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Andrea Milani 2CHAPTER 1:CANONICAL TRANSFORMATIONSThis hapter disusses dynamial equations of the Hamilton type:dqdt = �H�p ; dpdt = ��H�q (1:1)(where q; p are N{vetors) and the way they an be transformed by oordinatehanges whih preserve the hamiltonian harater of the equations. No spei�appliation is presented in this hapter; the theory is developed only to the extentwhih will later be needed to disuss the perturbation theories atually used inCelestial Mehanis, and omputational tools are readied for suh theories.1.1 LOCAL CANONICAL TRANSFORMATIONSA oordinate transformation� : (q; p) 7�! (x; y) (1:2)is anonial if the equations of motion (1.1), as seen in the new oordinate system(x; y), are again hamiltonian with as hamiltonian K = H Æ ��1, the funtion withthe same values in orresponding points, that is:dxdt = �K�y ; dydt = ��K�x (1:3)K(�(q; p)) = H(q; p) (1:4)The ondition for a map to be loally anonial, in the neigbourhood of somepoint, an be simply stated in terms of the matrix of partial derivatives:D� = �(x; y)�(q; p) (1:5)To simplify the formulas, we assemble the oordinates q and the momenta pin a single 2N{vetor r = (q; p) and rewrite the Hamilton equations:drdt = J rHT (1:6)



Perturbation methods 3with J a 2N � 2N matrix: J = � 0 I�I 0� (1:7)and rH = �H=�(q; p) the gradient of the Hamiltonian; rT is the gradient trans-posed, that is used as a olumn vetor. The time derivative of z = (x; y) an beomputed by the hain rule:dzdt = D� drdt = D� � J rHT (1:8)The gradient an also be omputed by the hain rule from (1.4):rH = rKD� (1:9)and upon substitution into (1.8):dzdt = �D� � J �D�T �rKT (1:10)whih is equivalent to the new Hamilton equations dz=dt = JrKT provided:D� � J �D�T = J (1:11)If (1.11) holds in every point, the map � is loally anonial . Sine J is non{singular,(1.11) also implies that det(D�) = �1. In the ase of a 2� 2 matrix, det(D�) = 1is equivalent to (1.11); for larger matries, this is not the ase.It is easy to hek wether ondition (1.11) is veri�ed for any given �, but itis not easy to �nd non{trivial anonial maps, even loally. A standard proedureis the use of a generating funtion S = S(q; y) to de�ne a map in an impliit way:p = �S�q (q; y) ; x = �S�y (q; y) (1:12)If the impliit de�nition (1.12) an be untangled in a well de�ned map (1.2), atleast loally, then suh a map is loally anonial (this an be shown by the diretomputation of (1.11) by means of the impliit funtion theorems, and also provenindiretly by using variational priniples; see Arnold, 1976, hap. 9). However all thetopologial diÆolties are somewhat hidden in the implit map (1.12) and emerge inthe attempt to make it expliit, so this method is often of little help in understandingthe global properties of the oordinate hange.



Andrea Milani 4A further problem arises when we need to onsider a time dependent anonialtransformation. It is indeed possible to develop a separate formalism of ontattransformations (see Abraham and Marsden, 1967; Arnold, 1976, App. 4), butthis is not really needed for the appliations to Celestial Mehanis. The simplestway is the so{alled homogenous formalism, by whih the time is onsidered as anextra oordinate t = q0 and a new momentum p0 is added. Then the Hamiltonequations with a (possibly time dependent) Hamiltonian H = H(q; t; p) are handledas time{independent Hamilton equations with the homogeneous Hamiltonian H =H(q; q0; p) + p0 with the equations (1.1) plus the extra ones:dq0dt = �H�p0 = 1 ; dp0dt = ��H�q0 = ��H�t (1:13)where the last equation shows that the meaning of p0 is simply p0 = �H. Then aanonial transformation an be de�ned by a time{dependent generating funtion:S = S(q; t; p) ; x = �S�y ; p = �S�q (1:14)just by thinking to the orresponding homogeneous generating funtion:S = S(q; q0; y; y0) = S(q; q0; p) + y0q0 (1:15)onstruted in suh a way that x0 = �S=�y0 = q0 = t; the new Hamiltonian is �y0,related to H = �p0 by: p0 = �S�q0 = y0 + �S�t (1:16)that is the new Hamiltonian is K = H � �S=�t. The homogeneous formalism analso be used to allow for hanges in the independent variable, whih is often useful.1.2 RUDIMENTS OF TOPOLOGYTo understand the properties of global anonial maps we need to borrowsome onepts from di�erential topology. Two spaes are said to be topologiallyequivalent if there is a map between them whih is one{to{one and di�erentiable,with the inverse map di�erentiable as well; suh a map is alled a di�eomorphism.Spaes with quite di�erent metri properties an be equivalent, an example beingthe equivalene of the half line R+ with the real line R. There are however nonequivalent spaes, suh as the real line R and the irle S1 (e.g. it an be shownthat the latter is ompat and the former is not).



Perturbation methods 5Another onept from di�erential topology widely used in the theory of Hamil-tonian system is that of a loal di�eomorphism, a map whih is loally a di�eomor-phism in the neigbourhood of eah point; by the inverse funtion theorem, this isequivalent to the matrix of partial derivatives of the map being non{singular at eahpoint. It must be stressed that a loal di�eomorphism an exist even between spaeswhih are not toplogially equivalent, the simplest example being a map R �! S1suh as the one whih is onstruted whenever angles are measured with numbers,e.g. in radians. The notion of an angle variable, whih is simply a opy of the mapR �! R=(2�Z) ' S1 in whih two values of the angular measure are said to de�nethe same angle if they di�er by an integer multiple of 2�, is entral to the study ofintegrable dynamial systems.A third useful onept is that of a di�eomorphism isotopi to the identity , ortrivial ; it refers to a map of a spae onto itself whih not only is a di�eomorphism,but also an be obtained by di�erentiable deformation from the identity map. By nomeans all di�eomorphisms are trivial, the simplest example being the map � 7�! ��of the real line onto itself (if � is regarded as an angle variable, the same formulade�nes a di�eomorphism of S1 whih is also non trivial).So far we have only used examples with 1{dimensional spaes, and of oursethe variety of the possible topologial strutures inreases dramatially with thedimension of the spae. However, for the purpose of the study of integrable Hamil-tonian systems and their small perturbations we an limit ourselves to the onsidera-tion of spaes whih are either of dimension 1 or artesian produts of 1{dimensionalspaes. Sine the artesian operator preserves topologial equivalene, that is A ' Band C ' D implies A�C ' B�D (with ' used as a symbol for topologial equiva-lene), the lassi�ation of suh produts of simple spaes is easy: e.g. in dimension2 we an have only the plane R � R = R2, the ylinder R � S1 and the torusS1 � S1 = T 2; in dimension N we may enounter the N{torus S1 � TN�1 = TN ,et.. However, even simple produt spaes suh as tori an have subtle topologialproperties. Let us onsider as an example {whih is hosen beause it will be neededlater in the study of resonanes{ the lassi�ation of the non{trivial di�eomorphismsof an N{torus. Let us assume the torus TN to be de�ned by N angle variables� = (�1; �2; : : : ; �N ); when does a linear transformation of RN :� = A� (1:17)de�ne a map of the torus onto itself? The answer is that this requires the oeÆientsof the matrix A to be integers, and an be understood by the simple example of themap �1 7�! 12�1, whih results in �1 = 0 and �1 = 2�, the same angle, that isthe same point on the irle, mapped into two di�erent angles 0 and �. The samemap is also a di�eomorphism of TN if the inverse matrix A�1 exists and has integerentries as well; this is possible if and only if A is an integer matrix with detA = �1.Matries with integer oeÆients and determinant +1 are alled unimodular .Unimodular transformations have surprising geometri properties; the mostimportant for our purposes is that no unimodular transformation (di�erent form the



Andrea Milani 6identity) of a torus is trivial, that is no one an be obtained from another one by aontinous deformation. Thus there are in�nite di�erent ways to parametrize a toruswhih are not reduible to one another by means of a sequene of small hanges, forevery N{torus with N > 1.Unimodular transformations an be, to same extent, taylor{made to performspei� adaptations to our omputing needs. Let us take the simple example of anordinary 2{torus: an we �nd a unimodular 2�2 matrix A suh that one of the newangles � de�ned by (1.17) is a given ombination of �1 and �2:�1 = a�1 � b�2 (1:18)with a; b integers? The seond omponent �2 = �1 + d�2 forms a unimodulartransformation together with (1.18) provided that the integers ; d are suh thatad + b = 1; sine we know from elementary algebra that the equation ad + b =MCD(a; b) has always a solution with integers ; d, the only onstraint in the hoieof one of the new angles by an equation like (1.18) is that MCD(a; b) = 1. We shallsee later how suh a hoie an allow an important step forward in the theory ofresonanes.1.3 GLOBAL CANONICAL MAPSA global anonial transformation an be de�ned as a di�eomorphism whihis also loally anonial, that is ful�lls (1.11) in every point. However, this de�nitionis too restritive. Canonial maps are often used for the very purpose of hangingthe topology, and in this ase they must either be singular somewhere, or not beglobally one{to{one, or both.The simplest examples of global anonial maps an be obtained with thegenerating funtion formalism. Let us suppose we have hosen a transformationof the oordinates q: x = f(q) and wish to �nd a anonial transformation whihextends this map to the momenta: this an be done by means of the generatingfuntion: S = y � f(q) ; x = �S�y = f(q) ; p = �S�q = Df(q)T y (1:19)That is, if f is a loal di�eomorphism (detDf 6= 0):x = f(q) ; y = �Df(q)T ��1 p (1:20)and the momenta are transformed in a ovariant way. However (1.20) is really aglobal anonial transformation only if f is itself a di�eomor�sm. This is always the



Perturbation methods 7ase when f(q) = B q is a linear map (with detB 6= 0):S = y �B q ; x = B q ; y = �B�1�T p (1:21)Another interesting example is:S = y �R!t q ; x = R!t q ; y = R!t p (1:22)where R!t is the rotation by an angle j!jt aroung the axis de�ned by the vetor ! ofR3. This ase must be handled by means of the time dependent (or homogeneous)formalism, and the new Hamiltonian an be omputed by means of the derivative:�R!t�t q = R!t (! � q) (1:23)where the vetor produt is the standard way to represent an in�nitesimal rotation.By using (1.23), and taking into aount the rotational invariane of salar andvetor produts, the new Hamiltonian is found to be:K = H � �S�t = H � ! � (q � p) (1:24)Equations (1.22) and (1.24) allow to derive the equations for the irular restrited3{body problem in the rotating frame (in whih the primaries are �xed); the last of(1.22) shows that the momenta in the rotating frame are not the veloities in therotating frame but the rotated veloities in the inertial frame.The more interesting ases are when the topology atually hanges. The mostobvious example is the hange to polar oordinates:S = y1r os � + y2r sin � (1:25)whih is of ourse loally anonial only for r > 0, that is for (r; �) in R+ � Rand with values (x1; x2) in R2 � (0; 0) ' R+ � S1. Sine the two spaes are nottopologially equivalent, the map annot be one{to{one and indeed � is an anglevariable.Another very useful non regular anonial map is the transformation to Poin-ar�e variables, the anonial analogue of the polar to artesian transformation whena oordinate x and its onjugate momentum y are regarded as the ouple of artesianoordinates: x =p2p os(�q) ; y =p2p sin(�q) (1:26)It is easy to diretly hek that det �(x; y)=�(q; p) = 1, with the minus sign in frontof the oordinate q playing a surprisingly essential rôle. (1.26) ould be loally



