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1 Team

The MORE subteam working in Pisa to the Orbit Determination includes the follow-

ing people, mostly from the Department of Mathematics, University of Pisa:

1. Andrea Milani Comparetti (Professor) milani@dm.unipi.it

2. Giovanni-Federico Gronchi (Researcher) gronchi@dm.unipi.it

3. Alessando Rossi (ISTI, CNR, Pisa; Researcher) alessandro.rossi@isti.cnr.it

4. Giacomo Tommei (PostDoc) tommei@dm.unipi.it

5. Emanuele Latorre (Contract Researcher) emanuele.latorre@gmail.com

6. Stefano Cicalò (PhD student) stefano.cicalo@gmail.com

Our research group includes two more people, Fabrizio Bernardi and Davide Farnoc-

chia, who are not directly employed for BepiColombo but contribute to the overall

know how and infrastructure.
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2 Orbit determination and relativity
For the Relativity Experiment with the MORE data, we need to solve an orbit de-
termination problem with a relativistic model to some PN order (TBD), including all
the celestial bodies involved, namely the Earth, Mercury, and the MPO orbiter.

We do not handle a generic space-time, but the one where we are now. Thus we
must include solutions for the initial conditions of all the bodies large enough to
affect the measurements (at the expected level of accuracy of MORE).

We are here, eager to learn all the Relativity we need to use. However, the special-
ists of relativity need to understand the key problems in what we are doing, starting
from the main problem of orbit determination: rank deficiency.

Rank deficiency d means that the normal matrix of the equations we are solving in
a least squares fit has a kernel of dimension d, or an eigenvalue 0 of multiplicity
d. Of course this implies that the normal system cannot be solved, and because
of limited numerical accuracy even an approximate rank deficiency, that is d very
small eigenvalues, is a problem. We shall first show this problem in the Newtonian
case and its solutions.

PLAN:

2.1 Lagrangian formulation

2.2 Integrals of motion and rank deficiency
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2.1 Lagrangian formulation

Hereafter we shall follow the notation of Moyer (2003):

−→ri j = −→r j −
−→ri , ri j =

∣

∣

−→ri j
∣

∣ , −→ai j = −̈→r j −
−̈→ri = −→a j −

−→ai
−→vi j = −̇→r j −

−̇→ri = −→v j −
−→vi , vi j =

∣

∣

−→vi j
∣

∣

for i, j = 0,N, where 0 refers to the Sun, and use a Lagrangian formalism. The

Newtonian N+1-body equations of motion are derived from a Lagrange function

LNEW =
1
2∑

i
µi v

2
i +

1
2 ∑

i
∑
j 6=i

µiµj

ri j
.

The usual Lagrangian is multiplied by G, thus only the gravitational masses µi =

Gmi appear in the overall Lagrangian; indeed the gravitational constant cannot

be determined by any form of orbit determination (apart artificial systems). By

Noether’s theorem the symmetry of the Lagrangian with the isometry group of R3

implies 9 integrals of motion. The 3-parameter group of symmetries −→r j −→
−→r j +

h, h ∈ R3 results in the vector integral of total linear momentum

−→
P = ∑

i

∂LNEW

∂−→vi
= ∑

i
µi
−→vi .
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2.2 Integrals of motion and rank deficiency
The linear motion of the center of mass (barycenter?) of the N+1-body system

−→
b (t) =

1
M ∑

i
µi
−→ri (t) =

1
M

−→
P t +

−→
b (0)

with M = ∑i µi. This implies that an orbit determination using as observations
range/range-rate and angles between planets and a stellar reference frame, has a
rank deficiency of 6: position and velocity of the barycenter are not observable.

There is only one solution to this problem, descoping, which can be obtained in
two ways: either (1) the center of mass is assumed to be fixed, e.g.,

−→
b (t) = 0,

or (2) it is constrained to remain fixed, by adding a priori observations of the form
−→
b (0) = 0±σ and

−̇→
b (0) = 0±σ, with a very small a priori uncertainty σ.

With solution (1) the equation of motion of the Sun is removed, and the position of
the Sun is computed from the center of mass, that is −→r0 is replaced by −→s with

−→s = −
1
M

N

∑
i=1

µi
−→ri .

By the same argument, the rotation group of symmetries implies the integral of total
angular momentum, and if the observations where only range/range-rate between
planets the rank deficiency would be of order 9.
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3 Lagrangian formulation for PN Relativity

PLAN:

3.1 Center of mass in PN relativity

3.2 Three-body effects and oblateness of the Sun

3.3 Gravitational constant and mass of the Sun

3.4 Equations of motion for preferred frame effects

3.5 Violations of the strong equivalence principle
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3 Lagrangian formulation for PN Relativity

The equations of motion of GR, to Post-Newtonian order 1, can be deduced from

the relativistic Lagrangian

L = LNEW+LGR0+βLβ + γLγ

where γ,β are the Eddington parameters, both = 1 in GR, and LGR0 is the portion

without free parameters (apart from G, discussed later) (why?).

