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CHAPTER 1:

CANONICAL TRANSFORMATIONS

This chapter discusses dynamical equations of the Hamilton type:

dg OH  dp  OH 11
dt  Op  dt  Oq (1.1)
(where ¢,p are N-vectors) and the way they can be transformed by coordinate
changes which preserve the hamiltonian character of the equations. No specific
application is presented in this chapter; the theory is developed only to the extent
which will later be needed to discuss the perturbation theories actually used in
Celestial Mechanics, and computational tools are readied for such theories.

1.1 LOCAL CANONICAL TRANSFORMATIONS

A coordinate transformation

®:(q,p) — (z,9) (1.2)

is canonical if the equations of motion (1.1), as seen in the new coordinate system
(z,y), are again hamiltonian with as hamiltonian K = H o ®~1, the function with
the same values in corresponding points, that is:

de 0K dy 0K

dt oy ' dt oz
K(®(q,p)) = H(q,p) (1.4)

(1.3)

The condition for a map to be locally canonical, in the neigbourhood of some
point, can be simply stated in terms of the matrix of partial derivatives:

(1.5)

To simplify the formulas, we assemble the coordinates ¢ and the momenta p
in a single 2N-vector r = (¢, p) and rewrite the Hamilton equations:

d
d—’; = JVHT (1.6)
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with J a 2N x 2N matrix:

=% ) (17)

and VH = 0H/0(q,p) the gradient of the Hamiltonian; V7 is the gradient trans-
posed, that is used as a column vector. The time derivative of z = (x,y) can be
computed by the chain rule:

dz dr
~Z —-D®d— =D®.-JVHT 1.8
dt dt v (1.8)

The gradient can also be computed by the chain rule from (1.4):

VH = VK D® (1.9)
and upon substitution into (1.8):
dz T T
i [D®-J-D2"|VK (1.10)

which is equivalent to the new Hamilton equations dz/dt = JVKT provided:

D®-J-DOT =J (1.11)

If (1.11) holds in every point, the map ® is locally canonical. Since J is non-singular,
(1.11) also implies that det(D®) = £1. In the case of a 2 x 2 matrix, det(D®) =1
is equivalent to (1.11); for larger matrices, this is not the case.

It is easy to check wether condition (1.11) is verified for any given @, but it
is not easy to find non—trivial canonical maps, even locally. A standard procedure
is the use of a generating function S = S(q,y) to define a map in an implicit way:

a8 a8
_ .90 1.12
P= 3, () ; = Iy (¢, ) (1.12)

If the implicit definition (1.12) can be untangled in a well defined map (1.2), at
least locally, then such a map is locally canonical (this can be shown by the direct
computation of (1.11) by means of the implicit function theorems, and also proven
indirectly by using variational principles; see Arnold, 1976, chap. 9). However all the
topological difficolties are somewhat hidden in the implict map (1.12) and emerge in
the attempt to make it explicit, so this method is often of little help in understanding
the global properties of the coordinate change.
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A further problem arises when we need to consider a time dependent canonical
transformation. It is indeed possible to develop a separate formalism of contact
transformations (see Abraham and Marsden, 1967; Arnold, 1976, App. 4), but
this is not really needed for the applications to Celestial Mechanics. The simplest
way is the so—called homogenous formalism, by which the time is considered as an
extra coordinate ¢ = ¢y and a new momentum pgy is added. Then the Hamilton
equations with a (possibly time dependent) Hamiltonian H = H(q,t, p) are handled
as time—independent Hamilton equations with the homogeneous Hamiltonian H =
H(q, q0,p) + po with the equations (1.1) plus the extra ones:

dqo OH dpo OH OH
= 1 . - = — = - ]_ . ]_
dt  Opo Todt dqo ot (1.13)

where the last equation shows that the meaning of pg is simply po = —H. Then a
canonical transformation can be defined by a time—dependent generating function:

0S 0S
S — S ,t7 ; e — ; = — ]_-]_4:
(¢.t,p) ;5 = 5 "™ 9 (1.14)
just by thinking to the corresponding homogeneous generating function:
S = 5(q,90,¥,y0) = S(4, 90, P) + Yoqo (1.15)

constructed in such a way that zo = 0S/0yo = qo = t; the new Hamiltonian is —yq,
related to H = —pg by:
oS 0S

=2 gt — 1.1
940 Yo + ot (1.16)

Do

that is the new Hamiltonian is K = H — dS/0t. The homogeneous formalism can
also be used to allow for changes in the independent variable, which is often useful.

1.2 RUDIMENTS OF TOPOLOGY

To understand the properties of global canonical maps we need to borrow
some concepts from differential topology. Two spaces are said to be topologically
equivalent if there is a map between them which is one—to—one and differentiable,
with the inverse map differentiable as well; such a map is called a diffeomorphism.
Spaces with quite different metric properties can be equivalent, an example being
the equivalence of the half line Rt with the real line R. There are however non
equivalent spaces, such as the real line R and the circle S! (e.g. it can be shown
that the latter is compact and the former is not).
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Another concept from differential topology widely used in the theory of Hamil-
tonian system is that of a local diffeomorphism, a map which is locally a diffeomor-
phism in the neigbourhood of each point; by the inverse function theorem, this is
equivalent to the matrix of partial derivatives of the map being non-singular at each
point. It must be stressed that a local diffeomorphism can exist even between spaces
which are not toplogically equivalent, the simplest example being a map R — S*!
such as the one which is constructed whenever angles are measured with numbers,
e.g. in radians. The notion of an angle variable, which is simply a copy of the map
R — R/(2rZ) ~ S in which two values of the angular measure are said to define
the same angle if they differ by an integer multiple of 27, is central to the study of
integrable dynamical systems.

A third useful concept is that of a diffeomorphism isotopic to the identity, or
trivial; it refers to a map of a space onto itself which not only is a diffeomorphism,
but also can be obtained by differentiable deformation from the identity map. By no
means all diffeomorphisms are trivial, the simplest example being the map 6 — —6
of the real line onto itself (if 6 is regarded as an angle variable, the same formula
defines a diffeomorphism of S* which is also non trivial).

So far we have only used examples with 1-dimensional spaces, and of course
the variety of the possible topological structures increases dramatically with the
dimension of the space. However, for the purpose of the study of integrable Hamil-
tonian systems and their small perturbations we can limit ourselves to the considera-
tion of spaces which are either of dimension 1 or cartesian products of 1-dimensional
spaces. Since the cartesian operator preserves topological equivalence, that is A ~ B
and C' ~ D implies A x C ~ B x D (with ~ used as a symbol for topological equiva-
lence), the classification of such products of simple spaces is easy: e.g. in dimension
2 we can have only the plane R x R = R2, the cylinder R x S' and the torus
S x 8! = T2 in dimension N we may encounter the N-torus S* x TVN-1 = TN,
etc..

However, even simple product spaces such as tori can have subtle topological
properties. Let us consider as an example —which is chosen because it will be needed
later in the study of resonances— the classification of the non—trivial diffeomorphisms
of an N-torus. Let us assume the torus TV to be defined by N angle variables
0 = (01,0, ...,0N); when does a linear transformation of R™:

¢ = Af (1.17)

define a map of the torus onto itself? The answer is that this requires the coefficients
of the matrix A to be integers, and can be understood by the simple example of the
map 01 — %91, which results in #; = 0 and #; = 2m, the same angle, that is
the same point on the circle, mapped into two different angles 0 and 7. The same
map is also a diffeomorphism of TV if the inverse matrix A~ exists and has integer
entries as well; this is possible if and only if A is an integer matrix with det A = +1.
Matrices with integer coefficients and determinant +1 are called unimodular.

Unimodular transformations have surprising geometric properties; the most
important for our purposes is that no unimodular transformation (different form the
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identity) of a torus is trivial, that is no one can be obtained from another one by a
continous deformation. Thus there are infinite different ways to parametrize a torus
which are not reducible to one another by means of a sequence of small changes, for
every N-torus with N > 1.

Unimodular transformations can be, to same extent, taylor-made to perform
specific adaptations to our computing needs. Let us take the simple example of an
ordinary 2-torus: can we find a unimodular 2 x 2 matrix A such that one of the new
angles ¢ defined by (1.17) is a given combination of #; and 65:

¢1 = aby — bO; (1.18)

with a,b integers? The second component ¢, = c#; + df; forms a unimodular
transformation together with (1.18) provided that the integers ¢, d are such that
ad + bc = 1; since we know from elementary algebra that the equation ad + bc =
MCD(a,b) has always a solution with integers c, d, the only constraint in the choice
of one of the new angles by an equation like (1.18) is that MC'D(a,b) = 1. We shall
see later how such a choice can allow an important step forward in the theory of
resonances.

1.3 GLOBAL CANONICAL MAPS

A global canonical transformation can be defined as a diffeomorphism which
is also locally canonical, that is fulfills (1.11) in every point. However, this definition
is too restrictive. Canonical maps are often used for the very purpose of changing
the topology, and in this case they must either be singular somewhere, or not be
globally one-to—one, or both.

The simplest examples of global canonical maps can be obtained with the
generating function formalism. Let us suppose we have chosen a transformation
of the coordinates ¢: 2 = f(q) and wish to find a canonical transformation which
extends this map to the momenta: this can be done by means of the generating
function:

05 05

S=y-flq) ; x=8—y—f(Q) ; p=—-—=Df(9)"y (1.19)

That is, if f is a local diffeomorphism (det D f # 0):

v=1fq) ; y=[Df@"] "p (1.20)

and the momenta are transformed in a covariant way. However (1.20) is really a
global canonical transformation only if f is itself a diffeomorfism. This is always the
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case when f(q) = Bq is a linear map (with det B # 0):

S=y-Bq ; r=Bq ; y:[B_l]Tp (1.21)

Another interesting example is:
S=y Ruq ; v=Ruq ; y=Rup (1.22)
where R, is the rotation by an angle |w|t aroung the axis defined by the vector w of

R3. This case must be handled by means of the time dependent (or homogeneous)
formalism, and the new Hamiltonian can be computed by means of the derivative:

8th
ot

q= Ry (wxq) (1.23)

where the vector product is the standard way to represent an infinitesimal rotation.
By using (1.23), and taking into account the rotational invariance of scalar and
vector products, the new Hamiltonian is found to be:

K:H—aa—f:[-[—w-(qxp) (1.24)

Equations (1.22) and (1.24) allow to derive the equations for the circular restricted
3-body problem in the rotating frame (in which the primaries are fixed); the last of
(1.22) shows that the momenta in the rotating frame are not the velocities in the
rotating frame but the rotated velocities in the inertial frame.