Andrea Milani 8de�ned by a generating funtion S = 12y2 otg q, but there is no way to have a singlegenerating funtion de�ning the map globally, preisely beause the topology doeshange. This anonial map is used to remove the singularity of the angle q forp = 0, and vieversa to introdue the angle variable when it is needed.With anonial maps as a tool, integrable hamiltonian systems an be expli-itly solved by redution to a trivial form; this is performed by a sequene of anonialmaps, some of whih typially do hange the topology. The simplest examples anbe found with quadrati Hamiltonians: let us assume the Hamiltonian funtion is ofthe form: H = 12(x �Ax+ y �Ay) (1:27)This partiular form arises from symmetry properties of the Hamiltonian, as weshall see in Setion 4.1. The symmetri matrix A = AT has real eigenvalues �k; k =1; : : : ; N and an be diagonalised by means of an orthogonal matrix B = (B�1)T :BT AB = diag[�1; �2; : : : ; �N ℄ (1:28)and by the anonial linear hange x = Bw; y = Bz the Hamiltonian is redued tothe form: H = 12 NXk=1 �k (w2k + z2k) (1:29)whih represents a set of N unoupled linear osillators with frequenies �k. Eahosillator problem an be solved by introduing angle variables with the inverse of(1.26): wk =p2�k os(��k) ; zk =p2�k sin(��k) (1:30)Then the Hamiltonian is redued to the form:H = NXk=1 �k �k (1:31)with the angle variables �k hanging linearly with time, eah one with its ownfrequeny �k, and the ation variables �k onstants of the motion. This is thesimplest example of an integrable Hamiltonian system, and it already shows mostqualitative features of suh systems: the level manifolds with all the �k onstant arespanned by N angle variables, hene they are N{tori TN ; most of the phase spae istopologially equivalent to TN � (R+)N , apart from the subsets with some �k = 0where lower dimensional tori our.Non trivial anonial transformations an be used to somewhat lessen thediÆulties arising from simple singularities suh as the lower dimensional tori of the



Perturbation methods 9above example. Suppose we wish to remove the singularity arising for �1 = 0, where�1 is unde�ned. Then the unimodular matrix :A = � 1 10 1� (1:32)an be used to ombine the angles �1 and �2:�1 = �1 + �2 ; �2 = �2 (1:33)and by (1.21) the matrix (A�1)T gives the orresponding hange in the ation vari-ables: �1 = �1 ; �2 = ��1 +�2 (1:34)The advantage of the new oordinates is in that �1 an be de�ned as �2 for �1 = 0,and this de�nition is regular for �1 7�! 0, that is the map from the ation{anglevariables (�;�) to the Poinar�e type variables (w; z) is smooth around (w1; z1) =(0; 0). This simple trik is standard in Celestial Meahnis, e.g. when the longitudes�;$;
 are used instead of the Delaunay variables `; !;
.Another use of non trivial global anonial transformations is to highlightresonanes. Suppose that in the example (1.29){(1.31) above two of the frequeniesare in a rational ratio, e.g. : �1�2 = ba (1:35)Then a unimodular transformation with �rst omponent (1.18) an be onstruted(sine we an assume MCD(a; b) = 1 anyway), with matrix:A = � a �b d � ; detA = 1 (1:36)The ations are hanged by the matrix (A�1)T :�1 = d�1 � �2 ; �2 = b�1 + a�2 (1:37)and the Hamiltonian, ontaining �1 and �2 only in the ombination �1�1+�2�2 =�1�2=b, does not depend upon �1, thus expliitly showing that �1 is onstant.To summarize our view of anonial transformations, anonial maps whihare far from the identity (either beause they are non trivial, or beause they havesingularities, or beause they are not one{to{one) are mostly used to set up theappropriate topology of the phase spae and a qualitatively suitable parametrisation.Fine tuning of the anonial oordinate system an then be performed by near{identity transformations.



Andrea Milani 10CHAPTER 2:SMALL TRANSFORMATIONS, SMALL PERTURBATIONSThis hapter disusses anonial transformations whih are near identiy, thatis eah point in the phase spae is displaed only by a small amount, and their useto solve problems with small perturbations, that is with Hamiltonians ontaining asmall parameter ": H = H0 + "H1 + "2H2 + : : : (2:1)In priniple a small transformation ould be de�ned by a generating funtionlose to the one of the identity transformation:S = q � y + "S1(q; y) + "2S2(q; y) + : : : (2:2)and this formalism has often been suessfully used; however another formalismleads to easier omputations, espeially when the theory needs to be omputed tohigher order. It is based upon anonial ows, that is transformations F s whihform a (loal) one{parameter group , with F 0 = Identity and F s a global anonialmap, for s small enough; moreover, F s Æ F z = F s+z whenever de�ned.2.1 INTEGRAL FLOWS AND VARIATIONAL EQUATIONSFor a given Hamiltonian �(q; p), with Hamilton equations for r = (q; p):drds = J � r�(r) (2:3)the solutions of all the initial onditions problems an be put together in the integralow, that is the map: F� : (s; r) 7�! F s�(r) (2:4)suh that {for �xed r0{ F s�(r0) is the solution of (2.3) with initial onditions r = r0at s = 0; that is, F s� satis�es the initial onditions problem:��sF s�(r) = J � r�(F s�(r)) ; F 0�(r) = r (2:5)The existene and uniqueness theorem for the initial onditions problem ensures thatF s� is a loal one{parameter group. Moreover the regularity theorem for solutions ofordinary di�erential equations ensures that F is at least as smooth as � is, and in all



Perturbation methods 11the variables. Let us now onsider F s�, for a �xed value of the independent variables, as a map of the phase spae into itself, sending eah initial ondition onto thestate of the orresponding solution after \time" s has elapsed. Suh a map is alsodi�erentiable; let the matrix of partial derivatives be As:As(r) = ��rF s�(r) (2:6)Then As(r) satis�es another di�erential equation, the variational equation,whih an be obtained by taking the derivatives with respet to the initial onditionsr from both sides of (2.5):��r ��sF s�(r) = ��s ��rF s�(r) = ��sAs(r)where use was made of the possibility of exhanging the order of the derivatives fora smooth map, and of the de�nition (2.6);��rJ � r�(F s�(r)) = J � rr� � ��rF s�(r) = J � rr� �As(r)where the hain rule for derivatives has been used, and rr� is the symmetri matrixof the seond derivatives, omputed along the orbit starting at r. Thus As(r), for a�xed r, is the solution of the initial ondition problem for a linear time{dependentequation: ��sAs(r) = J � rr� �As(r) ; A0(r) = I (2:7)The variational equations (2.7) are themselves Hamiltonian: As(r) is the ma-trix solution of the linear equations de�ned by the quadrati and time{dependentHamiltonian 12v � rr�(F s�(r))v. The main property of the solution of (2.7) is thatit always satis�es the ondition (1.11): letCs = As � J � [As℄Tthen C is solution of an initial ondition problem:��sCs = (J � rr� �As) � J � [As℄T = J � rr� � Cs � Cs � rr� � JC0 = A0 � J � [A0℄T = Jwhih has the trivial solution Cs = J ; by uniqueness, As always ful�lls (1.11) andF s� is loally anonial. It an be shown that F s� is atually globally anonialprovided it is globally de�ned. Moreover, the transformations de�ned in this wayare topologially trivial, sine they are deformations of the identity orrespondingto a time zero ow.



Andrea Milani 122.2 LIE SERIESThus any funtion � = �(q; p) de�nes a anonial ow; one a value of theassoiated independent variable s is hosen, a anonial tranformation is uniquelyde�ned. However, to expliitly ompute the transformation we have to solve thedi�erential equations (2.3){(2.5). The simplest proedure to ompute some approx-imation to this solution is the Taylor{Ma Laurin formula at s = 0:r0 = F s�(r) = r + s� ��sF s�(r)�����s=0 + s22 � �2�s2F s�(r)�����s=0 + : : : (2:8)A similar formula an be used to ompute the transform of any funtion of theanonial variables g = g(q; p); let us denote the map between the funtion spaesby T s�: T s� : g 7�! g0 = g Æ �F s���1(T s�g)(r0) = g Æ �F s���1(r0) = g(F�s� (r0)) (2:9)Two important remarks on equation (2.9). The transformation of a funtionis performed by omposition with the inverse map; this is the same rule used totransform the Hamilton funtions in a anonial map (see Setion 1.1). Sine theinitial and the �nal state are exhanged when the sign of the independent variableis hanged {or, equivalently, when the sign of the funtion � is hanged{ the inversemap an be obtained by a hange in sign; this also follows from the group propertyof the integral ow: F s� Æ F�s� = F 0� = Identity. The Taylor formula for T s� an beomputed in essentially the same way:g0(r0) = g(F�s� (r0)) == g(r0) + s� ��sg(F�s� (r))�����s=0 + s22 � �2�s2 g(F�s� (r))�����s=0 + : : : (2:10)However, (2.10) does not look like an easy to use formula. It an beameeasy to use provided two onditions are met: 1) a simple method is available toompute the derivatives, inluding the higher ones, with all the hain rules; 2) theseries onverges rapidly, so that not too many terms have to be onsidered for anaeptable auray.The �rst requirement is not too diÆult to ful�ll, espeially for the ase weare interested in, that is the anonial ows. The derivative of F s� is provided byequation (2.5), in the form of Hamilton equations. A very ompat notation for thetotal derivative dg=ds of any funtion g with respet to the independent variable salong the solutions of a set of Hamilton equations is provided by the Poisson braket:fg; �g = �g�q � ���p � �g�p � ���q = ��s�g(F s�(r))�����s=0 = dgds (2:11)