LGR0 =
1

8c2 ∑
i

µi v
4
i +

1

2c2 ∑
i

∑
j 6=i

∑
k6=i

µi µj µk

ri j rik
+

+
1

2c2 ∑
i

∑
j 6=i

µi µj

ri j

[

1
2

(v2
i +v2

j )−
3
2

(−→vi ·
−→v j )−

1
2

(−→ni j ·
−→vi )(

−→ni j ·
−→v j )

]

where −→ni j = −→ri j/ri j .

Lγ =
1

2c2 ∑
i

∑
j 6=i

µiµj

ri j
(−→vi −

−→v j )
2 , Lβ = −

1

c2 ∑
i

∑
j 6=i

∑
k6=i

µi µj µk

ri j rik
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3.1 Center of mass in PN Relativity
The relativistic Lagrangian L is also invariant by translation, thus by Noether’s the-
orem there is a vector integral

−→
P = ∑

i

∂L
∂−→vi

= ∑
i

µi
−→vi +∑

i

∂LGR0
∂−→vi

where the contributions from the derivatives of Lβ vanish and the ones from Lγ
cancel in the sum over i because they are antisymmetric. Thus

−→
P = ∑

i
µi
−→vi

[

1+
1
2

(vi

c

)2
−

Ui

2c2

]

−
1

2c2 ∑
i

∑
k6=i

µi µk
rik

(−→nik ·
−→vk)−→nik

Ui = ∑
k6=i

µk
rik

and the vector

−→
B = ∑

i
µi
−→ri

[

1+
v2
i

2c2−
Ui

2c2

]

is such that, neglecting PN order 2,

d
−→
B

dt
=
−→
P .
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3.1 Center of mass in PN Relativity (continued)

The relativistic analog of the total mass

M = ∑
i

µi [1+(v2
i −Ui)/(2c2)]

is an integral to order 1PN (because the PN order 1 term is the Newtonian energy

divided by c2), thus we can define the relativistic center of mass

−→
b =

−→
B /M

which is also a vector integral, and so is
−̇→
b . The rank deficiency problem is the

same as in the Newtonian case. To solve it, we can either set
−→
b (t) = 0 and solve

for the position of the Sun from the ones of the planets

−→s = −
1

µ0 [1+(v2
0−U0)/2c2)]

N

∑
i=1

µi

[

1+
v2
i −Ui

2c2

]

−→ri ,

and similarly for the velocity. As an alternative, the equation of motion may include

the one for the Sun, and a constraint on the center of mass can be added by

means of a priori observations: this is somewhat more complicated because the

constraints are nonlinear, but it is possible and the results must be the same.
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3.1 Center of mass in PN Relativity (example)

0 100 200 300 400 500 600 700 800
63

63.5

64

64.5

65

65.5

66
Differences between SUN position with or without GR formula

 time, days from arc beginning

di
ffe

re
nc

e,
 c

m

Distance (cm) between the barycentric position of the Sun, as computed by the

Newtonian formula, and the relativistic 1PN formula, for the same position of the
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3.1 Center of mass in PN Relativity (example)
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Differences in the orbit of Mercury due to the barycentric position of the Sun, as

computed by the Newtonian formula, and the relativistic 1PN formula, for the same

position of the planets.

12



3.1 Center of mass in PN Relativity (example)
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Differences in the orbit of Earth-Moon barycenter due to the barycentric position of

the Sun, as computed by the Newtonian formula, and the relativistic 1PN formula,

for the same position of the planets.

13



3.2 Three body effects and oblateness of the Sun
The contribution of the oblateness of the Sun is J2⊙ LJ2⊙ with

LJ2⊙ = −
1
2 ∑

i 6=0

µ0µi

r0i
(
R0
r0i

)2[3(n0i · e0)
2−1]

where R0 is the radius of the Sun, and e0 is the unit vector along the rotation axis
of the Sun. The unit vector eo is given in standard equatorial coordinates J2000 in
Seidelmann et al. 2001: α0 = 286◦.13, δ0 = 63◦.87.

The main secular effect of the Sun’s oblateness is the precession of the orbit of
Mercury around the axis eo. However, β has a main effect which is a secular pre-
cession of the orbit of Mercury in its orbital plane (GR is isotropic). The angle
between spin axis of the Sun and the orbital angular momentum of Mercury be-
ing only ε = 3.◦3, thus cosε = 0.998 and Corr(β,J2⊙) = 0.997 in our previous
simulations of the Relativity experiment.