The more interesting cases are when the topology actually changes. The most
obvious example is the change to polar coordinates:

S =yircosf + yarsind (1.25)

which is of course locally canonical only for 7 > 0, that is for (r,f) in Rt x R
and with values (z1,72) in R? — (0,0) ~ Rt x S'. Since the two spaces are not
topologically equivalent, the map cannot be one-to—one and indeed 6 is an angle
variable.

Another very useful non regular canonical map is the transformation to Poin-
caré variables, the canonical analogue of the polar to cartesian transformation when
a coordinate x and its conjugate momentum y are regarded as the couple of cartesian

coordinates:
x=4/2pcos(—q) ; y=+/2psin(—q) (1.26)

It is easy to directly check that det d(x,y)/0(q,p) = 1, with the minus sign in front
of the coordinate ¢ playing a surprisingly essential réle. (1.26) could be locally
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defined by a generating function S = %yz cotg q, but there is no way to have a single
generating function defining the map globally, precisely because the topology does
change. This canonical map is used to remove the singularity of the angle ¢ for
p = 0, and viceversa to introduce the angle variable when it is needed.

With canonical maps as a tool, integrable hamiltonian systems can be explic-
itly solved by reduction to a trivial form; this is performed by a sequence of canonical
maps, some of which typically do change the topology. The simplest examples can
be found with quadratic Hamiltonians: let us assume the Hamiltonian function is of
the form:

1
H:§(J7-A:E+y-Ay) (1.27)

This particular form arises from symmetry properties of the Hamiltonian, as we
shall see in Section 4.1. The symmetric matrix A = AT has real eigenvalues vy, k =
1,..., N and can be diagonalised by means of an orthogonal matrix B = (B~1)T:

BT A B = diag[vy,vs, ... ,vN] (1.28)

and by the canonical linear change r = Bw, y = Bz the Hamiltonian is reduced to
the form:

N
1
H= I;lyk (wi + 27) (1.29)

which represents a set of NV uncoupled linear oscillators with frequencies v;. Each
oscillator problem can be solved by introducing angle variables with the inverse of
(1.26):

WE = \/2@k COS(—Qk) A 2@k Sil’l(—gk) (130)

Then the Hamiltonian is reduced to the form:

N
H=Y 06y (1.31)
k=1

with the angle variables ) changing linearly with time, each one with its own
frequency vi, and the action variables O constants of the motion. This is the
simplest example of an integrable Hamiltonian system, and it already shows most
qualitative features of such systems: the level manifolds with all the ©;, constant are
spanned by N angle variables, hence they are N-tori T%; most of the phase space is
topologically equivalent to TV x (R*)Y, apart from the subsets with some O = 0
where lower dimensional tori occur.

Non trivial canonical transformations can be used to somewhat lessen the
difficulties arising from simple singularities such as the lower dimensional tori of the
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above example. Suppose we wish to remove the singularity arising for ©; = 0, where
f, is undefined. Then the unimodular matrix :

A::<é }) (1.32)

can be used to combine the angles 0, and f:

b1 =01+02 ; P2 =05 (1.33)

and by (1.21) the matrix (A~!)T gives the corresponding change in the action vari-
ables:
(I)l = @1 3 (I)z = —@1 + @2 (134)

The advantage of the new coordinates is in that ¢; can be defined as 65 for ©; = 0,
and this definition is regular for ©; — 0, that is the map from the action—angle
variables (6,0) to the Poincaré type variables (w,z) is smooth around (wq,z1) =
(0,0). This simple trick is standard in Celestial Mecahnics, e.g. when the longitudes
A, @, ) are used instead of the Delaunay variables /4, w, (2.

Another use of non trivial global canonical transformations is to highlight
resonances. Suppose that in the example (1.29)—(1.31) above two of the frequencies

are in a rational ratio, e.g. :

b
n_2 (1.35)

Uy a

Then a unimodular transformation with first component (1.18) can be constructed
(since we can assume MCD(a,b) = 1 anyway), with matrix:

a —b
A= (c J > : det A=1 (1.36)

The actions are changed by the matrix (A=1)7":

@1 = d@l - C@Q 5 (I)Q = b@l + a@2 (137)

and the Hamiltonian, containing ®; and ©5 only in the combination 11 ©1+v5 Oy =
v1P2/b, does not depend upon @4, thus explicitly showing that ¢, is constant.

To summarize our view of canonical transformations, canonical maps which
are far from the identity (either because they are non trivial, or because they have
singularities, or because they are not one-to—one) are mostly used to set up the
appropriate topology of the phase space and a qualitatively suitable parametrisation.
Fine tuning of the canonical coordinate system can then be performed by near—
identity transformations.
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CHAPTER 2:

SMALL TRANSFORMATIONS, SMALL PERTURBATIONS

This chapter discusses canonical transformations which are near identiy, that
is each point in the phase space is displaced only by a small amount, and their use
to solve problems with small perturbations, that is with Hamiltonians containing a

small parameter e:
H=Hy+eH, +&*Hy + ... (2.1)

In principle a small transformation could be defined by a generating function
close to the one of the identity transformation:

S=q-y+eSi(q,y)+e>S2(q,y) +... (2.2)

and this formalism has often been successfully used; however another formalism
leads to easier computations, especially when the theory needs to be computed to
higher order. It is based upon canonical flows, that is transformations F'®* which
form a (local) one—parameter group , with F° = Identity and F* a global canonical
map, for s small enough; moreover, F'® o F* = F'*T% whenever defined.

2.1 INTEGRAL FLOWS AND VARIATIONAL EQUATIONS

For a given Hamiltonian x(q, p), with Hamilton equations for r = (q, p):

% =.J-Vx(r) (2.3)

the solutions of all the initial conditions problems can be put together in the integral
flow, that is the map:
By (s,r) — Fe(r) (2.4)

such that —for fixed ro— Fy(ro) is the solution of (2.3) with initial conditions r = rq
at s = 0; that is, Fy satisfies the initial conditions problem:

%F;(T) =J Vx(Fi(r) F£(T) =r (2.5)

The existence and uniqueness theorem for the initial conditions problem ensures that
Fy is a local one—parameter group. Moreover the regularity theorem for solutions of
ordinary differential equations ensures that F'is at least as smooth as x is, and in all
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the variables. Let us now consider F}, for a fixed value of the independent variable
s, as a map of the phase space into itself, sending each initial condition onto the
state of the corresponding solution after “time” s has elapsed. Such a map is also
differentiable; let the matrix of partial derivatives be A*®:

A*(r) 0 F3(r) (2.6)

:EX

Then A®(r) satisfies another differential equation, the wvariational equation,
which can be obtained by taking the derivatives with respect to the initial conditions
r from both sides of (2.5):

0 0 o 0 0
— _Fs Ay N — A8
or s x(r 0s Or x(1) 0s (r)

where use was made of the possibility of exchanging the order of the derivatives for
a smooth map, and of the definition (2.6);

0 s 0 s _ s
EJ -Vx(F5(r) =J-VVx: EFX(T) =J-VVx-A%(r)

where the chain rule for derivatives has been used, and VVy is the symmetric matrix
of the second derivatives, computed along the orbit starting at r. Thus A%(r), for a
fixed r, is the solution of the initial condition problem for a linear time—dependent
equation:

%As(r) =J-VVx-A*(r) ; A°(r)=1 (2.7)

The variational equations (2.7) are themselves Hamiltonian: A®(r) is the ma-
trix solution of the linear equations defined by the quadratic and time—dependent
Hamiltonian 1o - VVx(F3(r))v. The main property of the solution of (2.7) is that
it always satisfies the condition (1.11): let

Cs =A% J-[A%]T
then C'is solution of an initial condition problem:

%C’S:(J-VVX-AS)-J-[AS]T:J-VVX-C’S—CS-VVX-J

C'=A"-J - [A =T

which has the trivial solution C* = J; by uniqueness, A% always fulfills (1.11) and
Fy is locally canonical. It can be shown that FY is actually globally canonical
provided it is globally defined. Moreover, the transformations defined in this way
are topologically trivial, since they are deformations of the identity corresponding
to a time zero flow.
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2.2 LIE SERIES

Thus any function x = x(q,p) defines a canonical flow; once a value of the
associated independent variable s is chosen, a canonical tranformation is uniquely
defined. However, to explicitly compute the transformation we have to solve the
differential equations (2.3)—(2.5). The simplest procedure to compute some approx-
imation to this solution is the Taylor—-Mac Laurin formula at s = 0:

P = Fi(r)=r+s [%F;(r)] Lzo + 32—2 {%F;(T)] T (2.8)

s=0

A similar formula can be used to compute the transform of any function of the
canonical variables ¢ = g(q,p); let us denote the map between the function spaces
by T}: B

Tiigr— g =go|Fy]

(T29)(r') = g o [F2] 7 (') = g(F* (")) (2.9)

Two important remarks on equation (2.9). The transformation of a function
is performed by composition with the inverse map; this is the same rule used to
transform the Hamilton functions in a canonical map (see Section 1.1). Since the
initial and the final state are exchanged when the sign of the independent variable
is changed —or, equivalently, when the sign of the function y is changed— the inverse
map can be obtained by a change in sign; this also follows from the group property
of the integral flow: FFo F\ "% = F;() = Identity. The Taylor formula for T} can be
computed in essentially the same way:

g'(r') = g(F,°(r')) =

0

=g(r') +s [%Q(Fx_s(r))] (2.10)

+...
s=0

e e )

However, (2.10) does not look like an easy to use formula. It can became
easy to use provided two conditions are met: 1) a simple method is available to
compute the derivatives, including the higher ones, with all the chain rules; 2) the
series converges rapidly, so that not too many terms have to be considered for an
acceptable accuracy.