Perturbation methods 13When (2.11) is substituted into (2.10):g0(r0) = g(r0)� sfg; �g+ s22 ffg; �g; �g � s36 fffg; �g; �g; �g+ : : : (2:12)where the double Poisson braket arises from the need to ompute the s derivativeof the funtion fg; �g, et.. The alternate signs aount for the omposition withthe inverse map, and all the Poisson brakets on the right hand side have to beomputed in the new oordinates r0 = (q0; p0).The seond requirement is not as trivial to ful�ll. For now, we only remarkthat onvergene an our only if either s is small, or the ow generated by � isslow {that is, � is small. It turns out that the two onditions are one and the same:to multiply � by a small parameter " is equivalent to multiply s by 1=", and we aneither hange � into "� and set s = 1 or set s = " and leave � as is; there is no usefor two parameters. Sine the hoie is only a matter of taste, we hose to set s = 1,so that s disappears from formulas suh as (2.12), and simplify the notation (e.g.F 1� = F�; T 1� = T�). We ful�ll the smallness requirement by assuming that � is ofpositive order in the small parameter ":� = "�1 + "2�2 + : : : (2:13)thus the Lie transform of a funtion g is de�ned by the expansion (formal powerseries): g0 =T�g = g � fg; �g+ 12ffg; �g; �g+ : : : ==g � "fg; �1g+ "2[�fg; �2g+ 12ffg; �1g; �1g℄ + : : : (2:14)A further development ours when g is itself expanded in powers of ":g = g0 + "g1 + "2g2 + : : : (2:15)and the result of (2.14) is reordered by powers of ":g0 =T�g = g0 + "[g1 � fg0; �1g℄++ "2[g2 � fg0; �2g � fg1; �1g+ 12ffg0; �1g; �1g℄ + : : : (2:16)That is, the development of g0 is:g00 = g0g01 = g1 � fg0; �1gg02 = g2 � fg0; �2g � fg1; �1g+ 12ffg0; �1g; �1g: : : (2:17)



Andrea Milani 14It an be seen from (2.17) that the order k part of g, gk, appears in all theg0z with z � k; also the order k part of of � appears in all the g0z with z � k. Thisrelationship an be represented by the Lie triangle (Deprit, 1969), and leads to aneasy to use reursive formula.We need to point out that there are many versions of this Lie series algorithm;the one we are going to use here is essentially the one due to Hori (1966). Amore general algorithm, allowing for a time{dependent generating funtion, analso be used (Deprit, 1969). However, the larger group of transformations de�nedby allowing for a time{dependent generating funtion is not really needed in theappliations to Celestial Mehanis disussed in the next Setions. The Hori methodhas also the advantage of a muh easier omputation of the inverse map by meansof the same generating funtion with the opposite sign; this will play an importantrôle in simplifying the omputations in Setions 3.2 and 4.3.2.3 ELIMINATION OF THE ANGLESThe main purpose of a Lie series transformation given by formulas suh as(2.13){(2.17) is to \solve" the problem, that is to transform the Hamiltonian (2.1)into a simpler one, whose solution an be somehow expliitly omputed. Again wehave to remember that this proess does not allow to hange the topology (not evento perform a non{trivial topologial equivalene), thus the oordinate system mustalready be adapted to the problem in the topologial sense. In most ases, the bestoordinate system is suh that the �rst approximation problem de�ned by the orderzero Hamitonian H0 is already solved:H = H0(p) + "H1(q; p) + "2H2(q; p) + : : : (2:18)However, this leaves little hoie for the oordinates qr (onjugate to themomenta pr, whih are integrals of H0). On the basis of a general result (whih weshall disuss later, see Setion 3.1) all the qr an be expeted to be angle variables.Then the question is: an we hoose � in suh a way that T�H = H 0 is solved,that is H 0 = H 0(p0) ? We an look at the analogous of the formulas (2.17) as areursive set of equations, where the Hr are given and the �r are to be solved for;the transformed Hamiltonian H 0 is not known, but the ondition is imposed thatH 0 = H 0(p0):H 00(p0) = H0(p0)H 01(p0) = H1(q0; p0)� fH0; �1g(q0; p0)H 02(p0) = H2(q0; p0)� fH0; �2g � fH1; �1g+ 12ffH0; �1g; �1g: : : (2:19)



Perturbation methods 15To write down expliitly the seond of the (2.19) as an equation for �1, we omputethe Poisson braket fH0; �1g by means of the vetor n of the fundamental frequeniesappearing in the solution of the integrable approximation H0:nr = �H0�pr (2:20)H1 � fH0; �1g = H1 + n � ��1�q0 = H 01(p0) (2:21)Has (2.21) a solution? To answer, we shall use Fourier series expansions; theanalytial equivalent of the statement that the qr are angles is that the HamiltonianH an be expanded into a (onvergent) multiple Fourier series: for the �rst order(in ") part H1: H1(q; p) =Xk H1k(p) os(k � q) (2:22)with k a multiindex, that is a vetor with integer omponents. The presene of theosine terms only arises from the assumption of a disrete symmetry, i.e. H is even,as it is often the ase in Celestial Mehanis; of ourse in general there might be sineterms too.A formal series solution is then obtained by a simple algorithm, assuming that�(q; p) is de�ned on the same spae, thus has a Fourier series expansion; for the �rstorder part "�1: �1(q; p) =Xk �1k(p) sin(k � q) (2:23)where again the presene of the sine terms only arises from disrete symmetry prop-erties, and osine terms might our in more general ases. Then (2.21) translatesinto the following set of equations for the Fourier oeÆients:(n � k)�1k = �H1k (2:24)for all multiindex k; for k = (0; : : : ; 0) there is no onstraint on �1, and �10 isassigned to guarantee uniqueness: �10 = 0. For k 6= 0 the value of the FourieroeÆient �1k is uniquely determined by (2.24) provided (n � k) 6= 0. This non{resonane ondition will be satis�ed in some subset of the phase spae; let us for amoment forget about the problem of where our solution will be de�ned, and de�nethe order one parts of �; H 0 by solving (2.24) as if the non{resonane ondition wasalways satis�ed: �1k = �H1kn � k (2:25)As for H 01, the k = 0 term annot be removed and there is a unique solution:H 01(p0) = H10(p0) (2:26)



Andrea Milani 16We an now look at the third of the (2.19), whih an be somewhat simpli�ed byusing both (2.21) and (2.26):H 02 = H2 � 12fH1 +H10; �1g � fH0; �2g (2:27)and is of the same general form; again a unique solution is found by expanding H2and �2 in Fourier series, imposing �20 = 0, setting H 02 to be the k = 0 Fourieromponent of whatever is in the right hand side, and solving for the oeÆients �2kby dividing the orresponding Fourier oeÆient of H2 � 1=2fH1 +H10; �1g by thedivisor n � k. The problem of the divisor being somewhere zero gets worse, sine �2ontains the divisor squared in some denominators; but formally, the seond step isnot any more diÆult than the �rst. It is easy to show that the same ours withthe higher order parts of � and H 0, that is there is a formal series solution for � suhthat T�H = H 0(p0). This algorithm was proposed by Hori (1966); Deprit (1969)proposed an algorithm whih is not the same, but gives the same results.This allows to ompute a formal series solution of the original problem (2.18).In the (q0; p0) oordinate system the problem is solved, beause H 0 = H 0(p0) :dp0dt = 0 ; dq0dt = �H 0�p0 = n0(p0) (2:28)and the solution is simply given by:p0r = Pr ; q0r = n0(P )(t� t0) +Qr (2:29)with integration onstants Pr; Qr whih we shall all proper elements (for historialreasons to be disussed later; see Chapter 4). Then the expliit omputation of asolution with given initial ondition takes in priniple three steps:[1℄ Given the values of ", and the initial onditions of (q; p) at t = t0, use themap F� to ompute (q0; p0) at t = t0 and thus (Q;P ).[2℄ Given P and the expression of H 0 = H 00+ "H 01+ : : : as omputed along with�, �nd n0(P ), thus the solution (p0(t); q0(t)) is available for every t.[3℄ Use the inverse map F�1� = F�� to ompute the solution in the (q; p) oor-dinate system: q(q0; p0) = T�q = q0 � fq; �g+ 12ffq; �g; �g : : := q0 � ���p + 12f���p ; �g+ : : :p(q0; p0) = T�p = p0 � fp; �g+ 12ffp; �g; �g : : := p0 + ���q � 12f���q ; �g+ : : : (2:30)
The right hand side of (2.30) has to be interpreted as a funtion originally de�nedin terms of the variables (q; p) whih has however to be evaluated for q = q0; p = p0.



Perturbation methods 17Sine the latter are given by (2.29), eah qr irulates with average frequeny n0r(the same as q0r) but with superimposed osillations ontaining all the fundamentalfrequenies n0r ; the pr are approximately onstant and lose to the orresponding p0r,with superimposed onditionally periodi osillations. This qualitative desriptionof the solution (traditionally referred to as the epiyli solution) holds only as longas the singularities of the oordinate system are not enountered, as we shall disussin Setion 4.1. Moreover, the series are handled as if they were onvergent, whih isa na��ve assumption.The series expansion for both � and the solution belong to the general lassoften alled Poisson series, whih are atually double series, Fourier series in somevariables (here the q0r) and power series in others (here "). The problem of the orderin whih these series should be sommed has been left open, as well as the onver-gene and the domain of de�nition problems. These Poisson series are well de�nedmathematial objets on whih many operations an be performed; unfortunately,the most diÆult operation to perform, and even to de�ne, is the evaluation of theseries, that is to �nd a real number orresponding to a given set of values for q0; p0; ".2.4 DEGENERACY AND RESONANCESEven at the formal series solution stage the problems really enountered inCelestial Mehanis are more diÆult than the model problem disussed in the pre-vious setion. The main diÆulty arises from the degeneray of the 2{body problem,i.e. from the simple fat that the perihelia and the nodes are integrals. As a result,the non resonane onditions: �H0�p � k 6= 0 (2:31)annot be satis�ed for every multiindex k 6= 0; in a sense, resonane ours in everypoint of the phase spae.To understand what an be done under these irumstanes we �rst desribethe elimination proedure in a somewhat more abstrat way: given any order zeroHamiltonianH0, we an de�ne a linear operator L ating on any funtion g = g(q; p)by: Lg = fH0; gg (2:32)It de�nes a deomposition of the funtion spae (of the Poisson series) into a diretsum of the kernel (null spae) of the operator L and of the image of L:g = ~g + g ; ~g 2 ImL ; g 2 Ker L (2:33)Then the existene of solutions of the reursive equations (2.19) an be disussed bydeomposing e.g. H1 = H1 + ~H1 :H 01 = H1 + ~H1 � L�1 (2:34)



