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Outline

1. Current status of the Orbit14 software development:
recent implementations and improvements

• Relativistic framework for the fundamental dynamics and the
computation of the MORE observables range and range-rate

• Relativistic space-time coordinates transformations
• Iterative method for the computation of the observables

2. Mercury rotation model (work in progress)
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MORE observables and Dynamics

The observables of the MORE experiment are:

• The light time ∆t = tr − tt of the radar signal ( tt, tr are the transmit
and receive times), which is related to the range r, the distance between
the ground antenna and the spacecraft

• The Doppler frequency shift fD between the transmitted and the received
signal, which is proportional to the range-rate ṙ
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Notation

• xsat: Mercurycentric position of the satellite

• xM , xEM : Barycentric position of the Mercury and the Earth-Moon CoM

• xE: vector from the Earth-Moon CoM to the Earth CoM

• xant: position of the ground antenna w.r.t. the Earth CoM

4 / 25



Definition of the observables range and range-rate

The Euclidean range can be geometrically computed by:

ρ = |(xsat + xM ) − (xEM + xE + xant)|

while the total light time of the signal is the sum of the up-leg and down-leg
light times ∆t = ∆tup + ∆tdo:

c∆tup = |(xsat(tb) + xM (tb)) − (xEM(tt) + xE(tt) + xant(tt))| + Sup(γ)

c∆tdo = |(xsat(tb) + xM (tb)) − (xEM(tr) + xE(tr) + xant(tr))| + Sdo(γ)

where tb is the bounce time and S(γ) is the parametrized Shapiro effect.

Conventionally defining the observable range as

r(tr) ≡
c

2
(∆tup + ∆tdo) =

1

2
(ρup + Sup + ρdo + Sdo),

in order to compute the Doppler effect we need the time derivative of r w.r.t
the receive time tr:

ṙ =
1

2
(ρ̇up + Ṡup + ρ̇do + Ṡdo)
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Shapiro effect

The Shapiro correction for the computation of the range is (Moyer 2003):

S(γ) =
(1 + γ)µ

c2
ln

 

ρ1 + ρ2 + ρ + (1+γ) µ

c2

ρ1 + ρ2 − ρ + (1+γ) µ

c2

!

• µ is the gravitational parameter of the Sun

• ρ1 is the distance between the barycenter of the Sun and the transmitter
at the transmit time

• ρ2 is the distances between the barycenter of the Sun and the receiver at
the receive time

• ρ is the distance between the transmitter and the receiver

The Shapiro correction for the computation of the range-rate is:

Ṡ =
2(1 + γ)µ

c2

 

−ρ(ρ̇1 + ρ̇2) + ρ̇(ρ1 + ρ2 + (1+γ)µ

c2
)

(ρ1 + ρ2 + (1+γ)µ

c2
)2 − ρ2

!
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2-PN level correction is significant

The 2-PN corrective term (1 + γ)µ/c2 in the Shapiro effect formula is
significant for the MORE experiment:
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1-PN vs 2-PN model for the Shapiro effect: differences significant (∼ 10 cm)
near conjuction.
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Dynamics and Relativistic space-time coordinates

Dynamics with fixed parameters:

• The Geocentric dynamics of the antenna xant

It is given by the IERS model. It is expressed in a Geocentric
space-time reference system (GCRS), with time coordinate TDT
(Terrestrial Time).

• The E-M-barycentric dynamics of the Geocenter xE

It is given by the JPL ephemerides. It is expressed in a Solar
System Barycentric reference system (BCRS), with time coordinate
TDB. The Barycentric Dynamical Time is the time in which the
ephemerides are computed, it will be replaced by the new
Barycentric Coordinate Time TCB, based on the SI second.
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Dynamics and Relativistic space-time coordinates

Dynamics with parameters to solve for:

• The Mercurycentric dynamics of the Satellite xsat

It is computed by a suitable routine, the motion is expressed in a
Mercurycentric space-time reference system with time coordinate
TDM.

• The SS Barycentric dynamics of Mercury xM and of the
Earth-Moon barycenter xEM

It is computed by a suitable routine, the motion is expressed in a
SS Barycentric space-time reference system with time coordinate
TDB.
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Computation of xM and xEM

• Relativistic Lagrangian: corrective terms of Post-Newtonian (PN) order 1

in the small parameters
v2

i

c2
and G mi

c2 rij
.

• vi = |−→vi |: barycentric velocity of body with mass mi.
• rij = |−→rj −−→ri |: mutual distance, appearing in the metric of the

curved space-time.