The first requirement is not too difficult to fulfill, especially for the case we
are interested in, that is the canonical flows. The derivative of F is provided by
equation (2.5), in the form of Hamilton equations. A very compact notation for the
total derivative dg/ds of any function g with respect to the independent variable s
along the solutions of a set of Hamilton equations is provided by the Poisson bracket:

@ Jox Og 8x_g

s _ 49
(=0 XX D]~

= 2.11
=5 (2.11)

s=
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When (2.11) is substituted into (2.10):

00 =96 — slod + 5 Haxdd - S axdodod +o. @212

where the double Poisson bracket arises from the need to compute the s derivative
of the function {g, x}, etc.. The alternate signs account for the composition with
the inverse map, and all the Poisson brackets on the right hand side have to be
computed in the new coordinates r' = (¢/,p’).

The second requirement is not as trivial to fulfill. For now, we only remark
that convergence can occur only if either s is small, or the flow generated by x is
slow —that is, x is small. It turns out that the two conditions are one and the same:
to multiply x by a small parameter € is equivalent to multiply s by 1/e, and we can
either change x into ey and set s = 1 or set s = ¢ and leave x as is; there is no use
for two parameters. Since the choice is only a matter of taste, we chose to set s =1,
so that s disappears from formulas such as (2.12), and simplify the notation (e.g.
Fy = Fy, Ty =Ty). We fulfill the smallness requirement by assuming that x is of
positive order in the small parameter e:

x=¢ex1+eixa+... (2.13)

thus the Lie transform of a function g is defined by the expansion (formal power
series):
9 =Tyg=9- {9, x}+3{o.x}hx}+...=

, X (2.14)
=g —e{g, x1} + e’ [~{g. x2} + s{{g. xat xa}] + - -
A further development occurs when g is itself expanded in powers of e:
g=go+egi+egat... (2.15)
and the result of (2.14) is reordered by powers of e:
g =Tyg = go +¢lgr — {90, x1}]+
) 1 (2.16)
+e%[g2 — {g0, x2} — {91, x1} + 5{{90,X1}7X1}] +..
That is, the development of ¢’ is:
90 = 9o
r_ —
g1 a1 {907 Xl} (217)

95 =92 — {90, x2} — {91, xa} + %{{QO,Xl}a)(l}
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It can be seen from (2.17) that the order k part of g, gi, appears in all the
g, with z > k; also the order k part of of x appears in all the g/, with z > k. This
relationship can be represented by the Lie triangle (Deprit, 1969), and leads to an
easy to use recursive formula.

We need to point out that there are many versions of this Lie series algorithm;
the one we are going to use here is essentially the one due to Hori (1966). A
more general algorithm, allowing for a time-dependent generating function, can
also be used (Deprit, 1969). However, the larger group of transformations defined
by allowing for a time—dependent generating function is not really needed in the
applications to Celestial Mechanics discussed in the next Sections. The Hori method
has also the advantage of a much easier computation of the inverse map by means
of the same generating function with the opposite sign; this will play an important
role in simplifying the computations in Sections 3.2 and 4.3.

2.3 ELIMINATION OF THE ANGLES

The main purpose of a Lie series transformation given by formulas such as
(2.13)—(2.17) is to “solve” the problem, that is to transform the Hamiltonian (2.1)
into a simpler one, whose solution can be somehow explicitly computed. Again we
have to remember that this process does not allow to change the topology (not even
to perform a non—trivial topological equivalence), thus the coordinate system must
already be adapted to the problem in the topological sense. In most cases, the best
coordinate system is such that the first approximation problem defined by the order
zero Hamitonian H is already solved:

H = Hy(p) + eHi(q,p) + €*Ha(q,p) + . .. (2.18)

However, this leaves little choice for the coordinates ¢, (conjugate to the
momenta p,, which are integrals of Hp). On the basis of a general result (which we
shall discuss later, see Section 3.1) all the ¢, can be expected to be angle variables.
Then the question is: can we choose x in such a way that T\, H = H' is solved,
that is H' = H'(p’) 7 We can look at the analogous of the formulas (2.17) as a
recursive set of equations, where the H, are given and the x, are to be solved for;

the transformed Hamiltonian H’ is not known, but the condition is imposed that
Hl — Hl (p/):

(2.19)
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To write down explicitly the second of the (2.19) as an equation for x;, we compute
the Poisson bracket { Hy, x1} by means of the vector n of the fundamental frequencies
appearing in the solution of the integrable approximation Hy:

0H,
.= 2.2
" Opy (2.20)
0
Hy — {Hy,x1} = Hy +n- 2L = HI(p)) (2.21)

aq’ -

Has (2.21) a solution? To answer, we shall use Fourier series expansions; the
analytical equivalent of the statement that the ¢, are angles is that the Hamiltonian
H can be expanded into a (convergent) multiple Fourier series: for the first order
(in €) part Hy:

Hi(g,p) =Y _ Hix(p) cos(k - q) (2.22)

with £ a multiindex, that is a vector with integer components. The presence of the
cosine terms only arises from the assumption of a discrete symmetry, i.e. H is even,
as it is often the case in Celestial Mechanics; of course in general there might be sine
terms too.

A formal series solution is then obtained by a simple algorithm, assuming that
X(q,p) is defined on the same space, thus has a Fourier series expansion; for the first
order part exi:

X1(a:p) =Y x1k(p) sin(k - ) (2.23)
k

where again the presence of the sine terms only arises from discrete symmetry prop-
erties, and cosine terms might occur in more general cases. Then (2.21) translates
into the following set of equations for the Fourier coefficients:

(n - k) xan = —Huy, (2.24)

for all multiindex k; for & = (0,...,0) there is no constraint on xi, and xio is
assigned to guarantee uniqueness: xi19 = 0. For £ # 0 the value of the Fourier
coefficient xyx is uniquely determined by (2.24) provided (n - k) # 0. This non—
resonance condition will be satisfied in some subset of the phase space; let us for a
moment forget about the problem of where our solution will be defined, and define
the order one parts of x, H' by solving (2.24) as if the non-resonance condition was

always satisfied:
—Hyy,
= 2.25
X1k ok ( )

As for H], the k = 0 term cannot be removed and there is a unique solution:

Hi(p") = Hio(p') (2.26)
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We can now look at the third of the (2.19), which can be somewhat simplified by
using both (2.21) and (2.26):

H} = Hy — 3{H1 + Hio,x1} — {Ho, X2} (2.27)

and is of the same general form; again a unique solution is found by expanding Hs
and xo in Fourier series, imposing x20 = 0, setting H) to be the k = 0 Fourier
component of whatever is in the right hand side, and solving for the coefficients ys
by dividing the corresponding Fourier coefficient of Hy — 1/2{Hy + H1o, x1} by the
divisor n - k. The problem of the divisor being somewhere zero gets worse, since Yo
contains the divisor squared in some denominators; but formally, the second step is
not any more difficult than the first. It is easy to show that the same occurs with
the higher order parts of x and H’, that is there is a formal series solution for y such
that T\, H = H'(p’). This algorithm was proposed by Hori (1966); Deprit (1969)
proposed an algorithm which is not the same, but gives the same results.

This allows to compute a formal series solution of the original problem (2.18).
In the (¢’,p’) coordinate system the problem is solved, because H' = H'(p') :

dp’_0 ~dq' _ oH'

P i (2.28)

and the solution is simply given by:
pr=Pr 5 g =n'(P)(t—t)+Qr (2.29)

with integration constants P,, @, which we shall call proper elements (for historical
reasons to be discussed later; see Chapter 4). Then the explicit computation of a
solution with given initial condition takes in principle three steps:

[1] Given the values of e, and the initial conditions of (¢, p) at ¢ = tg, use the
map F) to compute (¢',p’) at t =ty and thus (Q, P).

[2] Given P and the expression of H' = H{j+¢eHj +... as computed along with
X, find n/(P), thus the solution (p'(t),q'(t)) is available for every ¢.

[3] Use the inverse map F- 1 = F_, to compute the solution in the (g,p) coor-
dinate system:

q(q',p') = qu—q {q,x}+%{{q,x},x}---

zq’——+2{ S X) -
X (2.30)
p(d,p") =Typ=p" - {p,x}+§{{p,x},x}---
Ox  1,9x
— / - =z
_p+8q 2 8q }+

The right hand side of (2.30) has to be interpreted as a function originally defined
in terms of the variables (g, p) which has however to be evaluated for ¢ = ¢/, p = p'.
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Since the latter are given by (2.29), each ¢, circulates with average frequency n!.
(the same as ¢.) but with superimposed oscillations containing all the fundamental
frequencies n!. ; the p, are approximately constant and close to the corresponding p/,,
with superimposed conditionally periodic oscillations. This qualitative description
of the solution (traditionally referred to as the epicyclic solution) holds only as long
as the singularities of the coordinate system are not encountered, as we shall discuss
in Section 4.1. Moreover, the series are handled as if they were convergent, which is
a naive assumption.

The series expansion for both x and the solution belong to the general class
often called Poisson series, which are actually double series, Fourier series in some
variables (here the ¢l.) and power series in others (here €). The problem of the order
in which these series should be sommed has been left open, as well as the conver-
gence and the domain of definition problems. These Poisson series are well defined
mathematical objects on which many operations can be performed; unfortunately,
the most difficult operation to perform, and even to define, is the evaluation of the
series, that is to find a real number corresponding to a given set of values for ¢/, p’, ¢.

2.4 DEGENERACY AND RESONANCES

Even at the formal series solution stage the problems really encountered in
Celestial Mechanics are more difficult than the model problem discussed in the pre-
vious section. The main difficulty arises from the degeneracy of the 2-body problem,
i.e. from the simple fact that the perihelia and the nodes are integrals. As a result,
the non resonance conditions:

0H,
k40 2.31
ok (2:31)
cannot be satisfied for every multiindex k& # 0; in a sense, resonance occurs in every
point of the phase space.