The results depend upon choices of the PPN parameters, especially from the pos-
sible use of the Nordtvedt equation, assuming a metric theory:

η = 4(β−1)− (γ−1)−α1−
2
3

α2

which removes the approximate symmetry between β and J2⊙, provided both γ and
η (SEP violation, see later) are known to ≃ 10−5.
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3.2 Three body effects and oblateness of the Sun (example)
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Perturbations on the orbit of Mercury due to β = 10−4 with a 2 years extended

mission: Red: transversal, Green: radial.
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3.2 Three body effects and oblateness of the Sun (example)
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Perturbations on the orbit of Mercury due to a change in J2⊙ by 10−8 with a 2 years

extended mission: Red: transversal, Green: radial.
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3.2 Three body effects and oblateness of the Sun (example)

0 100 200 300 400 500 600 700 800
−400

−300

−200

−100

0

100

200

300

Time (days)

M
er

cu
ry

 o
rb

it 
di

ffe
re

nc
e 

(c
m

)

Perturbations on the orbit of Mercury due to a change in J2⊙ by 2.19×10−8 and a

β = 10−4 with a 2 years extended mission. The correlation of the two transversal

perturbations is 0.996.
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3.2 Three body effects and oblateness of the Sun (the revenge
of astrophysics)

I have been recently warned by a senior astrophysicist (Steve Shore, Univ. of Pisa)

that the J2⊙ results from circulation of matter inside the Sun, which may change

during the 11.5 years cycle of solar activity.

If the value is J2⊙ ≃ 2× 10−7 and the Nordtvedt equation was applicable, with

good enough results on η, then according to the results of the previous simulations

we might be able to measure the difference in J2⊙ between one year and the next

with an accuracy better than 1% of the J2⊙ value. I neither know if such a change

is likely, nor know what is the status of the solar cycle when BC is in orbit around

Mercury.
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3.3 Gravitational constant and mass of the Sun
A goal very interesting, especially for cosmologists, would be to measure the time
variation of the gravitational constant G. From the orbit determination of the Moon
with laser ranging we know already that |Ġ/G| ≤ 4× 10−12/yr. The Lagrange
function terms are (Ġ/G) LĠ/G, where

LĠ/G =
t − t0

2 ∑
i 6= j

µi µj

ri j
,

but among these in practice the only terms with measurable effects are those with
Sun’s mass µ0 = µ⊙. Hence the parameter which can be determined and the
corresponding Lagrange function term are

ζ =
dµ⊙
dt

/µ⊙ , Lζ = (t − t0) ∑
i 6=0

µ0µi

r0i

and it is not possible to discriminate the change with time of G from change with
time of m⊙. What should be measured is ṁ⊙/m⊙ ≃ 2×10−13, due to mass shed
as radiation. A contribution of the same order is the mass of charged particles
emitted by the Sun, but the amount of the latter is poorly constrained, also be-
cause the flux of charged particles is not isotropic, thus the measurements from
the neighborhood of the Earth are not representative.
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Gravitational constant and mass of the Sun (example)
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Perturbations on the orbit of Mercury due to ζ = 10−13 with a 2 years extended

mission: Red: transversal, Green: radial.
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Gravitational constant and mass of the Sun (example)
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Perturbations on the orbit of the Earth-Moon barycenter due to ζ = 10−13 with a 2

years extended mission.
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Gravitational constant and mass of the Sun (example)
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Change in the signal due to ζ = 10−13 over 2 years. Above: range, the signal

could be detected. Below: range-rate, well below the sensitivity of MORE. This

signal is computed by assuming the initial conditions are not adjusted, the realistic

difference is different in shape and size.
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3.3 Gravitational constant and mass of the Sun (continued)

The main effect of a change of either the gravitational constant G or the mass of

the Sun m⊙ by a fraction 10−13 in one year is a quadratic perturbation along track,

growing to ≃ 50cm after two years for Mercury. If the range measurements contain

a time-dependent bias with a quadratic signature, this results in a systematic error

in the nominal solution for ζ. This argument was used to upgrade the requirements

for the instrument to be used in the BepiColombo radioscience experiment, which

now include an internal calibration loop to measure the transponder delay.

However, the determination of ζ from the orbit of Mercury is not a null experiment,

but one in which there is a predicted value, although not a very accurate one. For

changes in ζ of the order of few parts in 10−13 to discriminate between the new

physics of a change in G and the known change in m⊙ will be difficult.

The contribution of the change in µ⊙ to the motion of the center of mass:

d
−→
B

dt
=
−→
P + µ̇⊙−→s ,

d2−→B
dt2

= µ̇⊙−̇→s

is negligible: |−̇→s | ≤ 20 m/s, thus for µ̇⊙ ≤ 5× 10−13µ⊙ y−1 the acceleration is

≤ 2×103 5×10−13/3×107 ≃ 3×10−17 cm/s2, a change in velocity by 10−5 µ/s

in a year.
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3.4 Preferred frame effects

The preferred frame effects are described by the contribution

Lα = α1Lα1 +α2Lα2 ,

where

Lα1 = −
1

4c2∑
j

∑
i 6= j

µi µj

ri j

(−→zi ·
−→zj

)

.

The vector −→zi =−→w +−→vi is the velocity with respect to the preferred reference frame

(assumed to be that of cosmic microwave background).

Lα2 =
1

4c2∑
j

∑
i 6= j

µi µj

ri j

[(−→zi ·
−→zj

)

−
(−→ni j ·

−→zi
)(−→ni j ·

−→zj
)]

.

