.In the following Se
tions we shall not give details relative to either the one or theother of these two main 
ases, but rather dis
uss a general perturbed Hamiltonianderived from the 
oupling of a number N of 2{body problems as in (2.40){(2.42):H = H0(�) + "H1(�; �;�;�) (4:1)where the unperturbed part of the Hamiltonian de�nes the mean motions ni =�H0=��i and the angles �i are the mean longitudes, �i = !i + 
i; i = 1; : : : ; Nand �j = 
j ; j = N + 1; : : : ; 2N . The perturbative part H1 of the Hamiltonianswe shall 
onsider have one important property, arising from the symmetry of theproblem with respe
t to rotations around any axis. This symmetry property is mosteasily des
ribed analyti
ally if the set of a
tion{angle variables for the unperturbedsystem H0 is 
hosen in su
h a way that the total angular momentum along a �xedz axis is the sum of all the a
tions:Jz = NXi=1 �i + 2NXi=1 �i (4:2)(this 
an be a
hieved by using ja
obian 
oordinates and a suitable 
ombination ofres
aling and unimodular transformations similar to (1.32); see Laskar, this volume;Message, 1982). Then the two equivalent properties of invarian
e of H with respe
tto rotations around the z axis and of invarian
e of Jz with respe
t to the 
ow of H
an be expressed by a zero Poisson bra
ket:fJz; Hg = �Xi �H��i �Xi �H��i = 0 (4:3)When the perturbing fun
tion is expanded in a Fourier series, the symmetryproperty (4.3) gives a 
ondition to be satis�ed by the 
oeÆ
ients of the series, thatis a D'Alembert rule:
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os(j � �+ k � �) (4:4)H1jk 6= 0 only ifXi ji +Xi ki = 0 (4:5)Another property of the set of a
tion{angle variables (�; �;�;�), is that theHamiltonian is well de�ned even for � = 0, whi
h 
orresponds to zero e

entri
ityand in
lination. This imposes further D'Alembert rules, namely for � �! 0 the
oeÆ
ients H1jk �! 0, more pre
isely H1jk at � = 0 must have a zero of order atleast jkj = Pi jkij in the square roots of the �. In all the appli
ations to CelestialMe
hani
s the Hamiltonian has the further property of being even in the angles �,as a result of the invarian
e of both kineti
 and potential energy with respe
t to amirror symmetry; this allows to use only 
osine terms in the expansions su
h as (4.4).These properties will have an essential rôle in the theory of se
ular perturbations.4.1 LINEAR SECULAR PERTURBATION THEORYThe �rst approximation in the theory of se
ular perturbations is obtained bynegle
ting all the terms in the perturbative series but he ones of order 1 in the smallparameter " (whi
h is roughly speaking the ratio of the massses of the planets to themass of the Sun) and degree 1 in the a
tions � (that is, degree 2 in the e

entri
itiesand in
linations of all the orbits). Then the two step pro
edure outlined in Se
tion2.4 
an be expli
itly performed without mu
h diÆ
ulties.The �rst step is the elimination of the longitudes (at order 1 in "). Only the�rst order part of the generating fun
tion � is solved for:� = "�1 ; �1k = �H1kn � k (4:6)and the Lie transform is also 
omputed to order 1 only:T�H = H 0 = H0(�0) + "H1(�0;�0;�0) (4:7)In the transformed Hamiltonian the longitudes �0 do not appear, and themomenta �0 (fun
tions of the proper semimajor axes) are integrals. To apply these
ond simpli�
ation to the problem, namely to trun
ate H 0 to degree 2 in thee

entri
ities and in
linations, we need to use again the D'Alembert rules. Be
auseof the way it is obtained from H, H 0 obeys the same D'Alembert rules: it is regularfor �0 �! 0 and su
h that it is invariant with respe
t to a rotation, that is for a
hange su
h that �i 7! �i+Æ, the same Æ for all i. These properties are best expressedby means of a 
hange to Poin
ar�e variables (see (1.26)):