To understand what can be done under these circumstances we first describe
the elimination procedure in a somewhat more abstract way: given any order zero
Hamiltonian Hy, we can define a linear operator L acting on any function g = g(q, p)
by:

Lg = {Ho, g} (2.32)

It defines a decomposition of the function space (of the Poisson series) into a direct
sum of the kernel (null space) of the operator L and of the image of L:

g=g+9g ; g€ImL; gec KerlL (2.33)

Then the existence of solutions of the recursive equations (2.19) can be discussed by
decomposing e.g. Hy = H; + Hy :

H{:E+ﬁ1—LX1 (234)
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has solution with y; € I'm L provided
H = H (2.35)

which is the generalisation of (2.26) when the non-resonance condition is not as-
sumed. The second order equation:

Hy = Hy — 5{H1+ Hi,x1} — Lx2 (2.36)

gives the definition of H) and the equation for ys by using the decomposition (2.33):
Hy = Hy — %{ﬁl,)ﬁ} (2.37)

LXQZﬁQ_{FI,Xl}_ %{ﬁhm}-l-%{ﬁbm} (2.38)

and the solution yo € I'm L exists and is unique, and so on and so forth. At the end
of the infinite recursion on the order, or rather when the process is arrested because
the remainder containing " is considered negligible, the Poisson series H' and y are
uniquely determined, with:

x€ImL ; H €Kerl (2.39)

In other words, the machinery works all the same, but the results are not the same,
because H' is not necessarily a trivial Hamiltonian; H' = H'(p") occurs if and only
if the non-resonance conditions (2.31) are satisfied for every k # 0. However, H' is
simpler than H in the sense that some of the Fourier components have been removed.
To understand which ones we shall compute two useful examples.

Our first example is just the N+1-body problem as presented in the canonical
coordinates which solve the zero order approximation. The latter is one form or
another (depending upon the chosen coordinate system, see Laskar, this volume) of
the 2-body problem copied N times. The angular variables ¢ = (A, ) are the mean
longitudes A., » = 1,..., N and the longitudes of the perihelia and of the nodes
0., ¥ =1,...,2N. The momenta are Delaunay—type variables p = (A, ©) with the
A., m=1,..., N functions of the semimajor axes only and the ©,, »r =1,...,2N
related to the angular momenta of the 2-body subsystems, hence to the eccentricities
and the inclinations. Then the order zero approximation H is a suitable linear
combination of 2-body Hamiltonians:

Ho = Ho(A) =Y (-i) (2.40)

r

with K, some coefficients depending only upon the masses (for the meaning of these
coefficients, see Message, 1982; Milani and Nobili, 1983). All the derivatives are zero

but for the mean motions: OH K
0 r
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The perturbing function is on the contrary dependent upon all the variables:
H = Hy(A)+eH (N 60,A,0)+... (2.42)

with the small parameter ¢ a function of the masses (and possibly of distance scaling
parameters). Thus the elimination procedure can be carried out essentially in the
same way described in Section 2.3. The effect of the elimination can be easily
computed if the further assumption is made that the mean motions fulfill a non—
resonance condition:

n-k=*0 ; foreveryk#0 (2.43)

The condition (2.43), forbidding resonances in mean motion, is not the same as the
general non-resonance condition (2.31) assumed in Section 2.3. As a result, Ker L
does not only contain the functions of the momenta; all the functions g independent
from the longitudes are such that Lg =0, g =7:

dg

Lg=1{H =-n-— 2.44

It can be shown, in a suitable function space (e.g. in the space of formal Poisson
series), that (2.42) implies that the long periodic functions depending only upon
(0, A,©) are the ones and the only ones in Ker L; this arises from the possibility
of solving equations for the Fourier coefficients of the form (2.24). On the contrary
a short periodic function depends upon A and has all the Fourier coefficients of
the arguments k - 6 equal to zero; that is, the decomposition (2.33) can be simply
performed by splitting the Fourier series into the terms with and without the A,.

Therefore the end product of the elimination process is a new Hamiltonian in
the new variables (X, 0", A’, ©"):

H'(0',N',0") = Hy(N') +cH,(0',\',0) + £ [Fﬁ {ﬁl,XI}} +... (2.45)

which defines the secular perturbations problem (Message, 1976; 1982; Milani and
Nobili, 1987). Is the Hamiltonian (2.45) any better than the original one? The
number of variables has essentially been reduced, since the Al are integrals. Given
the initial value of A’, if a solution is known to the problem given by H' as a function
of (¢',0'), then X’ can be computed by quadrature, and again the inverse map F- 1
gives the solution in the original coordinate system as in (2.30). However the secular
perturbations problem is not integrable, because it has (in general) more than one
angle variable; thus the problem is only displaced. The secular perturbation problem
can in turn be attacked with more or less the same method, as we shall discuss in
Section 4.2; anyway to represent the solution of the N+ 1-body problem as a Poisson
series there is no way to avoid this double computation, one for the elimination of
the mean longitudes, one for the solution of the secular problem.
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The second example is the single resonance problem (see Message, 1988). Let
us assume that the order zero Hamiltonian is as in (2.40), and that the non-resonance
conditions are satisfied for all £ but one, that is there is a multiindex k such that:

n-k+#0 for every k # rk (2.46)

The only multiindexes which can possibly generate a null divisor are multiples of
the single generator k; it follows that the MCD of al the integeres k, is 1. Then it
is possible to find a unlmodular transformation of the longitudes such that the first
component is:

—k-A (2.47)

The construction of a suitable unimodular matrix has been discussed in Section 1.3
for the case of 2 bodies only partecipating in the resonance; it can be shown that
the condition for such a matrix A to exist is anyway MCD(k) = 1. Let

<j> — AN (?) —[A7YTA (2.48)

be the canonical transformation thus defined. A different elimination process, spe-
cially adapted to this case, is obtained by just splitting the set of angle variables in a
different way: the fast angles are now the 7., r = 1,..., N — 1, while the slow angles
are (0,01, ...,03n). Then the function x can be recursively computed. Each Fourier
coefficient of x can be solved for in an equation with some divisor n - k£ which is
nonzero because k # rlz, and the final product is an Hamiltonian in the transformed
coordinates (primed):

H' =H'(c',0,%,T',0") = Hy(X', T') + ... (2.49)

which is useful to transform the single resonance problem to a canonical form (see
Henrard, this volume). Again the problem has been simplified only in that the mo-
menta 7). conjugate to the fast angles are integrals, and the fast angles 7,. themselves
are cyclic variables to be later computed by quadratures. However to further discuss
this problem the setting of this section, based entirely upon formal series, is not
enough; order of magnitude consideration must play an essential réle (see Henrard,
this volume; Ferraz—Mello, this volume).
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CHAPTER 3:

INVARIANT TORI

In this chapter we discuss a common feature of Hamiltonian systems, namely
the existence of invariant manifolds topologically equivalent to an N—dimensional
torus. We shall also discuss the related question of the non convergence of the
series arising in perturbation theories for an Hamiltonian system perturbed from an
integrable one.

3.1 INTEGRABLE SYSTEMS

An Hamiltonian system defined by the Hamiltonian H = H(q, p) on a domain
D is said to be integrable if there is a global canonical transformation

F:Dw——D'
(3.1)
(¢:p) — (z,y)
such that the transformed Hamiltonian depends only upon the momenta:
H(F~Y(z,y)) = K(y) (3.2)

If the map F~! can be explicitly computed, the integrable system can be
solved by transforming into the (g, p) space the trivial solution in the (z,y) space:

where v = —(y(0)) (3.3)

It must be stressed that the definition requires the canonical map to be global;
locally, for a small enough D, every Hamiltonian system is integrable (this follows
from the existence of a smooth integral flow which is also canonical, see Section
2.1). Thus the very meaning of the definition depends upon the topology of the
definition domain D. As an example, quadratic Hamiltonians are integrable over all
of R2V (see Section 1.3). However, the other case relevant for Celestial Mechanics,
namely the 2-body problem, has a different topology. A very interesting result was
obtained independently by Arnold and by Jost; it describes sufficient conditions for
an Hamiltonian system to be integrable, and it also prescribes the toplogy of D, and
this applies (with a small modification) to the 2-body problem as well.

The conditions of Arnold and Jost require the existence of N integrals, where
N is the number of degrees of freedom (i.e. the number of components of both ¢ and
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p). The integrals are functions f1(q,p), ..., fn(q,p) defined on D which are constant
along the solutions of the Hamiltonian system, parametrised by time t:

dfi _ p oy
- ={fnH} =0 (3.4)

Of course one of the f;, let us say fi, can coincide with H. The integrals
fi are assumed to be smooth and functionally independent (i.e. their gradients
V fi are linearly independent in each point od D); thus for each set of constants
¢i, © = 1,..., N the level set M(c) defined by assigning a value to each integral
filg,p) =¢;, i=1,..., N is a smooth N—dimensional manifold (if not empty). One
further assumption is that the integrals commute:

{fi,f;i}=0 ,,7=1,...,N (3.5)

Then the first part of the Arnold-Jost theorem constrains the topology of D:

[1] If a (non—empty) level manifold M (c) is compact, that is it is limited and
does not touch the boundary of D, then M(c) is topologically equivalent to an N—
torus. If all the level manifolds are compact, then D is toplogically equivalent to
the product of an N-torus and some N-manifold W: D ~ TN x W. If the level
manifold M (c) is not compact, but it is complete (that is, each orbit on M (c) of the
system with either H or any of the f; as Hamiltonian is defined for every time t,
—00 < t < +00) then M (c) is a generalised cylinder M (c) ~ TN =7 x RJ.

This applies in a straightforward way to the 2-body problem: in polar coor-
dinates in the orbital plane (7,0, p,., pg) the Hamiltonian is:

H=4{p:+=3) - — (3.6)

with integrals H and pg, and they commute since {pg, H} = —0H/96 = 0 is auto-
matically satisfied. The only problem can occur where the gradients VH and Vpg
are parallel; the conditions for this to occur are:

dr k*  p? do
Dr 0 3 r_2 = = 7’(%

== 7 (37)

r3

which imply a circular orbit. Thus the Arnold and Jost result applies to the entire
phase space ~ S x R3 provided the set of initial conditions belonging to circular
orbits (r = p2/k?, p, = 0) are excluded (this defines the so-—called Delaunay domain).
To find out which of the level manifolds (with fixed values of H = FE and py = J)
are compact we can solve for p, from (3.6):

2k2  J?
p%:2E+T—T—2 (3.8)
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and a simple study of the quadratic polynomial in 1/r in the right hand side shows
that to have a real solution for p, the value of r is bounded away from both 400
and 0 (that is from the boundaries of D, corresponding to escape to infinity and
collision respectively) if and only if £ < 0 and J # 0. Thus all the elliptic orbits
with the same F,.J, that is with the same a,e, form a 2—torus in phase spac. As
for the circular orbits, by using (3.8) and (3.7) we find they are the level manifolds
corresponding to couples of values of E,J such that 2EJ% = k*, consistently with
the definition of the eccentricity:

2FE.J?