Andrea Milani 18has solution with �1 2 ImL providedH 01 = H1 (2:35)whih is the generalisation of (2.26) when the non{resonane ondition is not as-sumed. The seond order equation:H 02 = H2 � 12fH1 +H1; �1g � L�2 (2:36)gives the de�nition of H 02 and the equation for �2 by using the deomposition (2.33):H 02 = H2 � 12f ~H1; �1g (2:37)L�2 = ~H2 � fH1; �1g � 12f ~H1; �1g+ 12f ~H1; �1g (2:38)and the solution �2 2 ImL exists and is unique, and so on and so forth. At the endof the in�nite reursion on the order, or rather when the proess is arrested beausethe remainder ontaining "r is onsidered negligible, the Poisson series H 0 and � areuniquely determined, with: � 2 ImL ; H 0 2 Ker L (2:39)In other words, the mahinery works all the same, but the results are not the same,beause H 0 is not neessarily a trivial Hamiltonian; H 0 = H 0(p0) ours if and onlyif the non{resonane onditions (2.31) are satis�ed for every k 6= 0. However, H 0 issimpler than H in the sense that some of the Fourier omponents have been removed.To understand whih ones we shall ompute two useful examples.Our �rst example is just the N+1{body problem as presented in the anonialoordinates whih solve the zero order approximation. The latter is one form oranother (depending upon the hosen oordinate system, see Laskar, this volume) ofthe 2{body problem opied N times. The angular variables q = (�; �) are the meanlongitudes �r; r = 1; : : : ; N and the longitudes of the perihelia and of the nodes�r; r = 1; : : : ; 2N . The momenta are Delaunay{type variables p = (�;�) with the�r; r = 1; : : : ; N funtions of the semimajor axes only and the �r; r = 1; : : : ; 2Nrelated to the angular momenta of the 2{body subsystems, hene to the eentriitiesand the inlinations. Then the order zero approximation H0 is a suitable linearombination of 2{body Hamiltonians:H0 = H0(�) =Xr �� Kr2�r� (2:40)with Kr some oeÆients depending only upon the masses (for the meaning of theseoeÆients, see Message, 1982; Milani and Nobili, 1983). All the derivatives are zerobut for the mean motions: �H0��r = Kr�3r = nr (2:41)



Perturbation methods 19The perturbing funtion is on the ontrary dependent upon all the variables:H = H0(�) + "H1(�; �;�;�)+ : : : (2:42)with the small parameter " a funtion of the masses (and possibly of distane salingparameters). Thus the elimination proedure an be arried out essentially in thesame way desribed in Setion 2.3. The e�et of the elimination an be easilyomputed if the further assumption is made that the mean motions ful�ll a non{resonane ondition: n � k 6= 0 ; for every k 6= 0 (2:43)The ondition (2.43), forbidding resonanes in mean motion, is not the same as thegeneral non{resonane ondition (2.31) assumed in Setion 2.3. As a result, Ker Ldoes not only ontain the funtions of the momenta; all the funtions g independentfrom the longitudes are suh that Lg = 0; g = g:Lg = fH0; gg = �n � �g�� (2:44)It an be shown, in a suitable funtion spae (e.g. in the spae of formal Poissonseries), that (2.42) implies that the long periodi funtions depending only upon(�;�;�) are the ones and the only ones in Ker L; this arises from the possibilityof solving equations for the Fourier oeÆients of the form (2.24). On the ontrarya short periodi funtion depends upon � and has all the Fourier oeÆients ofthe arguments k � � equal to zero; that is, the deomposition (2.33) an be simplyperformed by splitting the Fourier series into the terms with and without the �r.Therefore the end produt of the elimination proess is a new Hamiltonian inthe new variables (�0; �0;�0;�0):H 0(�0;�0;�0) = H0(�0) + "H1(�0;�0;�0) + "2�H2 + f ~H1; �1g�+ : : : (2:45)whih de�nes the seular perturbations problem (Message, 1976; 1982; Milani andNobili, 1987). Is the Hamiltonian (2.45) any better than the original one? Thenumber of variables has essentially been redued, sine the �0r are integrals. Giventhe initial value of �0, if a solution is known to the problem given by H 0 as a funtionof (�0;�0) , then �0 an be omputed by quadrature, and again the inverse map F�1�gives the solution in the original oordinate system as in (2.30). However the seularperturbations problem is not integrable, beause it has (in general) more than oneangle variable; thus the problem is only displaed. The seular perturbation probleman in turn be attaked with more or less the same method, as we shall disuss inSetion 4.2; anyway to represent the solution of the N+1{body problem as a Poissonseries there is no way to avoid this double omputation, one for the elimination ofthe mean longitudes, one for the solution of the seular problem.



Andrea Milani 20The seond example is the single resonane problem (see Message, 1988). Letus assume that the order zero Hamiltonian is as in (2.40), and that the non{resonaneonditions are satis�ed for all k but one, that is there is a multiindex ~k suh that:n � k 6= 0 for every k 6= r~k (2:46)The only multiindexes whih an possibly generate a null divisor are multiples ofthe single generator ~k; it follows that the MCD of al the integeres ~kr is 1. Then itis possible to �nd a unimodular transformation of the longitudes suh that the �rstomponent is: � = ~k � � (2:47)The onstrution of a suitable unimodular matrix has been disussed in Setion 1.3for the ase of 2 bodies only parteipating in the resonane; it an be shown thatthe ondition for suh a matrix A to exist is anyway MCD(~k) = 1. Let��� � = A� ; ��T � = [A�1℄T� (2:48)be the anonial transformation thus de�ned. A di�erent elimination proess, spe-ially adapted to this ase, is obtained by just splitting the set of angle variables in adi�erent way: the fast angles are now the �r; r = 1; : : : ; N �1, while the slow anglesare (�; �1; : : : ; �2N). Then the funtion � an be reursively omputed. Eah FourieroeÆient of � an be solved for in an equation with some divisor n � k whih isnonzero beause k 6= r~k, and the �nal produt is an Hamiltonian in the transformedoordinates (primed):H 0 = H 0(�0; �0;�0; T 0;�0) = H0(�0; T 0) + : : : (2:49)whih is useful to transform the single resonane problem to a anonial form (seeHenrard, this volume). Again the problem has been simpli�ed only in that the mo-menta T 0r onjugate to the fast angles are integrals, and the fast angles �r themselvesare yli variables to be later omputed by quadratures. However to further disussthis problem the setting of this setion, based entirely upon formal series, is notenough; order of magnitude onsideration must play an essential rôle (see Henrard,this volume; Ferraz{Mello, this volume).



Perturbation methods 21CHAPTER 3:INVARIANT TORIIn this hapter we disuss a ommon feature of Hamiltonian systems, namelythe existene of invariant manifolds topologially equivalent to an N{dimensionaltorus. We shall also disuss the related question of the non onvergene of theseries arising in perturbation theories for an Hamiltonian system perturbed from anintegrable one.3.1 INTEGRABLE SYSTEMSAn Hamiltonian system de�ned by the Hamiltonian H = H(q; p) on a domainD is said to be integrable if there is a global anonial transformationF : D 7�! D0(q; p) 7�! (x; y) (3:1)suh that the transformed Hamiltonian depends only upon the momenta:H(F�1(x; y)) = K(y) (3:2)If the map F�1 an be expliitly omputed, the integrable system an besolved by transforming into the (q; p) spae the trivial solution in the (x; y) spae:( y(t) = y(0)x(t) = �t+ x(0) where � = �K�y (y(0)) (3:3)It must be stressed that the de�nition requires the anonial map to be global;loally, for a small enough D, every Hamiltonian system is integrable (this followsfrom the existene of a smooth integral ow whih is also anonial, see Setion2.1). Thus the very meaning of the de�nition depends upon the topology of thede�nition domain D. As an example, quadrati Hamiltonians are integrable over allof R2N (see Setion 1.3). However, the other ase relevant for Celestial Mehanis,namely the 2{body problem, has a di�erent topology. A very interesting result wasobtained independently by Arnold and by Jost; it desribes suÆient onditions foran Hamiltonian system to be integrable, and it also presribes the toplogy of D, andthis applies (with a small modi�ation) to the 2{body problem as well.The onditions of Arnold and Jost require the existene of N integrals, whereN is the number of degrees of freedom (i.e. the number of omponents of both q and



Andrea Milani 22p). The integrals are funtions f1(q; p); : : : ; fN(q; p) de�ned on D whih are onstantalong the solutions of the Hamiltonian system, parametrised by time t:dfidt = ffi; Hg = 0 (3:4)Of ourse one of the fi, let us say f1, an oinide with H. The integralsfi are assumed to be smooth and funtionally independent (i.e. their gradientsrfi are linearly independent in eah point od D); thus for eah set of onstantsi; i = 1; : : : ; N the level set M() de�ned by assigning a value to eah integralfi(q; p) = i; i = 1; : : : ; N is a smooth N{dimensional manifold (if not empty). Onefurther assumption is that the integrals ommute:ffi; fjg = 0 i; j = 1; : : : ; N (3:5)Then the �rst part of the Arnold{Jost theorem onstrains the topology of D:[1℄ If a (non{empty) level manifold M() is ompat, that is it is limited anddoes not touh the boundary of D, then M() is topologially equivalent to an N{torus. If all the level manifolds are ompat, then D is toplogially equivalent tothe produt of an N{torus and some N{manifold W : D ' TN �W . If the levelmanifoldM() is not ompat, but it is omplete (that is, eah orbit on M() of thesystem with either H or any of the fi as Hamiltonian is de�ned for every time t,�1 < t < +1) then M() is a generalised ylinder M() ' TN�j �Rj .This applies in a straightforward way to the 2{body problem: in polar oor-dinates in the orbital plane (r; �; pr; p�) the Hamiltonian is:H = 12 (p2r + p2�r2 )� k2r (3:6)with integrals H and p�, and they ommute sine fp�; Hg = ��H=�� = 0 is auto-matially satis�ed. The only problem an our where the gradients rH and rp�are parallel; the onditions for this to our are:pr = drdt = 0 ; k2r2 = p2�r3 = r(d�dt )2 (3:7)whih imply a irular orbit. Thus the Arnold and Jost result applies to the entirephase spae ' S1 � R3 provided the set of initial onditions belonging to irularorbits (r = p2�=k2; pr = 0) are exluded (this de�nes the so{alledDelaunay domain).To �nd out whih of the level manifolds (with �xed values of H = E and p� = J)are ompat we an solve for pr from (3.6):p2r = 2E + 2k2r � J2r2 (3:8)