To apply again Noether’s theorem:

∂Lα
∂−→vi

= −
α1−α2

2c2 µi
−→zi ∑

j 6=i

µj

ri j
−

α2

2c2 ∑
j 6=i

µi µj

r3
i j

(−→r ji ·
−→zj )

−→r ji ,

−→
P α = ∑

i

∂Lα
∂−→vi
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3.4 Preferred frame effects (continued)

The Lagrangian L can be split into parts with and without the preferred frame effects

L = L0+Lα. The same is possible for the total linear momentum:

−→
P =

−→
P 0+

−→
P α ,

−→
P 0 = ∑

j

∂L0
∂−→v j

,

which is an integral, because also Lα is symmetric with respect to a constant trans-

lation. However, it is not invariant with respect to a time-dependent translation with

constant velocity, and there is no center of mass integral. That is, from

d
−→
P

dt
=

d
−→
P 0
dt

+
d
−→
P α
dt

= 0

we deduce the motion of the center of mass, defined ignoring Lα

M
−̈→
b =

−̇→
P 0 = −

d
−→
P α
dt

.

This leads to the choice of a non-inertial reference system, obtained ignoring the

preferred frame effects, which is accelerated.
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3.4 Preferred frame effects (continued)

The accelerated reference frame results in an apparent force, giving the same ac-

celeration on all the bodies:

−−→aapp= −
−̈→
b =

1
M

d
−→
P α
dt

,
d
−→
P α
dt

= α1 ∑
k

d
dt

∂Lα1

∂−→vk
+α2 ∑

k

d
dt

∂Lα2

∂−→vk

d
dt

∂Lα1

∂−→vk
= −

1

2c2 ∑
j 6=k

µj µk

rk j

[

−−→zj

−→rk j ·
−→zk j

r2
k j

+ −→a j
new

]

d
dt

∂Lα2

∂−→vk
=

1

2c2 ∑
j 6=k

µj µk

rk j

[

−−→zj

−→rk j ·
−→zk j

r2
k j

+ −→a j
new

]

+

−
1

2c2 ∑
j 6=k

µj µk

r3
k j

[

−3−→rk j
(−→nk j ·

−→zk j
)(−→nk j ·

−→zj
)

+

+ −→zk j
(−→rk j ·

−→zj
)

+−→rk j
(−→zk j ·

−→zj
)

+−→rk j
(−→rk j ·

−→a j
new)]
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3.4 Preferred frame effects (example)

A description of this effect has not been found in the literature. The non-existence

of the barycenter integrals is claimed (but we have found no formal proof).

The effect over 2 years of a the apparent force term associated with a preferred

frame effects α1 = 8×10−6, α2 = 10−6 has not been detected (within rounding

off).

The acceleration values found for the apparent force term are very small: 10−17

cm/s2. The formula should give exactly zero for −→w = 0, but we have not been able

to check this.

A common acceleration should not give equal effects on different planetary orbits.

However, there might be a partial cancellation.
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3.5 Violations of the strong equivalence principle
With the Lagrangian multiplied by G, the Newtonian kinetic energy is

T =
1
2∑

i
µi v

2
i ,

that is we assume that the inertial mass and the gravitational mass are the same
(at least exactly proportional). If some form of mass has a different gravitational
coupling, there are for each body i two quantities µi and µI

i , one appearing in the
gravitational potential (including the relativistic part) and the other appearing in the
kinetic energy. If there is a violation of the strong equivalence principle involving
body i, with a fraction Ωi of its mass due to gravitational self-energy

µi = [1+ηΩi]µ
I
i ⇐⇒ µI

i = [1−ηΩi]µi +O(η2)

with η a Post-Newtonian parameter for this violation. Neglecting O(η2) terms (also
O[η(γ−1)] etc.) this is expressed by a Lagrangian term ηLη where

Lη = −
1
2 ∑

i
Ωi µi v

2
i ,

with the effect of adding to the acceleration acting on body i:

−→ai = −→ai |η=0 [1+ηΩi] .
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3.5 Violations of the strong equivalence principle (contin ued)

Since the fraction of gravitational self-energy is much larger, Ω0 ≃ −3.5×10−6,

the largest effect of η is a change in the center of mass integral

−→
P = ∑

j

∂L
∂−→v j

= ∑
j

[1−ηΩi]µi
−→v j ,

d
−→
P

dt
= 0

and if we assume the center of mass is fixed at the origin

−→
b =

1
M

∑
j

[1−ηΩ j]µj = 0

the position of the Sun has to be corrected:

−→s =
−1

µ0 [1−ηΩ0]
∑
j 6=0

[1−ηΩ j]µj
−→r j .

This results in indirect perturbations on some planet j , e.g., Mercury, because the

Sun is displaced by ηΩ0µi ri/µ0. If i refers to Jupiter, the Sun is moved by Jupiter

by ≃ 0.005 AU ≃ 7×1010 cm, η = 10−5 corresponds to a shift by 3.5×10−6 ·

10−5 ·7×1010≃ 2 cm.
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3.5 Violations of the strong equivalence principle (contin ued)
The direct and indirect perturbations are

−→a j = (1+ηΩ j)





µ0

r3
j0

−→r j0+ ∑
i 6= j,0

µi

r3
ji

−→r ji + . . .