2 _
e =1+ 1

Thus the values of E, J fulfilling e = 0 define a level manifold whith a lower
dimensionality (~ S!). For either E > 0 (that is, e > 1) or .J = 0 the level manifold
is not compact, but it is complete, and is a cylinder S* x R; for 1 +2EJ%/k* < 0
(3.8) has no real solution p, and the level manifold is empty.

The extension to three dimensions is not very difficult. The Hamiltonian
H itself and the three components of the angular momentum vector are of course
integrals, but they do not commute; the Hamiltonian, the component of the angular
momentum along a fixed direction, and the length of the angular momentum vector
do commute and the Arnold—Jost result applies. The only complication arises from
the fact that for orbits in the reference plane the angular momentum scalar coincides
with the selected component, thus their gradients are not independent. The level
manifolds are mostly T2, degenerating into T2 for either circular inclined or elliptic
zero inclination orbits, and into S for circular zero inclination. For either parabolic,
hyperbolic or collision orbits the level manifolds are mostly T? x R, degenerating
into S x R for zero inclination.

The proof of the statement [1] is interesting but beyond our scope; it is based
on an argument about canonical flows (see Arnold, 1976, Chap. 10; Arnold and
Avez, 1968). Namely, each one of the f; defines a flow on the level manifold M, and
this defines a map between the space of the associated independent variables s; and
M which is a local toplogical equivalence. If the manifold M is complete, this map
is surjective and this is enough to show that M ~ TN=7 x R7.

The second half of the Arnold—Jost theorem defines a canonical coordinate
system which actually integrates the system in the sense of (3.2):

2] If some level manifold M (c) is compact, it has a neighbourhood of the form
D; ~ TN x RY on which a canonical transformation F with the property (3.2) is
defined. If all the level manifolds are compact, the transformation F' can be defined
onallof D~T" x W.

The new coordinate system is called angle—action variables; the angle vari-
ables x parametrize each torus and the action variables y are integrals. The proof
of this second part of the Arnold—Jost theorem is essentially a global version of Li-
ouville theorem (see Ferraz—Mello, this volume), and can be expressed by means of
line integrals of the kind used in Henrard, this volume, for the N = 1 case (see
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Arnold, 1976; Arnold and Avez, 1968). It is important to stress that the angle-
action variables for a given hamitlonian system are by no means unique; given a set
of angle—action variables, any unimodular transformation A can be applied to the
angle variables provided the actions are transformed by (A~1)T. However, it can
be shown that under the non-degeneracy condition det(0?K /0y?) # 0 there are no
other sets of angle—action variables than those generated from any one of them by
unimodular transformations.

For the 2-body problem (3.6) the angle-action variables are the Delaunay
variables ¢, w, L, G. To remove the indetermination produced by the possibility of
applying unimodular transformations we can specify the following: ¢ is a variable
making a complete revolution along the orbit, and not changing at all when the
points in phase space are subjected to a rotation 6 — 6 + const; w on the contrary
makes a complete revolution when the points in phase space are rotatetd through 27,
and does not change along the orbit. Then £ is the mean anomaly, w the argument
of pericenter, G = py and L is a function of the total energy H such that:

K(L,G) = ——— (3.9)

3.2 KOLMOGOROV THEOREM

The question arises of whether a slightly perturbed integrable system preserves
the property of being integrable, or at least some of the invariant tori. Let us look at
the problem in the coordinate system which makes the unperturbed system trivial,
namely let us suppose (g, p) are already angle—action variables for all the phase space
D ~ TN x W: that is, the Hamiltonian H has an “order zero” part H, which is
integrable, and an “order 1”7 part which is not, but contains a small parameter € as
in (2.18):

H = Ho(p) + eHi(q,p) +*Hy(q,p) + ... (3.10)

The main idea —going back to Linstedt and Poincaré (see Poincaré, 1893)— is
to perform a fixed frequency perturbation theory. The best way to understand it is
to start from the (false) hypothesis that the system (3.10) is still integrable. Then
there would be some angle-action system (x,y) such that H(q,p) = K(y). Let us
choose the values of the new actions y, and the corresponding frequencies:

0K

vo = 5. (1) (3.11)

For fixed y = y, and z variable, since the latter are angle variables, a torus TV
is spanned in the (z, y) space; let us label this torus by the corresponding value of the
frequency vector v, (this is a correct labelling if we assume that a non-degeneracy
condition det(0?K/0y?) # 0 is satisfied in the (z,y) space as well, thus the map
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Yo > Vo is a local topological equivalence). Then there would be a subset in the
(q,p) space which corresponds to a torus in the following sense:

[1] there is an immersion (a map with jacobian of maximum rank) & : T'(v,) +—
D such that ®(T(v,)) = T'(v,) is invariant by the flow of H.

[2] @ is an equivariant map between the flow of K on T'(v,) and the flow of
H restricted to T"(v,), that is not only ® maps orbit onto orbit, but with the same
timetable: if Fy(q,p) is the integral flow of H (see 2.1), then provided the initial
conditions (¢, po) are on T"(v,):

F}-I(QO,po) = @(Vot+l'o,yo) (312)

for some initial phase vector x,. Of course, if such a map ® was defined not only for
Yy = Yo but also for all the y in a neigbourhood, then the system would be integrable
thereon. However, we do not ask for a map defined on an open set in the (z,y)
space, but only on a "thin” set of dimension N.

To set up an algorithm to compute such a map, we can proceed as in Section
2.3. This time however, we proceed backward; namely we want to add to the inte-
grable Hamiltonian K(y) all the terms depending upon z. That is, we look for a
function ¢ (z,y) = ey + ... such that it defines a map Fy, : (z,y) — (¢,p) and the
Hamiltonian is tranformed as follows:

Td}K = K(p) - 6{K7 ¢1} + 62[_{[(7 ¢1} + %{{Ka ¢1}7 %}] 4+ ... = (3 13)
—H=H,+eHy +Hay + ... '

Equation (3.13) is identical to (2.14), apart from going the other way round;
the main difference arises in the next step, namely the expansion corresponding to
formula (2.16) is not performed at this stage, because we do not know a priori the
expansion of K in powers of . We can now set up a recursive system of equations
which adds to K(p) the terms depending upon ¢ to reconstruct the original Hamil-
tonian H: to do this we identify the terms of the some order in € in the two sides
of (3.13), and find that there is an obvious mismatch: H,(p) # K (p); thus we push
forward the discrepancy as an higher order term:

K - H, =¢eK; (3.14)
and the order one equation is:

Ki+{K,¢1} = H, (3.15)

Now the known function H; can be decomposed: H; = E+I1~T1 (as in Section
2.4), with respect to the linear operator L,:

0
Log={K,g} = —Voa—g(q,p) (3.16)
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and the equation (3.15) is decomposed in the component belonging to Ker L., which
again records a mismatch:

Kl—EZEKz (317)
plus an equation in I'm L,:
M =
o—— =H 3.18
Yo 5 1 (3.18)

The order two equation can be similarly decomposed :

Ky + {H, 1} — Hy = eK3 (3.19)
Vo%:ﬁ2+%{ﬁlv¢1}—%{ﬁ1,w1} (3.20)

and so on. Thus we recursively define 1) = 1,5 and find the relationship between K
and H:

K =H, + el + [Hy + L{Hy, 1} + ... (3.21)

which is formally the same found by means of the inverse procedure in Section 2.4.
However, the recursive procedure outlined here is not the same used in Sections 2.3
and 2.4: L, is not L, and the divisors occurring in the computations (3.18), (3.20),

etc. are:

0K OH, OH,
kl/o—ka—y(yo)—k ay +Ek8—y+ (322)

and are different form k-n = k- OH,/Jp, unless the point p, to compute the
frequencies n is chosen in such a way that n = v,; this is indeed possible because of
the non—degeneracy condition, but (3.22) points out that when this occurs p, # yo,
the difference being of order e.

We can now state the theorem announced by Kolmogorov (1954), and whose
proof was published by Arnold (1963): the essential hypothesis is that the divisors
k - v, occuring in the solutions of the equations such as (3.18), (3.20) are never zero,
nor too small. The condition required for the Kolmogorov—Arnold proof is that the
divisors cannot go to zero faster than a power of the degree |k| = ) |k;| of the
multiindex &:

C

k-v,
kvl > 1

(3.23)

with ¢, positive constants. Under this hypothesis the recursive procedure
defining the map ® for the given v, can be shown to converge (however, the proof
by Arnold used a different formalism; our presentation is more related to Benettin
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et al., 1984). However a further condition is necessary to ensure the existence of the
torus T"(v,), and it is a global condition. If a vector v, of frequencies is chosen at
random, there is of course no guarantee that a solution (3.12) will exist in the domain
D with these frequencies. The non-degeneracy condition ensures the existence of
these frequencies locally, that is, if a point (¢o, po) in D is known to have frequencies
close to v, then a neigbouring point will be on the solution (3.12) with frequencies
exactly v,. But globally we need to ensure that there is some point in D such that
the frequencies are at least close. This is obtained by adding a further hypothesis,
namely that there is a value p, of the action variables for the unperturbed problem

H, such that:

0H,

n(po) = ap (po) =T (3'24)

Under these hypothesis, namely (3.23), (3.24) and non-degeneracy, for a regular
H, there is an ¢; > 0 such that for 0 < € < ¢; the map ® exists, is regular and
has the property (3.12). The exact regularity conditions can change when different
demonstration techniques are used, but this of course does not matter for Celestial
Mechanics applications where H is anyway real analytic.

