# The MORE observables 

MORE Relativity Working Group

ROME, 16 February 2009

## Contents

Definition of observables

Shapiro effect

Observables computation

## Definition

The observables of the MORE experiment are the distance $r$ between the ground antenna and the spacecraft, and its time derivative $\dot{r}$. The range is computed using 5 state vectors:

$$
\begin{equation*}
r=\left|\left(\vec{x}_{s a t}+\vec{x}_{M}\right)-\left(\vec{x}_{E M}+\vec{x}_{E}+\vec{x}_{a n t}\right)\right|+S(\gamma) \tag{1}
\end{equation*}
$$

- $\vec{x}_{\text {sat }}$ : mercurycentric position of the satellite
- $\vec{x}_{M}$ : barycentric position of the CoM of Mercury
- $\vec{x}_{E M}$ : barycentric position of the Earth-Moon CoM
- $\vec{x}_{E}$ : vector from the Earth-Moon CoM to the CoM of the Earth
- $\vec{x}_{\text {ant }}$ : position of the ground antenna center of phase with respect to the CoM of the Earth
- $S(\gamma)$ : Shapiro effect.


## Range: fully Relativistic model vs Newtonian model



Differences in range using a fully Relativistic and a Newtonian model. The total $\Delta r$ is $4 \times 10^{7} \mathrm{~cm}$ and $\frac{\sigma_{r}}{\Delta r}=\frac{10}{4 \times 10^{7}}=2.5 \times 10^{-7}$

## Range rate: fully Relativistic model vs Newtonian model



Differences in range rate using a fully Relativistic and a Newtonian model. The total $\Delta \dot{r}$ is $50 \mathrm{~cm} / \mathrm{s}$ and
$\frac{\sigma_{\dot{r}}}{\Delta \dot{r}}=\frac{3 \times 10^{-4}}{50}=6 \times 10^{-6}$

## Shapiro effect: 1-PN level

(References: Moyer 2003)

$$
\begin{equation*}
S(\gamma)=\frac{(1+\gamma) \mu_{0}}{c^{2}} \ln \left(\frac{r_{r}+\vec{k} \cdot \overrightarrow{r_{r}}}{r_{t}+\vec{k} \cdot \overrightarrow{r_{t}}}\right)=\frac{(1+\gamma) \mu_{0}}{c^{2}} \ln \left(\frac{r_{e}+r_{r}+r}{r_{e}+r_{r}-r}\right) \tag{2}
\end{equation*}
$$

- $\frac{\mu_{0}}{c^{2}} \simeq 1.5 \mathrm{Km}$ is the Schwartzschild radius of the Sun
- $r_{e}=\left|\overrightarrow{r_{e}}\right|, r_{r}=\left|\overrightarrow{r_{r}}\right|$ are the heliocentric distances of the emitter and of the receiver
- $\vec{k}$ is the unit vector from the emitter to the receiver
- $r$ is the range



## Shapiro effect (1-PN level): range



Contribution of the Shapiro effect on the observable range: near superior conjuction the contribution is about
$2.5 \times 10^{6} \mathrm{~cm}=25 \mathrm{Km}$

## Improving the model

(study done in collaboration with David Vokrouhlicky)

Ranging to Vikings on the surface of Mars provided $\sim 10^{-3}$ constraint on $\gamma$ (Reasenberg et al. 1979). A more recent experiment using the Cassini spacecraft lead to $\sim 2.1 \times 10^{-5}$ result for $\gamma$ (Bertotti et al. 2003).

A preliminary study of the ranging to BepiColombo has led to hopes reaching $\leq 10^{-6}$ level of accuracy in $\gamma$ (Milani et al., 2002). With that, we need to revise necessary modelling tools, since the classical 1-PN monopole formula is insufficient.

We implemented two different levels of correction:

- 1.5-PN level (Will 2003, Klioner \& Peip 2003), taking into account the motion of the Sun
- 2-PN level (Moyer 2003), taking into account the bending of the light path


## Correction to $1.5-\mathrm{PN}$ level

(References: Will, Klioner \& Peip)
Taking into account a linear motion of the Sun

$$
\begin{equation*}
\overrightarrow{X_{\odot}}(t)=\overrightarrow{X_{0}^{i n i}}+\overrightarrow{v_{0}}\left(t-t_{r e f}\right) \tag{3}
\end{equation*}
$$

the Shapiro formula has to be corrected

$$
\begin{equation*}
S(\gamma)=\frac{(1+\gamma) \mu_{0}}{c^{2}}\left(1-\vec{k} \cdot \frac{\overrightarrow{v_{0}}}{c}\right) \ln \left(\frac{\left|\overrightarrow{g_{0}}\right| r_{r}+\overrightarrow{g_{0}} \cdot \overrightarrow{r_{r}}}{\left|\overrightarrow{g_{0}}\right| r_{e}+\overrightarrow{g_{0}} \cdot \overrightarrow{r_{e}}}\right) \tag{4}
\end{equation*}
$$