 ;

we compute the partial derivative of the acceleration for body j with respect to η:

∂−→a j

∂η
= Ω j





µ0

r3
j0

−→r j0+ ∑
i 6= j,0

µi

r3
ji

−→r ji



+µ0
∂

∂−→r0

[

µ0

r3
j0

]

∂−→r0
∂η

where the first term is the direct, the second the indirect (through the position of the
Sun) perturbation due to η 6= 0.

∂−→r0
∂η

= ∑
i 6=0

(Ω j −Ω0)
µi

µ0

−→ri

By combining together and discarding smaller terms with Ωi µi (with i 6= 0) or η

∂−→a j

∂η
= Ω j µ0

−→r j0

r3
j0

−Ω0
∂

∂−→r0

[

µ0

r3
j0

]

∑
i 6=0

µi
−→ri

with a direct (small parameter Ω j µ0) and an indirect part (small parameter Ω0µj).
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3.5 Violations of the strong equivalence principle (contin ued)

Orders of magnitude: on Mercury, the main term is from the Jupiter-Sun-Mercury

3-body problem, with negligible contribution from Ω1

∂−→a1
∂η

= −Ω0µ5
∂

∂−→r0

[

−→r0

r3
10

]

−→r5

with small parameter Ω0µ5/µ0 = −3.5×10−9 and the vector size of the order of

13×4 cm/s2.

On the Earth-Moon barycenter,

∂−→a3
∂η

= Ω3µ0

−→r30

r3
30

−Ω0µ5
∂

∂−→r0

[

−→r0

r3
30

]

−→r5

where the indirect term has small parameter Ω0µ5/µ0 and the vector size 5×0.6

cm/s. The direct term has small parameter Ω3µ0/µ0 = Ω3 ≃ −5× 10−10 and

vector size 0.6 cm/s2.
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3.5 Violations of the strong equivalence principle
Indirect part, acceleration, Mercury
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3.5 Violations of the strong equivalence principle
Indirect part, acceleration, Earth-Moon barycenter
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3.5 Violations of the strong equivalence principle
Indirect part, orbit, Mercury
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3.5 Violations of the strong equivalence principle
Indirect part, orbit, Earth-Moon barycenter
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3.5 Violations of the strong equivalence principle
Indirect part, range signal
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3.5 Violations of the strong equivalence principle
Direct part, acceleration, Mercury
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3.5 Violations of the strong equivalence principle
Direct part, acceleration, Earth-Moon barycenter

0 100 200 300 400 500 600 700 800
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−13 acceleration changes EMB, cm/s2

 time, days from arc beginning

re
d=

al
on

g 
tr

ac
k,

 g
re

en
=

ra
di

al
, b

la
ck

=
ou

t o
f p

la
ne

38



3.5 Violations of the strong equivalence principle
Direct part, orbit, Mercury
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3.5 Violations of the strong equivalence principle
Direct part, orbit, Earth-Moon barycenter
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3.5 Violations of the strong equivalence principle
Direct part, range signal
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3.5 Violations of the strong equivalence principle- conclu sions

That the order of magnitude of the signal is comparable to the accuracy of the mea-

surements is a necessary, but not sufficient, condition for achieving a good result in

the orbit determination. The figures we are showing are obtained by assuming the

same initial conditions, while in the real orbit determination the initial conditions are

adjusted, thus absorbing a good part of the signal. Still, if there is no signal even

with the same initial conditions, the experiment must fail.

In conclusion, indirect perturbations give a much larger signal for a given η, thus

before comparing results of the simulations we need to establish wether we agree

on the physiscs, and on its implementation in software: that is, we need to compare

these figures.

A new cycle of simulations, this time full scale and without shortcuts, will be possible

in the next year or so.
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4 Space-time reference systems

Not all implemented yet; some spatio-temporal coordinate changes written but not

yet tested properly. We discuss what we have.

PLAN:

4.1 Dynamical Mercury Time

4.2 Masses, harmonic coefficients and tides
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4.1 Dynamical Mercury Time

The relativistic equation of motion of a Mercury-centric satellite can be approxi-

mated to the required level of accuracy by a simpler equation of motion provided

the independent variable of the equation is the proper time of Mercury. Thus, for

the BepiColombo radioscience experiment, it is necessary to define a new time co-

ordinate Dynamic Mercury Time (TDM) containing terms of post-Newtonian order

1 depending mostly upon the distance from the Sun r10 and velocity v1 of Mercury.

The relationship with the TDB scale, truncated to post-Newtonian order 1, is given

by a differential equation

dtTDM

dtTDB
= 1−

v2
1

2c2 − ∑
k6=1

µk

c2r1k

which can be solved by a quadrature formula once the orbits of Mercury, the Sun

and the other planets are known.

