

Mercury Orbiter Radio-science Experiment

The measurements of Mercury obliquity and physical librations with BepiColombo

L. less*, M. Mercolino†, P. Persi*, P.Tortora‡

** Dipartimento di Ingegneria Aerospaziale ed Astronautica Università La Sapienza, Roma, Italy*

† European Space Operation Centre – European Space Agency, Darmstadt, Germany

‡ DIEM – II Facoltà di Ingegneria, Università di Bologna, Forlì, Italy

Outline of the experiment

- \bullet The estimation of Mercury's polar axis direction (obliquity) and librations amplitude is based on multiple observations of some bright spots on its surface, by MPO's Narrow Angle Camera (for a higher resolution)
- • An image correlation process is needed to get the basic observables used in the estimation procedures:
	- \checkmark first the polar axis direction is estimated, by identifying a new reference frame, rotating with a constant angular velocity
	- \checkmark then, the residual information contained in the observables, concerning Mercury's librations, is used to estimate their amplitude (observed as a varying angular velocity of the Mercury body fixed reference frame)

An example of Mercury's surface with some "bright spots"

RE *st Team Meeting – AAS-I, Rome, 26 Feb. 2007 3/21*

Generation of multiple observations of Mercury's surface

RE *st Team Meeting – AAS-I, Rome, 26 Feb. 2007 4/21*

Two images of the same bright spot on Mercury's surface

RE *st Team Meeting – AAS-I, Rome, 26 Feb. 2007 5/21*

Correlation of the two images to get the bright spot position

In general:

- •a rotation
- a translation
- •a stretching

of the 2nd image is necessary to get the maximum correlation

Computing the bright spot relative position on each image

RE *st Team Meeting – AAS-I, Rome, 26 Feb. 2007 7/21*

Computing the J2000 (Mercury-centric) referenced vectors representing the bright spot position at different timetags

Summary of vectors computation

- Determine MPO's position at both timetags through the most accurate OD process;
- Obtain MPO's attitude matrix at epochs;
- Compute the J2000 Mercury-centric vectors of image centers;
- Correlate pair of images to obtain bright spot's position on each image and compute the displacement of the bright spot wrt the center of each image;
- Rotate the J2000 Mercury-centric vectors of image centers in the direction of the bright spot position to obtain the J2000 Mercury-centric vectors of the bright spot positions at epochs;

Observables for obliquity and libration amplitude estimation

- The hypothesis is that all observables $(\Delta \mathsf{r}_\mathsf{j})$, generated at each successive pass on the same bright spot, are perpendicular to Mercury's polar axis;
- Being all these vectors referenced to the Mercury centered J2000 inertial frame, they can be used to compute its rotation axis direction

Estimation of Mercury's polar axis direction

Where $x_i^{},\ y_i^{}$ and $z_i^{}$ represent the coordinates of the differences vectors

Estimation of Mercury's polar axis direction (cont'd)

– Mercury Rotational State 1

M

Estimation of the libration amplitude

For the libration of Mercury a simple model was assumed in the simulations, where the rotation angle about the polar axis is:

$$
\varphi = \omega_{ROT} t + \varphi_L \sin \left[\omega_{REV} \left(t - t_0\right)\right]
$$

Each observation, once rotated back to the estimated Mercury body-fixed reference frame, gives a **residual longitude difference**, which is a function of the **libration phase** and **amplitude**:

$$
\Delta \varphi_i = \varphi_{2i} - \varphi_{1i} = \varphi_L \sin \left[\omega_{REV} \left(t_{2i} + t_0\right)\right] - \sin \left[\omega_{REV} \left(t_{1i} + t_0\right)\right]
$$

Using the Least Squares method:

$$
\varphi_L = \frac{\sum_i \left\{ \Delta \varphi_i \left[\sin \left(\omega_{REV} \left(t_{2i} - t_0 \right) \right) - \sin \left(\omega_{REV} \left(t_{1i} - t_0 \right) \right) \right] \right\}}{\sum_i \left\{ \sin \left[\omega_{REV} \left(t_{2i} - t_0 \right) \right] - \sin \left[\omega_{REV} \left(t_{1i} - t_0 \right) \right] \right\}^2}
$$

M

Introduction of observation errors

Observation errors have been introduced in the numerical simulations, to characterise the sensitivity of the estimation algorithms to nonnominal conditions. The following errors have been considered:

- errors in the determination of MPO's centre of mass
- errors in the attitude determination and control system
- errors in the camera timing
- errors in image cross-correlation process
- errors in SIMBIO-SYS camera inertial pointing due to MPO thermal deformations

Errors in the determination of MPO's centre of mass (1/2)

Errors in the determination of MPO's centre of mass (2/2)

The error Δ**r_s on Mercury's surface ranges from about 8 m to about 13 m**

Errors in the attitude determination and control system

A randomly sampled rotation matrix is computed through the Euler axis/angle parameterization

Errors in the camera timing

- • Timing errors of 1.E-3 s have been simulated, adding a positional error to the nominal vector, representing the position of MPO's center of mass
- • The positional errors are directed along the local MPO's velocity vector and quantized to +/-1.E-3*|v|
- Given MPO's orbital velocities in the order of about 2 km/s the \bullet resulting error is in the order of 2 m

Numerical simulations - parameter space

- •Maximum altitude for landmarks imaging (600 Km, 900 Km)
- •Minimum solar elevation angle for landmarks imaging (30°, 45°)
- •Βeta angle: 0°, 20°, 35°, 50°, 70°, 90°
- •Number of surface landmarks (50, 100, 200)
- •Magnitude of systematic error (1", 2", 4")

(300 Monte Carlo runs for each combination of parameters)

Mean and Std Dev - Obliquity and Libration for Different Error Models (β=0° H=600 Km E=30°) (actual values: ^ε=420'', φ=42")

Conclusions and Future Work

- \bullet The rotational state (obliquity angle and libration amplitude) of Mercury can be estimated using the performance of three instruments plus S/C telemetry:
	- \checkmark MORE and ISA for precise orbit determination
	- \checkmark SIMBIO-SYS for hi-res image acquisition
	- \checkmark S/C telemetry for the attitude matrix
- • A dedicated S/W for the elaboration of the information listed above has to be designed (and needs to be implemented); a breadboard was developed for the simulations shown here;
- • Comparison with the results obtained within the OD S/W (to be developed by group of the University of Pisa) is crucial to crosscheck the conclusions;
- \bullet Results obtained so far by means of simulations show the experiment is feasible and offers a high estimation accuracy;
- • An accurate re-visitation of the simulations shown here is in order, using the new, updated information on the S/C from the contractor;

– Mercury Rotational State 1

M

RE *st Team Meeting – AAS-I, Rome, 26 Feb. 2007 22/21*

100 Randomly sampled bright spots on Mercury surface

Distribution of the multiple observations time difference (t ²-t 1) generated over a 1-year numerical simulation (β**=0°**)

Time distribution of observations of Mercury's libration (β**=0°**)