where

- $\overrightarrow{g_{0}}=\vec{\mu}-\frac{\overrightarrow{v_{0}}}{c}, \vec{\mu}$ is the unit vector tangent to the light ray at the emission
- $\left|\overrightarrow{g_{0}}\right|=1-\vec{k} \cdot \frac{\overrightarrow{v_{0}}}{c}+O\left(c^{-2}\right)$
$t_{\text {ref }}$ choice: Klioner \& Peip argue that the best is to use $t_{r e f}=t^{c a}$, time of the closest approach between the Sun and the unperturbed light ray



## Shapiro effect: 1PN vs 1.5PN


1.5PN correction added with little effort, but does not seem to be important, since it affects $\gamma$ at $<10^{-7}$ level (Will 2003, Kopeikin 2008,...)

## Discussion on 2-PN terms

A difficult issue is to determine 2PN-level terms in the Shapiro delay formula: here we present and we compare the corrections given by Moyer and Hellings

- Moyer (2003)

Moyer proposes to add a term

$$
\begin{equation*}
\frac{(1+\gamma) \mu_{0}}{c^{2}} \tag{5}
\end{equation*}
$$

both in the numerator and denominator of th argument of the natural logarithm.

$$
\ln \left(\frac{r_{e}+r_{r}+r}{r_{r}+r_{r}-r}\right) \rightarrow \ln \left(\frac{r_{e}+r_{r}+r+\frac{(1+\gamma) \mu_{0}}{c^{2}}}{r_{e}+r_{r}-r+\frac{(1+\gamma) \mu_{0}}{c^{2}}}\right)
$$

Evaluating the expression

$$
\frac{r_{e}+r_{r}+r+\frac{(1+\gamma) \mu_{0}}{c^{2}}}{r_{e}+r_{r}-r+\frac{(1+\gamma) \mu_{0}}{c^{2}}}
$$

near the conjuction configuration we got the approximation for the 2PN correction to the Shapiro formula

$$
\begin{equation*}
S_{2 P N}^{M o y} \approx \frac{(1+\gamma) \mu_{0}}{c^{2}} \cdot \ln \left(1-\frac{2 r_{r} r_{e}}{b^{2}} \frac{\left.(1+\gamma) \mu_{0}\right)}{c^{2} r}\right) \approx-(1+\gamma)^{2}\left(\frac{\mu_{0}}{c^{2} b}\right)^{2} \frac{2 r_{r} r_{e}}{r_{r}+r_{e}} \tag{6}
\end{equation*}
$$

This result has been obtained also by Teyssandier et al and Klioner \& Zschocke (2008).

- Hellings (1986) Hellings added a more complicated term of 2-PN level

$$
\begin{equation*}
S_{2 P N}^{H e l}=\frac{1}{2}(1+\gamma)^{2}\left(\frac{\mu_{0}}{b c^{2}}\right)^{2}\left[r\left(1+\frac{\left(\vec{k} \cdot \overrightarrow{r_{e}}\right)^{2}}{r_{e}^{2}}\right)+2\left(\vec{k} \cdot \overrightarrow{r_{e}}\right)\left(1-\frac{r_{r}}{r_{e}}\right)\right] \tag{7}
\end{equation*}
$$

which in the conjuction approximation becomes

$$
\begin{equation*}
S_{2 P N}^{H e l} \approx(1+\gamma)^{2}\left(\frac{\mu_{0}}{c^{2} b}\right)^{2} 2 r_{r} \tag{8}
\end{equation*}
$$

Considering the ratio between the 2-PN terms of Moyer and Hellings we have

$$
\frac{S_{2 P N}^{M o y}}{S_{2 P N}^{H e l}}=-\frac{r_{e}}{r_{e}+r_{r}} \quad \frac{S_{2 P N}^{M o y}-S_{2 P N}^{\text {Hel }}}{S_{2 P N}^{M o y}} \approx \frac{12}{5}
$$

## Shapiro effect: 1PN vs 2PN



Differences in range using 1-PN model or 2-PN model for the Shapiro effect (we used the Moyer formulation and a minimum impact parameter $b=3 \mathbf{R}_{\odot}$ ): they are significant ( $\sim 10 \mathrm{~cm}$ ) near conjuction. The difference with Hellings formulation is larger by a factor $\simeq 2.4$. For larger values of $b$ the effect decreases as $1 / b^{2}$.