Caution must be used also in the space portion of the spacetime coordinate change,

used to convert the spacecraft Mercury-centric orbit to solar system barycentric

frame.
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4.1 Dynamical Mercury Time (continued)
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TDM as function of TDB shows a drift due to the non-zero average of the PN1

term; it could be removed by a change of scale of the dynamic time and of the

mass of Mercury (defining a Mercury Time, TM). The periodic term, with the period

of Mercury’s orbit, is almost an order of magnitude larger than TT-TDB. The time

derivative of the periodic correction is ≃ 10−8, in computing the range-rate it is

multiplied by v1 ≃ 50 km/s, changing range-rate by up to 0.05 cm/s, ≃ 30 times

larger than the accuracy of range-rate with an integration time of 30 s.
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4.2 Mass, harmonic coefficients and tides
Cause Formula Parameters Value cm/s2

Mercury monopole GM'/r2 = F0 GM' 2.4 ·102

Mercury oblateness 3F0C20R2
'
/r2 C20 1.3 ·10−2

Mercury triaxiality 3F0C22R2
'
/r2 C22 7.8 ·10−3

Radiation pressure CRFPR CR 6.8 ·10−5

Thermal emission 4/9FPRα'∆T/T α',∆T 3 ·10−5

Sun tide 2GM⊙ r/r3
⊙ GM⊙ 2.3 ·10−5

Effect of ε1 (9/2)ε1F0C20R2
'
/r2 ε1C20 1.9 ·10−5

Effect of ε2 (9/2)ε2F0C22R2
'
/r2 ε2C22 3.3 ·10−6

Solid tide 3k2GM⊙R5
'
/r3

⊙ r4 k2 2.8 ·10−6

Mercury albedo CRFPR(1−α')R2
'
/(2r2) α',CR 2.7 ·10−6

Venus tide 2GM♀ r/r3
'♀

GM♀ 4 ·10−8

Relativistic Mercury F0GM'/(c2r) GM' 1.9 ·10−8

Accelerations acting on a spacecraft in orbit around Mercury, in a planetocentric

reference frame, with a = 3000km, A/M = 0.05cm2/g.
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4.2 Mass, harmonic coefficients and tides (continued)

In writing the code, we have assumed so far that the Mercury-centric equations

of motion are simply the Newtonian ones, provided the independent variable is

TDM. This need to be certified by the experts on relativity, taking into account the

requirements: that is, we are not interested in corrective terms which are far below

the level of accuracy in the measurement of the non-gravitational accelerations

acting on the orbiter.

As an example, the main relativistic term containing the mass of Mercury is negligi-

ble, as shown by the previous table. This does not prove that there are no relativistic

corrections in the equation of motion, besides the large ones which are hidden in

the change of time coordinate (which is equivalent to using a time-variable mass of

Mercury).

Thus we need an estimate of the orders of magnitude of the accelerations intro-

duced by a fully relativistic formulation of spherical harmonics, tides, etc. We also

need confirmation that, once the independent variable is TDM, the mass of Mer-

cury to be used in the equations of motion is constant to a good approximation (say

1 part in 109).
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5 Restricted ephemerides improvement

PLAN:

5.1 The angular momentum integrals

5.2 Equations of motion for Earth-Moon Barycenter

5.3 Asteroids and the ephemerides comparison problem
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5 Restricted ephemerides improvement
The level of accuracy of the measurements of MORE is incompatible with the use
of the current planetary ephemerides, which have been solved by using lower ac-
curacy measurmeents. It is less obvious, but true, that the data from MORE do not
allow to to improve globally the planetary ephemerides.

Of the 5 vectors used in light-time equation, −→x ant and −→x E can be assumed known:
their current knowledge cannot be improved by ranging to a Mercury orbiter. For
the orbit of the Moon it is more effective to measure the range to the Moon, as it is
done with lunar laser ranging . Both navigation satellites and VLBI give by far
more information on the antenna position and on the rotation of the Earth.

The position of the Earth-Moon CoM and the position of Mercury can certainly be
improved by the range measurements of MORE (the range-rate is less effective,
because it is more accurate than range only over time scales ≤ 30,000s).

The question is about the other planets. The Mercury-centric orbit of the spacecraft
is very weakly sensitive to the other planets. The orbit of the Earth-Moon CoM and
of Mercury might be enough sensitive to contribute information on where Venus and
Jupiter are; probably the main problem is confusion with the asteroid signal. For
now we have chosen to keep all the planets and satellites fixed at the ephemerides
position and solve only for Mercury and Earth-Moon CoM.
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5.1 The angular momentum integrals

As already discussed, the MORE observable range and range-rate are invariant

with respect to rotation of the orbits of both the Earth and Mercury (including the

orbit of the spacecraft). If the positions of the other planets and of the Moon are

read from the ephemerides, this symmetry is broken (also because of J2⊙).

