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Definition

The observables of the MORE experiment are the distance r between the
ground antenna and the spacecraft, and its time derivative ṙ. The range is
computed using 5 state vectors:

r = |(−→x sat + −→x M ) − (−→x EM + −→x E + −→x ant)| + S(γ) (1)

•
−→x sat: mercurycentric position of the satellite

•
−→x M : barycentric position of the CoM of Mercury

•
−→x EM : barycentric position of the Earth-Moon CoM

•
−→x E: vector from the Earth-Moon CoM to the CoM of the Earth

•
−→x ant: position of the ground antenna center of phase with respect to the
CoM of the Earth

• S(γ): Shapiro effect.
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Range: fully Relativistic model vs Newtonian model
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Differences in range using a fully Relativistic and a Newtonian model. The total ∆r is 4 × 107 cm and
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= 2.5 × 10−7
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Range rate: fully Relativistic model vs Newtonian model
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Differences in range rate using a fully Relativistic and a Newtonian model. The total ∆ṙ is 50 cm/s and
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Shapiro effect: 1-PN level

(References: Moyer 2003)
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Shapiro effect (1-PN level): range
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Contribution of the Shapiro effect on the observable range: near superior conjuction the contribution is about

2.5 × 106 cm = 25 Km
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Improving the model

(study done in collaboration with David Vokrouhlicky)

Ranging to Vikings on the surface of Mars provided ∼ 10−3 constraint on γ
(Reasenberg et al. 1979). A more recent experiment using the Cassini
spacecraft lead to ∼ 2.1 × 10−5 result for γ (Bertotti et al. 2003).

A preliminary study of the ranging to BepiColombo has led to hopes reaching
≤ 10−6 level of accuracy in γ (Milani et al., 2002). With that, we need to
revise necessary modelling tools, since the classical 1-PN monopole formula is
insufficient.

We implemented two different levels of correction:
• 1.5-PN level (Will 2003, Klioner & Peip 2003), taking into account the

motion of the Sun

• 2-PN level (Moyer 2003), taking into account the bending of the light
path
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Correction to 1.5-PN level

(References: Will, Klioner & Peip)
Taking into account a linear motion of the Sun
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the Shapiro formula has to be corrected
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Shapiro effect: 1PN vs 1.5PN
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1.5PN correction added with little effort, but does not seem to be important, since it affects γ at < 10−7 level
(Will 2003, Kopeikin 2008,...)
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Discussion on 2-PN terms

A difficult issue is to determine 2PN-level terms in the Shapiro delay formula:
here we present and we compare the corrections given by Moyer and Hellings

• Moyer (2003)
Moyer proposes to add a term

(1 + γ) µ0

c2
(5)

both in the numerator and denominator of th argument of the natural
logarithm.
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near the conjuction configuration we got the approximation for the 2PN
correction to the Shapiro formula
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SMoy
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This result has been obtained also by Teyssandier et al and Klioner & Zschocke
(2008).

• Hellings (1986)
Hellings added a more complicated term of 2-PN level
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which in the conjuction approximation becomes
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Shapiro effect: 1PN vs 2PN
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Differences in range using 1-PN model or 2-PN model for the Shapiro effect (we used the Moyer formulation and a

minimum impact parameter b = 3 R⊙): they are significant (∼ 10 cm) near conjuction. The difference with

Hellings formulation is larger by a factor ≃ 2.4. For larger values of b the effect decreases as 1/b2 .
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Range computation

r = |(−→x sat + −→x M ) − (−→x EM + −→x E + −→x ant)| + S(γ)

The 5 vectors have to be computed at the epoch of different events:

•
−→x ant,

−→x EM and −→x E at both the antenna transmit time tt and the
receive time tr of the signal

•
−→x M and −→x sat at the bounce time tb, when the signal has arrived to the
orbiter and is sent back, with corrections for the delay of the transponder.

Two different light-times:

• UP-LEG
∆tup = tb − tt + ∆up

for the signal from the antenna to the orbiter

• DOWN-LEG
∆tdo = tr − tb + ∆do

for the return signal from the orbiter to the antenna

The two corrective terms ∆up, ∆do account for the Post-Newtonian corrections
to the two different time scales, see later.
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Given the vector differences down-leg and up-leg with their Shapiro effects

−→rdo(tr) = −→x sat(tb) + −→x M (tb) −
−→x EM (tr) −

−→x E(tr) −
−→x ant(tr)

−→rup(tr) = −→x sat(tb) + −→x M (tb) −
−→x EM (tt) −

−→x E(tt) −
−→x ant(tt)

rdo(tr) = |−→rdo(tr)| + Sdo(γ) , rup(tr) = |−→rup(tr)| + Sup(γ) ,

by definition of distance the light-times are

∆tdo = rdo/c ∆tup = rup/c

If the measurement is at the receive time tr, iterative procedure needs to start
from the down-leg:

1. we compute −→x EM , −→x E and −→x ant at tr;

2. we estimate t0b for the bounce time;

3. we compute −→x sat and −→x M at t0b and a first guess r0
do;

4. we obtain a better estimate t1b = tr − r0
do/c;

5. we repeat the prevoius steps computing r1
do, and so on until convergence

that is, until rk
do − rk−1

do is smaller than the required accuracy.
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After accepting the last value of tb and rdo we start with another iterative
procedure:

6. we compute the states −→x sat and −→x M at tb;

7. we estimate t0t for the transmit time;

8. we compute −→x EM , −→x E and −→x ant at epoch t0t and r0
up is given by up-leg

formula,

9. we obtain a better estimate t1t = tb − r0
up/c;

10. we repeat the same procedure until convergence, that is to achieve a
small enough rk

up − rk−1
up .

Then the 2-way range is just
rup + rdo ;

a 1-way range can be conventionally defined as

r(tr) = (rup + rdo)/2 .
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Range rate computation

Let us examine how we compute the observable range rate for the down-leg (a
similar procedure is used for the up-leg).
The range-rate is computed with the unit vector r̂do:

ṙdo(tr) = r̂do · −̇→rdo + Ṡdo(γ) .

In order to compute −̇→rdo, a first approximation uses the velocities for each of
the 5 vectors, at the times tr and tb, tt obtained at convergence of the
light-time iterations

−̇→rdo = (−̇→x sat + −̇→x M ) − (−̇→x EM + −̇→x E + −̇→x ant) .

However, this neglects that tb, tt depend on tr also through rdo, rup

dtb
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c
+
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dtb

dtt
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c
−

ṙup

c
+
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The corresponding corrections to −̇→rdo

−̇→rdo = (−̇→x sat + −̇→x M ) (1 −
ṙdo

c
+

d∆do

dtb
) − (−̇→x EM + −̇→x E + −̇→x ant)

are large, the first term being O(ṙ/c); the one due to ∆do is smaller, but
significant.

The improved value of −̇→rdo has to be inserted in the range-rate equation, the
correction recomputed and so on until convergence of the value ṙdo.

Note that also the computation of Ṡdo(γ), Ṡup(γ) requires corrections O(ṙ/c),

because the time derivative is with respect to tr.
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Conventionally
ṙ(tr) = (ṙup(tr) + ṙdo(tr))/2

is the instantaneous value.
However, an accurate measure of a Doppler effect requires to fit the difference
in phase between carrier waves, the one generated at the station and the one
returned from space, accumulated over some integration time ∆, typically
between 10 and 1000 s. Thus the observable ṙ is really obtained from a
difference of ranges

r(tb + ∆/2) − r(tb − ∆/2)

∆

or, equivalently, an averaged value of range-rate over the integration interval,
which can be computed with a quadrature formula:

1

∆

Z tb+∆/2

tb−∆/2

ṙ(s) ds
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The two methods are not equivalent because of rounding off.

For MORE the accuracy of range-rate measurements can be 3 × 10−4 cm/s
(over an integration time of 1 000 s). Let us take an integration time ∆ = 30 s,
which is adequate for measuring the gravity field of Mercury. The accuracy over
30 s can be, by Gaussian statistics, ≃ 3 × 10−4

p

1 000/30 ≃ 17 × 10−4 cm/s.

The required accuracy in the difference r(tb + ∆/2) − r(tb − ∆/2) is ≃ 0.05

cm. The distances can be as large as ≃ 2× 1013 cm, thus the relative accuracy

in the difference needs to be 2.5 × 10−15. This is not possible with standard

double precision, with rounding off relative accuracy 2.2 × 10−16 for a single

operation.
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The range-rate as average over the integration time of 30 s has been computed as range difference divided by the

integration time. The difference due to a change by 10−11 of the C22 coefficient is obscured by the rounding off.
This can be fixed only by performing the light-time computation in quadruple precision.

21 / 22



Observables Shapiro effect Observables computation

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−0.2

−0.1

0

0.1

0.2
Change in the observable

 time, seconds from arc beginning

R
an

ge
, c

m

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−4

 time, seconds from arc beginning

R
an

ge
−

ra
te

, c
m

/s

The range-rate computed as an integral is smooth. The difference is due to a change by 10−11 of the C22

harmonic coefficient and is marginally significant with respect to the accuracy (with integration time 30 s, about
17µ/s). The only problem is that the Shapiro effect in range-rate needs to be accurately computed.
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