Andrea Milani 34xi =p�2�0i 
os(�0i) ; yi =p�2�0i sin(�0i) (4:8)The D'Alembert properties 
an be expressed in the Poin
ar�e variables bystating that H 0 is a smooth fun
tion at x = y = 0, thus 
an be expanded in aseries of positive powers of the xi and yi, and that H 0 is invariant with respe
t to arotation of all the 2{ve
tors (xi; yi) by the same angle. It is known from elementarygeometry that the fun
tions de�ned on a set of ve
tors and invariant by rotationmust 
ontain only s
alar and ve
tor produ
ts (that is, distan
es and 
osines andsines of the angles); thus H 0 must be a series formed only with positive powers ofthe 
ombinations xixj+yiyj (s
alar produ
t) and yixj�xiyj (ve
tor produ
t). Sin
eH 0 is even, only the 
osine{type expressions xixj+yiyj need to be used. Thus whenH 0 is expressed as a sum of homogeneous polynomials:H 0 = H 00 +H 02 +H 04 + : : : (4:9)(with H 0r of degree r in the Poin
ar�e variables), the degree 2 part must be of theform: H 02 = 12Xr;s Ars(xrxs + yrys) (4:10)with the 
oeÆ
ients Ars dependent only upon �0 (that is, upon the proper semimajoraxes). Within this approximation, the se
ular perturbation equations are linearequations with 
onstant 
oeÆ
ients:dxrdt =Xs Arsys ; dyrdt = �Xs Arsxs (4:11)and 
an be solved in a straightforward way as already dis
ussed in Se
tion 1.3; thesolutions 
ontain the fundamental se
ular frequen
ies �i; i = 1; : : : ; 2N whi
h arethe eigenvalues of the symmetri
 matrixA, and are obtained by means of the rotationmatrix B = (B�1)T (whi
h diagonalises A: BT AB = diag[�1; �2; : : : ; �2N ℄) fromthe proper modes of os
illation w = B�1x; z = B�1y. The latter are solutions ofun
oupled harmoni
 os
illator problems, and for ea
h os
illator (wk; zk) it is possibleto de�ne an a
tion variable ��k and an angle variable ��k:wk =p�2��k 
os(��k) ; zk =p�2��k sin(��k) (4:12)su
h that the solution is given by:�� = 
onst ; �� = �t+ ��(0) (4:13)that is the solution in the original Poin
ar�e variables is:
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os(�st+ ��s(0))yr =Xs Brsp�2��s sin(�st+ ��s(0)) (4:14)This is the 
lassi
al representation of the se
ular perturbations by means ofepi
y
les, that is �nite Fourier series with 2 terms per planet. Some 
aution must beused even in the interpretation of this simple solution. The proper a
tion variables��i 
an be used to de�ne the proper e

entri
ities and in
linations (by the sameformulas relating the ordinary e

entri
ities and in
linations to the �i); however,these proper elements do not have the same geometri
al meaning of the ordinaryorbital elements (e.g. the perihelion distan
e 
annot be 
omputed dire
tly from theproper e

entri
ity).The geometri
al meaning is even more involved for the proper angles ��i : sin
ethe matrix A is in general not symmetri
, the rotation B is not the identity, thusthe angles ��i and �i are not measured from the same origin. If the matrix A has astrongly dominating prin
ipal diagonal, then B is 
lose to the identity and (providedthe proper a
tions ��i are not too small) all the angles �i 
ir
ulate with the samefrequen
y as the 
orresponding proper ��i , that is �i. This would be the 
ase, in theplanetary se
ular perturbation problem, if all the planets were very far apart fromea
h other (that is, all the ratios between the semimajor axes of two 
onse
utiveplanets were very small). However, the real Solar System is a weakly hierar
hi
alsystem, and the o�{diagonal terms in A are signi�
ant; as a result, some of the �ibehave in a qualitatively di�erent way from the 
orresponding ��i : e.g. the perihelionof Jupiter and the perihelion of Uranus 
ir
ulate around the Sun with the same meanfrequen
y �5 (Milani and Nobli, 1985).4.2 SECULAR PERTURBATIONSTo improve the 
omputation of a long term solution of an Hamiltonian su
h as(4.1) we need to take into a