L = LNEW + LGR

LGR =
1

8 c2

X

i

miv
4
i −

1

2 c2

X

i

X

j 6=i

X

k 6=i

G2 mi mj mk

rij rik

+

+
1

2 c2

X

i

X

j 6=i

G mi mj

rij

»

3

2
(v2

i +v2
j )−

7

2
(−→vi ·

−→vj )−
1

2 r2
ij

(−→rij ·
−→vi ) (−→rij ·

−→vj )

–
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Given the very large S/N ratio of the relativistic effects (see figure below), it is
possible to test general relativity to great accuracy:

• Parameterized Post-Newtonian (PPN) formalism: relativistic equations of

motion linearized with respect to the small parameters
v2

i

c2
and G mi

c2 rij
,

parameterized (with other relativistic effects) with constants having fixed
values in Einstein theory, e.g. γ, β, ζ, η, α1, α2;

• we solve for their value, together with the initial conditions and
instrumental parameters, in the orbit determination procedure.

(Milani et al., 2009, IAUS 261)
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Relativistic space-time transformations

The five vectors involved in the dynamics are computed at different times (the
epoch of the events) and in different space-time coordinates systems.

To perform the vector operations, all the vectors have to be converted to a
common suitable space-time reference system, e.g. a Solar System Barycentric
reference system (BCRS) with time TDB.

• xM , xEM and xE are already in a BCRS as provided by numerical
integration and external ephemerides.

• xant and xsat have to be converted to the BCRS from the Earth-centered
and Mercury-centered systems, respectively.

Note that the conversion of reference systems implies the conversion of both
the space and the time coordinates.
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Relativistic space-time transformations

Conversion of time coordinates

The differential equation giving the local time T (e.g. TDT or TDM) as a
function of the TDB time t is:

d T

d t
= 1 −

1

c2

»

U +
v2

2
− L

–

where U is the Newtonian gravitational potential generated by the other bodies
than the Earth or Mercury at the planet center, v is the SSB velocity of the
same planet and L is a suitable constant used to remove secular terms. In the
case of the Earth it’s L = LC = 1.48082686741 × 10−8.

The time scale TDB will be replaced in the planetary ephemerides by the new
TCB. When this happens, we will use a suitably defined Mercury Coordinate
Time TCM such that the conversion equation will be exactly the same as the
one for TDB to TDM.
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Relativistic space-time transformations

Conversion of space coordinates from Geocentric to BCRS:

The geocentric coordinates of the antenna are transformed into
TDB-compatible coordinates by:

x
TDB
ant = x

TDT
ant

„

1 −
U

c2
− LC

«

−
1

2

„

v
TDB
E · xTDT

ant

c2

«

v
TDB
E

where U is the gravitational potential at the geocenter (excluding the Earth
mass) and v

TDB
E is the barycentric velocity of the Earth.

v
TDB
ant =

»

v
TDT
ant

„

1 −
U

c2
− LC

«

−
1

2

„

v
TDB
E · vTDT

ant

c2

«

v
TDB
E

– »

dT

dt

–

.

The above formula contains the effect on the velocities of the time coordinate
change, which should be consistently used together with the coordinate change.
T is the local time for Earth, that is TDT, and t is the corresponding TDB
time.
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Relativistic space-time transformations

Conversion from Mercurycentric to BCRS:

The mercurycentric coordinates of the orbiter are transformed into
TDB-compatible coordinates by

x
TDB
sat = x

TDM
sat

„

1 −
U

c2
− LCmer

«

−
1

2

„

v
TDB
M · xTDM

sat

c2

«

v
TDB
M

where U is the gravitational potential at the mercurycenter (excluding the
Mercury mass) and LCmer is analogous to LC , but for the moment we have
set it equal to 0.

v
TDB
sat =

»

v
TDM
sat

„

1 −
U

c2
− LCmer

«

−
1

2

„

v
TDB
M · vTDM

sat

c2

«

v
TDB
M

– »

dT

dt

–

,

where in this case T is TDM, and t is TDB.

We have checked that the equations of motion for the S/C around Mercury do
not need relativistic terms, the important relativistic effects are hidden in the
coordinate transformations.
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Effect of the relativistic correction to the transformations
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The effect on the observables of the relativistic correction to the
space-time coordinates transformation for Mercury and the Earth
positions and velocities.
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Effect of the relativistic correction to the transformations
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The effect on the observables of the term dT/d t in the
transformation of the velocities of the Earth and of Mercury.
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Effect of the relativistic correction to the transformations

To allow for exchange of orbit data between MORE and ESOC/other
experiments we must agree on the space-time reference system. E.g., a mistake
in the time scale of the initial conditions can lead to a catastrophic error (large
enough to stop convergence of orbit determination).
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coordinate TDM or TDB for the time t0 of the satellite’s initial conditions.
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Computation of the observable range (I)

Once the five vectors are available at the appropriate times and in a consistent
BCRS system, the two different light-times, the down-leg ∆tdo = tr − tb and
the up-leg ∆tup = tb − tt are computed iteratively, using the following fixed
point equations (tr is known):

1. Computation of tb:

tb = tr −
1

c
|(xsat(tb) + xM (tb)) − (xEM(tr) + xE(tr) + xant(tr))| −

Sdo(γ)

c

2. Once tb = tb(tr) is computed, we can compute tt by the equation:

tt = tb −
1

c
|(xsat(tb) + xM (tb)) − (xEM (tt) + xE(tt) + xant(tt))| −

Sup(γ)

c
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Computation of the observable range (II)

The computed light-times are expressed in the time attached to the BCRS,
which is TDB. Thus these times have to be converted back in the time system
applicable at the receiveing station where the time measurement is performed,
which is TDT.

tr is already available in TDT, while tt needs to be converted back from TDB
to TDT. The difference between these two TDT times is ∆tTDT , from which
we can conventionally define the observable range:

r(tr) ≡
c

2
∆tTDT .