However, the orbits of Mercury and E-M barycenter are only weakly coupled to

those of the other bodies, see the Roy-Walker small parameters: the short periodic

perturbation of Jupiter on the orbit of the E-M barycenter is a fraction ≃ 7×10−6

of the monopole potential of the Sun.

Thus the normal system has an approximate rank deficiency which would not pre-

vent the convergence of the solution but would decrease the accuracy, if not cured.

It is possible to fix three coordinates, but also to add a 3 priori observations pre-

venting all rotations of the initial conditions.

Another problem is the approximate symmetry from change of scale. It might be

necessary to constrain also the equal scaling of the initial conditions, by adding an

appropriate penalty and the corresponding a priori observation.

This part of the code has not been written yet, but we do not anticipate problems.
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5.2 Equations of motion for Earth-Moon Barycenter

The equations of motion given so far are for all planets (and some satellites, e.g.

the Moon). How can we compute the orbit of the Earth-Moon Barycenter −−→r⊕$?

Newtonian formula: given the mass ratio of the E-M system µ= µ⊕/µ$ ≃ 81

−−→r⊕$ =
µ

1+µ
−→r⊕+

1
1+µ

−→r$ , −−→a⊕$ =
µ

1+µ
−→a⊕+

1
1+µ

−→a$ .

In a relativistic framework, the accelerations −→a⊕,−→a$ contain the relativistic terms

from LGR0+βLβ + γLγ + . . ., but the center of mass of the E-M system is given by

a different mass ratio:

µGR=
(

µ⊕/µ$
)

[

1+
v2
⊕

2c2−
U⊕

2c2

]

·

[

1+
v2
$

2c2−
U$
2c2

]−1

.

The factors between square brackets in the relativistic mass ratio are close to 1

because the values of the velocities are v$/c≃ v⊕/c≃ 10−4 and of the potential

are U$/c2 ≃U⊕/c2 ≃ 10−8. Thus the two relativistic correction to the barycenter

are both of the order of 10−8 · 5,000 km = 5 cm in position and 10−8 ·0.5 km/s

= 5×10−3 cm/s.
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5.2 Equations of motion for Earth-Moon Barycenter (continu ed)

Moreover, the relative velocity of the the Moon with respect to the E-M barycen-

ter is only ≃ 0.5 km/s, the one of the Earth is just ≃ 6 m/s; the E-M distance is

just ≃ 1/400 AU. Thus, the relativistic correction cancel each other! An order of

magnitude estimate

|µGR/µ−1| ≤ 2×10−10 =⇒ |∆−−→r⊕$| ≤ 0.1 cm, |∆−−→v⊕$| ≤ 10−8 cm/s

In conclusion, the acceleration −−→a⊕$ does not need to be corrected for the relativis-

tic E-M barycenter.

Indirect oblation: the mutual attractions of Earth and Moon cancel out in −−→a⊕$,

although they are not along the direction of −−→r⊕$.
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5.3 Asteroids and the ephemerides comparison problem
One of the main problems in the validation of our software, and more generally in
whatever comparison of ephemerides, is due to the open-ended complexity of the
solar system dynamical structure. The solar system is an ∞-body problem: aster-
oids could be added in an arbitrary number (to a lesser extent, natural satellites).

The JPL ephemerides have been computed by including in the dynamical model
two sets of asteroids. The first set of N1 asteroids have each individual mass
solved in the solar system orbit fit. The second set of N2 asteroids have their mass
collectively estimated by assuming the volume is known, from a radius (extracted
from unspecified sources, probably IRAF) and three different densities estimated in
the fit for the three spectral superclasses C, S and M.

The JPL ephemerides do not contain Trans-Neptunian Objects, apart from Pluto,
which is not the most massive of these.

As an example, the recent DE421 JPL ephemerides contain N1 = 67 asteroids
with individually estimated masses and N2 = 276 asteroids with one of the three
estimated densities, which are (in g/cm3)

ρC = 1.093 , ρS= 3.452 , ρM = 4.221.

These values look a bit suspicious to experts of asteroid composition and porosity,
but a fit is a fit. Also some individually estimated masses are weird.
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5.3 Asteroids and the ephemerides comparison problem
67 asteroids perturbing Mercury
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Perturbations on the orbit of Mercury due to the 67 asteroids of DE421 with a

2 years extended mission: Red: transversal, Green: radial, Black: out of plane,

Purple: transveral with linear and quadratic trends removed.
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5.3 Asteroids and the ephemerides comparison problem
67 asteroids perturbing EMB
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Perturbations on the orbit of Earth-Moon barycenter due to the 67 asteroids of

DE421 with a 2 years extended mission: Red: transversal, Green: radial, Black:

out of plane, Purple: transveral with linear and quadratic trends removed.
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5.3 Asteroids and the ephemerides comparison problem
difference with DE421 for the Sun

0 100 200 300 400 500 600 700 800
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