Perturbation methods 23and a simple study of the quadrati polynomial in 1=r in the right hand side showsthat to have a real solution for pr the value of r is bounded away from both +1and 0 (that is from the boundaries of D, orresponding to esape to in�nity andollision respetively) if and only if E < 0 and J 6= 0. Thus all the ellipti orbitswith the same E; J , that is with the same a; e, form a 2{torus in phase spa. Asfor the irular orbits, by using (3.8) and (3.7) we �nd they are the level manifoldsorresponding to ouples of values of E; J suh that 2EJ2 = k4, onsistently withthe de�nition of the eentriity: e2 = 1 + 2EJ2k4Thus the values of E; J ful�lling e = 0 de�ne a level manifold whith a lowerdimensionality (' S1). For either E � 0 (that is, e � 1) or J = 0 the level manifoldis not ompat, but it is omplete, and is a ylinder S1 � R; for 1 + 2EJ2=k4 < 0(3.8) has no real solution pr and the level manifold is empty.The extension to three dimensions is not very diÆult. The HamiltonianH itself and the three omponents of the angular momentum vetor are of ourseintegrals, but they do not ommute; the Hamiltonian, the omponent of the angularmomentum along a �xed diretion, and the length of the angular momentum vetordo ommute and the Arnold{Jost result applies. The only ompliation arises fromthe fat that for orbits in the referene plane the angular momentum salar oinideswith the seleted omponent, thus their gradients are not independent. The levelmanifolds are mostly T 3, degenerating into T 2 for either irular inlined or elliptizero inlination orbits, and into S1 for irular zero inlination. For either paraboli,hyperboli or ollision orbits the level manifolds are mostly T 2 � R, degeneratinginto S1 �R for zero inlination.The proof of the statement [1℄ is interesting but beyond our sope; it is basedon an argument about anonial ows (see Arnold, 1976, Chap. 10; Arnold andAvez, 1968). Namely, eah one of the fi de�nes a ow on the level manifold M , andthis de�nes a map between the spae of the assoiated independent variables si andM whih is a loal toplogial equivalene. If the manifold M is omplete, this mapis surjetive and this is enough to show that M ' TN�j �Rj .The seond half of the Arnold{Jost theorem de�nes a anonial oordinatesystem whih atually integrates the system in the sense of (3.2):[2℄ If some level manifoldM() is ompat, it has a neighbourhood of the formD1 ' TN � RN on whih a anonial transformation F with the property (3.2) isde�ned. If all the level manifolds are ompat, the transformation F an be de�nedon all of D ' Tn �W .The new oordinate system is alled angle{ation variables; the angle vari-ables x parametrize eah torus and the ation variables y are integrals. The proofof this seond part of the Arnold{Jost theorem is essentially a global version of Li-ouville theorem (see Ferraz{Mello, this volume), and an be expressed by means ofline integrals of the kind used in Henrard, this volume, for the N = 1 ase (see



Andrea Milani 24Arnold, 1976; Arnold and Avez, 1968). It is important to stress that the angle{ation variables for a given hamitlonian system are by no means unique; given a setof angle{ation variables, any unimodular transformation A an be applied to theangle variables provided the ations are transformed by (A�1)T . However, it anbe shown that under the non{degeneray ondition det(�2K=�y2) 6= 0 there are noother sets of angle{ation variables than those generated from any one of them byunimodular transformations.For the 2{body problem (3.6) the angle{ation variables are the Delaunayvariables `; !; L;G. To remove the indetermination produed by the possibility ofapplying unimodular transformations we an speify the following: ` is a variablemaking a omplete revolution along the orbit, and not hanging at all when thepoints in phase spae are subjeted to a rotation � 7! � + onst; ! on the ontrarymakes a omplete revolution when the points in phase spae are rotatetd through 2�,and does not hange along the orbit. Then ` is the mean anomaly, ! the argumentof perienter, G = p� and L is a funtion of the total energy H suh that:K(L;G) = � k42L2 (3:9)
3.2 KOLMOGOROV THEOREMThe question arises of whether a slightly perturbed integrable system preservesthe property of being integrable, or at least some of the invariant tori. Let us look atthe problem in the oordinate system whih makes the unperturbed system trivial,namely let us suppose (q; p) are already angle{ation variables for all the phase spaeD ' TN �W : that is, the Hamiltonian H has an \order zero" part H0 whih isintegrable, and an \order 1" part whih is not, but ontains a small parameter � asin (2.18): H = H0(p) + "H1(q; p) + "2H2(q; p) + : : : (3:10)The main idea {going bak to Linstedt and Poinar�e (see Poinar�e, 1893){ isto perform a �xed frequeny perturbation theory. The best way to understand it isto start from the (false) hypothesis that the system (3.10) is still integrable. Thenthere would be some angle{ation system (x; y) suh that H(q; p) = K(y). Let ushoose the values of the new ations yÆ and the orresponding frequenies:�Æ = �K�y (yÆ) (3:11)For �xed y = yÆ and x variable, sine the latter are angle variables, a torus TNis spanned in the (x; y) spae; let us label this torus by the orresponding value of thefrequeny vetor �Æ (this is a orret labelling if we assume that a non{degenerayondition det(�2K=�y2) 6= 0 is satis�ed in the (x; y) spae as well, thus the map



Perturbation methods 25yÆ 7! �Æ is a loal topologial equivalene). Then there would be a subset in the(q; p) spae whih orresponds to a torus in the following sense:[1℄ there is an immersion (a map with jaobian of maximum rank) � : T (�Æ) 7!D suh that �(T (�Æ)) = T 0(�Æ) is invariant by the ow of H.[2℄ � is an equivariant map between the ow of K on T (�Æ) and the ow ofH restrited to T 0(�Æ), that is not only � maps orbit onto orbit, but with the sametimetable: if FH(q; p) is the integral ow of H (see 2.1), then provided the initialonditions (qÆ; pÆ) are on T 0(�Æ):F tH(qÆ; pÆ) = �(�Æt+ xÆ; yÆ) (3:12)for some initial phase vetor xÆ. Of ourse, if suh a map � was de�ned not only fory = yÆ but also for all the y in a neigbourhood, then the system would be integrablethereon. However, we do not ask for a map de�ned on an open set in the (x; y)spae, but only on a "thin" set of dimension N .To set up an algorithm to ompute suh a map, we an proeed as in Setion2.3. This time however, we proeed bakward; namely we want to add to the inte-grable Hamiltonian K(y) all the terms depending upon x. That is, we look for afuntion  (x; y) = � 1 + : : : suh that it de�nes a map F : (x; y) 7! (q; p) and theHamiltonian is tranformed as follows:T K = K(p)� �fK; 1g+ �2[�fK; 1g+ 12ffK; 1g;  1g℄ + : : : == H = HÆ + �H1 + �2H2 + : : : (3:13)Equation (3.13) is idential to (2.14), apart from going the other way round;the main di�erene arises in the next step, namely the expansion orresponding toformula (2.16) is not performed at this stage, beause we do not know a priori theexpansion of K in powers of �. We an now set up a reursive system of equationswhih adds to K(p) the terms depending upon q to reonstrut the original Hamil-tonian H: to do this we identify the terms of the some order in � in the two sidesof (3.13), and �nd that there is an obvious mismath: HÆ(p) 6= K(p); thus we pushforward the disrepany as an higher order term:K �HÆ = �K1 (3:14)and the order one equation is: K1 + fK; 1g = H1 (3:15)Now the known funtion H1 an be deomposed: H1 = H1+ ~H1 (as in Setion2.4), with respet to the linear operator LÆ:LÆg = fK; gg = ��Æ �g�q (q; p) (3:16)



Andrea Milani 26and the equation (3.15) is deomposed in the omponent belonging toKer LÆ, whihagain reords a mismath: K1 �H1 = �K2 (3:17)plus an equation in ImLÆ: �Æ � 1�q = ~H1 (3:18)The order two equation an be similarly deomposed :K2 + 12f ~H1;  1g �H2 = �K3 (3:19)�Æ � 2�q = ~H2 + 12f ~H1;  1g � 12f ~H1;  1g (3:20)and so on. Thus we reursively de�ne  = ~ and �nd the relationship between Kand H: K = HÆ + �H1 + �2[H2 + 12f ~H1;  1g℄ + : : : (3:21)whih is formally the same found by means of the inverse proedure in Setion 2.4.However, the reursive proedure outlined here is not the same used in Setions 2.3and 2.4: LÆ is not L, and the divisors ourring in the omputations (3.18), (3.20),et. are: k � �Æ = k � �K�y (yÆ) = k � �HÆ�y + �k � �H1�y + : : : (3:22)and are di�erent form k � n = k � �HÆ=�p, unless the point pÆ to ompute thefrequenies n is hosen in suh a way that n = �Æ; this is indeed possible beause ofthe non{degeneray ondition, but (3.22) points out that when this ours pÆ 6= yÆ,the di�erene being of order �.We an now state the theorem announed by Kolmogorov (1954), and whoseproof was published by Arnold (1963): the essential hypothesis is that the divisorsk � �Æ ouring in the solutions of the equations suh as (3.18), (3.20) are never zero,nor too small. The ondition required for the Kolmogorov{Arnold proof is that thedivisors annot go to zero faster than a power of the degree jkj = P jkij of themultiindex k: jk � �Æj > kr (3:23)with ; r positive onstants. Under this hypothesis the reursive proedurede�ning the map � for the given �Æ an be shown to onverge (however, the proofby Arnold used a di�erent formalism; our presentation is more related to Benettin



Perturbation methods 27et al., 1984). However a further ondition is neessary to ensure the existene of thetorus T 0(�Æ), and it is a global ondition. If a vetor �Æ of frequenies is hosen atrandom, there is of ourse no guarantee that a solution (3.12) will exist in the domainD with these frequenies. The non{degeneray ondition ensures the existene ofthese frequenies loally, that is, if a point (qÆ; pÆ) in D is known to have frequenieslose to �Æ, then a neigbouring point will be on the solution (3.12) with frequeniesexatly �Æ. But globally we need to ensure that there is some point in D suh thatthe frequenies are at least lose. This is obtained by adding a further hypothesis,namely that there is a value pÆ of the ation variables for the unperturbed problemHÆ suh that: n(pÆ) = �HÆ�p (pÆ) = �Æ (3:24)Under these hypothesis, namely (3.23), (3.24) and non{degeneray, for a regularH, there is an �1 > 0 suh that for 0 < � < �1 the map � exists, is regular andhas the property (3.12). The exat regularity onditions an hange when di�erentdemonstration tehniques are used, but this of ourse does not matter for CelestialMehanis appliations where H is anyway real analyti.It must be stressed that the purpose of the hypothesis (3.24) is to ensure theexistene of the image of � within D, and it is by no means true that the torusT 0(�Æ) must ontain any point with p = pÆ: as the omputation of the higher orderparts of K proeeds (by means of formulas suh as (3.13), (3.16)) the value of yÆneeds to be adjusted to keep the frequenies �xed at �Æ. Moreover, p has to beomputed as a funtion of (x; yÆ) by means of a formula suh as (2.30). There is noguarantee that the torus T 0(�Æ) will interset the original unperturbed torus p = pÆ,and it turns out not to be the ase in many examples. As disussed by Poinar�e(1893), �xed frequenies and �xed ations are inompatible onditions and annotbe satis�ed simultaneously.After the theorem of Kolmogorov was announed, it appeared that the maindiÆulty in applying it to a realisti problem in Celestial Mehanis had to do with�nding a realisti estimate of the limiting value �1 for the perturbation parameter.Later it was found that this is not the ase, as we shall disuss below.3.3 DEGENERACY AND ARNOLD THEOREMThe �rst obvious diÆulty in applying Kolmogorov theorem to Celestial Me-hanis is that one of the hypothesis, namely non{degeneray, is not true for theN{body problem. Let us suppose the N{body problem is represented in some o-ordinate system derived from Delaunay elements for eah planet (onsidered as aseparate 2{body problem with the Sun); this an be done in a number of ways (seeLaskar, this volume), and the result is an order zero Hamiltonian of the form (2.40),whih essentially results from a linear ombination of 2{body Hamiltonians (3.10)with oeÆients depending upon the masses of the planets (and of the Sun). Then:



Andrea Milani 28H(�; �;�;�) = HÆ(�) + �H1(�; �;�;�)+ : : : (3:25)and the non{degeneray ondition does not hold beause HÆ depends only uponsome of the ation variables, that is upon the semimajor axes only. In terms ofthe global existene ondition for a Kolmogorov torus with frequenies �Æ, sine theunperturbed frequenies for the perihelia and nodes � are zero, there annot be aninvariant torus T 0(�Æ) unless some omponents of �Æ are lose to zero. However, ifthis global ondition is satis�ed, the theorem an be used with a transformation ofthe problem introdued by Arnold (1963).Let H1 be the part of H1 not depending upon the mean longitudes �, and~H1 = H1 �H1 as in Setion 2.4. Then it is possible to reorder the Hamiltonian inthis way:H(�; �;�;�) = [HÆ(�) + �H1(�;�;�)℄ + � ~H1(�; �;�;�)+ : : : (3:26)and then apply the Kolmogorov theorem to an Hamiltonian whose zero order partis the one enlosed in square brakets in (3.26). The non{degeneray ondition, thatis the non{degeneray of the matrix:�2HÆ + �H1�(�;�)2 = 0� �2HÆ��2 + ��2HÆ��2 � �2H1����� �2H1���� ��2H1��2 1A (3:27)an be guaranteed for small � if the matrix:D = �2H1��2 (3:28)is non{degenerate. It turns out that the matrix D plays a very important rôle inthe theory of seular perturbations, (see Setion 4.3), and expliit omputations toshow that it is non{degenerate an be performed. Thus it is possible to hoosea set of frequenies �Æ {with some fast frequenies nÆ (orresponding to some setof unperturbed �Æ) and some slow frequenies orresponding to possible values of��H1=��{ ful�lling (3.23), and apply Kolmogorov theorem.As a result of the appearane of � both in the determinant of the matrix (3.27)and in the perturbation � ~H1, to obtain realisti estimates for the limiting value �1is even more diÆult than it already is in the non{degenerate ase. Moreover, sinethe matries (3.27) and (3.28) an be expliitly omputed only for zero eentriitiesand inlinations, Arnold result applies only to orbits with very small eentiitiesand inlinations. Nevertheless it was important to show that invariant tori exist inthe full N{body problem, even though this annot be rigorously shown to our forrealisti values of planetary masses, eentriites and inlinations.



Perturbation methods 293.4 DIVERGENCE OF THE SERIESThe objet of this setion will be a "generi" perturbed Hamiltonian, by whihwe mean H = H0 + �H1 + : : :, the sum of an integrable, non degenerate order zeropart: H0 = H0(p) ; det �2H0�p2 6= 0 (3:29)and a perturbation whih ontains "all the terms", namely when it is expanded ina Fourier series in the angle variables q:H1 =Xk H1k(p) os(k � q) ; H1k � �jkj (3:30)where the � symbol indiates an asymptoti relationship and � < 1. It is essentialfor what follows that � indiates not only an upper bound for the Fourier oeÆients{whih is needed to ensure the onvergene of the Fourier series to a real analytifuntion{ but also a lower bound, that is for large enough jkj the Fourier oeÆientsH1k are not allowed to be zero.The proedure desribed in Setion 2.3 allows to de�ne a formal Poisson series:�(q; p) = ��1 + �2�2 + : : : ; �i =Xk �ik sin(k � q) (3:31)suh that the problem is solved in the formal sense, namely a formal series transfor-mation is de�ned by �, suh that:F� : (q; p) 7! (x; y) ; T�H = H(F�1� (x; y)) = K(y) (3:32)On the other hand, the Kolmogorov theorem of Setion 3.2 de�nes anotherPoisson series:  (x; y) = � 1 + �2 2 + : : : ;  i =Xk  ik sin(k � x) (3:33)by whih a map is de�ned in the other diretion:F : (x; y) 7! (q; p) ; T K = K(F�1 (q; p)) = H(q; p) (3:34)Now the question arises of whether any one of the two formal Poisson series(3.31), (3.33) an be onvergent, and where. Kolmogorov theorem appears to givea very asymmetrial answer, namely the series (3.33) for  an be onvergent on a



Andrea Milani 30torus y = yÆ in the (x; y) spae provided �Æ = �K=�y(yÆ) is bounded away fromresonanes by an inequality like (3.23). On the ontrary, the series (3.31) for � isessentially always divergent. The fundamental asymmetry of the two maps arisesfrom the fat that in one of the two spaes, the one with oordinates (x; y), thedynamial system is assumed to be integrable, atually integrated: K = K(y). Onthe ontrary, the algorithms to generate � and  are the same: at eah stage anequation of the formL�i = �n(p)��i�q = g(q; p) ; LÆ	i = ��(y)� i�x = f(x; y) (3:35)is solved, with g; f funtions determined by the previous steps of the reursive pro-edure. The frequeny vetors are � = �K=�y (y) and n = �H0=�q (p) respetively.By Fourier expansion, the oeÆients are solutions of equations of the form:�ik = � gkn(p) � k ;  ik = � fk�(y) � k (3:36)Then the divergene of the series an be desribed by perfetly symmetristatements:[1℄ Let A be a pathwise onneted set in the (q; p) spae; if the series for �onverges on A, then p = onst on A.[2℄ Let B be a pathwise onneted set in the (x; y) spae; if the series for  onverges on B, then y = onst on B.The proof of either [1℄ or [2℄ is very simple: let us assume a point with p = pÆand one with p = p1 belong to A; then there is a ontinous path inside A joiningthe two; along this path the frequeny vetor n(p) hanges ontinously from n(pÆ)to n(p1), thus there is some multiindex k suh that n(p) � k = 0 somewhere alongthe path (atually, there is an in�nite number of suh k, sine rational numbers aredense). Where this ours, there is a term in the series for � whih is singular and� annot be de�ned; this ontradition proves that pÆ = p1.The asymmetry arises when the onvergene of the series is used to solve theproblem. Namely, � an be de�ned on some p = pÆ torus and  an be de�ned onsome y = yÆ torus; however, y = yÆ is an invariant subset, thus  an be onvergenton a full orbit in the (x; y) spae, and the map F = � provides a solution with theproperty (3.12). On the ontrary, � might well be onvergent on some p = pÆ, butthis does not provide a solution beause the image by F� of p = pÆ does not ontainany solution in the (x; y) spae.This leaves us in an embarassing situation, beause the algorithm to �nd asolution of the original problem in the (q; p) spae as desribed in Setion 2.3 annever work; namely, even if the series for � were onvergent on a set A inluding theinitial onditions (q(0); p(0)), the image in the (x; y) spae is suh that the solution



Perturbation methods 31of the integrable problem K(y) annot be omputed on F�(A). On the other handgiven a frequeny �Æ the series for  ould be onvergent on an invariant set y = yÆ,and this does provide a solution through F ; however, we do not know where thissolution is going to be at the initial time. Even if the initial ondition in the (q; p)spae atually belongs to an invariant torus of the kind desribed by the Kolmogorovtheorem, we do not know any onstrutive and onvergent algorithm to ompute �,thus we do not know how to ompute  and the solution. In partiular, F is notF�1� = F��, beause they are de�ned on di�erent sets in the (x; y) spae (for arelated diussion, see Milani, 1988).A further remark is needed on the generality of the negative results suh as theone above. The hypothesis that all the Fourier terms in the perturbation H1 havenon zero oeÆients for high enough degree jkj has been used to show that whenevera divisor n � k is zero a (non removable) singularity arises in equation (3.36); evenif H1k = 0, there must be some multiple k of k with a non zero oeÆient H1k,and it an be shown that the funtions g appearing in the right hand side of (3.35)inherit the same property. The N{body problem however does not have suh aproperty, namely there are D'Alembert rules whih presribe some onstraints tothe multiindexes k for the Hamiltonian to have H1k 6= 0; this arises from the fatthat the Hamiltonian of the N{body problem admits some integrals suh as the totalangular momentum (see setion 4.1). However the proof of [1℄ an be ompleted byshowing that some k with n � k = 0 must our even among the k ful�lling theD'Alembert rules (see Poinar�e, 1892).This problem of the divergene of the series has no \perfet" solution, be-ause it arises from intrinsi properties of perturbed Hamiltonian systems; roughlyspeaking, any \perfet" solution would require integrability of the original problem.However, there an be ways out, and approximate solutions, as we shall see in thenext hapter.



