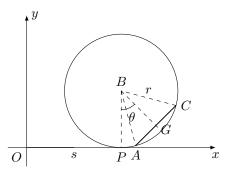
Compito di Meccanica Razionale


Corso di Laurea in Matematica

8 Giugno 2018

(usare fogli diversi per esercizi diversi)

Primo Esercizio

In un piano si fissi un sistema di riferimento Oxy e si consideri un anello di raggio r, mobile in tale piano, che può rotolare senza strisciare sull'asse Ox. Gli estremi A, C di un'asta di lunghezza r sono vincolati a scivolare sull'anello (vedi figura). Usando come coordinate l'ascissa s del centro B dell'anello e l'angolo θ che il segmento BG, con G il centro dell'asta, forma con la direzione verticale,

i) trovare le coordinate del centro istantaneo di rotazione dell'asta.

Assumendo che il moto dell'asta sia dato dalle relazioni

$$s(t) = rt, \qquad \theta(t) = t,$$

ii) descrivere la polare fissa (base) e la polare mobile (rulletta) dell'asta.

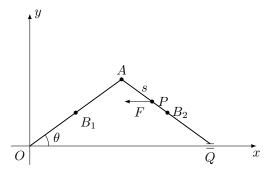
Secondo Esercizio

Un corpo di massa m è soggetto ad una forza centrale

$$\mathbf{F}(\mathbf{x}) = f(\rho) \frac{\mathbf{x}}{\rho}, \quad \mathbf{x} \in \mathbb{R}^3,$$

dove $\rho = |\mathbf{x}|$ ed

$$f(\rho) = -k(\rho + \rho^3), \qquad k > 0.$$


Assumiamo che il momento angolare sia diverso da zero.

- a) mostrare che c'è un unico valore $\bar{\rho}$ della variabile ρ che corrisponde ad una traiettoria circolare.
- b) Tracciare il ritratto di fase nel piano delle fasi ridotto, con coordinate $\rho, \dot{\rho}$.
- c) Calcolare il periodo della traiettoria circolare in funzione del raggio $\bar{\rho}$.
- d) Calcolare il valore minimo E_{\min} dell'energia totale in funzione di $\bar{\rho}$.

e) Nel caso in cui E=k, $c^2=\frac{km}{2}$ mostrare che $E>E_{\min}$ e trovare i valori $\rho_{\min},$ ρ_{\max} dei punti di inversione del moto.

Terzo Esercizio

In un piano verticale si fissi un sistema di riferimento Oxy, con asse Oy verticale ascendente. Si consideri il sistema meccanico formato da due aste omogenee di massa m e lunghezza 2ℓ che sono incernierate in un estremo. L'altro estremo della prima asta è incernierato nell'origine O mentre quello della seconda asta, indicato con Q, può scivolare senza attrito sull'asse Ox. Sul sistema agisce la forza di gravità, di accelerazione g. Una forza costante $-F\hat{\bf e}_1$, con F>0, agisce sul punto P di ascissa s della seconda asta, vedi figura. Si usi come coordinata l'angolo θ che la prima asta forma con la direzione orizzontale.

- 1. Calcolare la componente lagrangiana delle forze attive Q_{θ} e usarla per trovare le configurazioni di equilibrio del sistema.
- $2.\,$ Studiare la stabilità degli equilibri trovati al punto precedente.