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Outline of the experiment

« The estimation of Mercury’s polar axis direction (obliquity) and librations
amplitude is based on multiple observations of some bright spots on its
surface, by MPQO’s Narrow Angle Camera (for a higher resolution)

* An image correlation process is needed to get the basic observables used
In the estimation procedures:

v first the polar axis direction is estimated, by identifying a new
reference frame, rotating with a constant angular velocity

v’ then, the residual information contained in the observables,
concerning Mercury’s librations, is used to estimate their amplitude

(observed as a varying angular velocity of the Mercury body fixed
reference frame)
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An example of Mercury’s surface with some “bright spots”
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Generation of multiple observations of Mercury’s surface
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M@RE - Mercury Rotational State



Two images of the same bright spot on Mercury’s surface
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Correlation of the two images to get the bright spot position

In general:
* a rotation
* a translation
 a stretching

of the 29 image is
necessary to get the

maximum correlation
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Computing the bright spot relative position on each image
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Computing the J2000 (Mercury-centric) referenced vectors
representing the bright spot position at different timetags
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Summary of vectors computation

@ » Determine MPQO's position at both timetags
e , J.\ through the most accurate OD process;

» Obtain MPOQO'’s attitude matrix at epochs;

« Compute the J2000 Mercury-centric vectors of
Image centers;

» Correlate pair of images to obtain bright spot’s
position on each image and compute the
displacement of the bright spot wrt the center of
each image;

» Rotate the J2000 Mercury-centric vectors of image
centers in the direction of the bright spot position
to obtain the J2000 Mercury-centric vectors of the
bright spot positions at epochs;
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Observables for obliquity and libration amplitude estimation

* The hypothesis is that all observables
(Ar;), generated at each successive pass
on the same bright spot, are perpendicular

to Mercury’s polar axis;

» Being all these vectors referenced to the
Mercury centered J2000 inertial frame,

they can be used to compute its rotation

axis direction

Ar (tz't1)
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Estimation of Mercury’s polar axis direction
The polar axis direction is represented by the unit vector
o =[singsineg —cosgsine cose]
Where ¢ (the phase of the obliquity) is known (Cassini’s state is assumed)

X+ Y0, + 4,0, =€

X, + Y,0, + 7,0, =€ L

- == B lat > T 573 — T 2 i

Ar,-0=0 1=1n = = Eei—mln
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Where X;, Y; and z; represent the coordinates of the differences vectors
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Estimation of Mercury’s polar axis direction (cont’d)

Using the Least Squares method:

() 0 [ Zlex-ey) Xalsx-cy)|sine

a(zn:e?j ” _ZiI: 2 (S¢Xi _C¢yi) 2.4  COS¢ |

Which can be solved, using the SVD method, to get the “best” €
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Estimation of the libration amplitude

For the libration of Mercury a simple model was assumed in the simulations,
where the rotation angle about the polar axis is:

@ = Wport + ¢ SIN |:a)REV (t —1 )]

Each observation, once rotated back to the estimated Mercury body-fixed
reference frame, gives a residual longitude difference, which is a
function of the libration phase and amplitude:

Ap, =@, — ¢y Sin [wREV (t } —sin [wREV (L, ]}
Using the Least Squares method:
Z{A¢i [Sin (a)REV (t2i _to))_Sin (a)REV (t _to)):|}
> {sin [ Oney (ty — o) |—Sin[ @gey (t; —1, )]}2

¢ =
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Introduction of observation errors

Observation errors have been introduced in the numerical simulations,
to characterise the sensitivity of the estimation algorithms to non-
nominal conditions. The following errors have been considered:

errors in the determination of MPQO’s centre of mass

errors in the attitude determination and control system

errors in the camera timing

errors in image cross-correlation process

errors in SIMBIO-SYS camera inertial pointing due to MPO
thermal deformations
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Errors in the determination of MPO’s centre of mass (1/2)
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Errors in the determination of MPO’s centre of mass (2/2)

The error Ar, on Mercury’s surface ranges from about 8 m to about 13 m
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Errors in the attitude determination and control system

A randomly sampled rotation matrix is computed through
the Euler axis/angle parameterization

C, a =[0, 360] deg
B £ = [0, 180] deg
y ' e(1) =sin(B3) cos(«)
e(2) =sin(f)sin(a)
e(3) =cos(p)
Gy =N, )
vl o="7*10*deg (2.57)

C,
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Errors in the camera timing

« Timing errors of 1.E-3 s have been simulated, adding a positional
error to the nominal vector, representing the position of MPO’s

center of mass

« The positional errors are directed along the local MPO's velocity

vector and quantized to +/-1.E-3*|v|

« Given MPQO’s orbital velocities in the order of about 2 km/s the

resulting error is in the order of 2 m
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Numerical simulations - parameter space

 Maximum altitude for landmarks imaging (600 Km, 900 Km)

« Minimum solar elevation angle for landmarks imaging (30°, 45°)
« Beta angle: 0°, 20°, 35°, 50°, 70°, 90°

* Number of surface landmarks (50, 100, 200)

« Magnitude of systematic error (17, 27, 47)

(300 Monte Carlo runs for each combination of parameters)
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Mean and Std Dev - Obliquity and Libration for

Different Error Models (=0° H=600 Km E=30°)
(actual values: €=420", ¢=42")

Mean and Standard Deviation of Obliquity and Libration (best case - $=0°)

e O, (I_) Gd)
Aa=1" 419.9” 0.49” 41.9” 0.89”
Aa=2" 420.0” 0.46” 41.9” 0.89”
Aa=4" 420.0” 0.51” 42.0” 0.92”
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Conclusions and Future Work

« The rotational state (obliquity angle and libration amplitude) of
Mercury can be estimated using the performance of three
instruments plus S/C telemetry:

v MORE and ISA for precise orbit determination
v' SIMBIO-SYS for hi-res image acquisition
v' S/C telemetry for the attitude matrix

« A dedicated S/W for the elaboration of the information listed
above has to be designed (and needs to be implemented);
a breadboard was developed for the simulations shown here;

« Comparison with the results obtained within the OD S/W (to be
developed by group of the University of Pisa) is crucial to cross-
check the conclusions;

* Results obtained so far by means of simulations show the
experiment is feasible and offers a high estimation accuracy;

 An accurate re-visitation of the simulations shown here is in order,
using the new, updated information on the S/C from the contractor;
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Backup material
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100 Randomly sampled bright spots on Mercury surface
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Distribution of the multiple observations time difference (t,-t,)
generated over a 1-year numerical simulation (3=0°)
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Time distribution of observations of Mercury’s libration (=0°)
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