Andrea Milani 32CHAPTER 4:PROPER ELEMENTSIn this Chapter we disuss how to derive proper elements for planetary orbits.As it is already lear from the disussion in Chapter 3, the perfet proper elements,whih should be integrals of the motion, do not exist preisely beause the N{body problem is not integrable and the series of perturbation theory annot beonvergent on any open set. However, it is possible to perform some �nite aurayomputations; they are used in two main appliations to the dynamis of the SolarSystem, namely to de�ne proper elements for the purpose of identifying asteroidfamilies and to ompute the seular perturbations of the orbits of the major planets.In the following Setions we shall not give details relative to either the one or theother of these two main ases, but rather disuss a general perturbed Hamiltonianderived from the oupling of a number N of 2{body problems as in (2.40){(2.42):H = H0(�) + "H1(�; �;�;�) (4:1)where the unperturbed part of the Hamiltonian de�nes the mean motions ni =�H0=��i and the angles �i are the mean longitudes, �i = !i + 
i; i = 1; : : : ; Nand �j = 
j ; j = N + 1; : : : ; 2N . The perturbative part H1 of the Hamiltonianswe shall onsider have one important property, arising from the symmetry of theproblem with respet to rotations around any axis. This symmetry property is mosteasily desribed analytially if the set of ation{angle variables for the unperturbedsystem H0 is hosen in suh a way that the total angular momentum along a �xedz axis is the sum of all the ations:Jz = NXi=1 �i + 2NXi=1 �i (4:2)(this an be ahieved by using jaobian oordinates and a suitable ombination ofresaling and unimodular transformations similar to (1.32); see Laskar, this volume;Message, 1982). Then the two equivalent properties of invariane of H with respetto rotations around the z axis and of invariane of Jz with respet to the ow of Han be expressed by a zero Poisson braket:fJz; Hg = �Xi �H��i �Xi �H��i = 0 (4:3)When the perturbing funtion is expanded in a Fourier series, the symmetryproperty (4.3) gives a ondition to be satis�ed by the oeÆients of the series, thatis a D'Alembert rule:



Perturbation methods 33H1 =Xj;k H1jk os(j � �+ k � �) (4:4)H1jk 6= 0 only ifXi ji +Xi ki = 0 (4:5)Another property of the set of ation{angle variables (�; �;�;�), is that theHamiltonian is well de�ned even for � = 0, whih orresponds to zero eentriityand inlination. This imposes further D'Alembert rules, namely for � �! 0 theoeÆients H1jk �! 0, more preisely H1jk at � = 0 must have a zero of order atleast jkj = Pi jkij in the square roots of the �. In all the appliations to CelestialMehanis the Hamiltonian has the further property of being even in the angles �,as a result of the invariane of both kineti and potential energy with respet to amirror symmetry; this allows to use only osine terms in the expansions suh as (4.4).These properties will have an essential rôle in the theory of seular perturbations.4.1 LINEAR SECULAR PERTURBATION THEORYThe �rst approximation in the theory of seular perturbations is obtained bynegleting all the terms in the perturbative series but he ones of order 1 in the smallparameter " (whih is roughly speaking the ratio of the massses of the planets to themass of the Sun) and degree 1 in the ations � (that is, degree 2 in the eentriitiesand inlinations of all the orbits). Then the two step proedure outlined in Setion2.4 an be expliitly performed without muh diÆulties.The �rst step is the elimination of the longitudes (at order 1 in "). Only the�rst order part of the generating funtion � is solved for:� = "�1 ; �1k = �H1kn � k (4:6)and the Lie transform is also omputed to order 1 only:T�H = H 0 = H0(�0) + "H1(�0;�0;�0) (4:7)In the transformed Hamiltonian the longitudes �0 do not appear, and themomenta �0 (funtions of the proper semimajor axes) are integrals. To apply theseond simpli�ation to the problem, namely to trunate H 0 to degree 2 in theeentriities and inlinations, we need to use again the D'Alembert rules. Beauseof the way it is obtained from H, H 0 obeys the same D'Alembert rules: it is regularfor �0 �! 0 and suh that it is invariant with respet to a rotation, that is for ahange suh that �i 7! �i+Æ, the same Æ for all i. These properties are best expressedby means of a hange to Poinar�e variables (see (1.26)):



Andrea Milani 34xi =p�2�0i os(�0i) ; yi =p�2�0i sin(�0i) (4:8)The D'Alembert properties an be expressed in the Poinar�e variables bystating that H 0 is a smooth funtion at x = y = 0, thus an be expanded in aseries of positive powers of the xi and yi, and that H 0 is invariant with respet to arotation of all the 2{vetors (xi; yi) by the same angle. It is known from elementarygeometry that the funtions de�ned on a set of vetors and invariant by rotationmust ontain only salar and vetor produts (that is, distanes and osines andsines of the angles); thus H 0 must be a series formed only with positive powers ofthe ombinations xixj+yiyj (salar produt) and yixj�xiyj (vetor produt). SineH 0 is even, only the osine{type expressions xixj+yiyj need to be used. Thus whenH 0 is expressed as a sum of homogeneous polynomials:H 0 = H 00 +H 02 +H 04 + : : : (4:9)(with H 0r of degree r in the Poinar�e variables), the degree 2 part must be of theform: H 02 = 12Xr;s Ars(xrxs + yrys) (4:10)with the oeÆients Ars dependent only upon �0 (that is, upon the proper semimajoraxes). Within this approximation, the seular perturbation equations are linearequations with onstant oeÆients:dxrdt =Xs Arsys ; dyrdt = �Xs Arsxs (4:11)and an be solved in a straightforward way as already disussed in Setion 1.3; thesolutions ontain the fundamental seular frequenies �i; i = 1; : : : ; 2N whih arethe eigenvalues of the symmetri matrixA, and are obtained by means of the rotationmatrix B = (B�1)T (whih diagonalises A: BT AB = diag[�1; �2; : : : ; �2N ℄) fromthe proper modes of osillation w = B�1x; z = B�1y. The latter are solutions ofunoupled harmoni osillator problems, and for eah osillator (wk; zk) it is possibleto de�ne an ation variable ��k and an angle variable ��k:wk =p�2��k os(��k) ; zk =p�2��k sin(��k) (4:12)suh that the solution is given by:�� = onst ; �� = �t+ ��(0) (4:13)that is the solution in the original Poinar�e variables is:



Perturbation methods 35xr =Xs Brsp�2��s os(�st+ ��s(0))yr =Xs Brsp�2��s sin(�st+ ��s(0)) (4:14)This is the lassial representation of the seular perturbations by means ofepiyles, that is �nite Fourier series with 2 terms per planet. Some aution must beused even in the interpretation of this simple solution. The proper ation variables��i an be used to de�ne the proper eentriities and inlinations (by the sameformulas relating the ordinary eentriities and inlinations to the �i); however,these proper elements do not have the same geometrial meaning of the ordinaryorbital elements (e.g. the perihelion distane annot be omputed diretly from theproper eentriity).The geometrial meaning is even more involved for the proper angles ��i : sinethe matrix A is in general not symmetri, the rotation B is not the identity, thusthe angles ��i and �i are not measured from the same origin. If the matrix A has astrongly dominating prinipal diagonal, then B is lose to the identity and (providedthe proper ations ��i are not too small) all the angles �i irulate with the samefrequeny as the orresponding proper ��i , that is �i. This would be the ase, in theplanetary seular perturbation problem, if all the planets were very far apart fromeah other (that is, all the ratios between the semimajor axes of two onseutiveplanets were very small). However, the real Solar System is a weakly hierarhialsystem, and the o�{diagonal terms in A are signi�ant; as a result, some of the �ibehave in a qualitatively di�erent way from the orresponding ��i : e.g. the perihelionof Jupiter and the perihelion of Uranus irulate around the Sun with the same meanfrequeny �5 (Milani and Nobli, 1985).4.2 SECULAR PERTURBATIONSTo improve the omputation of a long term solution of an Hamiltonian suh as(4.1) we need to take into aount both e�ets ontaining "2 and e�ets of degree 2in the ation variables �0 (that is, of degree 4 in the eentriities and inlinations);whih of the two is most important will of ourse depend upon the problem.The seond order (that is, O("2)) e�ets an arise in two di�erent ways: inthe elimination of the longitudes and in the solution of the seular perturbationequations. The transformation de�ned by the generating funtion � = "�1+ "2�2+: : : has many seond order terms; the most important e�ets do not atually arisefrom the seond order part of �, but from the fat that a Lie transformation is notlinear in the generating funtion. Let us take as an example the variables �, thatis essentially the semimajor axes: after elimination of the longitudes, the �0 areonstant, and the � are given by formulas suh as (2.30):



Andrea Milani 36� = �0 � "f�0; �1g+ 12"2ff�0; �1g; �1g � "2f�0; �2g+ : : : == �0 + "��1��0 � 12"2f��1��0 ; �1g+ "2 ��2��0 + : : : (4:15)To assess the relevane of the di�erent parts of (4.15) we have to take intoaount that � is short{periodi, that is � = 0; if we ompute the long{periodi partof �, all the parts of (4.15) linear in � do not ontribute, while the quadrati partsan give rise to beat terms, beause �1 and ��1=��0 ontain terms with the samefrequeny whose Poisson braket has a long periodi part:� = �0 � 12"2f��1��0 ; �1g+ : : : (4:16)These seular perturbations of the semimajor axes ontain only the seular frequen-ies �i and are not neessarily very small. Sine the Fourier oeÆients of �1 arederived from equations (4.5), they ontain the divisors Æ = n � j + � � k; the seondorder part in (4.16) ontains one fator of 1=Æ from �1, one from ��1=��0 and afurther fator 1=Æ arising from the derivative of 1=Æ with respet to �0 ourring inthe Poisson braket; thus the order of magnitude is "2�dÆ�3 if the divisor Æ has aD'Alembert harateristi d =Pi ji. If d is small, as in the ase in whih the ratioof two mean motions an be approximated by a fration (m + d)=m with small d,even a shallow resonane with a Æ of the order of "1=3 an produe a large e�et.For details on the alulations of these seular perturbations on the semimajor axessee Milani et al. (1987).The short periodi terms from ��1=��0 have order of magnitude "�d=2Æ�1,and if Æ is of the order of Sqrt�d" the seond order terms are atually larger, whihmeans that the expansion in powers of " is not performed in the right way: this deepresonane ase must be solved in a very di�erent way (see Henrard, this volume andFerraz{Mello, this volume).Of ourse the same e�ets our in the variables �, that is in the eentriitiesand inlinations; however, these variables are of the form � = �0+O(") and the �0,solution of the seular perturbation equations, are not onstant at all, but undergohanges whose order of magnitude depends only upon the size of the proper ationvariables �� (see (4.14)). This ours beause the derivatives of the �0 are O("),but the frequenies of the seular osillations are � = O(") and the periods O(1="),thus the amplitude of the osillations is of order zero in ". In other words, theamplitude of the osillations in the eentriities and the inlinations of some orbitis ontrolled by the eentriities and inlinations of the orbits of the other planets,not by the planetary masses. Thus the free osillations desribed by equations suhas (4.14) are more important that the seond order e�ets due to the removal of thelongitudes, and even than the �rst order short periodi e�ets unless the eentriitesand inlinations are all very small.The other kind of seond order e�ets an be more important for the een-triities and inlinations: again sine the Lie transform is not linear in �, beat termsof the seond order an appear in the transformed Hamiltonian H 0;