## Range computation

$$
r=\left|\left(\vec{x}_{\text {sat }}+\vec{x}_{M}\right)-\left(\vec{x}_{E M}+\vec{x}_{E}+\vec{x}_{a n t}\right)\right|+S(\gamma)
$$

The 5 vectors have to be computed at the epoch of different events:

- $\vec{x}_{\text {ant }}, \vec{x}_{E M}$ and $\vec{x}_{E}$ at both the antenna transmit time $t_{t}$ and the receive time $t_{r}$ of the signal
- $\vec{x}_{M}$ and $\vec{x}_{\text {sat }}$ at the bounce time $t_{b}$, when the signal has arrived to the orbiter and is sent back, with corrections for the delay of the transponder.

Two different light-times:

- UP-LEG

$$
\Delta t_{u p}=t_{b}-t_{t}+\Delta_{u p}
$$

for the signal from the antenna to the orbiter

- DOWN-LEG

$$
\Delta t_{d o}=t_{r}-t_{b}+\Delta_{d o}
$$

for the return signal from the orbiter to the antenna
The two corrective terms $\Delta_{u p}, \Delta_{d o}$ account for the Post-Newtonian corrections to the two different time scales, see later.

Given the vector differences down-leg and up-leg with their Shapiro effects

$$
\begin{gathered}
\overrightarrow{r_{d o}}\left(t_{r}\right)=\vec{x}_{\text {sat }}\left(t_{b}\right)+\vec{x}_{M}\left(t_{b}\right)-\vec{x}_{E M}\left(t_{r}\right)-\vec{x}_{E}\left(t_{r}\right)-\vec{x}_{a n t}\left(t_{r}\right) \\
\overrightarrow{r_{u p}}\left(t_{r}\right)=\vec{x}_{s a t}\left(t_{b}\right)+\vec{x}_{M}\left(t_{b}\right)-\vec{x}_{E M}\left(t_{t}\right)-\vec{x}_{E}\left(t_{t}\right)-\vec{x}_{a n t}\left(t_{t}\right) \\
r_{d o}\left(t_{r}\right)=\left|\overrightarrow{r_{d o}}\left(t_{r}\right)\right|+S_{d o}(\gamma), \quad r_{u p}\left(t_{r}\right)=\left|\overrightarrow{r_{u p}}\left(t_{r}\right)\right|+S_{u p}(\gamma),
\end{gathered}
$$

by definition of distance the light-times are

$$
\Delta t_{d o}=r_{d o} / c \quad \Delta t_{u p}=r_{u p} / c
$$

If the measurement is at the receive time $t_{r}$, iterative procedure needs to start from the down-leg:

1. we compute $\vec{x}_{E M}, \vec{x}_{E}$ and $\vec{x}_{\text {ant }}$ at $t_{r}$;
2. we estimate $t_{b}^{0}$ for the bounce time;
3. we compute $\vec{x}_{\text {sat }}$ and $\vec{x}_{M}$ at $t_{b}^{0}$ and a first guess $r_{d o}^{0}$;
4. we obtain a better estimate $t_{b}^{1}=t_{r}-r_{d o}^{0} / c$;
5. we repeat the prevoius steps computing $r_{d o}^{1}$, and so on until convergence that is, until $r_{d o}^{k}-r_{d o}^{k-1}$ is smaller than the required accuracy.

After accepting the last value of $t_{b}$ and $r_{d o}$ we start with another iterative procedure:
6. we compute the states $\vec{x}_{\text {sat }}$ and $\vec{x}_{M}$ at $t_{b}$;
7. we estimate $t_{t}^{0}$ for the transmit time;
8. we compute $\vec{x}_{E M}, \vec{x}_{E}$ and $\vec{x}_{\text {ant }}$ at epoch $t_{t}^{0}$ and $r_{u p}^{0}$ is given by up-leg formula,
9. we obtain a better estimate $t_{t}^{1}=t_{b}-r_{u p}^{0} / c$;
10. we repeat the same procedure until convergence, that is to achieve a small enough $r_{u p}^{k}-r_{u p}^{k-1}$.
Then the 2-way range is just

$$
r_{u p}+r_{d o} ;
$$

a 1-way range can be conventionally defined as

$$
r\left(t_{r}\right)=\left(r_{u p}+r_{d o}\right) / 2 .
$$

## Range rate computation

Let us examine how we compute the observable range rate for the down-leg (a similar procedure is used for the up-leg).
The range-rate is computed with the unit vector $\hat{r}_{d o}$ :

$$
\dot{r}_{d o}\left(t_{r}\right)=\hat{r}_{d o} \cdot \dot{\overrightarrow{r_{d o}}}+\dot{S}_{d o}(\gamma)
$$