ount both e�e
ts 
ontaining "2 and e�e
ts of degree 2in the a
tion variables �0 (that is, of degree 4 in the e

entri
ities and in
linations);whi
h of the two is most important will of 
ourse depend upon the problem.The se
ond order (that is, O("2)) e�e
ts 
an arise in two di�erent ways: inthe elimination of the longitudes and in the solution of the se
ular perturbationequations. The transformation de�ned by the generating fun
tion � = "�1+ "2�2+: : : has many se
ond order terms; the most important e�e
ts do not a
tually arisefrom the se
ond order part of �, but from the fa
t that a Lie transformation is notlinear in the generating fun
tion. Let us take as an example the variables �, thatis essentially the semimajor axes: after elimination of the longitudes, the �0 are
onstant, and the � are given by formulas su
h as (2.30):



Andrea Milani 36� = �0 � "f�0; �1g+ 12"2ff�0; �1g; �1g � "2f�0; �2g+ : : : == �0 + "��1��0 � 12"2f��1��0 ; �1g+ "2 ��2��0 + : : : (4:15)To assess the relevan
e of the di�erent parts of (4.15) we have to take intoa

ount that � is short{periodi
, that is � = 0; if we 
ompute the long{periodi
 partof �, all the parts of (4.15) linear in � do not 
ontribute, while the quadrati
 parts
an give rise to beat terms, be
ause �1 and ��1=��0 
ontain terms with the samefrequen
y whose Poisson bra
ket has a long periodi
 part:� = �0 � 12"2f��1��0 ; �1g+ : : : (4:16)These se
ular perturbations of the semimajor axes 
ontain only the se
ular frequen-
ies �i and are not ne
essarily very small. Sin
e the Fourier 
oeÆ
ients of �1 arederived from equations (4.5), they 
ontain the divisors Æ = n � j + � � k; the se
ondorder part in (4.16) 
ontains one fa
tor of 1=Æ from �1, one from ��1=��0 and afurther fa
tor 1=Æ arising from the derivative of 1=Æ with respe
t to �0 o

urring inthe Poisson bra
ket; thus the order of magnitude is "2�dÆ�3 if the divisor Æ has aD'Alembert 
hara
teristi
 d =Pi ji. If d is small, as in the 
ase in whi
h the ratioof two mean motions 
an be approximated by a fra
tion (m + d)=m with small d,even a shallow resonan
e with a Æ of the order of "1=3 
an produ
e a large e�e
t.For details on the 
al
ulations of these se
ular perturbations on the semimajor axessee Milani et al. (1987).The short periodi
 terms from ��1=��0 have order of magnitude "�d=2Æ�1,and if Æ is of the order of Sqrt�d" the se
ond order terms are a
tually larger, whi
hmeans that the expansion in powers of " is not performed in the right way: this deepresonan
e 
ase must be solved in a very di�erent way (see Henrard, this volume andFerraz{Mello, this volume).Of 
ourse the same e�e
ts o

ur in the variables �, that is in the e

entri
itiesand in
linations; however, these variables are of the form � = �0+O(") and the �0,solution of the se
ular perturbation equations, are not 
onstant at all, but undergo
hanges whose order of magnitude depends only upon the size of the proper a
tionvariables �� (see (4.14)). This o

urs be
ause the derivatives of the �0 are O("),but the frequen
ies of the se
ular os
illations are � = O(") and the periods O(1="),thus the amplitude of the os
illations is of order zero in ". In other words, theamplitude of the os
illations in the e

entri
ities and the in
linations of some orbitis 
ontrolled by the e

entri
ities and in
linations of the orbits of the other planets,not by the planetary masses. Thus the free os
illations des
ribed by equations su
has (4.14) are more important that the se
ond order e�e
ts due to the removal of thelongitudes, and even than the �rst order short periodi
 e�e
ts unless the e

entri
itesand in
linations are all very small.The other kind of se
ond order e�e
ts 
an be more important for the e

en-tri
ities and in
linations: again sin
e the Lie transform is not linear in �, beat termsof the se
ond order 
an appear in the transformed Hamiltonian H 0;