It must be stressed that the purpose of the hypothesis (3.24) is to ensure the
existence of the image of ® within D, and it is by no means true that the torus
T’ (v,) must contain any point with p = p.: as the computation of the higher order
parts of K proceeds (by means of formulas such as (3.13), (3.16)) the value of y,
needs to be adjusted to keep the frequencies fixed at v,. Moreover, p has to be
computed as a function of (z,y,) by means of a formula such as (2.30). There is no
guarantee that the torus T"(v,) will intersect the original unperturbed torus p = po,
and it turns out not to be the case in many examples. As discussed by Poincaré
(1893), fixed frequencies and fixed actions are incompatible conditions and cannot
be satisfied simultaneously.

After the theorem of Kolmogorov was announced, it appeared that the main
difficulty in applying it to a realistic problem in Celestial Mechanics had to do with
finding a realistic estimate of the limiting value €; for the perturbation parameter.
Later it was found that this is not the case, as we shall discuss below.

3.3 DEGENERACY AND ARNOLD THEOREM

The first obvious difficulty in applying Kolmogorov theorem to Celestial Me-
chanics is that one of the hypothesis, namely non-degeneracy, is not true for the
N-body problem. Let us suppose the N-body problem is represented in some co-
ordinate system derived from Delaunay elements for each planet (considered as a
separate 2-body problem with the Sun); this can be done in a number of ways (see
Laskar, this volume), and the result is an order zero Hamiltonian of the form (2.40),
which essentially results from a linear combination of 2-body Hamiltonians (3.10)
with coefficients depending upon the masses of the planets (and of the Sun). Then:
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H(\,0,A,0) = Hy(A) + eHy(\0,A,0) + ... (3.25)

and the non—degeneracy condition does not hold because H, depends only upon
some of the action variables, that is upon the semimajor axes only. In terms of
the global existence condition for a Kolmogorov torus with frequencies v,, since the
unperturbed frequencies for the perihelia and nodes 6 are zero, there cannot be an
invariant torus 7"(v,) unless some components of v, are close to zero. However, if
this global condition is satisfied, the theorem can be used with a transformation of
the problem introduced by Arnold (1963).

3 Let Fl_be the part of H; not depending upon the mean longitudes A, and
H, = H; — Hy as in Section 2.4. Then it is possible to reorder the Hamiltonian in
this way:

H(X,0,M\,0) = [Ho(A) + eHy(0,A,0)] + eH (X, 0,A,0) + ... (3.26)
and then apply the Kolmogorov theorem to an Hamiltonian whose zero order part

is the one enclosed in square brackets in (3.26). The non—degeneracy condition, that
is the non-degeneracy of the matrix:

- 9’ H, 9’ H, 3%H,
0°H, + eH; ar2 T €A €9R00
— e = (3.27)
d(A,0)? 9%Hy 9%Hy
€260/ €902
can be guaranteed for small € if the matrix:
0*H,
= 3.28
50?2 (3.28)

is non—degenerate. It turns out that the matrix D plays a very important role in
the theory of secular perturbations, (see Section 4.3), and explicit computations to
show that it is non-degenerate can be performed. Thus it is possible to choose
a set of frequencies v, —with some fast frequencies n, (corresponding to some set
of unperturbed A,) and some slow frequencies corresponding to possible values of
cOH, /0O fulfilling (3.23), and apply Kolmogorov theorem.

As a result of the appearance of € both in the determinant of the matrix (3.27)
and in the perturbation eHy, to obtain realistic estimates for the limiting value €;
is even more difficult than it already is in the non-degenerate case. Moreover, since
the matrices (3.27) and (3.28) can be explicitly computed only for zero eccentricities
and inclinations, Arnold result applies only to orbits with very small eccenticities
and inclinations. Nevertheless it was important to show that invariant tori exist in
the full N-body problem, even though this cannot be rigorously shown to occur for
realistic values of planetary masses, eccentricites and inclinations.
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3.4 DIVERGENCE OF THE SERIES

The object of this section will be a ”generic” perturbed Hamiltonian, by which

we mean H = Hy + eH; + ..., the sum of an integrable, non degenerate order zero
part:
0%H,
Hy = Hy(p) ; det 972 #0 (3.29)

and a perturbation which contains ”all the terms”, namely when it is expanded in
a Fourier series in the angle variables ¢:

H, = ZHlk(p) cos(k-q) ; Hy ~ ol¥ (3.30)
k

where the ~ symbol indicates an asymptotic relationship and o < 1. It is essential
for what follows that ~ indicates not only an upper bound for the Fourier coefficients
—which is needed to ensure the convergence of the Fourier series to a real analytic
function— but also a lower bound, that is for large enough |k| the Fourier coefficients
Hy;, are not allowed to be zero.

The procedure described in Section 2.3 allows to define a formal Poisson series:
X(@.p)=exi+Exa+... 5 xi= Y xksin(k-q) (3.31)
k

such that the problem is solved in the formal sense, namely a formal series transfor-
mation is defined by x, such that:

Fy:(g,p) = (z,y) ; TyH=HF; (z,y)) = K(y) (3.32)

On the other hand, the Kolmogorov theorem of Section 3.2 defines another
Poisson series:

P(z,y) =epr + €Yo+ 5 = ipsin(k-x) (3.33)
k

by which a map is defined in the other direction:

Fy:(z,y) = (0,p) ; TyK =K(F; (¢,p)) = H(g,p) (3.34)

Now the question arises of whether any one of the two formal Poisson series
(3.31), (3.33) can be convergent, and where. Kolmogorov theorem appears to give
a very asymmetrical answer, namely the series (3.33) for ¢ can be convergent on a
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torus y = y, in the (z,y) space provided v, = 0K/0y(y,) is bounded away from
resonances by an inequality like (3.23). On the contrary, the series (3.31) for x is
essentially always divergent. The fundamental asymmetry of the two maps arises
from the fact that in one of the two spaces, the one with coordinates (x,y), the
dynamical system is assumed to be integrable, actually integrated: K = K(y). On
the contrary, the algorithms to generate x and 1 are the same: at each stage an
equation of the form

Lxi = —n(p) %)Z =g(g:p) ; LoWi=—v(y) %ﬁi = f(z,9) (3.35)

is solved, with g, f functions determined by the previous steps of the recursive pro-
cedure. The frequency vectors are v = 0K /0y (y) and n = 0H,/0q (p) respectively.
By Fourier expansion, the coefficients are solutions of equations of the form:

9k L = — Tk
Xlk - n(p) . k b Zk - V(y) . k

(3.36)

Then the divergence of the series can be described by perfectly symmetric
statements:

[1] Let A be a pathwise connected set in the (q,p) space; if the series for x
converges on A, then p = const on A.

[2] Let B be a pathwise connected set in the (x,y) space; if the series for 1
converges on B, then y = const on B.

The proof of either [1] or [2] is very simple: let us assume a point with p = p,
and one with p = p; belong to A; then there is a continous path inside A joining
the two; along this path the frequency vector n(p) changes continously from n(p,)
to n(p1), thus there is some multiindex k& such that n(p) - & = 0 somewhere along
the path (actually, there is an infinite number of such k, since rational numbers are
dense). Where this occurs, there is a term in the series for x which is singular and
x cannot be defined; this contradiction proves that p, = p;.

The asymmetry arises when the convergence of the series is used to solve the
problem. Namely, x can be defined on some p = p, torus and ¢ can be defined on
some y = Y, torus; however, y = y, is an invariant subset, thus i) can be convergent
on a full orbit in the (z,y) space, and the map Fy, = ® provides a solution with the
property (3.12). On the contrary, x might well be convergent on some p = p,, but
this does not provide a solution because the image by F, of p = p, does not contain
any solution in the (x,y) space.

This leaves us in an embarassing situation, because the algorithm to find a
solution of the original problem in the (¢, p) space as described in Section 2.3 can
never work; namely, even if the series for x were convergent on a set A including the
initial conditions (¢(0),p(0)), the image in the (z,y) space is such that the solution
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of the integrable problem K (y) cannot be computed on F) (A). On the other hand
given a frequency v, the series for ¢ could be convergent on an invariant set y = yo,
and this does provide a solution through Fy; however, we do not know where this
solution is going to be at the initial time. Even if the initial condition in the (g, p)
space actually belongs to an invariant torus of the kind described by the Kolmogorov
theorem, we do not know any constructive and convergent algorithm to compute v,
thus we do not know how to compute ¢ and the solution. In particular, Fy, is not
Fe 1 '= F_,, because they are defined on different sets in the (z,y) space (for a
related dicussion, see Milani, 1988).

A further remark is needed on the generality of the negative results such as the
one above. The hypothesis that all the Fourier terms in the perturbation H; have
non zero coefficients for high enough degree |k| has been used to show that whenever
a divisor n - k is zero a (non removable) singularity arises in equation (3.36); even
if Hy;, = 0, there must be some multiple k& of k with a non zero coefficient H.z,
and it can be shown that the functions g appearing in the right hand side of (3.35)
inherit the same property. The N-body problem however does not have such a
property, namely there are D’Alembert rules which prescribe some constraints to
the multiindexes k for the Hamiltonian to have Hyj # 0; this arises from the fact
that the Hamiltonian of the N-body problem admits some integrals such as the total
angular momentum (see section 4.1). However the proof of [1] can be completed by
showing that some k with n - £ = 0 must occur even among the k fulfilling the
D’Alembert rules (see Poincaré, 1892).