In order to compute $\dot{r_{d o}}$, a first approximation uses the velocities for each of the 5 vectors, at the times $t_{r}$ and $t_{b}, t_{t}$ obtained at convergence of the light-time iterations

$$
\dot{\overrightarrow{r_{d o}}}=\left(\dot{\vec{x}}_{s a t}+\dot{\vec{x}}_{M}\right)-\left(\dot{\vec{x}}_{E M}+\dot{\vec{x}}_{E}+\dot{\vec{x}}_{a n t}\right)
$$

However, this neglects that $t_{b}, t_{t}$ depend on $t_{r}$ also through $r_{d o}, r_{u p}$

$$
\begin{gathered}
\frac{d t_{b}}{d t_{r}}=1-\frac{\dot{r}_{d o}}{c}+\frac{d \Delta_{d o}}{d t_{b}} \\
\frac{d t_{t}}{d t_{r}}=1-\frac{\dot{r}_{d o}}{c}-\frac{\dot{r}_{u p}}{c}+\frac{d \Delta_{d o}}{d t_{b}}+\frac{d \Delta_{u p}}{d t_{b}}
\end{gathered}
$$

The corresponding corrections to $\dot{\overrightarrow{r_{d o}}}$

$$
\dot{\overrightarrow{r_{d o}}}=\left(\dot{\vec{x}}_{s a t}+\dot{\vec{x}}_{M}\right)\left(1-\frac{\dot{r}_{d o}}{c}+\frac{d \Delta_{d o}}{d t_{b}}\right)-\left(\dot{\vec{x}}_{E M}+\dot{\vec{x}}_{E}+\dot{\vec{x}}_{a n t}\right)
$$

are large, the first term being $\mathcal{O}(\dot{r} / c)$; the one due to $\Delta_{d o}$ is smaller, but significant.
The improved value of $\dot{\overrightarrow{r_{d o}}}$ has to be inserted in the range-rate equation, the correction recomputed and so on until convergence of the value $\dot{r}_{d o}$. Note that also the computation of $\dot{S}_{d o}(\gamma), \dot{S}_{u p}(\gamma)$ requires corrections $\mathcal{O}(\dot{r} / c)$, because the time derivative is with respect to $t_{r}$.

Conventionally

$$
\dot{r}\left(t_{r}\right)=\left(\dot{r}_{u p}\left(t_{r}\right)+\dot{r}_{d o}\left(t_{r}\right)\right) / 2
$$

is the instantaneous value.
However, an accurate measure of a Doppler effect requires to fit the difference in phase between carrier waves, the one generated at the station and the one returned from space, accumulated over some integration time $\Delta$, typically between 10 and 1000 s . Thus the observable $\dot{r}$ is really obtained from a difference of ranges

$$
\frac{r\left(t_{b}+\Delta / 2\right)-r\left(t_{b}-\Delta / 2\right)}{\Delta}
$$

or, equivalently, an averaged value of range-rate over the integration interval, which can be computed with a quadrature formula:

$$
\frac{1}{\Delta} \int_{t_{b}-\Delta / 2}^{t_{b}+\Delta / 2} \dot{r}(s) d s
$$

The two methods are not equivalent because of rounding off.
For MORE the accuracy of range-rate measurements can be $3 \times 10^{-4} \mathrm{~cm} / \mathrm{s}$ (over an integration time of 1000 s ). Let us take an integration time $\Delta=30 \mathrm{~s}$, which is adequate for measuring the gravity field of Mercury. The accuracy over 30 s can be, by Gaussian statistics, $\simeq 3 \times 10^{-4} \sqrt{1000 / 30} \simeq 17 \times 10^{-4} \mathrm{~cm} / \mathrm{s}$.

The required accuracy in the difference $r\left(t_{b}+\Delta / 2\right)-r\left(t_{b}-\Delta / 2\right)$ is $\simeq 0.05$ cm . The distances can be as large as $\simeq 2 \times 10^{13} \mathrm{~cm}$, thus the relative accuracy in the difference needs to be $2.5 \times 10^{-15}$. This is not possible with standard double precision, with rounding off relative accuracy $2.2 \times 10^{-16}$ for a single operation.


The range-rate as average over the integration time of 30 s has been computed as range difference divided by the integration time. The difference due to a change by $10^{-11}$ of the $C_{22}$ coefficient is obscured by the rounding off. This can be fixed only by performing the light-time computation in quadruple precision.


The range-rate computed as an integral is smooth. The difference is due to a change by $10^{-11}$ of the $C_{22}$ harmonic coefficient and is marginally significant with respect to the accuracy (with integration time 30 s , about $17 \mu / s$ ). The only problem is that the Shapiro effect in range-rate needs to be accurately computed.