Perturbation methods 37T�H = H 0 = H0 + "H1 � 12"2fH1; �1g+ : : : (4:17)and the beat terms asso
iated with a divisor Æ of 
hara
teristi
 d will have order ofmagnitude "2�dÆ�2, whi
h is small outside deep resonan
e. However, the �rst orderterms have order of magnitude "�, and for d = 1 (that is, 
lose to a resonan
e like2/1, 3/2, et
.) the ratio of the se
ond order terms to the �rst order terms is "Æ�2:even for a very shallow resonan
e the 
ontribution 
an be important. These se
ondorder 
orre
tions to the se
ular Hamiltonian were �rst 
omputed by Yuasa (1973)for the asteroid problem and by Bretagnon (1974) for the major planets. There are
ases in whi
h the most signi�
ant improvement with respe
t to the 
lassi
al linearperturbation theory of the �rst order (in ") is a se
ond order linear theory, that isthe 
oeÆ
ents Ars in (4.10) are 
omputed not only from the �rst order part "H1 butalso in
luding the 
ontribution of the se
ond order beat terms; the 
orrespondingse
ular frequen
ies � 
an 
hange by a 
omparatively large amount. This te
hniqueis used in Milani and Kne�zevi�
 (1989).The e�e
ts of the terms of degree four in the e

entri
ities and in
linations(that is, of degree 2 in the �0) 
an be 
omputed by a te
hnique of elimination of theangles �� based again on the formalism of Lie series (see Yuasa, 1973; Message, 1976;1982; Milani et al., 1987; for a di�erent formalism, see also Bretagnon, 1974). For thispurpose, let us assume that the se
ular perturbation Hamiltonian H 0 is expressedas a sum of homogeneous polynomials as in (4.9); ea
h homogeneous 
omponent
an be expressed as a fun
tion of the proper modes (w; z) (sin
e the transformationbetween (x; y) and (w; z) is linear, the degree does not 
hange), and in turn (w; z)
an be expressed as a fun
tion of the proper a
tion{angle variables (��;��):H 0 =H0 +H 02(w; z) +H 04(z; w) + : : : ==H 00 + � ��� +Xk 
k(��) 
os(�� � k) (4:18)Careful examination of (4.18) shows that H 00 does not matter, sin
e it 
ontainsneither �� nor ��; H 02 be
omes trivial when expressed as a funtion of (��;��) be
ausethese are the a
tion{angle variables used to solve the problem with Hamiltonian H 02;and the problem is to perform a new 
hange in 
oordinate su
h that the angles ��are removed from H 04. We have to stress again that both H 02 and H 04 may 
ontainalso the O("2) 
ontribution.Thus it is enough to �nd a �0 = �04 + �06 + : : : su
h that:F 0� : (��;��) 7�! (���;���) ; T�0H 0 = H 00(���) (4:19)To degree 4 it is enough to �nd the part �04 homogeneous of degree 4 (in (w; z)): thisbe
ause of the rule on the degree of the Poisson bra
ket (in Poin
ar�e{type variables):deg(ff; gg) = deg(f) + deg(g)� 2.



Andrea Milani 38T�04H 0 = H 02 + [H 04 � fH 02; �04g℄ + : : : (4:20)and the pro
edure follows the same lines of the one of Se
tion 2.4: we de�ne anoperator L2 and a de
omposition of ea
h fun
tion into the part with and withoutthe angles �� (whi
h we shall denote again with a bar and a tilde, although themeaning of these symbols is not the same as in Chap. 2):L2g = fh02; gg = �� � �g��� ; H 04 = H 04 + ~H 04 (4:21)Then the part of degree 4 of the new hamiltonian H 00 and the equations to be solvedfor �04 are: H 004 = H 04 ; in Ker L2L2�04 = ~H 04 ; in ImL2 (4:22)and the new nonlinear proper elements (���;���) obtained by the transformationF�0 are known fun
tions of time:��� = 
onst ; ��� = ��t+ ���(0) (4:23)where the new fundamental frequen
ies �� are obtained from the new HamiltonianH 00, or at least from its degree 2 and degree 4 parts whi
h have been expli
itly
omputed: �� = �H 00���� (���) = �(H 002 +H 004 )���� (���) = � + �H 004���� (���) (4:24)At the end of this pro
edure, we 
an say that the solution is 
ompletelyknown up to all the e�e
ts arising from terms of degree 4 in the e