Perturbation methods 37T�H = H 0 = H0 + "H1 � 12"2fH1; �1g+ : : : (4:17)and the beat terms assoiated with a divisor Æ of harateristi d will have order ofmagnitude "2�dÆ�2, whih is small outside deep resonane. However, the �rst orderterms have order of magnitude "�, and for d = 1 (that is, lose to a resonane like2/1, 3/2, et.) the ratio of the seond order terms to the �rst order terms is "Æ�2:even for a very shallow resonane the ontribution an be important. These seondorder orretions to the seular Hamiltonian were �rst omputed by Yuasa (1973)for the asteroid problem and by Bretagnon (1974) for the major planets. There areases in whih the most signi�ant improvement with respet to the lassial linearperturbation theory of the �rst order (in ") is a seond order linear theory, that isthe oeÆents Ars in (4.10) are omputed not only from the �rst order part "H1 butalso inluding the ontribution of the seond order beat terms; the orrespondingseular frequenies � an hange by a omparatively large amount. This tehniqueis used in Milani and Kne�zevi� (1989).The e�ets of the terms of degree four in the eentriities and inlinations(that is, of degree 2 in the �0) an be omputed by a tehnique of elimination of theangles �� based again on the formalism of Lie series (see Yuasa, 1973; Message, 1976;1982; Milani et al., 1987; for a di�erent formalism, see also Bretagnon, 1974). For thispurpose, let us assume that the seular perturbation Hamiltonian H 0 is expressedas a sum of homogeneous polynomials as in (4.9); eah homogeneous omponentan be expressed as a funtion of the proper modes (w; z) (sine the transformationbetween (x; y) and (w; z) is linear, the degree does not hange), and in turn (w; z)an be expressed as a funtion of the proper ation{angle variables (��;��):H 0 =H0 +H 02(w; z) +H 04(z; w) + : : : ==H 00 + � ��� +Xk k(��) os(�� � k) (4:18)Careful examination of (4.18) shows that H 00 does not matter, sine it ontainsneither �� nor ��; H 02 beomes trivial when expressed as a funtion of (��;��) beausethese are the ation{angle variables used to solve the problem with Hamiltonian H 02;and the problem is to perform a new hange in oordinate suh that the angles ��are removed from H 04. We have to stress again that both H 02 and H 04 may ontainalso the O("2) ontribution.Thus it is enough to �nd a �0 = �04 + �06 + : : : suh that:F 0� : (��;��) 7�! (���;���) ; T�0H 0 = H 00(���) (4:19)To degree 4 it is enough to �nd the part �04 homogeneous of degree 4 (in (w; z)): thisbeause of the rule on the degree of the Poisson braket (in Poinar�e{type variables):deg(ff; gg) = deg(f) + deg(g)� 2.



Andrea Milani 38T�04H 0 = H 02 + [H 04 � fH 02; �04g℄ + : : : (4:20)and the proedure follows the same lines of the one of Setion 2.4: we de�ne anoperator L2 and a deomposition of eah funtion into the part with and withoutthe angles �� (whih we shall denote again with a bar and a tilde, although themeaning of these symbols is not the same as in Chap. 2):L2g = fh02; gg = �� � �g��� ; H 04 = H 04 + ~H 04 (4:21)Then the part of degree 4 of the new hamiltonian H 00 and the equations to be solvedfor �04 are: H 004 = H 04 ; in Ker L2L2�04 = ~H 04 ; in ImL2 (4:22)and the new nonlinear proper elements (���;���) obtained by the transformationF�0 are known funtions of time:��� = onst ; ��� = ��t+ ���(0) (4:23)where the new fundamental frequenies �� are obtained from the new HamiltonianH 00, or at least from its degree 2 and degree 4 parts whih have been expliitlyomputed: �� = �H 00���� (���) = �(H 002 +H 004 )���� (���) = � + �H 004���� (���) (4:24)At the end of this proedure, we an say that the solution is ompletelyknown up to all the e�ets arising from terms of degree 4 in the eentriites andinlinations, sine the ordinary orbital elements an be omputed by reversing allthe hain of transformations, that is by omputing:[1℄ (���;���) �! (��;��) by the Lie series de�ned by ��04;[2℄ (��;��) �! (�0;�0) by means of the linear transformation B, that is esssen-tially by (4.14) and (4.8);[3℄ (�0;�0) �! (�;�) by adding the short periodi perturbations with the Lieseries de�ned by ��Sine all this sequene is long and tedious, but the algorithm is straightforward,one ould think that the problem an be solved up to order 2 and degree 4 (or, forthat matter, up to any order and degree suh that the expansions and the Poissonbrakets an be omputed with a reasonable e�ort, possibly with the use of algebraimanipulation languages). Unfortunately, the real solution annot be obtained in thisoneptually simple way.



Perturbation methods 394.3 THE PROPER ELEMENTS MAPTo better understand the essential diÆulty in the alulation of higher de-gree proper elements, let us assume that the elimination of the longitudes has beenperformed suessfully (to order "2) and that the seular perturbation Hamiltonianhas been expanded in powers of the linear proper elements: to be able to drop mostof the stars, primes, et. we hange notation and assume the linear proper elementsare (�; I) and the seular Hamiltonian is K:K = K(�; I) =Xk �kIk +Xj K(4)j (I) os(j � �) (4:25)where we assume that K(4)j is homogeneous of degree 2 in the ations I, thus thesum over the multiindex j is extended only to degree 4 (that is, jjj = P jjkj � 4),and all the higher degree terms are negleted. It is easy (in priniple) to extrat thepart of K whih does not depend upon the angles �:K� = K�(I) = � � I +K(4)0 (I) (4:26)Then the algorithm desribed in the previous setion presribes to ompute a gen-erating funtion � satisfying the equation:f� � I;�g =Xj 6=0K(4)j (I) os(j � �) (4:27)and a simple manipulation of Fourier series gives the fully expliit solution:�(�; I) = �Xj 6=0 K(4)j (I)j � � sin(j � �) (4:28)By taking the derivatives of �, the transformations to proper elements (��; I�) anbe omputed: let us indiate this transformation by:��� = �+ (�; I; �)I� = I + C(�; I; �) (4:29)where we have stressed the dependene of the transformation upon the values ofthe �rst approximation frequenies, whih appear in the generating funtion. Sineombinations of up to four frequenies appear in the generating funtion as divisors,the orretion (; C) an be very sensitive to the values of the �; if a resonanej � � = 0 ours, a transformation with the required properties annot be de�ned.However, the purpose of the transformation (4.29) is to exploit the expliit solutionof the problem in the starred variables, whih ontain the frequenies ��:I� = onst ; �� = �K�(I�)�I� ; �� = ��t+ onst (4:30)



Andrea Milani 40and of ourse �� 6= �, beause the degree four part of the Hamiltonian ontributesto the frequenies. Atually the rate of hange of �� as a funtion of the ationvariables is measured by the matrix omputed in (3.28). Then what happens ifthere is a resonane j � �� = 0 ?In this setting it is not diÆult to show that the problem is not di�erent fromthe one we have already disussed in Setion 3.4. The transformation (4.29) anbe de�ned, provided j � � 6= 0 for every j with 0 < jjj � 4, but what it gives isjust the �rst approximation to a series whih is divergent; the true solution of theequations of motion is obtained by the map going in the opposite diretion, fromproper elements (��; I�) suh that ��(I�) is non{resonant in some strong sense to aninvariant torus in the (�; I) spae: as in Setion 3.2, we an expliitly ompute the�rst approximation to this map and �nd for the generating funtion �� the solution:��(��; I�) = +Xj 6=0 K(4)j (I�)j � �� sin(j � ��) (4:31)where two hanges only our with respet to (4.28): the opposite sign and the useof starred variables (arising from the fat that the map has to go in the oppositeway, and in the Hori method this is obtained by hanging the sign), and the use ofthe orreted frequenies �� in the divisors. Thus the analogous of (4.29) is:�� = �� � (��; I�; ��)I = I� � C(��; I�; ��) (4:32)with the same funtions (; C) (they are funtions with the same analytial expres-sion, omputed on di�erent variables). The same arguments used in Setion 3.4show that (4.32) is the right solution (or at least a �rst approximation to it), while(4.29) is not. If a spei� divisor j � � is small, and has opposite sign from j � ��, theorresponding term in � is large and has the `wrong' sign, that is the opposite signwith respet to the orresponding term in ��. Although this does not neessarilyour for a given (�; I), it is bound to our for some hoies of the initial onditions(�; I) and of the frequenies � (that is, of the semimajor axes).The potential dangers of the approximation involved in using the linear fre-quenies � in the solutions of seular perturbation problems have been known sinea long time; the unreliability of this approximation beame unaeptable only whenformulas suh as (4.29) have been used to systematially map a large portion of thephase spae into the proper elements phase spae.A solution to this diÆulty has been proposed only reently (Milani andKne�zevi�, 1989; Kne�zevi� and Milani, 1989); the idea is to use (4.32) instead of(4.29) to ompute the proper elements (��; I�). Sine (4.32) an be expliitly om-puted as a map (��; I�) �! (�; I) whih goes in the other diretion, the properelements have to be found by solving an impliit funtion problem. The impliitfuntion problem an be written in a �xed point form:



Perturbation methods 418<:�� = �+ (��; I�; ��)I� = I + C(��; I�; ��)�� = [�K�=�I�℄(I�) (4:33)whih an be solved by an iterative sheme as follows: as a �rst approximation, thedi�erene between proper and non proper elements is negleted:��0 = � ; I�0 = I ; ��0 = � + �K��I� (I�0 ) (4:34)then the suessive approximations are omputed by applying the map de�ned bythe right hand side of (4.33):8<:��N+1 = �+ (��N ; I�N ; ��N )I�N+1 = I + C(��N ; I�N ; ��N )��N+1 = � + [�K�=�I�℄(I�N ) (4:35)If the iteration sheme (4.35) onverges to some limit (��; I�; ��), then thislimit ful�lls equation (4.33) and �� is the set of fundamental frequenies to be usedin the solution of the seular perturbation equations. Of ourse this is only a �rstapproximation; in priniple, the orreted frequenies �� ould be used as a �rstapproximation for a further iteration whih takes into aount the terms of degree6, and so on.The study of this kind of \reverse KAM map" has just begun; it has notbeen proven that this in�nite sequene of iterations an atually onverge to a KAMtorus; we do not know yet how to estimate the error introdued by stopping theproedure at a given degree; even for a �xed degree, we do not know where theiteration sheme (4.35) onverges. However, experimental results obtained in theproblem of asteroid proper elements seem to indiate that this is a good way to go.ReferenesAbraham, R. and Marsden, J.D.: 1967, Foundations of Meahnis, BenjaminArnold, V.I. :1963, `Small denominators and problems of stability of motion in las-sial and elestial mehanis', Russian Mathematial Surveys 18, 85{191Arnold, V.I. : 1976, M�ethodes Math�ematiques de la M�eanique Classique, MIR,MosouArnold, V.I. and Avez, A.: 1968, Ergodi problems of lassial mehanis, BenjaminBenettin, G., Galgani, L. and Giorgilli, A.: 1984, `A proof of Kolmogorov theo-rem on invariant tori using anonial transformations without inversion', NuovoCimento79b, 201{223
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