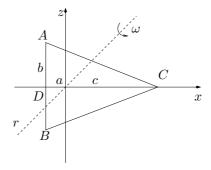
Compito di Istituzioni di Fisica Matematica 12 Giugno 2012

(usare fogli diversi per esercizi diversi)

Primo Esercizio

Si fissi un sistema di riferimento inerziale Oxyz, con versori degli assi $\hat{\mathbf{e}}_1$, $\hat{\mathbf{e}}_2$, $\hat{\mathbf{e}}_3$. Si consideri un triangolo isoscele omogeneo orientato come in figura, di massa m, base b e altezza h, che ruota attorno all'asse r definito da $\hat{\mathbf{e}}_1 + \hat{\mathbf{e}}_3$, con velocità angolare costante $\vec{\omega}$.



L'asse r divide l'asse di simmetria CD del triangolo in due parti, di lunghezza a, c rispettivamente (h = a + c). Dimostrare che, scelti a, b con $b^2 > 12a^2$, è possibile determinare c in modo da ottenere la rotazione uniforme del triangolo con momento delle forze esterne nullo rispetto al polo O.

Secondo Esercizio

Si fissi un sistema di riferimento Oxyz con asse Oz verticale ascendente e si consideri il sistema meccanico composto da 3 punti materiali P_1, P_2, P_3 di uguale massa m che possono scorrere su 3 semirette uscenti da O, di equazioni parametriche

$$x_1 = s_1, y_1 = 0, z_1 = -s_1,$$

 $x_2 = -\frac{s_2}{2}, y_2 = \frac{\sqrt{3}}{2}s_2, z_2 = -s_2,$
 $x_3 = -\frac{s_3}{2}, y_3 = -\frac{\sqrt{3}}{2}s_3, z_3 = -s_3,$

con $s_1,s_2,s_3>0$. I punti P_j sono collegati tra loro da molle di ugual costante elastica k>0 e lunghezza a riposo nulla. Usando come coordinate i parametri s_1,s_2,s_3 ,

- i) scrivere la lagrangiana del sistema;
- ii) dimostrare che c'è un unico punto di equilibrio stabile;
- iii) scrivere l'equazione per le frequenze proprie delle piccole oscillazioni attorno all'equilibrio stabile e dimostrare che una frequenza è $\bar{\omega}=\sqrt{\frac{2k}{m}}$

iv) trovare il modo normale associato alla frequenza $\bar{\omega}$ e descrivere geometricamente il moto ad esso associato.

Terzo Esercizio

Si consideri il moto piano di un corpo puntiforme di massa m nel campo di forze generato da due centri fissi di attrazione O_1 , O_2 posti a distanza 2d, d > 0 l'uno dall'altro.

Introduciamo in tale piano il sistema di riferimento Oxy, con asse Ox diretto lungo la retta congiungente i due centri e con l'origine O posto a distanza d da ciascuno di essi.

Le forze \mathbf{F}_1 , \mathbf{F}_2 sviluppate da ciascuno dei centri sono date da

$$\mathbf{F}_1 = -\frac{(x-d,y)}{[(x-d)^2 + y^2]^{3/2}}, \qquad \mathbf{F}_2 = -\frac{(x+d,y)}{[(x+d)^2 + y^2]^{3/2}}.$$

Mostrare che usando le variabili ellittiche (ξ, η) , definite da

$$x = \cosh \xi \cos \eta$$
, $y = \sinh \xi \sin \eta$,

l'equazione di Hamilton-Jacobi per il sistema si scompone in due equazioni differenziali ordinarie.