∆tTDT is significantly different from tr − tt in TDB, by an amount of the
order of 10−7 s, while the sensitivity of the BC MORE experiment is of the
order of 10−9 s.
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Computation of the observable range rate (I)

After the two iterations providing at convergence tb and tt are complete, we
can proceed to compute the range-rate. Derivating r = r(tr) w.r.t. the receive
time tr, we obtain:

ṙ =
c

2
(1 − ṫt) =

1

2
(ρ̇do + Ṡdo + ρ̇up + Ṡup)

The values ρ̇up and ρ̇do are given by the following implicit equations, using a
fixed point iteration method:

ρ̇do(tr) =
1

ρdo(tr)
[xMs(tb) − xEa(tr)] ·

»

ẋMs(tb)

„

1 −
ρ̇do(tr) + Ṡdo

c

«

− ẋEa(tr)

–

ρ̇up(tr) =
1

ρup(tr)
[xMs(tb) − xEa(tt)] ·

·

»

ẋMs(tb)

„

1 −
ρ̇do(tr) + Ṡdo

c

«

− ẋEa(tt)

„

1 −
ρ̇do(tr) + Ṡdo

c
−

ρ̇up(tr) + Ṡup

c

«–

where xMs = xM + xsat and xEa = xE + xant.
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Computation of the observable range-rate (II)

The computed range-rate, i.e. the quantity d tt/d tr, is expressed in the time
attached to the BCRS, which is TDB. Thus it has to be converted in the time
system applicable at the receiveing station on the Earth where the
measurements are performed, which is TDT.

Indicating with T the time scale TDT and with t the time scale TDB, we need
to compute:

d Tt

dTr

=
d Tt

d tt

d tt

d tr

d tr

dTr

.

The first factor follows directly from the time coordinate transformation, while
the third is obtained by the corresponding inverse transformation.

However, this correction is required only for consistency, since it has an order of
magnitude of 10−7 cm/s2 and it is negligible for the sensitivity of MORE.
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Derivatives for differential corrections

To build the differential corrector we need the partial derivatives of the
observables w.r.t. the parameters we want to solve for.

Let’s use as example the derivatives with respect to the S/C mercuricentric
state vector initial conditions, the others are similar.

The preliminary version of our proposed implementation consists of the
following formulas:

∂ r

∂ x0
sat

=
∂ r

∂ xsat

∂ xsat

∂ x0
sat

∂ r

∂ v0
sat

= 0

∂ ṙ

∂ x0
sat

=
∂ ṙ

∂ xsat

∂ xsat

∂ x0
sat

+
∂ ṙ

∂ vsat

∂ vsat

∂ x0
sat

∂ ṙ

∂ v0
sat

=
∂ ṙ

∂ xsat

∂ xsat

∂ v0
sat

+
∂ ṙ

∂ vsat

∂ vsat

∂ v0
sat

The second partial derivatives in each term are computed via numerical
integration of the Variational Equations (remember xsat = xsat(tb(t)) and
vsat = vsat(tb(t))).
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Derivatives for differential corrections

The first partial derivatives are computed by the following simple formulas:

∂ r

∂ xsat

=
1

2c

„

1

ρup

ρup +
1

ρdo

ρdo

«

∂ ṙ

∂ xsat

= −

»

1

ρup

„

ρ̇up

ρup

ρup − ρ̇up

«

+
1

ρdo

„

ρ̇do

ρdo

ρdo − ρ̇do

«–

∂ ṙ

∂ vsat

=

„

1

ρup

ρup +
1

ρdo

ρdo

«

which do not include the relativitic corrections to the space-time
transformations of coordinates. These corrections are not so important for the
corrector as they are for the simulator. The effect of a lower accuracy in the
partial derivatives is only a slowdown in the differential corrections iterative
process, not affecting the accuracy of the solution.
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Mercury rotation: status of work

We have received from our collaborators from the University of Namur,
Belgium, a prototype software for the computation of the rotation state of
Mercury in a self-consistent way, taking into account all the planetary
perturbations.

This routine is expected to generate the Mercury rotation state ephemerides as
a stack of rotation matrices at different times, to be eventually interpolated at
the required times.

The parameters involved in the dynamics and to solve for, are the geopotential
coefficients J2 and C22, the concentration coefficient C/MR2 and the factor
Cm/C (or, equivalently, the obliquity η and the libration in longitude amplitude
ǫ).

We are in the process of including this model in our software, replacing the
previous semiempirical model.
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