This problem of the divergence of the series has no “perfect” solution, be-
cause it arises from intrinsic properties of perturbed Hamiltonian systems; roughly
speaking, any “perfect” solution would require integrability of the original problem.
However, there can be ways out, and approximate solutions, as we shall see in the
next chapter.
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CHAPTER 4:

PROPER ELEMENTS

In this Chapter we discuss how to derive proper elements for planetary orbits.
As it is already clear from the discussion in Chapter 3, the perfect proper elements,
which should be integrals of the motion, do not exist precisely because the N-—
body problem is not integrable and the series of perturbation theory cannot be
convergent on any open set. However, it is possible to perform some finite accuracy
computations; they are used in two main applications to the dynamics of the Solar
System, namely to define proper elements for the purpose of identifying asteroid
families and to compute the secular perturbations of the orbits of the major planets.
In the following Sections we shall not give details relative to either the one or the
other of these two main cases, but rather discuss a general perturbed Hamiltonian
derived from the coupling of a number N of 2-body problems as in (2.40)—(2.42):

H:Ho(A)+€H1()\,9,A, @) (41)

where the unperturbed part of the Hamiltonian defines the mean motions n; =
0Hy/0A; and the angles \; are the mean longitudes, 6; = w; + Q;, i = 1,...,N
and 0; = €, j = N +1,...,2N. The perturbative part H; of the Hamiltonians
we shall consider have one important property, arising from the symmetry of the
problem with respect to rotations around any axis. This symmetry property is most
easily described analytically if the set of action—angle variables for the unperturbed
system Hy is chosen in such a way that the total angular momentum along a fixed
z axis is the sum of all the actions:

N 2N
T.=Y Ai+)_6; (4.2)
=1 =1

(this can be achieved by using jacobian coordinates and a suitable combination of
rescaling and unimodular transformations similar to (1.32); see Laskar, this volume;
Message, 1982). Then the two equivalent properties of invariance of H with respect
to rotations around the z axis and of invariance of .J, with respect to the flow of H
can be expressed by a zero Poisson bracket:

OH ~—~0H _
—ON 400

{J., Hy = — 0 (4.3)

When the perturbing function is expanded in a Fourier series, the symmetry
property (4.3) gives a condition to be satisfied by the coefficients of the series, that
is a D’Alembert rule:



Perturbation methods 33

Hy =) Hyjcos(j- A+ k-0) (4.4)
7k

Another property of the set of action—angle variables (X, 6, A, ©), is that the
Hamiltonian is well defined even for ® = 0, which corresponds to zero eccentricity
and inclination. This imposes further D’Alembert rules, namely for © — 0 the
coefficients Hyj, — 0, more precisely Hyj, at © = 0 must have a zero of order at
least |k| = ), |k;| in the square roots of the ©. In all the applications to Celestial
Mechanics the Hamiltonian has the further property of being even in the angles 6,
as a result of the invariance of both kinetic and potential energy with respect to a
mirror symmetry; this allows to use only cosine terms in the expansions such as (4.4).
These properties will have an essential role in the theory of secular perturbations.

4.1 LINEAR SECULAR PERTURBATION THEORY

The first approximation in the theory of secular perturbations is obtained by
neglecting all the terms in the perturbative series but he ones of order 1 in the small
parameter £ (which is roughly speaking the ratio of the massses of the planets to the
mass of the Sun) and degree 1 in the actions © (that is, degree 2 in the eccentricities
and inclinations of all the orbits). Then the two step procedure outlined in Section
2.4 can be explicitly performed without much difficulties.

The first step is the elimination of the longitudes (at order 1 in €). Only the
first order part of the generating function y is solved for:

Huy,
_ . _ 4.6
X=ex1 5 X = (4.6)

and the Lie transform is also computed to order 1 only:

T H = H = Hy(\') + Hy (6", \', ') (4.7)

In the transformed Hamiltonian the longitudes A’ do not appear, and the
momenta A’ (functions of the proper semimajor azes) are integrals. To apply the
second simplification to the problem, namely to truncate H' to degree 2 in the
eccentricities and inclinations, we need to use again the D’Alembert rules. Because
of the way it is obtained from H, H' obeys the same D’Alembert rules: it is regular
for © — 0 and such that it is invariant with respect to a rotation, that is for a
change such that 0; — 0;+9, the same ¢ for all 2. These properties are best expressed
by means of a change to Poincaré variables (see (1.26)):
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z; =/ —20)cos(0;) ; yi =+/—20]sin(0;) (4.8)

The D’Alembert properties can be expressed in the Poincaré variables by
stating that H' is a smooth function at x = y = 0, thus can be expanded in a
series of positive powers of the x; and y;, and that H’ is invariant with respect to a
rotation of all the 2-vectors (z;,y;) by the same angle. It is known from elementary
geometry that the functions defined on a set of vectors and invariant by rotation
must contain only scalar and vector products (that is, distances and cosines and
sines of the angles); thus H' must be a series formed only with positive powers of
the combinations z;z;+y,;y; (scalar product) and y;x; —z;y; (vector product). Since
H' is even, only the cosine-type expressions z;z; + y;y; need to be used. Thus when
H' is expressed as a sum of homogeneous polynomials:

H' =H)+Hy+Hj+... (4.9)

(with H,. of degree r in the Poincaré variables), the degree 2 part must be of the
form:

Hy= 13" Avo(zr2s + yrys) (4.10)

r,s

with the coefficients A, dependent only upon A’ (that is, upon the proper semimajor
axes). Within this approximation, the secular perturbation equations are linear
equations with constant coefficients:

d(ZT = ZArsys 3 dC?ZJtT = - ZAT‘S'TS (411)

and can be solved in a straightforward way as already discussed in Section 1.3; the
solutions contain the fundamental secular frequencies v;, + = 1,...,2N which are
the eigenvalues of the symmetric matrix A, and are obtained by means of the rotation
matrix B = (B™YT (which diagonalises A: BT A B = diag[vy,vs,...,v2n]) from
the proper modes of oscillation w = B~ 'z, 2z = B~'y. The latter are solutions of
uncoupled harmonic oscillator problems, and for each oscillator (wy, zx) it is possible
to define an action variable ©; and an angle variable 0}:

wy = /=205 cos(0) ; zr=+/—20; sin(6}) (4.12)

such that the solution is given by:

©* =const ; 0° =wvt+0%(0) (4.13)

that is the solution in the original Poincaré variables is:
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T, = Z Byrs\/—20% cos(vst + 0% (0))
Yr =Y Byoy/—207 sin(vst + 07(0))

(4.14)

This is the classical representation of the secular perturbations by means of
epicycles, that is finite Fourier series with 2 terms per planet. Some caution must be
used even in the interpretation of this simple solution. The proper action variables
©F can be used to define the proper eccentricities and inclinations (by the same
formulas relating the ordinary eccentricities and inclinations to the ©;); however,
these proper elements do not have the same geometrical meaning of the ordinary
orbital elements (e.g. the perihelion distance cannot be computed directly from the
proper eccentricity).

The geometrical meaning is even more involved for the proper angles 6;: since
the matrix A is in general not symmetric, the rotation B is not the identity, thus
the angles 0 and f; are not measured from the same origin. If the matrix A has a
strongly dominating principal diagonal, then B is close to the identity and (provided
the proper actions OF are not too small) all the angles 6; circulate with the same
frequency as the corresponding proper 6}, that is v;. This would be the case, in the
planetary secular perturbation problem, if all the planets were very far apart from
each other (that is, all the ratios between the semimajor axes of two consecutive
planets were very small). However, the real Solar System is a weakly hierarchical
system, and the off-diagonal terms in A are significant; as a result, some of the 6;
behave in a qualitatively different way from the corresponding : e.g. the perihelion
of Jupiter and the perihelion of Uranus circulate around the Sun with the same mean
frequency v5 (Milani and Nobli, 1985).

4.2 SECULAR PERTURBATIONS

To improve the computation of a long term solution of an Hamiltonian such as
(4.1) we need to take into account both effects containing £? and effects of degree 2
in the action variables © (that is, of degree 4 in the eccentricities and inclinations);
which of the two is most important will of course depend upon the problem.

The second order (that is, O(g?)) effects can arise in two different ways: in
the elimination of the longitudes and in the solution of the secular perturbation
equations. The transformation defined by the generating function y = ex1 +e2x2 +
... has many second order terms; the most important effects do not actually arise
from the second order part of x, but from the fact that a Lie transformation is not
linear in the generating function. Let us take as an example the variables A, that
is essentially the semimajor axes: after elimination of the longitudes, the A’ are
constant, and the A are given by formulas such as (2.30):
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A=A - g{A/7 Xl} + %82{{A/7 Xl}’ Xl} - gz{Ala XQ} t+...=
dx1 1.2 ox1 28X2 (4'15)

_ N
TN N’ an T

X1}—|—6

To assess the relevance of the different parts of (4.15) we have to take into
account that x is short—periodic, that is y = 0; if we compute the long—periodic part
of A, all the parts of (4.15) linear in x do not contribute, while the quadratic parts
can give rise to beat terms, because x1 and 9x1/0)\ contain terms with the same
frequency whose Poisson bracket has a long periodic part:

Ix1
o’
These secular perturbations of the semimajor axes contain only the secular frequen-
cies 1; and are not necessarily very small. Since the Fourier coefficients of y; are
derived from equations (4.5), they contain the divisors § = n - j + v - k; the second
order part in (4.16) contains one factor of 1/§ from xi, one from dx;/0\ and a
further factor 1/ arising from the derivative of 1/§ with respect to A’ occurring in
the Poisson bracket; thus the order of magnitude is e20%5~3 if the divisor § has a
D’Alembert characteristic d =, j;. If d is small, as in the case in which the ratio
of two mean motions can be approximated by a fraction (m + d)/m with small d,
even a shallow resonance with a ¢ of the order of €'/3 can produce a large effect.

For details on the calculations of these secular perturbations on the semimajor axes
see Milani et al. (1987).

A=A -1 X1}+ - (4.16)

The short periodic terms from dx1/dN have order of magnitude e©%25~1,
and if 6 is of the order of Sqrt©%e the second order terms are actually larger, which
means that the expansion in powers of € is not performed in the right way: this deep
resonance case must be solved in a very different way (see Henrard, this volume and
Ferraz—Mello, this volume).

Of course the same effects occur in the variables ©, that is in the eccentricities
and inclinations; however, these variables are of the form © = ©' + O(e) and the ©',
solution of the secular perturbation equations, are not constant at all, but undergo
changes whose order of magnitude depends only upon the size of the proper action
variables ©* (see (4.14)). This occurs because the derivatives of the ©' are O(e),
but the frequencies of the secular oscillations are ¥ = O(e) and the periods O(1/e),
thus the amplitude of the oscillations is of order zero in €. In other words, the
amplitude of the oscillations in the eccentricities and the inclinations of some orbit
is controlled by the eccentricities and inclinations of the orbits of the other planets,
not by the planetary masses. Thus the free oscillations described by equations such
as (4.14) are more important that the second order effects due to the removal of the
longitudes, and even than the first order short periodic effects unless the eccentricites
and inclinations are all very small.

