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Outline of the experiment

• The estimation of Mercury’s polar axis direction (obliquity) and librations 
amplitude is based on multiple observations of some bright spots on its 
surface, by MPO’s Narrow Angle Camera (for a higher resolution) 

• An image correlation process is needed to get the basic observables used 
in the estimation procedures:

first the polar axis direction is estimated, by identifying a new 
reference frame, rotating with a constant angular velocity

then, the residual information contained in the observables, 
concerning Mercury’s librations, is used to estimate their amplitude 
(observed as a varying angular velocity of the Mercury body fixed 
reference frame)
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An example of Mercury’s surface with some “bright spots”
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t2

Generation of multiple observations of Mercury’s surface 

t1 ti
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Two images of the same bright spot on Mercury’s surface
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Correlation of the two images to get the bright spot position

In general:

• a rotation

• a translation

• a stretching

of the 2nd image is 

necessary to get the 

maximum correlation   
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Computing the bright spot relative position on each image
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Computing the J2000 (Mercury-centric) referenced vectors 
representing the bright spot position at different timetags

t2



– Mercury Rotational State 1st Team Meeting – AAS-I, Rome, 26 Feb. 2007    9/21
 

M   RE 

Summary of vectors computation

• Determine MPO’s position at both timetags
through the most accurate OD process;

• Obtain MPO’s attitude matrix at epochs;

• Compute the J2000 Mercury-centric vectors of 
image centers;

• Correlate pair of images to obtain bright spot’s 
position on each image and compute the 
displacement of the bright spot wrt the center of 
each image;

• Rotate the J2000 Mercury-centric vectors of image 
centers in the direction of the bright spot position 
to obtain the J2000 Mercury-centric vectors of the 
bright spot positions at epochs;
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Observables for obliquity and libration amplitude estimation

• The hypothesis is that all observables

(Δri),  generated at each successive pass 

on the same bright spot, are perpendicular 

to Mercury’s polar axis;

• Being all these vectors referenced to the 

Mercury centered J2000 inertial frame, 

they can be used to compute its rotation 

axis direction
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Estimation of Mercury’s polar axis direction
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The polar axis direction is represented by the unit vector 

Where ϕ (the phase of the obliquity) is known (Cassini’s state is assumed)

Where xi, yi and zi represent the coordinates of the differences vectors
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Estimation of Mercury’s polar axis direction (cont’d)
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Using the Least Squares method:

Which can be solved, using the SVD method, to get the “best” ε
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Estimation of the libration amplitude 

Each observation, once rotated back to the estimated Mercury body-fixed 
reference frame, gives a residual longitude differenceresidual longitude difference, which is a 
function of the libration libration phasephase and amplitudeamplitude:

( )0sinROT L REVt t tϕ ω ϕ ω= + −⎡ ⎤⎣ ⎦

For the libration of Mercury a simple model was assumed in the simulations, 
where the rotation angle about the polar axis is:
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Introduction of observation errors

Observation errors have been introduced in the numerical simulations,
to characterise the sensitivity of the estimation algorithms to non-
nominal conditions. The following errors have been considered:

• errors in the determination of MPO’s centre of mass 

• errors in the attitude determination and control system

• errors in the camera timing 

• errors in image cross-correlation process

• errors in SIMBIO-SYS camera inertial pointing due to MPO 
thermal deformations
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Errors in the determination of MPO’s centre of mass (1/2)
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The error Δrs on Mercury’s surface ranges from about 8 m to about 13 m

Errors in the determination of MPO’s centre of mass (2/2)
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Errors in the attitude determination and control system

α = [0, 360] deg

β = [0, 180] deg

γ ~ N(0, σ2
γ)

A randomly sampled rotation matrix is computed through
the Euler axis/angle parameterization
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Errors in the camera timing

• Timing errors of 1.E-3 s have been simulated, adding a positional 

error to the nominal vector, representing the position of MPO’s

center of mass

• The positional errors are directed along the local MPO’s velocity 

vector and quantized to +/-1.E-3*|v|

• Given MPO’s orbital velocities in the order of about 2 km/s the 

resulting error is in the order of  2 m
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Numerical simulations - parameter space

• Maximum altitude for landmarks imaging (600 Km, 900 Km)

• Minimum solar elevation angle for landmarks imaging (30°, 45°)

• Βeta angle: 0°, 20°, 35°, 50°, 70°, 90°

• Number of surface landmarks (50, 100, 200)

• Magnitude of systematic error (1”, 2”, 4”)

(300 Monte Carlo runs for each combination of parameters)
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ε εσ φ φσ

Mean and Standard Deviation of Obliquity and Libration (best case - β=0°)

Δα=1” 419.9” 0.49” 41.9” 0.89”

Δα=2” 420.0” 0.46” 41.9” 0.89”

Δα=4” 420.0” 0.51” 42.0” 0.92”

Mean and Std Dev - Obliquity and Libration for 
Different Error Models (β=0° H=600 Km E=30°)

(actual values: ε=420’’, φ=42”)
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Conclusions and Future Work 
• The rotational state (obliquity angle and libration amplitude) of 

Mercury can be estimated using the performance of three 
instruments plus S/C telemetry:

MORE and ISA for precise orbit determination
SIMBIO-SYS for hi-res image acquisition
S/C telemetry for the attitude matrix

• A dedicated S/W for the elaboration of the information listed
above has to be designed (and needs to be implemented);
a breadboard was developed for the simulations shown here;

• Comparison with the results obtained within the OD S/W (to be 
developed by group of the University of Pisa) is crucial to cross-
check the conclusions;

• Results obtained so far by means of simulations show the 
experiment is feasible and offers a high estimation accuracy;

• An accurate re-visitation of the simulations shown here is in order, 
using the new, updated information on the S/C from the contractor;
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Backup material
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100 Randomly sampled bright spots on Mercury surface
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Distribution of the multiple observations time difference (t2-t1) 
generated over a 1-year numerical simulation (β=0°)
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Time distribution of observations of Mercury’s libration (β=0°)