4 Difference with JPL of Sun position (without asteroids)

 time, days from arc beginning

di
ffe

re
nc

e,
 c

m

Difference in the motion of the Sun between our propagation without asteroids

and DE421 with a 2 years extended mission: Red: distance. Note the size is

comparable to the relativistic change in the barycenter.
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5.3 Asteroids and the ephemerides comparison problem
67 asteroids, Mercury difference with DE421
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Difference between our model with the 67 asteroids of DE421 and the DE421

ephemerides, for Mercury, 2 years extended mission: Red: transversal, Green:

radial, Black: out of plane, Purple: transveral with trends removed.
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5.3 Asteroids and the ephemerides comparison problem
67 asteroids, EMB difference with DE421
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Difference between our model with the 67 asteroids of DE421 and the DE421

ephemerides, for relative position of EMB, 2 years extended mission: Red: transver-

sal, Green: radial, Black: out of plane, Purple: transveral with trends removed.
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5.3 Asteroids and the ephemerides comparison problem
67 asteroids, M-EMB difference with DE421
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Difference between our model with the 67 asteroids of DE421 and the DE421

ephemerides, for relative position of Mercury and EMB: Red: transversal, Green:

radial, Black: out of plane.
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5.3 Asteroids and the ephemerides comparison problem
67 asteroids perturbing the Sun
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Difference of the motion of the Sun with DE421, after implemeting the 67 asteroids

of DE421: Red: distance.
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5.3 Asteroids and the ephemerides comparison problem-
Conclusions?

We have implemented the N1 = 67 asteroids of DE421 in our dynamical model.
The discrepancy with DE421 decreases by more than an order of magnitude with

respect to the case without asteroids. However, it is still 3 to 4 orders of magnitude
larger than the MORE accuracy requirements.

What should we do next?

1. Implement the other N2 = 276asteroids of DE421?

2. Implement the asteroid model of DE405, for which the mass and volume data
are not completely available to us?

3. Implement TNO with known mass, changing the barycenter by hundreds of
km?

4. Investigate other simplifications contained in the JPL ephemerides model?

5. Investigate different implementations of GR?

6. Ignore these differences because they will not matter in the final fit?

7. Write the new software interface needed to use IMCCE ephemerides? Which

ones? With how many asteroids?
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6 Documentation System
Our documentation system:

• One source file for code and documentation

• Mathematical specifications in LATEX, in the source file; also test results, with
graphics

• Hypertext structure for module dependencies and subroutine calls

• Printable documentation automatically updated with software changes and
generated in real time

• Web-based documentation automatically updated available at

http://adams.dm.unipi.it/̃mercury/private/ (protected with password)

Technology:

• f95totex, Pdflatex, Latex2html

• Makefile-controlled generation of printable documentation for each separate
source file

• Perl scripts to add hyperlinks and to generate book structure

• A single command generating the full documentation (options for public/private
documentation)
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6.1 The certification procedure

One key difference between abstract, mathematical Celestial Mechanics and a ver-

sion of this discipline suitable to obtain reliable results with real data is the following.

Formal perturbation theory always use a truncation to some order in the small

parameters, such as in 1PM, 1.5PN, 2PN. The theories tend to be complete to

some order, and totally missing higher order terms.

Prcatically applicable theories need to be truncated to some order of magnitude.

Two terms of the same formal order, but with coefficients of a different order of

magnitude, do not have the same importance.

Example: in computing some relativistic coordinate change, there are 1PN terms

with U/c2, but the potential U contains a term with the mass of the Sun (order

of magnitude at the Earth: 10−8) and one with the mass of Mercury, ≃ 1.5×
10−7 times smaller. Thus there are 1PN terms which are negligible and must be

removed from the software, to avoid a terrible slowdown of the computations, with

no advantage in precision.

The opposite example is in the 2PN terms, which may be relevant under special

circumstances, such as the Shapiro effect in a Superior Conjunction Experiment

(see Tommei’s presentation). Some 1.5PN terms may also be important.
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6.1 The certification procedure (continued)

Thus, the certification procedure we are seeking requires the contribution from all

the team to check the following:

1. Are we using the good physics, that is the appropriate assumptions, e.g., on

what is previously known? E.g.: are the known masses gravitational masses?

2. Are we using the right mathematical formulae to express the physics? E.g.,

the Lagrange functions.

3. Are the equations we use properly derived? E.g., the equations of motion, the

variational equations, the time and coordinates changes?

4. Are the formulae, as given in the mathematical specifications, correctly im-

plemeted in software?

5. Are we using an adequate approximation, that is, are the effects of all the

neglected terms below the measurement sensitivity? This requires to compute

an order of magnitude estimate for whatever we neglect.

6. Are we neglecting what must be neglected, to avoid computational inefficiency

and unnecessary rounding off?
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6.1 The certification procedure (continued)

How we really would like the certification to be obtained and recoded?

A certification declaration is a statement which is written inside our single source

file, containing the name(s) of the checkers and the date, possibly some limitation,

e.g., checked equations but not the software.

We can make our omnicomprehensive documentation available online to the team

(with/without the sorce code?), and receive the declaration we can include. But all

this procedure needs to be formalized somehow.
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