entri
ites andin
linations, sin
e the ordinary orbital elements 
an be 
omputed by reversing allthe 
hain of transformations, that is by 
omputing:[1℄ (���;���) �! (��;��) by the Lie series de�ned by ��04;[2℄ (��;��) �! (�0;�0) by means of the linear transformation B, that is esssen-tially by (4.14) and (4.8);[3℄ (�0;�0) �! (�;�) by adding the short periodi
 perturbations with the Lieseries de�ned by ��Sin
e all this sequen
e is long and tedious, but the algorithm is straightforward,one 
ould think that the problem 
an be solved up to order 2 and degree 4 (or, forthat matter, up to any order and degree su
h that the expansions and the Poissonbra
kets 
an be 
omputed with a reasonable e�ort, possibly with the use of algebrai
manipulation languages). Unfortunately, the real solution 
annot be obtained in this
on
eptually simple way.
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ulty in the 
al
ulation of higher de-gree proper elements, let us assume that the elimination of the longitudes has beenperformed su

essfully (to order "2) and that the se
ular perturbation Hamiltonianhas been expanded in powers of the linear proper elements: to be able to drop mostof the stars, primes, et
. we 
hange notation and assume the linear proper elementsare (�; I) and the se
ular Hamiltonian is K:K = K(�; I) =Xk �kIk +Xj K(4)j (I) 
os(j � �) (4:25)where we assume that K(4)j is homogeneous of degree 2 in the a
tions I, thus thesum over the multiindex j is extended only to degree 4 (that is, jjj = P jjkj � 4),and all the higher degree terms are negle
ted. It is easy (in prin
iple) to extra
t thepart of K whi
h does not depend upon the angles �:K� = K�(I) = � � I +K(4)0 (I) (4:26)Then the algorithm des
ribed in the previous se
tion pres
ribes to 
ompute a gen-erating fun
tion � satisfying the equation:f� � I;�g =Xj 6=0K(4)j (I) 
os(j � �) (4:27)and a simple manipulation of Fourier series gives the fully expli
it solution:�(�; I) = �Xj 6=0 K(4)j (I)j � � sin(j � �) (4:28)By taking the derivatives of �, the transformations to proper elements (��; I�) 
anbe 
omputed: let us indi
ate this transformation by:��� = �+ 
(�; I; �)I� = I + C(�; I; �) (4:29)where we have stressed the dependen
e of the transformation upon the values ofthe �rst approximation frequen
ies, whi
h appear in the generating fun
tion. Sin
e
ombinations of up to four frequen
ies appear in the generating fun
tion as divisors,the 
orre
tion (
; C) 
an be very sensitive to the values of the �; if a resonan
ej � � = 0 o

urs, a transformation with the required properties 
annot be de�ned.However, the purpose of the transformation (4.29) is to exploit the expli
it solutionof the problem in the starred variables, whi
h 
ontain the frequen
ies ��:I� = 
onst ; �� = �K�(I�)�I� ; �� = ��t+ 
onst (4:30)
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ourse �� 6= �, be
ause the degree four part of the Hamiltonian 
ontributesto the frequen
ies. A
tually the rate of 
hange of �� as a fun
tion of the a
tionvariables is measured by the matrix 
omputed in (3.28). Then what happens ifthere is a resonan
e j � �� = 0 ?In this setting it is not diÆ
ult to show that the problem is not di�erent fromthe one we have already dis
ussed in Se
tion 3.4. The transformation (4.29) 
anbe de�ned, provided j � � 6= 0 for every j with 0 < jjj � 4, but what it gives isjust the �rst approximation to a series whi
h is divergent; the true solution of theequations of motion is obtained by the map going in the opposite dire
tion, fromproper elements (��; I�) su
h that ��(I�) is non{resonant in some strong sense to aninvariant torus in the (�; I) spa
e: as in Se
tion 3.2, we 
an expli
itly 
ompute the�rst approximation to this map and �nd for the generating fun
tion �� the solution:��(��; I�) = +Xj 6=0 K(4)j (I�)j � �� sin(j � ��) (4:31)where two 
hanges only o