The other kind of second order effects can be more important for the eccen-
tricities and inclinations: again since the Lie transform is not linear in y, beat terms
of the second order can appear in the transformed Hamiltonian H';
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T H =H'=Hy+eH; — 1*{Hi, x1} + ... (4.17)

and the beat terms associated with a divisor ¢ of characteristic d will have order of
magnitude e2095~2, which is small outside deep resonance. However, the first order
terms have order of magnitude £©, and for d = 1 (that is, close to a resonance like
2/1, 3/2, etc.) the ratio of the second order terms to the first order terms is ed=2:
even for a very shallow resonance the contribution can be important. These second
order corrections to the secular Hamiltonian were first computed by Yuasa (1973)
for the asteroid problem and by Bretagnon (1974) for the major planets. There are
cases in which the most significant improvement with respect to the classical linear
perturbation theory of the first order (in €) is a second order linear theory, that is
the coefficents A, in (4.10) are computed not only from the first order part e H; but
also including the contribution of the second order beat terms; the corresponding
secular frequencies v can change by a comparatively large amount. This technique
is used in Milani and Knezevié¢ (1989).

The effects of the terms of degree four in the eccentricities and inclinations
(that is, of degree 2 in the ®") can be computed by a technique of elimination of the
angles 0* based again on the formalism of Lie series (see Yuasa, 1973; Message, 1976;
1982; Milani et al., 1987; for a different formalism, see also Bretagnon, 1974). For this
purpose, let us assume that the secular perturbation Hamiltonian H' is expressed
as a sum of homogeneous polynomials as in (4.9); each homogeneous component
can be expressed as a function of the proper modes (w, z) (since the transformation
between (z,y) and (w, z) is linear, the degree does not change), and in turn (w, 2)
can be expressed as a function of the proper action—angle variables (0*, ©*):

H' =Hy + Hy(w,z) + Hy(z,w) + ... =
=H),+v -0"+ ch(@*) cos(0” - k) (4.18)
k

Careful examination of (4.18) shows that H{ does not matter, since it contains
neither 0* nor ©*; H), becomes trivial when expressed as a funtion of (6*, ©*) because
these are the action—angle variables used to solve the problem with Hamiltonian H};
and the problem is to perform a new change in coordinate such that the angles 6*
are removed from Hj. We have to stress again that both H} and Hj may contain
also the O(e2) contribution.

Thus it is enough to find a x’ = x4y + x5 + . . . such that:

Fl: (6%,0%) —s (0",0%) ; TyH = H"(©") (4.19)

To degree 4 it is enough to find the part x) homogeneous of degree 4 (in (w, z)): this
because of the rule on the degree of the Poisson bracket (in Poincaré—type variables):

deg({f,g}) = deg(f) + deg(g) — 2.
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Ty H' = Hy + [Hy — {Hy, X4} + - .. (4.20)

and the procedure follows the same lines of the one of Section 2.4: we define an
operator Ly and a decomposition of each function into the part with and without
the angles #* (which we shall denote again with a bar and a tilde, although the
meaning of these symbols is not the same as in Chap. 2):

9 .
Lag = {hy, g} = —v - 8—99* ; Hy=Hj+ Hj (4.21)

Then the part of degree 4 of the new hamiltonian H” and the equations to be solved
for x/y are: o
H{ =H} ; in Ker L,
- (4.22)
Loxy=H} ; inImLs

and the new nonlinear proper elements (6**,©**) obtained by the transformation
F, are known functions of time:

O =const ; 6" =v*t+0"*(0) (4.23)

where the new fundamental frequencies v* are obtained from the new Hamiltonian
H", or at least from its degree 2 and degree 4 parts which have been explicitly
computed:

. aHII . a H//_I_H// x aHII .
V= oo ):—( o 4)(@ ) =v+ 5 (07) (4.24)

At the end of this procedure, we can say that the solution is completely
known up to all the effects arising from terms of degree 4 in the eccentricites and
inclinations, since the ordinary orbital elements can be computed by reversing all
the chain of transformations, that is by computing:

[1] (60**,0**) — (6*,0*) by the Lie series defined by —x};

[2] (6*,0*) — (0',0') by means of the linear transformation B, that is esssen-
tially by (4.14) and (4.8);

3] (#,0") — (#,0) by adding the short periodic perturbations with the Lie
series defined by —yx

Since all this sequence is long and tedious, but the algorithm is straightforward,
one could think that the problem can be solved up to order 2 and degree 4 (or, for
that matter, up to any order and degree such that the expansions and the Poisson
brackets can be computed with a reasonable effort, possibly with the use of algebraic
manipulation languages). Unfortunately, the real solution cannot be obtained in this
conceptually simple way.
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4.3 THE PROPER ELEMENTS MAP

To better understand the essential difficulty in the calculation of higher de-
gree proper elements, let us assume that the elimination of the longitudes has been
performed successfully (to order %) and that the secular perturbation Hamiltonian
has been expanded in powers of the linear proper elements: to be able to drop most
of the stars, primes, etc. we change notation and assume the linear proper elements
are (¢, I) and the secular Hamiltonian is K:

K=K(@D=Y wli+Y K" I)cos(j- ) (4.25)
k J

where we assume that K ;4) is homogeneous of degree 2 in the actions I, thus the
sum over the multiindex j is extended only to degree 4 (that is, |j| = Y |jk| < 4),
and all the higher degree terms are neglected. It is easy (in principle) to extract the
part of K which does not depend upon the angles ¢:

K*=K*(I)=v-T1+K" () (4.26)

Then the algorithm described in the previous section prescribes to compute a gen-
erating function I' satisfying the equation:

{v 1,1} =" K (1) cos(j - ¢) (4.27)
J#0
and a simple manipulation of Fourier series gives the fully explicit solution:
KW(1

L(p, 1) ==Y —,sin(i-9) (4.28)
J#0

By taking the derivatives of T, the transformations to proper elements (¢*, I*) can
be computed: let us indicate this transformation by:

¢* =+ c(p,I,v)
{ " =140 1,v) (4.29)

where we have stressed the dependence of the transformation upon the values of
the first approximation frequencies, which appear in the generating function. Since
combinations of up to four frequencies appear in the generating function as divisors,
the correction (¢,C) can be very sensitive to the values of the v; if a resonance
j - v = 0 occurs, a transformation with the required properties cannot be defined.
However, the purpose of the transformation (4.29) is to exploit the explicit solution
of the problem in the starred variables, which contain the frequencies v*:

_OK*(I*)
- OIF ’

E3

I*=const ; v ¢* = vt + const (4.30)
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and of course v* # v, because the degree four part of the Hamiltonian contributes
to the frequencies. Actually the rate of change of v* as a function of the action
variables is measured by the matrix computed in (3.28). Then what happens if
there is a resonance j -v* =07

In this setting it is not difficult to show that the problem is not different from
the one we have already discussed in Section 3.4. The transformation (4.29) can
be defined, provided j - v # 0 for every j with 0 < |j| < 4, but what it gives is
just the first approximation to a series which is divergent; the true solution of the
equations of motion is obtained by the map going in the opposite direction, from
proper elements (¢*, I*) such that v*(I*) is non-resonant in some strong sense to an
invariant torus in the (¢, I) space: as in Section 3.2, we can explicitly compute the
first approximation to this map and find for the generating function I'* the solution:

(4) I*)
*(p*, I*) Z sin(j - ¢*) (4.31)
J#0

where two changes only occur with respect to (4.28): the opposite sign and the use
of starred variables (arising from the fact that the map has to go in the opposite
way, and in the Hori method this is obtained by changing the sign), and the use of
the corrected frequencies v* in the divisors. Thus the analogous of (4.29) is:

¢ =¢* —c(o*, I",v")

with the same functions (¢, C') (they are functions with the same analytical expres-
sion, computed on different variables). The same arguments used in Section 3.4
show that (4.32) is the right solution (or at least a first approximation to it), while
(4.29) is not. If a specific divisor j - v is small, and has opposite sign from j - v*, the
corresponding term in I' is large and has the ‘wrong’ sign, that is the opposite sign
with respect to the corresponding term in I'*. Although this does not necessarily
occur for a given (¢, I), it is bound to occur for some choices of the initial conditions
(¢, I) and of the frequencies v (that is, of the semimajor axes).

The potential dangers of the approximation involved in using the linear fre-
quencies v in the solutions of secular perturbation problems have been known since
a long time; the unreliability of this approximation became unacceptable only when
formulas such as (4.29) have been used to systematically map a large portion of the
phase space into the proper elements phase space.

A solution to this difficulty has been proposed only recently (Milani and
Knezevi¢, 1989; Knezevi¢ and Milani, 1989); the idea is to use (4.32) instead of
(4.29) to compute the proper elements (¢*,*). Since (4.32) can be explicitly com-
puted as a map (¢*,I*) — (¢, I) which goes in the other direction, the proper
elements have to be found by solving an implicit function problem. The implicit
function problem can be written in a fixed point form:
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I* = I+ C(¢*, I*, ") (4.33)
v* = [0K*/0I"](I*)

which can be solved by an iterative scheme as follows: as a first approximation, the
difference between proper and non proper elements is neglected:

oK™

d)O d) ) 0 ) v+ oI+

(I3) (4.34)

then the successive approximations are computed by applying the map defined by
the right hand side of (4.33):

d)}t\H-l = qS + C(d)}(\b I]tﬁ V}k\l')
Iy =1+ C(dnsIn,vn) (4.35)
Vi1 = v+ [0K*/0I"](Iy)

If the iteration scheme (4.35) converges to some limit (¢*, *, v*), then this
limit fulfills equation (4.33) and v* is the set of fundamental frequencies to be used
in the solution of the secular perturbation equations. Of course this is only a first
approximation; in principle, the corrected frequencies v* could be used as a first
approximation for a further iteration which takes into account the terms of degree
6, and so on.

The study of this kind of “reverse KAM map” has just begun; it has not
been proven that this infinite sequence of iterations can actually converge to a KAM
torus; we do not know yet how to estimate the error introduced by stopping the
procedure at a given degree; even for a fixed degree, we do not know where the
iteration scheme (4.35) converges. However, experimental results obtained in the
problem of asteroid proper elements seem to indicate that this is a good way to go.
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