ur with respe
t to (4.28): the opposite sign and the useof starred variables (arising from the fa
t that the map has to go in the oppositeway, and in the Hori method this is obtained by 
hanging the sign), and the use ofthe 
orre
ted frequen
ies �� in the divisors. Thus the analogous of (4.29) is:�� = �� � 
(��; I�; ��)I = I� � C(��; I�; ��) (4:32)with the same fun
tions (
; C) (they are fun
tions with the same analyti
al expres-sion, 
omputed on di�erent variables). The same arguments used in Se
tion 3.4show that (4.32) is the right solution (or at least a �rst approximation to it), while(4.29) is not. If a spe
i�
 divisor j � � is small, and has opposite sign from j � ��, the
orresponding term in � is large and has the `wrong' sign, that is the opposite signwith respe
t to the 
orresponding term in ��. Although this does not ne
essarilyo

ur for a given (�; I), it is bound to o

ur for some 
hoi
es of the initial 
onditions(�; I) and of the frequen
ies � (that is, of the semimajor axes).The potential dangers of the approximation involved in using the linear fre-quen
ies � in the solutions of se
ular perturbation problems have been known sin
ea long time; the unreliability of this approximation be
ame una

eptable only whenformulas su
h as (4.29) have been used to systemati
ally map a large portion of thephase spa
e into the proper elements phase spa
e.A solution to this diÆ
ulty has been proposed only re
ently (Milani andKne�zevi�
, 1989; Kne�zevi�
 and Milani, 1989); the idea is to use (4.32) instead of(4.29) to 
ompute the proper elements (��; I�). Sin
e (4.32) 
an be expli
itly 
om-puted as a map (��; I�) �! (�; I) whi
h goes in the other dire
tion, the properelements have to be found by solving an impli
it fun
tion problem. The impli
itfun
tion problem 
an be written in a �xed point form:
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(��; I�; ��)I� = I + C(��; I�; ��)�� = [�K�=�I�℄(I�) (4:33)whi
h 
an be solved by an iterative s
heme as follows: as a �rst approximation, thedi�eren
e between proper and non proper elements is negle
ted:��0 = � ; I�0 = I ; ��0 = � + �K��I� (I�0 ) (4:34)then the su

essive approximations are 
omputed by applying the map de�ned bythe right hand side of (4.33):8<:��N+1 = �+ 
(��N ; I�N ; ��N )I�N+1 = I + C(��N ; I�N ; ��N )��N+1 = � + [�K�=�I�℄(I�N ) (4:35)If the iteration s
heme (4.35) 
onverges to some limit (��; I�; ��), then thislimit ful�lls equation (4.33) and �� is the set of fundamental frequen
ies to be usedin the solution of the se
ular perturbation equations. Of 
ourse this is only a �rstapproximation; in prin
iple, the 
orre
ted frequen
ies �� 
ould be used as a �rstapproximation for a further iteration whi
h takes into a

ount the terms of degree6, and so on.The study of this kind of \reverse KAM map" has just begun; it has notbeen proven that this in�nite sequen
e of iterations 
an a
tually 
onverge to a KAMtorus; we do not know yet how to estimate the error introdu
ed by stopping thepro
edure at a given degree; even for a �xed degree, we do not know where theiteration s
heme (4.35) 
onverges. However, experimental results obtained in theproblem of asteroid proper elements seem to indi
ate that this is a good way to go.Referen
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